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Abstract

Knowledge graph reasoning is an important001
problem for knowledge graphs. In this paper,002
we propose a novel and principled framework003
called RulE (stands for Rule Embedding) to004
effectively leverage logical rules to enhance005
KG reasoning. Unlike knowledge graph em-006
bedding methods, RulE learns rule embeddings007
from existing triplets and first-order rules by008
jointly representing entities, relations and log-009
ical rules in a unified embedding space. Based010
on the learned rule embeddings, a confidence011
score can be calculated for each rule, reflect-012
ing its consistency with the observed triplets.013
This allows us to perform logical rule infer-014
ence in a soft way, thus alleviating the brit-015
tleness of logic. On the other hand, RulE in-016
jects prior logical rule information into the em-017
bedding space, enriching and regularizing the018
entity/relation embeddings. This makes KGE019
alone perform better too. RulE is conceptually020
simple and empirically effective. We conduct021
extensive experiments to verify each compo-022
nent of RulE. Results on multiple benchmarks023
reveal that our model outperforms the major-024
ity of existing embedding-based and rule-based025
approaches.026

1 Introduction027

Knowledge graphs (KGs) usually store millions028

of real-world facts and are used in a variety of ap-029

plications (Wang et al., 2018; Bordes et al., 2014;030

Xiong et al., 2017). Examples of knowledge graphs031

include Freebase (Bollacker et al., 2008), Word-032

Net (Miller, 1995) and YAGO (Suchanek et al.,033

2007). They represent entities as nodes and re-034

lations among entities as edges. Each edge en-035

codes a fact in the form of a triplet (head entity,036

relation, tail entity). However, KGs are usually037

highly incomplete, making their downstream tasks038

more challenging. Knowledge graph reasoning,039

which predicts missing facts by reasoning on exist-040

ing facts, has thus become a popular research area041

in artificial intelligence. 042

There are two prominent lines of work in this 043

area: knowledge graph embedding (KGE) and rule- 044

based KG reasoning. Knowledge graph embed- 045

ding (KGE) methods such as TransE (Bordes et al., 046

2013), RotatE (Sun et al., 2019) and BoxE (Ab- 047

boud et al., 2020) embed entities and relations 048

into a latent space and compute the score for each 049

triplet to quantify its plausibility. KGE is effi- 050

cient and robust to noise. However, it only uses 051

zeroth-order (propositional) logic to encode exist- 052

ing facts (e.g., “Alice is Bob’s wife.”) without 053

explicitly leveraging first-order (predicate) logic. 054

First-order logic uses the universal quantifier to rep- 055

resent generally applicable logical rules. For in- 056

stance, “∀x, y : x is y’s wife → y is x’s husband". 057

Those rules are not specific to particular entities 058

(e.g., Alice and Bob) but are generally applicable to 059

all entities. The other line of work, rule-based KG 060

reasoning, in contrast, explicitly applies logic rules 061

to infer new facts (Galárraga et al., 2013, 2015; 062

Yi et al., 2018; Sadeghian et al., 2019; Qu et al., 063

2020). Unlike KGE, logical rules can achieve inter- 064

pretable reasoning and generalize to new entities. 065

However, the brittleness of logical rules greatly 066

harms prediction performance. Consider the log- 067

ical rule (x,works in, y) → (x, lives in, y) as an 068

example. It is mostly correct. Yet, if somebody 069

works in New York but actually lives in New Jer- 070

sey, the rule can still only infer the wrong fact in 071

an absolute way. 072

Considering that the aforementioned two lines of 073

work can complement each other, addressing each 074

other’s weaknesses with their own merits, it be- 075

comes imperative to study how to integrate logical 076

rules with KGE methods in a principled manner. 077

If we view this integration in a broader context, 078

embedding-based reasoning can be seen as a neural 079

method, while rule-based reasoning can be seen 080

as a symbolic method. Neural-symbolic learning 081

has also been a focus of artificial intelligence re- 082
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Figure 1: (a) Traditional KGE methods embed entities
and relations as low-dimensional vectors only using
existing triplets by defining operations between entities
and relations (e.g., translation); (b) Our RulE associates
each rule with an embedding and additionally defines
mathematical operations between relations and logical
rules (e.g., multi-step translation) to leverage first-order
logical rules.

search in recent years (Parisotto et al., 2017; Yi083

et al., 2018; Manhaeve et al., 2018; Xu et al., 2018;084

Hitzler, 2022).085

In the KG domain, such efforts exist too. Some086

works combine logical rules and KGE by using087

rules to infer new facts as additional training data088

for KGE (Guo et al., 2016, 2018) or directly con-089

vert some rules into regularization terms for spe-090

cific KGE models (Ding et al., 2018; Guo et al.,091

2020). However, they both leverage logical rules092

merely to enhance KGE training without actually093

using logical rules to perform reasoning. In this094

way, they might lose the important information095

contained in explicit rules, leading to empirically096

worse performance than state-of-the-art methods.097

To address the aforementioned limitations, we098

propose a simple and principled framework called099

RulE, which aims to learn rule embeddings by100

jointly representing entities, relations and logical101

rules in a unified space. As illustrated in Figure 1,102

given a KG and logical rules, RulE assigns an em-103

bedding to each entity, relation and rule, and de-104

fines respective mathematical operators between105

entities and relations (traditional KGE part) as well106

as between relations and rules (RulE part). It is107

important to note that we cannot define operators108

between entities and rules because rules are not109

specific to particular entities. By jointly optimizing110

entity, relation and rule embeddings in the same111

space, RulE allows injecting prior logical rule in-112

formation to enrich and regularize the embedding113

space. Our experiments reveal that this joint em-114

bedding can boost KGE methods themselves. Addi-115

tionally, based on the relation and rule embeddings, 116

RulE is able to give a confidence score to each 117

rule, similar to how KGE gives each triplet a con- 118

fidence score. This confidence score reflects how 119

consistent a rule is with the existing facts, and en- 120

ables performing logical rule inference in a soft 121

way by softly controlling the contribution of each 122

rule, which alleviates the brittleness of logic. 123

We evaluate RulE on benchmark link predic- 124

tion tasks and show superior performance. Exper- 125

imental results reveal that our model outperforms 126

the majority of existing embedding-based and rule- 127

based methods. We also conduct extensive ablation 128

studies to demonstrate the effectiveness of each 129

component of RulE. All the empirical results verify 130

that RulE is a simple and effective framework for 131

neural-symbolic KG reasoning. 132

2 Preliminaries 133

A KG consists of a set of triplets K = 134

{(h, r, t) | h, t ∈ E , r ∈ R} ⊆ E ×R× E , where E 135

denotes the set of entities and R the set of relations. 136

For a testing triplet (h, r, t), we define a query as 137

q = (h, r, ?). The knowledge graph reasoning (link 138

prediction) task is to infer the missing entity t based 139

on the existing facts and rules. 140

2.1 Embedding-based reasoning 141

Knowledge graph embedding (KGE) represents en- 142

tities and relations as embeddings in a continuous 143

space. It calculates a score for each triplet based 144

on these embeddings via a scoring function. The 145

embeddings are trained so that facts observed in 146

the KG have higher scores than those not observed. 147

The learning goal here is to maximize the scores of 148

positive facts (existing triplets) and minimize those 149

of sampled negative samples. 150

RotatE (Sun et al., 2019) is a representative 151

KGE method with competitive performance on 152

common benchmark datasets. It maps entities in 153

a complex space and defines relations as element- 154

wise rotations in each two-dimensional complex 155

plane. Each entity and each relation is associated 156

with a complex vector, i.e., h, r, t ∈ Ck, where the 157

modulus of each element in r is fixed to 1 (multi- 158

plying a complex number with a unitary complex 159

number is equivalent to a 2D rotation). If a triplet 160

(h, r, t) holds, it is expected that t ≈ h ◦ r in the 161

complex space, where ◦ denotes the Hadamard 162

(element-wise) product. Formally, the distance 163

function of RotatE is defined as: 164

d(h, r, t) =∥ h ◦ r − t ∥ . (1) 165
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166

2.2 Rule-based reasoning167

Logical rules are usually expressed as first-168

order logic formulae, e.g., ∀x, y, z : (x, r1, y) ∧169

(y, r2, z) → (x, r3, z), or r1(x, y) ∧ r2(y, z) →170

r3(x, z) for brevity. The left-hand side of the impli-171

cation “→” is called rule body or premise, and the172

right-hand side is rule head or conclusion. Logical173

rules are often restricted to be closed, which form174

chains. For a chain rule, successive relations share175

intermediate entities (e.g., y), and the rule head’s176

and rule body’s head/tail entity are the same. Chain177

rules include common logical rules in KG such as178

symmetry, inversion, composition, hierarchy, and179

intersection rules. These rules play an important180

role in KG reasoning. The length of a rule is the181

number of atoms (relations) that exist in its rule182

body. A grounding of a rule is obtained by sub-183

stituting all variables x, y, z with specific entities.184

If all triplets in the body of a grounding rule exist185

in the KG, we get a support of this rule. Those186

rules that have nonzero support are called activated187

rules. When inferring a query (h, r, ?), rule-based188

reasoning enumerates relation paths between head189

h and each candidate tail, and uses activated rules190

to infer the answer. See Appendix B for illustrative191

examples.192

3 Method193

This section introduces our proposed model RulE.194

RulE is a principled framework to combine KG195

embedding with logical rules by learning rule em-196

beddings. As illustrated in Figure 2, the training197

process of RulE consists of three key components.198

Consider a KG containing triplets and a set of logi-199

cal rules automatically extracted or predefined by200

experts. They are: 1) Joint entity/relation/rule201

embedding. We model the relationship between202

entities and relations as well as the relationship203

between relations and logical rules to jointly train204

entity, relation and rule embeddings in a continuous205

space, as demonstrated in Figure 1. 2) Soft rule206

reasoning. With the rule and relation embeddings,207

we calculate a confidence score for each rule which208

is used as the weight of activated rules to output209

a grounding rule score. 3) Finally, we integrate210

the KGE score calculated from the entity and rela-211

tion embeddings trained in the first stage and the212

grounding rule score obtained in the second stage213

to reason unknown triplets.214

3.1 Joint entity/relation/rule embedding 215

Given a triplet (h, r, t) ∈ K and a rule R ∈ L, 216

we use h, r, t,R ∈ Ck to represent their embed- 217

dings, respectively, where k is the dimension of 218

the complex space (following RotatE). Similar to 219

KGE, which encodes the plausibility of each triplet 220

with a scoring function, RulE additionally defines 221

a scoring function for logical rules. Based on the 222

two scoring functions, it jointly learns entity, re- 223

lation and rule embeddings in the same space by 224

maximizing the plausibility of existing triplets K 225

(zeroth-order logic) and logical rules L (first-order 226

logic). The following describes in detail how to 227

model the triplets and logical rules together. 228

Modeling the relationship between entities 229

and relations To model triplets, we take Ro- 230

tatE (Sun et al., 2019) due to its simplicity and 231

competitive performance. Its loss function with 232

negative sampling is defined as: 233

Lt(h, r, t) = − log σ(γt − d(h, r, t))−∑
(h′,r,t′)∈N

1

|N|
log σ(d(h, r, t)− γt),

(2) 234

where γt is a fixed triplet margin, d(h, r, t) is the 235

distance function defined in Equation (1), and N 236

is the set of negative samples constructed by re- 237

placing either the head entity or the tail entity with 238

a random entity using a self-adversarial negative 239

sampling approach. Note that RulE is not restricted 240

to particular KGE models. The RotatE can be re- 241

placed with other models, such as TransE (Bordes 242

et al., 2013) and ComplEx (Trouillon et al., 2016), 243

too. 244

Modeling the relationship between relations 245

and logical rules A universal first-order logical 246

rule is some rule that universally holds for all en- 247

tities. Therefore, we cannot relate such a rule to 248

specific entities. Instead, it is a higher-level con- 249

cept related only to the relations it is composed of. 250

Our modeling strategy is as follows. For a logical 251

rule R : r1 ∧ r2 ∧ . . . ∧ rl → rl+1, we expect that 252

rl+1 ≈ (r1◦r2◦. . .◦rl)◦R. Because the modulus 253

of each element in r is restricted to 1, the multiple 254

rotations in the complex plane are equivalent to 255

the summation of the corresponding angles. We 256

define g(r) to return the angle vector of relation 257

r (taking the angle for each element of r). Note 258

that the definition of Hadamard product in Equa- 259

tion 1 is equivalent to the term g(r) as defined in 260

Equation 3. More interpretations are provided in 261
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Figure 2: Architecture of RulE. It consists of three components. 1) We first model the relationship between entities
and relations as well as the relationship between relations and logical rules to learn joint entity, relation and rule
embedding in the same continuous space. With the learned rule embeddings (R) and relation embeddings (r),
RulE can output a weight (w) as the confidence score of each rule. 2) In the soft rule reasoning stage, we construct
a soft multi-hot encoding v based on rule confidences. Specifically, for triplet (e1, r3, e6), only R1 and R3 can
infer the fact with the grounding paths e1 → r1 → r2 → e6 and e1 → r7 → r8 → e6 (highlighted with purple and
blue). Thus, the value of v1 is w1, v3 is w3 and others (unactivated rules) are 0. Then the constructed soft multi-hot
encoding passes an MLP to output the grounding rule score. 3) Finally, RulE integrates the KGE score calculated
from the entity and relation embeddings trained in the first stage and the grounding rule score obtained in the second
stage to reason unknown triplets.

Appendix H. Then, the distance function is formu-262

lated as follows:263

dr(r1, . . . , rl+1,R) = ∥
l∑

i=1

g(ri)

+ g(R)− g(rl+1) ∥ .
(3)264

We also employ negative sampling, the same as265

when modeling triplets. At this time, it replaces a266

relation (either in rule body or rule head) with a267

random relation. The loss function for logical rules268

is defined as:269

Lr(r1, . . . , rl+1,R) = − log σ(γr − dr)

−
∑

(r′
1,...,r

′
l+1,R)∈M

1

|M|
log σ(d′r − γr),

(4)270

where γr is a fixed rule margin and M is the set of271

negative rule samples.272

Note that the above strategy is not the only pos-273

sible way. For example, when considering the rela-274

tion order of logical rules (e.g., sister’s mother is275

different from mother’s sister), we design a variant276

of RulE using position-aware sum, which shows277

slightly improved performance on some datasets.278

See Appendix G. Nevertheless, we find that Equa-279

tion (3) is simple and good enough, thus keep it as280

the default choice.281

Joint training Given a KG containing triplets282

K and logical rules L, we jointly optimize the two283

loss functions (2) and (4) to get the final entity, 284

relation and rule embeddings: 285

L =
∑

(h,r,t)∈K

Lt(h, r, t)

+ α
∑

(r1,...,rl,R)∈L

Lr(r1, . . . , rl+1,R),
(5) 286

where α is a hyperparameter to balance the two 287

losses. Note that the two losses act as each other’s 288

regularization terms. The rule loss (4) cannot 289

be optimized alone, otherwise there always exist 290

(r1, . . . , rl+1,R)s that can perfectly minimize the 291

loss, leading to meaningless embeddings. How- 292

ever, when jointly optimizing it with the triplet 293

loss, the embeddings will be regularized, and rules 294

more consistent with the triplets tend to have lower 295

losses (by being more easily optimized). On the 296

other hand, the rule loss also provides a regulariza- 297

tion to the triplet (KGE) loss by adding additional 298

constraints that relations should satisfy. This ad- 299

ditional information enhances the KGE training, 300

leading to entity/relation embeddings more consis- 301

tent with prior rules. 302

3.2 Soft rule reasoning 303

As shown in Figure 2, during soft rule reasoning, 304

we use the joint relation and rule embeddings to 305

compute the confidence score of each rule. Similar 306
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to how KGE gives a triplet score, the confidence307

score of a logical rule Ri : ri1 ∧ ri2 ∧ ...∧ ril → ril+1
308

is calculated by:309

wi = γr − d(ri1 , . . . , ril+1
,Ri), (6)310

where d(ri1 , . . . , ril+1,Ri) is defined in Equa-311

tion (3).312

To predict a triplet, we perform rule grounding313

by finding all paths connecting the head and tail314

that can activate some rule. Often a triplet can have315

several different rules activated, each with different316

number of supports (activated paths). An example317

is shown in Figure 2. The triplet (e1, r3, e6) can be318

predicted by rule R1 and R3 with the grounding319

paths e1 → r1 → r2 → e6 and e1 → r7 → r8 →320

e6. In this case, a straightforward way is to use the321

maximum (i.e., max(w1, w3)) or summation (i.e.,322

w1+w3) of the confidences of those activated rules323

as the grounding rule score of the triplet.324

However, the above way will lose the325

dependency among different rules. For ex-326

ample, consider the following two rules:327

parent_of(x, y) → mother_of(x, y) and328

sister_of(x, z)∧aunt_of(z, y) → mother_of(x, y).329

We know that they individually are both not reli-330

able, because a parent can also be a father, and331

an aunt’s sister can be another aunt. However,332

when these two rules are activated together, one333

can almost surely infer the “mother” relation. In334

practice, those rules extracted automatically may335

contain a lot of redundancy or noise. Compared336

to the naive aggregation approach (such as337

summation or maximum), we choose to use an338

MLP to model the complex interdependencies339

among rules.340

Specifically, let us still consider the example341

in Figure 2. We construct a soft multi-hot en-342

coding v ∈ R|L| such that vi is the product of343

the confidence of Ri and the number of ground-344

ing paths activating Ri (# of supports). Formally,345

vi = wi×|P(h, r, t,Ri)| for i ∈ {1, . . . ,L}, where346

P(h, r, t,Ri) is the set of supports of the rule Ri347

applying to the current triplet (h, r, t). For the can-348

didate e6 in Figure 2, the value of v1 is w1 × 1349

(grounding path e1 → r7 → r8 → e6 appears one350

times), v3 is w3 × 1, and others (unactivated rules)351

are 0.352

With this soft multi-hot encoding v, we apply an353

1Except for YAGO3-10, DistMult, ComplEx and TuckER
results are taken from Abboud et al. (2020).

MLP on v to calculate the grounding rule score: 354

sg(h, r, t) = MLP(v). (7) 355

Note that for a query (h, r, ?), we will iterate over 356

all candidates t, and the grounding paths for all 357

candidates can be efficiently computed by running 358

BFS. The complexity analysis is presented in Ap- 359

pendix F. Once we have the grounding rule score 360

for all candidate answers, we further use a softmax 361

function to compute the probability of the true an- 362

swer. Finally, we train the MLP by maximizing the 363

log likelihood of the true answers in the training 364

triplets. Fine-grained implementation details are 365

included in Appendix C. 366

3.3 Inference 367

Finally, during inference, we predict any miss- 368

ing fact with a weight-ed sum of the KGE score 369

(st = γt − d(h, r, t)) and the grounding rule score 370

(Equation (7)): 371

s(h, r, t) = st(h, r, t) + β · sg(h, r, t′), (8) 372

where β is a hyperparameter balancing the weights 373

of embedding-based and rule-based reasoning. 374

4 Experiments 375

In this section, we empirically evaluate RulE on 376

several benchmark KGs and show superior per- 377

formance to existing embedding-based, rule-based 378

methods and hybrid approaches that combine both. 379

Additionally, we also conduct extensive ablation 380

experiments to verify the effectiveness of each com- 381

ponent of RulE. Furthermore, we provide theoret- 382

ical analysis and case studies in Appendix K to 383

provide further insights and understanding. 384

4.1 Experiment settings 385

Datasets We choose six datasets for evalua- 386

tion: FB15k-237 (Toutanova and Chen, 2015), 387

WN18RR (Dettmers et al., 2018), YAGO3- 388

10 (Mahdisoltani et al., 2014), UMLS, Kinship, and 389

Family (Kok and Domingos, 2007). More details of 390

data split and logical rules used in the experiments 391

are in Appendix I. 392

Baselines We compare with a comprehensive 393

suite of embedding and rule-based baselines. (1) 394

1For UMLS and Kinship, [*] means the numbers are taken
from Qu et al. (2020); [†] means we rerun the methods with the
same evaluation process. For Family, Neural-LP and DRUM
results are taken from Sadeghian et al. (2019) and others from
our rerun results.
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Table 1: Results of reasoning on FB15k-237, WN18RR and YAGO3-10. H@k is in %. [*] means the numbers are
taken from the original papers1. [†] means we rerun the methods with the same evaluation process. Best results are
in bold while the seconds are underlined.

FB15k-237 WN18RR YAGO3-10
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE† 0.329 23.0 36.9 52.8 0.222 1.2 39.9 53.0 0.501 40.6 - 67.4
DistMult∗ 0.241 15.5 26.3 41.9 0.43 39 44 49 0.34 24 38 54
ComplEx∗ 0.247 15.8 27.5 42.8 0.44 41 46 51 0.36 26 40 55

ConvE∗ 0.325 23.7 35.6 50.1 0.43 40 44 52 0.44 35 49 62
TuckER∗ 0.358 26.6 39.4 54.4 0.470 44.3 48.2 52.6 0.529 - - 67.0
RotatE† 0.337 23.9 37.4 53.2 0.476 43.1 49.2 56.2 0.497 40.3 55.2 67.5

PathRank∗ 0.087 7.4 9.2 11.2 0.189 17.1 20.0 22.5 - - - -
Neural-LP∗ 0.237 17.3 25.9 36.2 0.435 37.1 43.4 56.6 - - - -

DRUM∗ 0.343 25.5 37.8 51.6 0.486 42.5 51.3 58.6 - - - -
RNNLogic+ (w/o emb.)∗ 0.299 21.5 32.8 46.4 0.489 45.3 50.6 56.3 - - - -
RNNLogic+ (w/o emb.)† 0.330 24.3 36.3 50.2 0.502 46.1 52.2 58.5 0.484 41.0 53.8 61.5

NCRL 0.30 20.9 - 47.3 0.67 56.3 - 85.0 0.38 27.4 - 53.6

RNNLogic+ (with emb.)∗ 0.349 25.8 38.5 53.3 0.513 47.1 53.2 59.7 - - - -
RNNLogic+ (with emb.)† 0.356 26.2 39.3 54.6 0.516 46.9 53.7 60.4 0.499 41.4 55.1 65.8

Naive Combination † 0.350 26.2 38.7 52.8 0.512 46.9 53.1 59.7 0.484 41.0 53.7 61.4

RulE (emb with TransE.) 0.346 25.1 38.5 53.4 0.242 6.7 37.8 52.6 0.510 41.4 57.3 68.2
RulE (emb.) 0.338 24.1 37.6 53.3 0.484 44.3 49.9 56.3 0.530 44.2 58.2 69.0
RulE (rule.) 0.335 24.9 36.9 50.4 0.514 47.3 53.3 59.7 0.481 40.9 53.2 61.0

RulE (emb & rule.) 0.362 26.6 40.0 55.3 0.519 47.5 53.8 60.5 0.535 44.7 58.8 69.4

Embedding-based models: we include TransE (Bor-395

des et al., 2013), DisMult (Yang et al., 2014), Com-396

plEx (Trouillon et al., 2016), ConvE (Dettmers397

et al., 2018), TuckER (Balažević et al., 2019) and398

RotatE (Sun et al., 2019). (2) Rule-based models:399

we compare with MLN (Richardson and Domin-400

gos, 2006), PathRank (Lao and Cohen, 2010),401

as well as popular rule learning methods Neural-402

LP (Yang et al., 2017), DRUM (Sadeghian et al.,403

2019), RNNLogic+ (w/o emb.) (Qu et al., 2020)404

and NCRL (Cheng et al., 2023). (3) Joint KGE and405

logical rules: we also compare with baselines that406

ensemble embedding-based and rule-based method,407

including RNNLogic+ (with emb.) (Qu et al., 2020)408

and Naive Combination (Meilicke et al., 2021). See409

more introduction to RNNLogic+ in Appendix D.410

(4) For our RulE, we present results of embedding-411

based, rule-based and integrated reasoning. The412

first variant only uses KGE scores obtained from413

joint entity/relation/rule embedding to reason un-414

known triplets, denoted by RulE (emb.). The sec-415

ond variant only uses the grounding score calcu-416

lated from soft rule reasoning, denoted by RulE417

(rule.). The last one is the full model combining418

both, denoted by RulE (emb & rule.). Further-419

more, to sufficiently verify the effect of rule embed-420

ding on different KGE models, we also experiment421

with a variant of RulE (emb.) using TransE (Bor-422

des et al., 2013) as the KGE model, denoted by423

emb with TransE.. We conduct additional experi-424

ments on more datasets to compare RulE with the425

graph-based method NBFNet (Zhu et al., 2021)426

(see Appendix J.4). Considering the relation order 427

of logical rules, we also design another variant of 428

RulE using position-aware sum (see Appendix G). 429

Evaluation protocols We follow the setting in 430

RNNLogic (Qu et al., 2020) and evaluate models by 431

Mean Reciprocal Rank (MRR) as well as Hits at N 432

(H@N). For above baselines, we carefully tune the 433

parameters and achieve better results than reported 434

in RNNLogic. To ensure a fair comparison, in the 435

KGE part of RulE, we use the same parameters as 436

those used in TransE and RotatE without further 437

tuning them and rerun RNNLogic+ with the same 438

logical rules as RulE (See Appendix I.3). 439

Hyperparameter settings By default, we use 440

RotatE (Sun et al., 2019) as our KGE model. We 441

search for parameters according to validation set 442

performance. The ranges of the hyperparameters 443

in the grid search and final adopted values are pro- 444

vided in Appendix I.4. 445

4.2 Results 446

The results are shown in Table Tables 1 and 2. 447

We observe that: (1) RulE outperforms both 448

embedding-based and rule-based methods on most 449

datasets, especially on UMLS and Kinship which 450

show significant improvements. This indicates that 451

combining KGE and rule-based methods with rule 452

embedding can take advantage of both and improve 453

the performance of KG reasoning. (2) Compared 454

with loosely composed methods (i.e., RNNLogic+ 455

(with emb.) and Naive Combination), RulE (emb & 456

rule.) obtains better results on all datasets, demon- 457

strating that it is more beneficial for KG reasoning 458
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Table 2: Results of reasoning on UMLS, Kinship and Family. H@k is in %. [*] means the numbers are taken
from Qu et al. (2020); [†] means we rerun the methods with the same evaluation process2. Best results are in bold
while the seconds are underlined.

UMLS Kinship family
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE† 0.704 55.4 82.6 92.9 0.300 14.3 35.2 63.7 0.813 67.5 94.6 98.5
DistMult∗ 0.391 25.6 44.5 66.9 0.354 18.9 40.0 75.5 0.680 53.0 78.7 96.6
ComplEx∗ 0.411 27.3 46.8 70.0 0.418 24.2 49.9 81.2 0.930 88.3 97.6 99.1
TuckER∗ 0.732 62.5 81.2 90.9 0.603 46.2 69.8 86.3 - - - -
RotatE† 0.802 69.6 89.0 96.3 0.672 53.8 76.4 93.5 0.914 85.3 97.4 99.0

MLN∗ 0.688 58.7 75.5 86.9 0.351 18.9 40.8 70.7 - - - -
PathRank∗ 0.197 14.8 21.4 25.2 0.369 27.2 41.6 67.3 - - - -
Neural-LP∗ 0.483 33.2 56.3 77.5 0.302 16.7 33.9 59.6 0.91 86.0 96.0 99.0

DRUM∗ 0.548 35.8 69.9 85.4 0.334 18.3 37.8 67.5 0.950 91.0 98.0 99.0
RNNLogic+ (w/o emb.)† 0.800 70.4 87.8 94.3 0.655 50.4 76.0 94.7 0.974 96.3 98.5 98.6

NCRL 0.78 65.9 - 95.1 0.64 49.0 - 92.9 0.91 85.2 - 99.3

RNNLogic+ (with emb.)† 0.847 76.7 91.6 96.9 0.714 58.1 81.8 95.4 0.980 97.1 98.9 99.1
Naive Combination† 0.856 78.5 91.3 96.3 0.728 60.3 82.1 95.7 0.979 97.2 98.5 98.6

RulE (emb with TransE.) 0.748 61.9 85.2 93.3 0.347 20.7 39.8 62.3 0.820 68.9 94.6 98.6
RulE (emb.) 0.807 70.6 89.2 96.3 0.675 53.8 77.1 93.7 0.945 91.0 97.9 99.1
RulE (rule.) 0.827 74.9 88.9 95.5 0.673 52.8 77.5 95.0 0.975 96.7 98.5 98.6

RulE (emb & rule.) 0.867 79.7 92.5 97.2 0.736 61.5 82.4 95.7 0.984 97.8 99.0 99.1

Table 3: Results of reasoning on FB15k and WN18.
H@k is in %. [†] means we rerun the methods with the
same evaluation process.

FB15k WN18
MRR H@10 MRR H@10

TransE† 0.730 86.4 0.772 92.2
RulE (emb with TransE.) 0.734 86.9 0.775 95.0

ComplEx† 0.766 88.3 0.898 95.2
RulE (emb with ComplEx.) 0.788 89.6 0.928 94.4

to use rule embedding to bridge embedding-based459

and rule-based approaches than naively combining460

them. A detailed analysis is as follows.461

Embedding logical rules helps KGE We first462

compare RulE (emb.) with RotatE. Note that RulE463

(emb.) and RulE (emb with TransE.) only add an464

additional rule embedding loss to the KGE training465

and still use KGE scores only for prediction. As466

presented in Table 1 and 2, RulE (emb.) and RulE467

(emb with TransE.) both achieve comparable or468

higher performance than the corresponding KGE469

models, especially for RulE (emb with TransE.),470

which obtains 4.4% and 4.7% absolute MRR gain471

than TransE on UMLS and Kinship. This indicates472

that by jointly embedding entities/relations/rules473

into a unified space, RulE can inject logical rule474

information to enrich and regularize the embedding475

space and improve the generalization of KGE. This476

verifies the effectiveness of joint entity/relation/rule477

embedding.478

We also observe that the improvement of RulE479

(emb with TransE.) is more significant than RulE480

(emb.). The reason is probably that RotatE is ex-481

pressive enough to capture many relational patterns482

of KG, thus more complex logical rules may be483

needed. In Table 3, we further use TransE and484

ComplEx as the KGE model of RulE and test on 485

FB15k and WN18 datasets. They both obtain supe- 486

rior performance to the corresponding KGE models 487

(see Appendix J.1). 488

Additionally, we find that RulE (emb with 489

TransE.) on UMLS and Kinship achieves more im- 490

provement than FB15k-237 and WN18RR. The 491

reason is probably that UMLS and Kinship con- 492

tain more rule-inferrable facts while WN18RR and 493

FB15k-237 consist of more general facts (like the 494

publication year of an album, which is hard to infer 495

via rules). This phenomenon is observed in previ- 496

ous works too (Qu et al., 2020). To verify it, we 497

perform a data analysis in Appendix E. 498

Soft rule reasoning outperforms hard rule rea- 499

soning We compare RulE (rule.) with rule mining 500

methods. Note that we rerun RNNLogic+ with the 501

same rules as RulE for fair comparisons. From 502

Table 1 and 2, we can observe that RulE (rule.) 503

outperforms existing hard rule reasoning baselines 504

except for WN18RR on NCRL. This demonstrates 505

that soft multi-hot encoding over MLP is more pow- 506

erful than other ways of performing rule inference. 507

Comparison with other joint reasoning and 508

rule-enhanced KGE models We also compare 509

with RNNLogic+ (emb & rule.) and Naive Combi- 510

nation, which separately trains embedding-based 511

and rule-based methods and then only loosely en- 512

semble them. Although the final inference of RulE 513

(emb & rule.) is similar to the above methods 514

(weighted sum over KGE score and grounding rule 515

score), RulE uses rule embedding as a bridge to 516

strengthen KGE and rule reasoning process, by in- 517

jecting rule information to the KGE embedding 518

space and also extracting rule confidence for soft 519
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Table 4: Ablation study on soft rule reasoning part of RulE. H@k is in %.

FB15k-237 WN18RR UMLS Kinship Family
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

standard 0.335 50.4 0.514 59.7 0.827 95.5 0.673 95.0 0.975 98.6
sum (w/o MLP) 0.276 42.9 0.390 50.9 0.587 82.0 0.591 90.0 0.877 97.6
max (w/o MLP) 0.256 18.4 0.294 23.4 0.346 23.1 0.373 21.7 0.748 94.9
hard-encoding 0.330 50.2 0.496 45.4 0.791 94.6 0.643 94.0 0.973 96.2

rule reasoning. This demonstrates that the interac-520

tion between embedding-based methods and rule-521

based methods can further enhance each other and522

the rule embedding serves as the medium. We fur-523

ther study how the hyperparameter β balances both524

of them. See more details in Appendix J.2.525

4.3 Ablation study526
This section analyzes whether individual com-527

ponents of the RulE design are useful via abla-528

tion experiments. As the usefulness of joint en-529

tity/relation/rule embedding has been verified ex-530

tensively by previous experiments, here we focus531

on validating the soft rule reasoning part. Specifi-532

cally, we compare the following RulE versions: (1)533

standard, which is the standard RulE (rule.) de-534

scribed in Section 3.2; (2) hard-encoding, which535

only uses hard 1/0 to select activated rules instead536

of the rule confidence obtained from joint rela-537

tion/rule embeddings. This is to verify that the con-538

fidence scores of logical rules, which are learned539

through jointly embedding KG and logical rules,540

help rule-based reasoning; (3) sum (w/o MLP) and541

max (w/o MLP), which replace the MLP layer with542

sum and max respectively over the weights of all543

activated rules as the grounding rule score. This544

is to demonstrate the importance of capturing the545

complex interdependencies among logical rules.546

Ablation Results As presented in Table 4,547

standard achieves better performance than hard-548

encoding, which indicates that using soft multi-hot549

encoding to perform logical rule inference in a soft550

way is beneficial to the rule reasoning process. Be-551

sides, the performances of sum (w/o MLP) and max552

(w/o MLP) versions degrade sharply compared to553

standard, showing that it is important to use an554

MLP to capture the complex interdependencies555

among rules.556

5 Related work557

Embedding-based methods Embedding-based558

methods aim to learn embeddings for entities559

and relations and estimate the plausibility of un-560

observed triplets based on these learned embed-561

dings (Bordes et al., 2013; Yang et al., 2014; Trouil-562

lon et al., 2016; Sun et al., 2019; Balažević et al.,563

2019; Vashishth et al., 2019; Zhang et al., 2020a; 564

Abboud et al., 2020; Ge et al., 2023). 565

Rule-based methods Learning logical rules 566

for knowledge graph reasoning has also been ex- 567

tensively studied, including Inductive Logic Pro- 568

gramming (Quinlan, 1990), Markov Logic Net- 569

works (Kok and Domingos, 2005; Beltagy and 570

Mooney, 2014), AMIE (Galárraga et al., 2013), 571

AMIE+ (Galárraga et al., 2015), Neural-LP (Yang 572

et al., 2017), DRUM (Sadeghian et al., 2019), RNN- 573

Logic (Qu et al., 2020) and other methods (Cheng 574

et al., 2023; Nandi et al., 2023). They almost solely 575

use the learned logical rules for reasoning, which 576

suffer from brittleness and are hardly competitive 577

with embedding-based reasoning in most bench- 578

marks. 579

Joint KGE and logical rules Some work tries 580

to incorporate logical rules into KGE models. They 581

usually use logical rules to infer new facts as ad- 582

ditional training data for KGE (Guo et al., 2016, 583

2018) or inject rules via regularization terms dur- 584

ing training (Wang et al., 2015; Ding et al., 2018). 585

However, they do not really perform reasoning with 586

logical rules. 587

GNN-based methods Recently, there are some 588

KG reasoning works based on graph neural net- 589

works (Schlichtkrull et al., 2018; Teru et al., 2020; 590

Zhang et al., 2020b; Zhu et al., 2021; Li et al., 591

2023). They exploit neighboring information via 592

message-passing mechanisms. More details of re- 593

lated work and comparison with RNNLogic (Qu 594

et al., 2020) are provided in Appendix A. 595

6 Conclusion 596

We propose a simple and principled framework 597

RulE to jointly represent entities, relations and log- 598

ical rules in a unified embedding space. The incor- 599

poration of rule embedding allows injecting rule 600

information to enrich and regularize the embedding 601

space, thus improving the generalization of KGE. 602

Besides, we also demonstrate that with the learned 603

rule embedding, RulE can perform rule inference in 604

a soft way and empirically verify that using an MLP 605

can effectively model the complex interdependen- 606

cies among rules, thus enhancing rule inference. 607
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7 Limitations608

A limitation of RulE is that, similar to prior works609

which apply logical rules for inference, RulE’s soft610

rule reasoning part needs to enumerate all paths611

between entity pairs, making it difficult to scale.612

Another limitation is that currently we only con-613

sider chain rules provided as prior knowledge. In614

the future, we plan to explore more efficient and615

effective rule reasoning algorithms and consider616

more complex rules.617
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A Related work842

Embedding-based methods Embedding-based843

methods aim to learn embeddings for entities844

and relations and estimate the plausibility of un-845

observed triplets based on these learned embed-846

dings (Bordes et al., 2013; Yang et al., 2014; Trouil-847

lon et al., 2016; Cai and Wang, 2017; Sun et al.,848

2019; Balažević et al., 2019; Vashishth et al., 2019;849

Zhang et al., 2020a; Abboud et al., 2020; Ge et al.,850

2023). Much prior work in this regard views a851

relation as some operation or mapping function852

between entities. Most notably, TransE (Bordes853

et al., 2013) defines a relation as a translation op-854

eration between some head entity and tail entity.855

It is effective in modelling inverse and compo-856

sition rules. DistMult (Yang et al., 2014) uses857

a bilinear mapping function to model symmet-858

ric patterns. RotatE (Sun et al., 2019) uses rota-859

tion operation in complex space to capture sym-860

metry/antisymmetry, inversion and composition861

rules. CompoundE (Ge et al., 2023) leverages trans-862

lation, rotation, and scaling operations to create863

relation-dependent compound operations on head864

and/or tail entities. BoxE (Abboud et al., 2020)865

models relations as boxes and entities as points to866

capture symmetry/anti-symmetry, inversion, hier-867

archy and intersection patterns but not composi-868

tion rules. These approaches learn representations869

solely based on triplets (zeroth-order logic) con-870

tained in the given KG. In contrast, our approach871

is able to embody more complex first-order logical872

rules in the embedding space by jointly model-873

ing entities, relations and logical rules in a unified874

framework.875

Rule-based methods Learning logical rules for876

knowledge graph reasoning has also been exten-877

sively studied. As one of the early efforts, Quinlan878

(1990) uses Inductive Logic Programming (ILP)879

to derive logical rules (hypothesis) from all the880

training samples in a KG. Markov Logic Networks881

(MLNs) (Kok and Domingos, 2005; Brocheler882

et al., 2012; Beltagy and Mooney, 2014) define883

the joint distribution of given variables (observed884

facts) and hidden variables (missing facts) such that885

missing facts can be inferred in the probabilistic886

graphical model. AMIE (Galárraga et al., 2013)887

and AMIE+ (Galárraga et al., 2015) first enumerate888

possible rules and then learn a scalar weight for889

each rule to encode its quality. Neural-LP (Yang890

et al., 2017) and DRUM (Sadeghian et al., 2019)891

mine rules by simultaneously learning logic rules892

and their weights based on TensorLog (Cohen et al., 893

2017). RNNLogic (Qu et al., 2020) simultaneously 894

trains a rule generator and reasoning predictor to 895

generate high-quality logical rules. Nandi et al. 896

(2023) propose three augmentations aimed at en- 897

hancing the rule set’s coverage in RNNLogic-based 898

models. NCRL (Cheng et al., 2023) infers rule head 899

by recursively merging atomic compositions in rule 900

body. Except for RNNLogic, the above methods 901

solely use the learned logical rules for reasoning, 902

which suffer from brittleness and are hardly com- 903

petitive with embedding-based reasoning in most 904

benchmarks. Although RNNLogic considers the ef- 905

fect of KGE during inference, it pretrains KGE sep- 906

arately from logical rule learning without jointly 907

modeling KGE and logical rules in the same space. 908

Most existing works focus on mining rules from ob- 909

served triplets. In contrast, we focus on the setting 910

where rules are already given (either mined from 911

KG or provided as prior knowledge) and the task 912

is to leverage the rules for better inference. Thus, 913

in principle, our framework can be combined with 914

any rule mining model to improve their rule usage. 915

Joint KGE and logical rules Some recent work 916

tries to incorporate logical rules into KGE mod- 917

els to improve the generalization performance of 918

KGE reasoning. KALE (Guo et al., 2016) and 919

RUGE (Guo et al., 2018) use logical rules to in- 920

fer new facts as additional training data for KGE. 921

Several other works inject rules via regulariza- 922

tion terms during training, including Wang et al. 923

(2015) and Ding et al. (2018). These methods 924

leverage logical rules only to enhance KGE train- 925

ing and do not really perform reasoning with log- 926

ical rules. Although Meilicke et al. (2021) com- 927

bines symbolic and embedding-based methods, it 928

only loosely ensembles the rankings generated by 929

embedding-based and symbolic methods. In con- 930

trast, our method jointly learns entity/relation/rule 931

embeddings in a unified space, which is shown to 932

enhance KGE itself. With the learned rule embed- 933

ding, RulE can also perform logical rule inference 934

in a soft way, improving the rule-based reasoning 935

process. Moreover, the combination of both further 936

advance the performance. 937

GNN-based methods Recently, there are some 938

KG reasoning works based on graph neural net- 939

works (Schlichtkrull et al., 2018; Teru et al., 2020; 940

Zhang et al., 2020b; Zhu et al., 2021; Li et al., 941

2023). They exploit neighboring information via 942

message-passing mechanisms, which are empiri- 943
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cally powerful and can be applied to the induc-944

tive setting. However, they usually suffer from945

high complexity. Furthermore, these methods can-946

not leverage prior/domain knowledge presented as947

logical rules, its interpretability is built on path-948

explanation of the predictions.949

B Example of rule-based reasoning950

The length of a rule is the number of atoms (rela-951

tions) that exist in its rule body. One example of a952

length-2 rule is:953

born_in(x, y) ∧ city_of(y, z) → nationality(x, z),
(9)954

of which born_in(·) ∧ city_of(·) is the rule body955

and nationality(·) is the rule head. A grounding956

of a rule is obtained by substituting all variables957

x, y, z with specific entities. For example, if we958

replace x, y, z with Bill Gates, Seattle, US respec-959

tively, we get a grounding:960

born_in(Bill Gates,Seattle) ∧ city_of(Seattle,US)

→ nationality(Bill Gates,US)
(10)

961

If all triplets in the body of a grounding rule962

exist in the KG, we get a support of this rule.963

Those rules that have nonzero support are called964

activated rules. When inferring a query (h, r, ?),965

rule-based reasoning enumerates relation paths be-966

tween head h and each candidate tail, and uses967

activated rules to infer the answer. For exam-968

ple, if we want to infer nationality(Bill Gates, ?),969

given the logical rule (9) as well as the970

existing triplets born_in(Bill Gates,Seattle) and971

city_of(Seattle,US), the answer US can be in-972

ferred.973

C Fine-grained implementation details974

This section introduces the fine-grained implemen-975

tation details. Recall the soft reasoning process:976

we use the joint relation and rule embeddings to977

compute a scalar as the confidence score of each978

rule, then construct a soft multi-hot encoding with979

the confidence, and finally pass the MLP layer to980

output the grounding rule score. In other words, we981

obtain the grounding rule score by using a multi-982

hot encoding vector to activate an MLP. However,983

in practice, we can use a fine-grained way, i.e.,984

use multiple multi-hot encoding vectors rather than985

only one.986

Specifically, recall that R, r ∈ Ck are the em- 987

beddings of logical rules and relations, respec- 988

tively. To prevent confusion, we use v[i] to de- 989

note the i-th elements of vector v. With the 990

optimized relation and rule embeddings, we can 991

compute the confidence vector of a logical rule 992

Ri : ri1 ∧ ri2 ∧ ... ∧ ril → ril+1
as: 993

ci =
γr
k

− (
l∑

j=1

rij +Ri − ril+1
)p, (11) 994

where p is a hyperparameter, usually the same as 995

the norm defined in Equation (3) , γr is the fixed 996

rule margin defined in Equation (4). Note that ci 997

is a k-dimensional vector, slightly different from 998

the definition in Section 3.2. Each element of ci 999

represents a way of encoding the confidence of rule 1000

Ri. Given the confidence vector ci, we can further 1001

construct k multi-hot encoding vectors. Each multi- 1002

hot encoding vector activates the MLP to output 1003

a grounding score. Further, the mean of all the 1004

grounding scores is computed as the grounding 1005

rule score sg of a triplet. 1006

Let us consider the example (e1, r3, e6) in Fig- 1007

ure 2. We construct k soft multi-hot encoding vec- 1008

tors {vj ∈ R|L|, j = 1, . . . , k} such that vj [i] is 1009

the product of of the confidence of Ri and the num- 1010

ber of grounding paths activating Ri. Formally, 1011

vj [i] = ci[j] × |P(h, r, t,Ri)| for i ∈ {1, . . . ,L}, 1012

where P(h, r, t,Ri) is the set of supports of the rule 1013

Ri applying to the current triplet (h, r, t). For the 1014

candidate e6 in Figure 2, the value of multi-hot en- 1015

coding vector vj [1] is c1[j]× 1, vj [3] is c3[j]× 1, 1016

and others are 0 (i.e., vj [k] = 0, k = 2, 4, . . . ,L). 1017

With these soft multi-hot encoding vectors, we 1018

apply an MLP to output the grounding rule score: 1019

sg =
1

k

k∑
j=1

MLP(vj). (12) 1020

Note that the MLP used by different soft multi-hot 1021

encodings is the same. Once we have the grounding 1022

rule score for all candidate answers, we further use 1023

a softmax function to compute the probability of 1024

the true answer. Finally, we optimize the MLP and 1025

grounding-stage rule embedding by maximizing 1026

the log likelihood of the true answers based on 1027

these training triplets. 1028

D Introduction of RNNLogic+ 1029

RNNLogic (Qu et al., 2020) aims to learn logical 1030

rules from knowledge graphs, which simultane- 1031
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ously trains a rule generator as well as a reasoning1032

predictor. The former is used to generate rules1033

while the latter learns the confidence of generated1034

rules. Because RulE is designed to leverage the1035

rules for better inference, to compare with it, we1036

only focus on the reasoning predictor RNNLogic+,1037

which is a more powerful predictor than RNNLogic.1038

The details are described in this section.1039

Given a KG containing a set of triplets and logi-1040

cal rules, RNNlogic+ associates each logical rule1041

with a grounding-stage rule embedding R(g) (dif-1042

ferent from the joint rule embedding in RulE), for1043

a query (h, r, ?), it grounds logical rules into the1044

KG, finding different candidate answers. For each1045

candidate answer t′, RNNLogic+ aggregates all1046

the rule embeddings of those activated rules, each1047

weighted by the number of paths activating this1048

rule (# supports). Then an MLP is further used to1049

project the aggregated embedding to the grounding1050

rule score sr(h, r, t′):1051

sr = MLP
(
AGG({R(g)

i , |P(h,Ri, t′)|}Ri∈L)
)

(13)1052

where LN is the layer normalization operation,1053

AGG is the PNA aggregator (Corso et al., 2020),1054

L is the set of generated high-quality logical rules,1055

and P(h,Ri, t′) is the set of supports of the rule1056

Ri which starts from h and ends at t′. Once RNN-1057

Logic+ computes the score of each candidate an-1058

swer, it can use a softmax function to compute the1059

probability of the true answer. Finally, the predic-1060

tor can be optimized by maximizing the log likeli-1061

hood of the true answers based on training triplets.1062

In essence, when replacing the PNA aggregator1063

with sum aggregation, it is equivalent to using hard1064

multi-hot encoding to activate an MLP (i.e., only1065

using hard 1/0 to select activated rules). However,1066

RulE additionally employs the confidence scores1067

of rules as soft multi-hot encoding.1068

During inference, there are two variants of mod-1069

els:1070

• RNNLogic+ (w/o emb.): This variant only1071

uses the logical rules for knowledge graph rea-1072

soning. Specifically, we calculate the score1073

sr of each candidate answer defined in Equa-1074

tion (13).1075

• RNNLogic+ (with emb.): It uses RotatE (Sun1076

et al., 2019) to pretrain knowledge graph1077

embeddings models, which is different from1078

RulE in that RulE jointly models KGE and1079

logical rules in the same space to learn entity,1080

relation and logical rule embeddings. During 1081

inference, it linearly combines the grounding 1082

rule score and KGE score as the final predic- 1083

tion score, i.e., 1084

s(h, r, t′) = sr(h, r, t′) + α ∗ KGE(h, r, t′),
(14) 1085

where KGE(h, r, t′) is the KGE score calcu- 1086

lated with entity and relation embeddings op- 1087

timized by RotatE alone, and α is a positive 1088

hyperparameter weighting the importance of 1089

the knowledge graph embedding score. 1090

E Analysis of rule-inferrable indicator 1091

This section analyzes the rule-inferrable of KGs. 1092

Naturally, without considering the directions of 1093

edges, any rule can be viewed as a cycle by includ- 1094

ing both the relation path and the target relation 1095

itself. To simplify the analysis, we assume that any 1096

cycle can be a logical rule, regardless of concrete 1097

relations and the correct semantic information. If a 1098

relation appears in a rule, it must be an edge con- 1099

sisting of the cycle; on the other hand, if an edge 1100

can be a part of a cycle, it must be a participant 1101

relation of the rule. Based on the above hypothe- 1102

sis, we define the proportion of edges existing in 1103

cycles to evaluate the rule-inferrable of KGs (i.e., 1104

the rule-inferrable indicator). 1105

To verify our hypothesis, we conduct simula- 1106

tion experiments with a Family Tree KG (Ho- 1107

henecker and Lukasiewicz, 2020), an artificially 1108

closed-world dataset generated with logical rules. 1109

By randomly selecting N% of triplets to replace 1110

with randomly sampled triplets, we evaluate their 1111

rule-inferrable indicators. As shown in Table 5, as 1112

the randomness increases, the proportion of edges 1113

appearing in cycles decreases and are all lower than 1114

in the standard Family Tree. These results indicate 1115

that the proportion of edges appearing in the rings 1116

can empirically measure the rule-inferrable of KGs. 1117

Next, we analyze the rule-inferrable on all 1118

datasets, i.e., FB15k-237, WN18RR, YAGO3-10, 1119

UMLS, Kinship and Family. The results are in- 1120

cluded in Table 6. We observe that: UMLS, Kin- 1121

ship and Family reach 100% of 3-membered cycles 1122

while YAGO3-10 and WN18RR have a relatively 1123

low proportion, especially WN18RR, which is only 1124

about 17%. Therefore, we can empirically con- 1125

clude that compared to those KGs containing more 1126

general facts (FB15k-237, WN18RR and YAGO3- 1127

10), UMLS, Kinship and Family are more rule- 1128

inferrable datasets. Furthermore, the performance 1129
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Table 5: Simulation results of family-tree datasets.

2-membered cycle 3-membered cycle ≤ 3-membered cycle

standard Family Tree 0.941 0.996 1.000
random5% 0.850 0.958 0.960

random10% 0.766 0.931 0.934
random15% 0.684 0.912 0.915
random20% 0.611 0.898 0.901
random25% 0.542 0.895 0.898
random30% 0.479 0.887 0.891

improvement of the RulE (emb with TransE.) is1130

more significant, which is consistent with the ob-1131

servation in our experiments (See Table 2).1132

F Complexity analysis1133

This section analyzes the complexity of RulE. We1134

use d to denote hidden dimension and E is the set1135

of relations (edges).1136

During training, for the joint entity/relation/rule1137

embedding stage, the amortized time of a single1138

triplet or a logical rule is O(d) due to linear oper-1139

ations. For the soft reasoning part, considering a1140

query (h, r, ?), RulE performs a BFS search from1141

h to find all candidates and compute their ground-1142

ing rule scores. We group triplets with the same1143

h, r together, where each group contains |V|. For1144

each group, we only need to use an MLP to get1145

predictions, which takes O(|E|d2) time. Thus, the1146

amortized time for a single triplet is O( |E|d
2

|V| ).1147

During inference, we compute the final score1148

with a weighted sum of the KGE score and the1149

grounding rule score. Thus each triplets takes1150

O( |E|d
2

|V| + d) time.1151

The inference time of RulE and RNNLogic+ on1152

different datasets is presented in Table 7. We can1153

see that RulE has similar inference time to RNN-1154

Logic+.1155

G A variant of RulE with position-aware1156

sum1157

In this section, considering the relation order of1158

rules, we design a variant of RulE using position-1159

aware sum and evaluate the variant based on TransE1160

and RotatE.1161

It is obvious that 2D rotations and translations1162

are commutative—they cannot model the non-1163

commutative property of composition rules, which1164

is crucial for correctly expressing the relation order1165

of a rule. Take sister_of(x, y)∧mother_of(y, z) →1166

aunt_of(x, z) as an example. If we permute the1167

relations in rule body, e.g., change (sister_of ∧1168

mother_of) to (mother_of ∧ sister_of), the rule is1169

no longer correct. However, the above model will 1170

output the same score since (r1 ◦ r2) = (r2 ◦ r1) 1171

and (r1 + r2) = (r2 + r1). 1172

Therefore, to respect the relation order of log- 1173

ical rules, we use position-aware sum to model 1174

the relationship between logical rules and relations. 1175

Recall that r ∈ Ck is the embedding of relation 1176

and g(r) is to return the angle vector of relation 1177

r. For each logical rule R : r1 ∧ r2 ∧ . . . ∧ rl → 1178

rl+1, we associate it with a rule embedding R = 1179

[R1,R2, ...,Rl],R ∈ Ckl, where l is the length of 1180

the logical rule and [·, ·] is concatenation operation. 1181

Based on the above definitions, we can formulate 1182

the distance function as: 1183

d(r1, r2, . . . , rl+1,R) =∥
l∑

j=1

(
g(rk) · g(Rk)

)
− g(rl+1) ∥,

(15) 1184

where · is an element-wise product. Then we use 1185

Equation (4) to further define the loss function of 1186

logical rules. 1187

Experimental results with TransE and RotatE 1188

are displayed in Table 8. RulE (emb_o.) is the 1189

new version that uses position-aware sum. From 1190

the results, we can see that RulE (emb_o.) almost 1191

obtains superior performance to the corresponding 1192

KGE models, again empirically demonstrating that 1193

jointly representing entity, relation and rule em- 1194

beddings can improve the generalization of KGE. 1195

Moreover, the performance of RulE (emb_o.) is 1196

comparable with RulE (emb.) in FB15k-237 and 1197

WN18RR. It also increases a lot in UMLS and Kin- 1198

ship, especially Kinship, which outperforms RulE 1199

(emb with TransE.) with a 2.9% improvement in 1200

MRR. The reason is probably that relation order 1201

plays an important role in modeling logical rules 1202

for rule-inferrable datasets (e.g., UMLS and Kin- 1203

ship). 1204
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Table 6: The cycle proportion of edges on all datasets.

2-membered cycle 3-membered cycle ≤ 3-membered cycle

FB15k-237 0.344 0.856 0.877
WN18RR 0.389 0.177 0.452

YAGO3-10 0.569 0.179 0.698
UMLS 0.676 1.00 1.00
Kinship 0.998 1.00 1.00
Family 0.997 0.954 1.00

Table 7: Inference time (in minutes) of RulE and RNNLogic+ on all datasets.

Inference time FB15k-237 WN18RR YAGO3-10 UMLS Kinship Family

RulE 3.70 3.10 4.50 0.50 0.75 0.60
RNNLogic+ 4.10 3.25 4.88 0.70 0.90 1.13

H Different representations of1205

entity-relation loss and relation-rule1206

loss1207

The entity-relation loss is defined in terms of the1208

Hadamard product, while the relation-rule loss is1209

defined in terms of g(r). Essentially, the two rep-1210

resentations are equivalent. We utilize distinct rep-1211

resentations for the sake of convenience and to1212

maintain consistency with the model’s implementa-1213

tion. Following the RotatE (Sun et al., 2019) paper,1214

the entity-relation loss (i.e., t ≈ h ◦ r) is defined in1215

terms of the Hadamard product, which is equivalent1216

to rotating the entity-vector with a relation-angle1217

in 2D complex space. For relation-rule loss, if a1218

logical rule R : r1 ∧ r2 ∧ ... ∧ rl → rl+1 holds,1219

we expect that rl+1 ≈ (r1 ◦ r2 ◦ ... ◦ rl) ◦ R . As1220

RotatE restricts the modulus of each r’s dimension1221

to be 1, the multiple rotations in the complex plane1222

are equivalent to the summation of the correspond-1223

ing angles (with the modulus unchanged), making1224

it convenient to use the summation of angles in1225

implementation. Therefore, we do not maintain1226

modulus for r and R (since they are all 1) in our1227

implementation, but only maintain their angular1228

vectors, denoted by g(r) and g(R). To keep consis-1229

tency with our implementation, it is beneficial to1230

define the function g(r) as the angle vector of rela-1231

tion r and directly formulate the distance function1232

in terms of angle vectors.1233

I Experiment setup1234

I.1 Data statistics1235

The detailed statistics of six datasets for evaluation1236

are provided in Table 9. FB15k-237 (Toutanova1237

and Chen, 2015), WN18RR (Dettmers et al.,1238

2018) and YAGO3-10 are subsets of three large- 1239

scale knowledge graphs, FreeBase (Bollacker 1240

et al., 2008) and WordNet (Miller, 1995) and 1241

YAGO3 (Mahdisoltani et al., 2014). UMLS, 1242

Kinship and Family (Kok and Domingos, 2007) 1243

are three benchmark datasets for statistical rela- 1244

tional learning. For FB15k-237, WN18RR and 1245

YAGO3-10, we use the standard split. For Kinship 1246

and UMLS, we follow the data split from RNN- 1247

Logic (Qu et al., 2020) (i.e., split the dataset into 1248

train/validation/test with a ratio 3 : 2 : 5) and 1249

report the results of some baselines taken from 1250

RNNLogic. For Family, we follow the split used 1251

by DRUM (Sadeghian et al., 2019). To ensure a 1252

fair comparison, we use RNNLogic to mine logical 1253

rules and rerun the reasoning predictor of RNN- 1254

Logic+ with the same logical rules. Here, we con- 1255

sider chain rules, covering common logical rules 1256

in KG such as symmetry, composition, hierarchy 1257

rules, etc. Because inverse relations are required 1258

to apply rules, we preprocess the KGs to add in- 1259

verse links. More introduction is included in Ap- 1260

pendix I.2. 1261

I.2 Data process 1262

Most rules mined by rule mining systems are not 1263

chain rules. They usually need to be transformed 1264

into chain rules by inversing some relations. Con- 1265

sidering r1(x, y) ∧ r2(x, z) → r3(y, z) as an ex- 1266

ample, with replacing r1(x, y) with r−1
1 (y, x), the 1267

rule can be converted into chain rule r1(y, x)−1 ∧ 1268

r2(x, z) → r3(y, z). Based on the above, for data 1269

processing, we need to add a inverse version triplet 1270

(t, r−1, h) for each triplet (h, r, t), representing the 1271

inverse relationship r−1 between entity t and entity 1272

h. 1273
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Table 8: Results of reasoning on FB15k-237, WN18RR, UMLS and Kinship. H@k is in %.

FB15k-237 WN18RR UMLS Kinship
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 0.329 23.0 36.9 52.8 0.222 1.2 39.9 53.0 0.704 55.4 82.6 92.9 0.300 14.3 35.2 63.7
RulE (emb with TransE.) 0.346 25.1 38.5 53.4 0.242 6.7 37.8 52.6 0.748 61.8 85.1 93.4 0.347 20.7 39.8 62.3

RulE (emb_o with TransE.) 0.336 24.2 37.2 52.2 0.220 3.3 37.2 50.9 0.765 66.9 82.9 92.4 0.376 22.7 42.4 70.0

RotatE 0.337 23.9 37.4 53.2 0.476 43.1 49.2 56.2 0.802 69.6 89.0 96.3 0.672 53.8 76.4 93.5
RulE (emb with RotatE.) 0.337 24.0 37.5 52.9 0.484 44.3 49.9 56.3 0.807 70.6 89.2 96.3 0.675 53.8 77.1 93.7

RulE (emb_o with RotatE.) 0.338 24.1 37.6 53.3 0.484 44.1 50.0 56.7 0.809 71.6 88.3 96.2 0.676 53.8 77.2 93.9

Table 9: Statistics of six datasets.

Dataset #Entities #Relations #Train #Validation #Test #Rules # length of rules

FB15k-237 14,541 237 272,115 17,535 20,466 131,883 ≤ 3
WN18RR 40,943 11 86,835 3,034 3,134 7,386 ≤ 5

YAGO3-10 123,182 37 1,079,040 5,000 5,000 7,351 ≤ 2
UMLS 135 46 1,959 1,306 3,264 18,400 ≤ 3
Kinship 104 25 3,206 2,137 5,343 10,000 ≤ 3
Family 3007 12 23,483 2,038 2,835 2,400 ≤ 3

(a) FB15k-237 (b) WN18RR

Figure 3: (a) and (b) show the MRR results of RulE
with varying β on FB15k-237 and WN18RR.

I.3 Evaluation protocol1274

During evaluation, for each test triplet (h, r, t), we1275

build two queries (h, r, ?) and (t, r−1, ?) with an-1276

swer t and h. For each query, we compute the1277

KGE score and grounding rule score (Equation 7)1278

for each candidate entity. As KGE scores and rule1279

scores are scattered over different value ranges, we1280

need to normalize the score before we compute the1281

aggregated score. We map the grounding rule score1282

to [min,max] such that min and max are the min-1283

imum and maximum of KGE scores, i.e., map to1284

the range of KGE scores. Then RulE weighted1285

sums over both scores (i.e., β∗sg+(1−β)∗stnorm).1286

Once we have the final score for all candidate an-1287

swers, consider the situation that many entities1288

might be assigned the same score. Following RNN-1289

Logic (Qu et al., 2020), we first random shuffles1290

of those entities which receive the same score and1291

then compute the expectation of evaluation metric1292

over them.1293

I.4 Hyperparameter optimization 1294

We search for parameters according to validation 1295

set performance. For above baselines, we carefully 1296

tune the parameters and achieve better results than 1297

reported in RNNLogic (Qu et al., 2020). To ensure 1298

a fair comparison, in the KGE part of RulE, we use 1299

the same parameters as those used in TransE and 1300

RotatE without further tuning them. When com- 1301

paring RulE (rule.) with RNNLogic+ (w/o emb.), 1302

we use the same logical rules mined from RNN- 1303

Logic (Qu et al., 2020). Note that the reported 1304

results for TransE and RotatE are indeed based on 1305

their best parameter settings, where we carefully 1306

tuned their parameters such that our reported re- 1307

sults for TransE and RotatE are even higher than 1308

those reported in RNNLogic (Qu et al., 2020). 1309

However, in the KGE part of RulE, we use the 1310

same parameters as those used in TransE and Ro- 1311

tatE without further tuning them. So the truth is, 1312

we did not adopt TransE/RotatE settings tuned on 1313

RulE for TransE/RotatE, but on the contrary, adopt 1314

TransE/RotatE settings tuned on themselves for 1315

RulE. This should bring disadvantages to RulE, yet 1316

we still observe improved performance. 1317

The hyperparameters are tuned by the grid 1318

search, The range is set as follows: embedding 1319

dimension k ∈ {500, 1000, 2000}, batch size 1320

of triplets and rules b ∈ {256, 512, 1024}, the 1321

weight balancing two losses (Lt and Lr) α ∈ 1322

{0.5, 1, 2, 3, 4, 5}, triplet margin and rule margin 1323

γt, γr ∈ [0 : 30 : 1] and the weight balanc- 1324

ing embedding-based and rule-based reasoning 1325

β ∈ [0 : 0.05 : 1]. The optimal parameter con- 1326
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Table 10: Hyperparameter configurations of RulE on different datasets.

Hyperparameter FB15k-237 WN18RR YAGO3-10 UMLS Kinship Family

Joint
embedding

k 1000 500 500 2000 2000 2000
bt 1024 512 1024 256 256 256
br 128 256 256 256 256 256
γt 9 6 24 6 6 6
γr 9 2 24 8 5 1
lr 0.00005 0.00005 0.005 0.0001 0.0001 0.0001
adv 1.0 0.5 1.0 0.25 0.25 1.0
λ 0 0.1 0 0 0.1 1.0
α 3 0.5 10 1 3.0 1.0

Soft rule
reasoning

lr 0.005 0.005 0.01 0.0001 0.0005 0.0001
gb 32 32 16 16 32 32
β 0.50 0.60 0.10 0.20 0.35 0.35

Table 11: Comparison NBFNet with RulE.

MRR FB15k-237 WN18RR UMLS Kinship family

NBFNet 0.415 0.551 0.922 0.635 0.990
RulE 0.362 0.519 0.867 0.736 0.984

figurations for different datasets for RulE (emb &1327

rule.) can be found in Table 10, including embed-1328

ding dimension k, batch size of triplets bt, batch1329

size of rules br, fix margin of triplets γt, fix margin1330

of triplets γr, learning rate lr, self-adversarial sam-1331

pling temperature adv, regularization coefficient1332

λ, the weight balancing the importance of rules in1333

joint loss function (Equation 5) α, batch size in1334

soft rule reasoning gb and the weight of inference1335

process (Equation 8) β. Note that we use RotatE1336

as the KGE model.1337

J Experiment details1338

J.1 Embedding logical rules helps KGE1339

This section discusses the effectiveness of rule em-1340

bedding on KGE. As shown in Table 12, the two1341

variants using TransE and ComplEx as KGE mod-1342

els are denoted by RulE (emb with TransE.) and1343

RulE (emb with ComplEx.), respectively. They both1344

obtain superior performance to the corresponding1345

KGE models.1346

We also further compare with other rule-enhance1347

KGE models. In the experiment setup, RulE1348

(emb with TransE.) uses the same logical rules as1349

KALE (Guo et al., 2016); RulE (emb with Com-1350

plEx.) uses the same logical rules as ComplEx-1351

NNE-AER (Ding et al., 2018). The compari-1352

son shows that RulE (emb with TransE.) yields1353

more accurate results than KALE. For RulE (emb1354

with ComplEx.), although it does not outperform1355

ComplEx-NNE+AER (probably because it addi-1356

tional injects the regularization terms on entities1357

but RulE does not), compared to RUGE, RulE (emb 1358

with ComplEx.) also obtains 2% improvement in 1359

MRR on FB15k as well as comparable results on 1360

WN18. 1361

For a fair comparison, RulE (emb. TransE) ap- 1362

plies the same logical rules as KALE; RulE (emb. 1363

ComplEx) uses the same logical rules as ComplEx- 1364

NNE-AER. 1365

J.2 Sensitivity analysis of beta 1366

To analyze how the hyperparameter β balances the 1367

weights of embedding-based and rule-based rea- 1368

soning (defined in Equation (8)), we conduct exper- 1369

iments for RulE under varying β. Figure 3(a) and 1370

3(b) show the results on Fb15k-237 and WN18RR. 1371

With the increase of β, the performance of RulE 1372

first improves and then drops on both datasets. This 1373

is because the information captured by logical rules 1374

and knowledge graph embedding is complemen- 1375

tary, thus combining embedding-based and rule- 1376

based methods can enhance knowledge graph rea- 1377

soning. Moreover, the trend of β for the perfor- 1378

mance on the two datasets is different (FB15k- 1379

237 tends to drop faster than WN18RR). We think 1380

that in WN18RR, information captured by the rule- 1381

based method may be more than embedding-based, 1382

leading that the rule-based method is more predom- 1383

inant in WN18RR (β = 0.6). 1384

J.3 More results of ablation study 1385

More results of ablation study are presented in Ta- 1386

ble 13 and 14. 1387

J.4 Comparison NBFNet with RulE 1388

We follow the results of FB15k-237 and WN18RR 1389

reported in NBFNet and conduct additional experi- 1390

ments on UMLS, Kinship and family datasets. The 1391

results (MRR) are shown in Table 11: 1392
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Table 12: Results of reasoning on FB15k and WN18. H@k is in %. [*] means the numbers are taken from (Guo
et al., 2018) and (Ding et al., 2018). [†] means we rerun the methods with the same evaluation process.

FB15k WN18
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE† 0.730 64.6 79.2 86.4 0.772 70.5 80.8 92.2
KALE∗ 0.523 38.3 61.6 76.2 0.662 - 85.5 93.0

RulE (emb with TransE.) 0.734 65.0 79.9 86.9 0.775 67.2 86.2 95.0

ComplEx† 0.766 69.7 81.3 88.3 0.898 85.4 92.6 95.2
RUGE∗ 0.768 70.3 81.5 86.5 0.943 - - 94.4

ComplEx-NNE+AER∗ 0.803 76.1 83.1 87.4 0.943 94.0 94.5 94.8
RulE (emb with ComplEx.) 0.788 72.4 83.3 89.6 0.928 91.9 93.5 94.4

Table 13: Ablation results on FB15k-23 and WN18RR datasets. H@k is in %.

FB15k-237 WN18RR
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

standard 0.335 24.9 36.9 50.4 0.514 47.3 53.3 59.7
sum (w/o MLP) 0.276 19.8 30.2 42.9 0.390 32.7 41.9 50.9
max (w/o MLP) 0.256 18.4 27.7 39.7 0.294 23.4 31.5 41.4
hard-encoding 0.330 24.3 36.3 50.2 0.496 45.4 51.5 57.7

Table 14: Ablation results on UMLS, Kinship and Family datasets. H@k is in %.

UMLS Kinship Family
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

standard 0.827 74.9 88.9 95.5 0.673 52.8 77.5 95.0 0.975 96.7 98.5 98.6
sum (w/o MLP) 0.587 46.1 65.7 82.0 0.591 44.3 67.4 90.0 0.877 81.2 92.9 97.6
max (w/o MLP) 0.346 23.1 36.4 58.7 0.372 21.8 40.7 74.7 0.748 63.9 82.7 94.9
hard-encoding 0.791 69.5 86.7 94.6 0.643 49.1 74.5 94.0 0.973 96.2 98.4 98.6

NFBNet has better results than RulE on FB15k-1393

237, WN18RR and UMLS. However, RulE1394

achieves comparable or higher performance than1395

NBFNet on Kinship and family, especially on Kin-1396

ship, where RulE obtains about 10% absolute MRR1397

gain. This might be explained by that Kinship1398

and family contain more rule-inferrable facts while1399

WN18RR and FB15k-237 consist of more general1400

facts (a more detailed discussion is given in Ap-1401

pendix E). This indicates that our method RulE is1402

more favorable for knowledge graphs where rules1403

play an important role, which is expected as it lever-1404

ages rules explicitly. Another advantage of RulE is1405

the ability to use prior/domain knowledge, while1406

GNN-based methods cannot leverage prior/domain1407

knowledge presented as logical rules. Moreover,1408

RulE is more interpretable on rule-level than GNN1409

methods, which is still valuable in certain domains.1410

Although NBFNet is also interpretable, RulE’s in-1411

terpretability is on rule level while that of NBFNet1412

is on path level. For example, when the KG sys-1413

tem desires high interpretability (such as those in1414

medical applications), each inferred knowledge1415

must be accompanied with which exact rules are1416

responsible for the inference, otherwise the doc-1417

tors are hard to trust it. In contrast, GNN meth- 1418

ods (such as NBFNet) are only interpretable on 1419

path-level instead of rule-level. Take "Alice is 1420

Bob’s mother" as an example, GNN methods might 1421

tell us the path "Alice is David’s mother" and 1422

"David is Bob’s brother" is activated during the 1423

inference, while our RulE can not only tell us that 1424

this path is activated, but also the rule ∀x, y, z : 1425

mother(x, y)∧ brother(y, z) → mother(x, z) is re- 1426

sponsible behind the prediction. 1427

In summary, although NBFNet demonstrates 1428

state-of-the-art performance on many KGs, we 1429

still believe a hybrid method that can explicitly 1430

model and leverage logical rules is desired and 1431

worth studying. 1432

K Theoretical analysis and case studies 1433

As mentioned in the main body, the rule embed- 1434

dings are not only used to regularize the embedding 1435

learning. On the other hand, with the rule embed- 1436

dings, RulE can compute the confidence score for 1437

each logic rule, which enhances the original hard 1438

rule-based reasoning process through soft rule con- 1439

fidence. Additionally, combining the jointly trained 1440

KGE and the confidence-enhanced rule-based rea- 1441
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soning, we arrive at a final neural-symbolic model1442

achieving superior performance on many datasets.1443

Consider the rule r1(x, y)∧ r2(y, z) → r3(x, z)1444

as an example, where x, y, z represent specific1445

entities. Given three facts, we obtain y = x ◦ r1;1446

z = y ◦ r2; z = x ◦ r3. Combining these equations,1447

we deduce r1 ◦ r2 = r3. However, those mined1448

rules may not be confidently correct. Thus, we1449

assign a residual embedding as a rule embedding1450

to each logical rule, i.e., r1 ◦ r2 ◦ R = r3. By1451

adding additional constraints that relations should1452

satisfy, rule loss provides a regularization to the1453

triplet (KGE) loss, improving the generalization of1454

KGE. Meanwhile, with the relation and rule em-1455

beddings, RulE can further give a confidence score1456

to each rule, which reflects how consistent a rule is1457

with the existing facts and enables performing the1458

rule inference process in a soft way. This provides1459

an explanation of why RulE is better than naive1460

combination methods.1461

We further provide some case studies illustrating1462

the confidence scores of logical rules learned by1463

RulE on the family dataset.1464

1465

(1) brother(x, y) ∧ brother(z, y) ∧ mother(t, z)1466

→ son(x, t) 0.9321467

(2) brother(y, x) ∧ brother(y, z) ∧ father(t, z)1468

→ son(x, t) 0.7981469

(3) mother(x, y) ∧ brother(z, y)1470

→ mother(x, z) 0.8341471

(4) wife(x, y)∧son(z, y) → mother(x, z) 0.5891472

1473

Ideally, rules with higher success probability1474

should yield higher confidence scores. For instance,1475

rule (1) has a higher confidence score than rule (2)1476

because the x in rule (2) could also be the daughter1477

of t, while the x in rule (1) must be male because1478

x is y’s brother. Our RulE successfully learns them1479

out. Another example is rule (3) and rule (4). They1480

both infer x is z’s mother, but rule (4) is less confi-1481

dent because x can also be z’s stepmother.1482
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