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ABSTRACT

Uncertainty quantification (UQ) in Large Language Models (LLMs) is essential
for their safe and reliable deployment, particularly in critical applications where
incorrect outputs can have serious consequences. Current UQ methods typically
rely on querying the model multiple times using non-zero temperature sampling
to generate diverse outputs for uncertainty estimation. However, the impact of
selecting a given temperature parameter is understudied, and our analysis reveals
that temperature plays a fundamental role in the quality of uncertainty estimates.
The conventional approach of identifying optimal temperature values requires ex-
pensive hyperparameter optimization (HPO) that must be repeated for each new
model-dataset combination. We propose Monte Carlo Temperature (MCT), a ro-
bust sampling strategy that eliminates the need for temperature calibration. Our
analysis reveals that: 1) MCT provides more robust uncertainty estimates across
a wide range of temperatures, 2) MCT improves the performance of UQ methods
by replacing fixed-temperature strategies that do not rely on HPO, and 3) MCT
achieves statistical parity with oracle temperatures, which represent the ideal out-
come of a well-tuned but computationally expensive HPO process. These findings
demonstrate that effective UQ can be achieved without the computational burden
of temperature parameter calibration.

1 INTRODUCTION

Large Language Models (LLMs) have fundamentally transformed the way we interact with artificial
intelligence, revolutionizing various domains, from content creation to complex problem-solving
tasks (Bommasani et al., 2021; Wei et al., 2022; Orrù et al., 2023). However, these powerful models
can sometimes produce unreliable or incorrect outputs, raising concerns about their deployment
in critical applications (Rohrbach et al., 2018; Xiao & Wang, 2021; Bacciu et al., 2024). While
significant research efforts have focused on improving LLMs’ accuracy through techniques like
Chain-of-Thought prompting (Wei et al., 2022) and Retrieval-Augmented Generation (Lewis et al.,
2020), parallel work has emerged on developing uncertainty quantification (UQ) methods to estimate
model confidence as an indicator of potential errors (Kadavath et al., 2022; Kuhn et al., 2023; Lin
et al., 2024).

Existing UQ methods for LLMs can be used to predict the correctness of a LLM’s output, either
under white-blox or black-box assumptions. They fall into two broad categories: single-sample
and multi-sample approaches. Single-sample methods analyze a single generation using metrics like
perplexity or evaluating model’s weight activations. In contrast, multi-sample methods, which we
focus on in this work, rely on querying the model multiple times with the same input and non-
zero fixed temperature sampling, to induce and measure diversity in the generations. To assess the
effectiveness of UQ methods in distinguishing between correct and incorrect model outputs, they
are typically evaluated as a classification procedure using the area under the receiver operator char-
acteristic curve (AUROC) metric (Hanley & McNeil, 1982). However, the impact of selecting a
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Figure 1: AUROC score distributions of the semantic entropy method across various model-dataset
combinations and different fixed temperature values.

specific fixed temperature parameter is understudied, and our analysis reveals that temperature plays
a fundamental role in the effectiveness of different UQ methods across scenarios in which different
LLMs are employed to solve different tasks. Figure 1 exemplifies this behavior over four question-
answering datsets and three models using the semantic entropy method1 (Kuhn et al., 2023). The
figure highlights three critical observations: (1) for a given model and dataset, performance varies
significantly with changes in temperature; (2) no single temperature consistently optimizes perfor-
mance across datasets for a given model; and (3) no universal temperature yields optimal results
across models for a given dataset. For instance, the Falcon-40B model achieves peak performance
on the TriviaQA dataset at a temperature of 0.6, but requires a lower temperature of 0.3 for the
SVAMP dataset. Similarly, within the same TriviaQA dataset, optimal temperature values differ
across different models: Falcon-40B performs best at 0.6, while Falcon-7B-Instruct achieves supe-
rior results at 1.0. This lack of robustness in maintaining consistent performance across different
scenarios poses significant challenges for practitioners attempting to implement UQ methods and
highlight the need for more robust approaches to temperature selection.

To address the challenges of selecting a specific fixed temperature in UQ methods, we introduce
Monte Carlo Temperature (MCT), a sampling strategy that dynamically varies the temperature dur-
ing multiple sentence generations, allowing UQ methods to generalize more effectively to different
model-dataset combinations. This approach reduces sensitivity to specific temperature values and
ensures more reliable uncertainty estimates.

We evaluate MCT against an oracle determined by selecting the temperature that yields the best
results on the test set. By using an oracle as reference, we place ourselves in the most challenging
evaluation scenario, as it represents an idealized outcome that hyperparameter optimization (HPO)
may not achieve in practice.

Beyond this comparison, we assess MCT against two alternative model-dataset agnostic approaches,
that do not require HPO: the Best On Average Temperature, which selects a single fixed value per-
forming well across multiple models and datasets, and the Fixed Random Temperature approach that
randomly chooses a single temperature.

Our results demonstrate that MCT consistently achieves statistical parity with the oracle, eliminating
the need for expensive HPO. Additionally, MCT outperforms both the Best On Average Tempera-
ture and the Fixed Random Temperature strategies, further highlighting the benefits of structured
temperature sampling.

The paper is structured as follows: in Section 2, we present an overview of multi-sample UQ meth-
ods. In Section 3, we introduce the MCT approach and describe its implementation. Section 4
details the experimental setup, including the LLMs, datasets, and evaluation metrics used. Section
5 presents the results of our experiments. Finally, in Section 6, we discuss the implications of our
findings, acknowledge limitations, and outline potential future research directions.

1Similar plots for other UQ methods can be found in the Appendix A.
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2 MULTI-SAMPLE UQ METHODS

In this section, we present an overview of popular multi-sample UQ methods that we selected to
evaluate the MCT sampling strategy. These methods represent a diverse set of approaches commonly
employed for estimating uncertainty in LLMs.

• Naive Entropy (NE): NE (Kuhn et al., 2023) computes the uncertainty of model predic-
tions by measuring the entropy of the generated output sequences based on their proba-
bilities. For a given input x, the probability of each output sequence y is computed using
the chain rule of probability, which considers the joint probability of each token in the
sequence. The entropy is then defined as:

H(x) = −
∑
y∈S

p̂(y|x) log p̂(y|x), (1)

where S represents the set of sampled sequences used for UQ.
• Semantic Entropy (SE): SE (Kuhn et al., 2023) quantifies uncertainty by evaluating en-

tropy across semantic clusters of the generated outputs. These clusters are formed based
on semantic similarity, identified using an entailment model (as described in section 4.3).
For each cluster c, the probability p̂(c|x) is calculated by summing the probabilities of all
sequences within the cluster, i.e., p̂(c|x) =

∑
y∈c p̂(y|x), where y represents a sequence

assigned to cluster c. Semantic entropy is then computed as:

SE(x) = −
∑
c∈C

p̂(c|x) log p̂(c|x), (2)

where C represents the set of semantic clusters.
• Discrete Semantic Entropy (DSE): Unlike SE, DSE (Farquhar et al., 2024) does not

require model-provided probability scores. Instead, it approximates cluster probabilities
using the relative frequency of samples within each cluster. This method is particularly
effective in black-box settings where access to internal probability scores is restricted.

• Number of Semantic Sets (NumSemSets): NumSemSets (Lin et al., 2024) simplifies
DSE by directly counting the number of unique semantic clusters identified by the entail-
ment model, where a larger number of clusters indicates higher uncertainty in the model’s
outputs.

• P(True): This technique (Kadavath et al., 2022) is designed to capture the LLM’s uncer-
tainty by structuring the task as a multiple-choice question. The LLM first generates a set
of candidate answers based on a given prompt and then re-evaluates these responses by
assigning probabilities. Specifically, the model is asked to determine whether a generated
answer is correct by selecting between True and False, e.g., Is the possible answer: (A)
True (B) False?. The probability assigned to (A) is recorded as an uncertainty measure. A
few-shot prompting strategy with examples from the training set is used to provide contex-
tual guidance.

3 ROBUSTNESS AND MCT SAMPLING FOR UQ

In this section, we define the concept of robustness in the context of UQ methods and formalize the
MCT sampling strategy.

3.1 ROBUSTNESS DEFINITION IN UQ METHODS

Robustness in the context of UQ refers to the stability and generalization of a UQ method’s perfor-
mance when applied across different settings. In our use case, robustness captures the range to which
a UQ method remains effective in assessing uncertainty under changes in the following dimensions:

• Inference Parameters2: Variability in parameters such as temperature, top-k sampling, or
nucleus sampling, which govern the stochastic nature of responses generated by LLMs.

2In this work we focused on the study of the temperature parameter. Future work will focus on the other
common generation parameters.
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• Model Diversity: Differences in architectures, training objectives, and scales of LLMs,
requiring the UQ method to adapt without significant degradation in performance.

• Dataset Variability: Application to datasets with differing domains, topics, or complexity
levels, ensuring the UQ method’s efficacy across tasks.

3.2 MONTE CARLO TEMPERATURE

MCT is a novel sampling strategy designed to improve robustness and avoid costly HPO by dy-
namically varying the temperature parameter across multiple queries for the same input. Traditional
methods often rely on a fixed temperature value, τ , selected through HPO. In contrast, MCT elim-
inates the need for HPO by introducing a probabilistic mechanism that samples temperature values
from a predefined distribution.

MCT can be directly applied to any existing UQ multi-sample strategy. Instead of determining the
ideal fixed temperature through extensive tuning, MCT dynamically samples temperatures, enabling
the same UQ multi-sample method to perform robustly without additional optimization. This ap-
proach ensures that the method adapts seamlessly across varying model-dataset combinations.

The process of applying MCT to a query x involves the following steps:

1. Define a temperature distribution p(T ) with support [τmin, τmax], where τmin and τmax

represent the minimum and maximum temperatures considered for sampling.

2. Draw k independent samples from the temperature distribution:

τi ∼ p(T ), i ∈ 1, . . . , k.

3. Generate k responses yi from a model M, where each response is conditioned on the query
x and the corresponding sampled temperature τi:

yi = M(x; τi), i ∈ {1, . . . , k}.

4. Apply the selected UQ multisample method based on the generated responses
{y1, y2, . . . , yk}.

For this work, we used a discrete distribution with possible temperature values selected as equidis-
tant points between the specified bounds τmin and τmax. For a given number of generations k, the
temperature values are drawn without replacement from the discrete set:

{τmin, τmin +∆, τmin + 2∆, . . . , τmax}, (3)

where ∆ = τmax−τmin
k−1 .

4 EXPERIMENTAL SETUP

This section outlines the experimental framework employed to evaluate the performance of MCT
and related UQ methods. We detail the configurations used for answer generation, the LLMs and
datasets selected for evaluation, and the specific entailment and evaluation models utilized in the
study.

4.1 CONFIGURATION FOR GENERATING ANSWERS

In this study, we applied UQ methods to the open question-answering task, focusing on sentence-
length outputs. The temperature parameter for our experiments was sampled within the range τmin =
0.1 to τmax = 1.0. To ensure a balance between computational efficiency and statistical robustness,
we generated k = 5 outputs per question. Prior research has demonstrated that using 5 generations
provides results that closely approximate those obtained with 10 generations (Farquhar et al., 2024;
Lin et al., 2024).

Once the parameters τmin, τmax, and k are defined, applying equation 3 yields the exact interval that
we employed for MCT sampling: {0.100, 0.325, 0.550, 0.775, 1.000}.
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4.2 LLMS AND DATASETS

We evaluated the following LLMs: Falcon-7B-Instruct (Almazrouei et al., 2023), Mistral-7B-
Instruct-v0.3 (Jiang et al., 2023), Falcon-40B (Almazrouei et al., 2023), and LLaMA-8B-Instruct-
v3.1 (Grattafiori et al., 2024). Note that due to the licensing of LLaMA models family, we accessed
it via an API that provided text generations without likelihood scores.

Our experiments employed four open-question datasets covering various topics: TriviaQA (Joshi
et al., 2017) and Natural Questions (Kwiatkowski et al., 2019) for general knowledge, SVAMP
(Patel et al., 2021) for mathematics, and BIOASQ (Tsatsaronis et al., 2015) for biology.

We sampled 1,000 questions from each dataset, except for SVAMP, which contains fewer samples.
In this case, all available questions were used. Notably, this represents a dataset size 2.5 times larger
than that employed in the work of Farquhar et al. (2024).

4.3 ENTAILMENT AND EVALUATION MODEL

This study employs semantic clustering to assess bidirectional entailment between pairs of answers,
following the methodology outlined in Farquhar et al. (2024). To implement it, we adopted an
LLM-as-Judge approach, utilizing the Amazon Nova Micro (Intelligence, 2024) model to perform
clustering tasks.

For response correctness evaluation, we employed the LLM-as-Judge paradigm, a method proven to
be more reliable than traditional substring-overlap metrics (Santilli et al., 2024; Zheng et al., 2023).
Claude Haiku 3.5 (Anthropic, 2024) served as the evaluation model, configured to assess correctness
based on the original question and reference answer in the dataset. To maintain consistency with
Farquhar et al. (2024), we ensured that correctness evaluation was conducted using an additional
response generated with a fixed temperature of 0.1. This setting minimizes randomness, producing
more deterministic outputs that serve as a stable basis for evaluation.

Our evaluation framework mirrors the dual LLM-as-Judge structure employed in Farquhar et al.
(2024), where one model is dedicated to clustering and the other to correctness evaluation. However,
while the original framework utilized GPT-3.5 for clustering and GPT-4 for evaluation (Brown et al.,
2020; OpenAI et al., 2024), we relied on alternative LLMs.

To assess the effectiveness of UQ methods, we measured performance using AUROC, PR-AUC,
and AURAC metrics (Hanley & McNeil, 1982; Davis & Goadrich, 2006; Farquhar et al., 2024).
Confidence intervals at the 95% level were computed for all metrics via bootstrapping to ensure
statistical relevance.

5 RESULTS

In this section, we present the results of the MCT sampling strategy, comparing its performance
against three baselines: (1) the oracle temperature, selected to maximize test set performance, (2)
the Best On Average Temperature across model-dataset combinations, and (3) the Fixed Random
Temperature approach. First, we assess how closely MCT approximates the oracle temperature and
achieves statistical parity. Then, we compare MCT to the two baselines that do not rely on HPO.
Our results reveal that a previously optimal temperature does not necessarily generalize well across
different model-dataset settings, as the Best On Average Temperature still underperforms relative to
MCT. Meanwhile, the random baseline highlights the drawbacks of uninformed selection, showing
that arbitrary temperature choices lead to unpredictable and often suboptimal results.

5.1 STATISTICAL PARITY WITH ORACLE TEMPERATURES

Figure 2 demonstrates that MCT achieves statistical parity with optimal oracle-fixed temperatures
across all UQ methods, models, and datasets, using statistical analysis at 95% confidence level.
This finding suggests that MCT can effectively replace any fixed temperature sampling approach
while eliminating the need for temperature tuning. These results are further validated by additional
performance metrics (PRAUC and AURAC), with detailed visualizations available in Appendix A.
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Figure 2: Comparison between oracle-fixed temperature performance and MCT sampling strategy
performance across different UQ methods using the AUROC metric.
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5.2 COMPARISON WITH THE BEST ON AVERAGE AND FIXED RANDOM TEMPERATURE

We evaluated MCT against a baseline approach that determined the best fixed temperature by av-
eraging the scores obtained with each fixed temperature across all model-dataset combinations. To
ensure an unbiased comparison, we applied leave-one-out cross-validation, systematically excluding
each selected model along with all its associated datasets, as well as each selected dataset along with
all its associated models, in the tested combination. The optimal temperature was then determined
by averaging performance across the remaining combinations. This approach ensured that the test
combination did not influence the temperature selection, effectively eliminating potential bias.

Additionally, we performed a comparison against a random baseline. To construct this baseline,
we randomly sampled a fixed temperature 100 times from the same discrete range as MCT and
computed the average performance across these simulations. This ensures a robust estimation of the
expected performance when selecting a temperature at random, serving as an additional reference
point for evaluating MCT’s effectiveness.

To assess performance, we quantified the relative difference, denoted as ∆, which measures the
deviation of each method (MCT, the best average fixed temperature, and the random baseline) from
the oracle temperature’s performance. The results show that MCT consistently achieves a lower
average ∆ across all model-dataset configurations. Specifically, the average ∆ for the best average
fixed temperature method is 5.34%, while for the random baseline, it is higher at 5.85%. In contrast,
MCT achieves an average ∆ of 3.77%, demonstrating its superior adaptability and accuracy.

Moreover, this advantage translates into strong win-rate performance for MCT. It outperforms the
Best Average Fixed Temperature method in 63.24% of cases and achieves an even greater win rate
of 72.03% against the Random Baseline, further confirming its robustness.

Fine-grained results supporting these findings are provided in Table 1 for the AUROC metric and in
Appendix A for the other metrics (PR-AUC, AURAC).

6 CONCLUSION

In this work, we introduced MCT, a general and robust sampling method for UQ in LLMs. Our
approach eliminates the need for expensive HPO of temperature parameters, providing consistent
performance across a wide range of models, datasets, and UQ methods. The experimental results
demonstrate that MCT achieves statistical parity with oracle-fixed temperatures obtained through
computationally intensive optimization. Additionally, it outperforms the Best On Average and
Fixed Random Temperature baselines by reducing performance variability and enhancing robust-
ness across diverse configurations.

MCT’s flexibility makes it applicable to any UQ method requiring multiple generations, and its
dynamic temperature sampling effectively addresses challenges associated with fixed temperature
configurations. This adaptability highlights MCT as a practical solution for deploying UQ methods
in real-world scenarios where computational resources are limited.

Despite its positive results, this study has some limitations. While we validated MCT across a di-
verse set of UQ techniques and LLMs, further exploration is necessary to evaluate its effectiveness
on larger-scale models and alternative architectures. Additionally, this work primarily focused on
temperature as the inference parameter; future studies should investigate the impact of other sam-
pling techniques and inference configurations, such as top-P and top-k sampling, to extend MCT’s
applicability.
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Discrete Semantic Entropy
Model Dataset Oracle MCT Best Avg. Random MCT ∆ (%) Best Avg. ∆ (%) Random ∆ (%)

Falcon-7b-Instruct

triviaQA 0.8028 0.7832 0.7880 0.7453 2.44 1.84 7.16
bioasq 0.7681 0.7353 0.7639 0.7178 4.27 0.54 6.55
svamp 0.6713 0.6778 0.6307 0.6267 -0.97 6.05 6.64
nq 0.7361 0.7339 0.7282 0.7036 0.29 1.07 4.41

Mistral-7b-Instruct

triviaQA 0.8143 0.7528 0.7326 0.7217 7.55 10.03 11.38
bioasq 0.7286 0.6829 0.7226 0.6880 6.27 0.82 5.57
svamp 0.7981 0.7662 0.7604 0.7192 3.99 4.73 9.88
nq 0.7397 0.7036 0.6937 0.6923 4.88 6.22 6.40

Falcon-40b

nq 0.7262 0.7164 0.6966 0.7025 1.34 4.07 3.25
triviaQA 0.8185 0.8208 0.7882 0.7733 -0.28 3.71 5.52
svamp 0.7462 0.7498 0.6255 0.6718 -0.49 16.17 9.96
bioasq 0.7394 0.7125 0.6617 0.6966 3.64 10.51 5.79

Llama-8b-Instruct

triviaQA 0.8125 0.7746 0.8023 0.7872 4.66 1.25 3.11
nq 0.7544 0.7708 0.7517 0.7407 -2.17 0.35 1.81
bioasq 0.7450 0.7155 0.7142 0.7197 3.96 4.13 3.40
svamp 0.6957 0.7144 0.6957 0.6637 -2.69 0.00 4.59

Naive Entropy

Falcon-7b-Instruct

triviaQA 0.7391 0.6959 0.6960 0.7021 5.85 5.84 5.00
bioasq 0.6983 0.6842 0.6865 0.6768 2.03 1.70 3.08
svamp 0.6489 0.6595 0.6157 0.6258 -1.64 5.12 3.56
nq 0.7147 0.7145 0.7075 0.6895 0.04 1.02 3.54

Mistral-7b-Instruct

triviaQA 0.7303 0.6663 0.7016 0.6556 8.77 3.93 10.23
bioasq 0.7201 0.6907 0.7057 0.6852 4.08 1.99 4.84
svamp 0.7215 0.7298 0.7050 0.6933 -1.16 2.28 3.90
nq 0.6794 0.6626 0.6606 0.6576 2.47 2.77 3.20

Falcon-40b

nq 0.6670 0.6464 0.6414 0.6499 3.10 3.84 2.57
triviaQA 0.7973 0.7587 0.7692 0.7665 4.85 3.53 3.86
svamp 0.6733 0.6406 0.5901 0.6338 4.85 12.36 5.86
bioasq 0.5882 0.5656 0.5415 0.5614 3.86 7.94 4.57

Semantic Entropy

Falcon-7b-Instruct

triviaQA 0.8072 0.7861 0.7716 0.7348 2.61 4.40 8.97
bioasq 0.7725 0.7386 0.7725 0.7208 4.39 0.00 6.69
svamp 0.6626 0.6763 0.6343 0.6356 -2.06 4.27 4.09
nq 0.7320 0.7305 0.7320 0.7045 0.21 0.00 3.76

Mistral-7b-Instruct

triviaQA 0.8239 0.7538 0.7347 0.7276 8.50 10.83 11.69
bioasq 0.7279 0.6900 0.7023 0.6907 5.21 3.52 5.11
svamp 0.8132 0.7620 0.7554 0.7396 6.29 7.10 9.05
nq 0.7369 0.7046 0.7294 0.6935 4.38 1.03 5.90

Falcon-40b

nq 0.7359 0.7209 0.7098 0.7133 2.05 3.55 3.08
triviaQA 0.8452 0.8090 0.8102 0.7742 4.29 4.15 8.40
svamp 0.7682 0.7808 0.6543 0.6888 -1.64 14.82 10.34
bioasq 0.7418 0.7271 0.6818 0.7085 1.98 8.09 4.48

Number of Semantic Sets

Falcon-7b-Instruct

triviaQA 0.7966 0.7795 0.7871 0.7305 2.14 1.20 8.30
bioasq 0.7638 0.7346 0.7624 0.7283 3.82 0.18 4.65
svamp 0.6669 0.6720 0.6215 0.6299 -0.76 6.81 5.56
nq 0.7336 0.7313 0.7265 0.7062 0.32 0.98 3.74

Mistral-7b-Instruct

triviaQA 0.8127 0.7526 0.7085 0.7416 7.40 12.82 8.74
bioasq 0.7265 0.6826 0.7189 0.6760 6.05 1.05 6.95
svamp 0.7994 0.7654 0.7606 0.7327 4.26 4.85 8.34
nq 0.7380 0.7038 0.6952 0.6892 4.64 5.80 6.62

Falcon-40b

nq 0.7215 0.7138 0.6920 0.6996 1.07 4.09 3.03
triviaQA 0.8153 0.8191 0.7809 0.7724 -0.46 4.21 5.26
svamp 0.7388 0.7365 0.6160 0.6589 0.31 16.61 10.81
bioasq 0.7349 0.7067 0.6567 0.6950 3.83 10.65 5.43

Llama-8b-Instruct

triviaQA 0.8056 0.7728 0.8024 0.7877 4.08 0.39 2.22
nq 0.7542 0.7658 0.7506 0.7393 -1.54 0.48 1.98
bioasq 0.7405 0.7120 0.7085 0.7188 3.85 4.32 2.93
svamp 0.6907 0.7104 0.6907 0.6602 -2.86 0.00 4.41

P(True)

Falcon-7b-Instruct

triviaQA 0.5335 0.4796 0.4924 0.4858 10.11 7.72 8.95
bioasq 0.6170 0.4421 0.5442 0.5398 28.33 11.80 12.51
svamp 0.4228 0.3852 0.3802 0.3941 8.89 10.07 6.78
nq 0.6352 0.5990 0.6232 0.6024 5.71 1.90 5.17

Mistral-7b-Instruct

triviaQA 0.8122 0.7383 0.7417 0.7680 9.09 8.68 5.44
bioasq 0.7983 0.7445 0.7532 0.7564 6.73 5.65 5.25
svamp 0.7273 0.6709 0.6540 0.6848 7.76 10.09 5.85
nq 0.7672 0.7137 0.7342 0.7393 6.97 4.30 3.63

Falcon-40b

nq 0.7556 0.7330 0.6575 0.6899 2.99 12.98 8.69
triviaQA 0.8282 0.7469 0.8005 0.7915 9.82 3.35 4.43
svamp 0.7070 0.6713 0.5797 0.6583 5.05 18.00 6.88
bioasq 0.7906 0.7234 0.7208 0.7573 8.50 8.83 4.22

Table 1: Performance comparison of UQ methods using AUROC score. Bold values show best
performance per scenario, with ∆ indicating difference from oracle baseline (lower ∆ is better).
Note: MCT ∆ may be negative when performance exceeds the oracle baseline.
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A APPENDIX

This appendix provides additional quantitative results supporting the findings presented in the main
text. The following figures and tables illustrate the performance of MCT compared to the oracle
temperature and non-HPO fixed-temperature strategies, including the best average temperature and
random selection, across various model-dataset combinations.

Figures 3, 4, and 5 present the AUROC, PR-AUC, and AURAC score distributions for different
UQ methods across a range of fixed temperature values, complementing Figure 1 in the main text.
These distributions highlight the significant impact of temperature selection on performance and
underscore the limitations of static temperature choices.

Figures 6 and 7 compare the performance of MCT with oracle-fixed temperature values using PR-
AUC and AURAC metrics, complementing the results shown in Figure 2.

Tables 2 and 3 provide detailed performance comparisons for each UQ method across multiple
models and datasets using the PR-AUC and AURAC metrics, complementing the results shown in
Table 1.
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Figure 3: AUROC score distributions of tested UQ methods across various model-dataset combina-
tions at different fixed temperature values.
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Figure 4: PR-AUC score distributions of tested UQ methods across various model-dataset combina-
tions at different fixed temperature values.
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Figure 5: AURAC score distributions of tested UQ methods across various model-dataset combina-
tions at different fixed temperature values.
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Figure 6: Comparison between oracle-fixed temperature performance and MCT sampling strategy
performance across different UQ methods using the PR-AUC metric.
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Figure 7: Comparison between oracle-fixed temperature performance and MCT sampling strategy
performance across different UQ methods using the AURAC metric.
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Discrete Semantic Entropy
Model Dataset Oracle MCT Best Avg. Random MCT ∆ (%) Best Avg. ∆ (%) Random ∆ (%)

Falcon-7b-Instruct

triviaQA 0.7970 0.7899 0.7597 0.7738 0.89 4.68 2.92
bioasq 0.8594 0.8325 0.8379 0.8333 3.13 2.51 3.04
svamp 0.8145 0.8219 0.7937 0.8015 -0.90 2.56 1.60
nq 0.8962 0.8987 0.8925 0.8866 -0.28 0.41 1.08

Mistral-7b-Instruct

triviaQA 0.7057 0.6461 0.5665 0.6111 8.46 19.73 13.42
bioasq 0.7493 0.7213 0.7129 0.7206 3.74 4.85 3.84
svamp 0.6956 0.6974 0.6648 0.6496 -0.25 4.44 6.61
nq 0.7893 0.7545 0.7547 0.7613 4.41 4.38 3.55

Falcon-40b

nq 0.8103 0.7899 0.7637 0.7839 2.52 5.76 3.26
triviaQA 0.6431 0.5978 0.5630 0.5745 7.05 12.47 10.68
svamp 0.6812 0.6884 0.5426 0.5978 -1.06 20.35 12.25
bioasq 0.7661 0.6980 0.6412 0.6836 8.89 16.31 10.77

Llama-8b-Instruct

triviaQA 0.6817 0.6386 0.6427 0.6523 6.31 5.72 4.30
nq 0.8100 0.8240 0.7921 0.7924 -1.73 2.21 2.17
bioasq 0.6945 0.6668 0.6390 0.6568 3.98 7.98 5.42
svamp 0.5701 0.6060 0.5618 0.5399 -6.28 1.46 5.30

Naive Entropy

Falcon-7b-Instruct

triviaQA 0.7169 0.6753 0.6770 0.6758 5.80 5.56 5.73
bioasq 0.7688 0.7540 0.7599 0.7440 1.92 1.16 3.22
svamp 0.8058 0.7984 0.7746 0.7796 0.92 3.88 3.26
nq 0.8826 0.8773 0.8783 0.8695 0.60 0.49 1.49

Mistral-7b-Instruct

triviaQA 0.4536 0.3554 0.2993 0.3488 21.66 34.02 23.11
bioasq 0.6634 0.6096 0.6474 0.6134 8.12 2.42 7.54
svamp 0.5695 0.5928 0.5133 0.5161 -4.08 9.87 9.39
nq 0.6832 0.6637 0.6627 0.6582 2.86 3.01 3.67

Falcon-40b

nq 0.7034 0.6598 0.6864 0.6822 6.20 2.41 3.01
triviaQA 0.4107 0.3730 0.3644 0.3746 9.17 11.28 8.80
svamp 0.5710 0.5341 0.4634 0.5191 6.46 18.84 9.10
bioasq 0.4988 0.4804 0.4580 0.4734 3.70 8.19 5.09

Semantic Entropy

Falcon-7b-Instruct

triviaQA 0.7789 0.7767 0.7617 0.7473 0.28 2.21 4.06
bioasq 0.8552 0.8247 0.8331 0.8193 3.57 2.58 4.19
svamp 0.8029 0.8200 0.7845 0.7933 -2.12 2.29 1.21
nq 0.8896 0.8908 0.8811 0.8779 -0.14 0.95 1.31

Mistral-7b-Instruct

triviaQA 0.6788 0.5939 0.4749 0.5537 12.51 30.04 18.43
bioasq 0.7218 0.6956 0.6755 0.6818 3.64 6.42 5.54
svamp 0.6772 0.6591 0.6324 0.6172 2.69 6.62 8.87
nq 0.7778 0.7395 0.7266 0.7413 4.92 6.58 4.68

Falcon-40b

nq 0.8025 0.7909 0.7655 0.7809 1.44 4.62 2.69
triviaQA 0.5964 0.5626 0.5634 0.5551 5.66 5.52 6.91
svamp 0.6915 0.7190 0.5544 0.5896 -3.97 19.83 14.74
bioasq 0.7572 0.7114 0.6187 0.6890 6.05 18.29 9.01

Number of Semantic Sets

Falcon-7b-Instruct

triviaQA 0.7931 0.7871 0.7565 0.7681 0.76 4.62 3.16
bioasq 0.8592 0.8341 0.8394 0.8386 2.92 2.31 2.40
svamp 0.8136 0.8193 0.7922 0.8024 -0.70 2.64 1.38
nq 0.8961 0.8992 0.8925 0.8889 -0.35 0.41 0.81

Mistral-7b-Instruct

triviaQA 0.7053 0.6518 0.5646 0.6314 7.58 19.96 10.48
bioasq 0.7470 0.7240 0.7168 0.7168 3.07 4.04 4.04
svamp 0.6942 0.6984 0.6655 0.6553 -0.60 4.14 5.61
nq 0.7904 0.7578 0.7594 0.7621 4.13 3.92 3.57

Falcon-40b

nq 0.8105 0.7903 0.7630 0.7808 2.50 5.86 3.67
triviaQA 0.6478 0.5994 0.5636 0.5773 7.47 13.01 10.88
svamp 0.6748 0.6791 0.5408 0.5864 -0.64 19.85 13.11
bioasq 0.7662 0.7001 0.6444 0.6894 8.62 15.89 10.01

Llama-8b-Instruct

triviaQA 0.6884 0.6406 0.6490 0.6597 6.94 5.72 4.17
nq 0.8100 0.8217 0.7940 0.7943 -1.45 1.98 1.95
bioasq 0.6930 0.6726 0.6431 0.6609 2.94 7.20 4.64
svamp 0.5671 0.6088 0.5659 0.5383 -7.36 0.21 5.07

P(True)

Falcon-7b-Instruct

triviaQA 0.5504 0.5229 0.5380 0.5274 4.99 2.26 4.17
bioasq 0.6931 0.5879 0.6425 0.6404 15.18 7.30 7.61
svamp 0.6626 0.6399 0.6424 0.6480 3.43 3.05 2.19
nq 0.8413 0.8280 0.8305 0.8255 1.58 1.29 1.89

Mistral-7b-Instruct

triviaQA 0.6263 0.5140 0.5407 0.5748 17.93 13.67 8.22
bioasq 0.7144 0.6528 0.6707 0.6708 8.63 6.11 6.11
svamp 0.6216 0.5351 0.4813 0.5406 13.91 22.57 13.03
nq 0.7955 0.7473 0.7602 0.7637 6.06 4.43 3.99

Falcon-40b

nq 0.8417 0.7927 0.6954 0.7326 5.82 17.39 12.96
triviaQA 0.5577 0.3654 0.4780 0.5111 34.49 14.29 8.35
svamp 0.6386 0.6569 0.4888 0.5747 -2.88 23.45 10.00
bioasq 0.7486 0.6228 0.6323 0.6832 16.80 15.54 8.73

Table 2: Performance comparison of UQ methods using PR-AUC score. Bold values show best
performance per scenario, with ∆ indicating difference from oracle baseline (lower ∆ is better).
Note: MCT ∆ may be negative when performance exceeds the oracle baseline.
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Discrete Semantic Entropy
Model Dataset Oracle MCT Best Avg. Random MCT ∆ (%) Best Avg. ∆ (%) Random ∆ (%)

Falcon-7b-Instruct

triviaQA 0.6418 0.6295 0.6367 0.6046 1.91 0.80 5.79
bioasq 0.5120 0.4878 0.5098 0.4833 4.72 0.42 5.60
svamp 0.3592 0.3546 0.3341 0.3320 1.28 7.00 7.59
nq 0.3304 0.3209 0.3265 0.3135 2.88 1.18 5.12

Mistral-7b-Instruct

triviaQA 0.8448 0.8200 0.8137 0.8103 2.93 3.67 4.08
bioasq 0.6608 0.6327 0.6567 0.6387 4.25 0.63 3.34
svamp 0.7819 0.7576 0.7609 0.7427 3.11 2.70 5.01
nq 0.5747 0.5557 0.5502 0.5488 3.30 4.26 4.51

Falcon-40b

nq 0.5261 0.5245 0.5104 0.5127 0.32 2.99 2.56
triviaQA 0.8703 0.8738 0.8619 0.8569 -0.40 0.97 1.53
svamp 0.6853 0.6654 0.6258 0.6480 2.90 8.69 5.46
bioasq 0.6494 0.6430 0.6115 0.6297 1.00 5.84 3.03

Llama-8b-Instruct

triviaQA 0.8298 0.8149 0.8222 0.8183 1.79 0.91 1.38
nq 0.5649 0.5565 0.5634 0.5558 1.49 0.27 1.60
bioasq 0.7121 0.6934 0.6961 0.6971 2.62 2.25 2.11
svamp 0.7042 0.7290 0.7042 0.6863 -3.52 0.00 2.55

Naive Entropy

Falcon-7b-Instruct

triviaQA 0.6314 0.6029 0.6001 0.6056 4.51 4.96 4.08
bioasq 0.4968 0.4867 0.4932 0.4858 2.03 0.72 2.22
svamp 0.3623 0.3652 0.3423 0.3492 -0.82 5.50 3.59
nq 0.3369 0.3287 0.3320 0.3218 2.43 1.43 4.47

Mistral-7b-Instruct

triviaQA 0.8278 0.8085 0.8191 0.8022 2.33 1.05 3.09
bioasq 0.6805 0.6631 0.6699 0.6601 2.56 1.56 3.00
svamp 0.7608 0.7573 0.7550 0.7466 0.46 0.76 1.88
nq 0.5618 0.5554 0.5537 0.5500 1.14 1.44 2.09

Falcon-40b

nq 0.5166 0.5159 0.5049 0.5087 0.14 2.28 1.52
triviaQA 0.8823 0.8730 0.8735 0.8724 1.05 1.00 1.12
svamp 0.6708 0.6276 0.6270 0.6460 6.44 6.53 3.69
bioasq 0.5938 0.5872 0.5653 0.5765 1.10 4.79 2.91

Semantic Entropy

Falcon-7b-Instruct

triviaQA 0.6637 0.6464 0.6356 0.6074 2.62 4.24 8.48
bioasq 0.5266 0.5036 0.5233 0.4942 4.35 0.63 6.15
svamp 0.3680 0.3728 0.3462 0.3471 -1.29 5.93 5.69
nq 0.3458 0.3308 0.3458 0.3242 4.33 0.00 6.25

Mistral-7b-Instruct

triviaQA 0.8522 0.8215 0.8428 0.8148 3.60 1.10 4.38
bioasq 0.6650 0.6390 0.6617 0.6440 3.90 0.49 3.16
svamp 0.7990 0.7584 0.7700 0.7573 5.08 3.63 5.22
nq 0.5829 0.5685 0.5825 0.5554 2.47 0.07 4.73

Falcon-40b

nq 0.5466 0.5350 0.5321 0.5300 2.12 2.66 3.03
triviaQA 0.8827 0.8730 0.8688 0.8587 1.10 1.57 2.72
svamp 0.7050 0.7012 0.6491 0.6680 0.54 7.92 5.25
bioasq 0.6622 0.6632 0.6284 0.6449 -0.15 5.11 2.62

Number of Semantic Sets

Falcon-7b-Instruct

triviaQA 0.6320 0.6218 0.6084 0.5912 1.61 3.73 6.46
bioasq 0.5042 0.4834 0.5042 0.4850 4.13 0.00 3.81
svamp 0.3511 0.3475 0.3246 0.3293 1.03 7.55 6.20
nq 0.3240 0.3140 0.3221 0.3100 3.08 0.57 4.30

Mistral-7b-Instruct

triviaQA 0.8420 0.8187 0.8118 0.8158 2.77 3.59 3.12
bioasq 0.6567 0.6312 0.6516 0.6302 3.89 0.78 4.04
svamp 0.7783 0.7548 0.7581 0.7469 3.02 2.59 4.04
nq 0.5687 0.5512 0.5478 0.5435 3.06 3.67 4.42

Falcon-40b

nq 0.5200 0.5197 0.5025 0.5068 0.06 3.38 2.54
triviaQA 0.8669 0.8715 0.8592 0.8550 -0.54 0.89 1.37
svamp 0.6759 0.6509 0.6134 0.6357 3.70 9.24 5.94
bioasq 0.6456 0.6349 0.6035 0.6246 1.66 6.52 3.26

Llama-8b-Instruct

triviaQA 0.8265 0.8120 0.8223 0.8164 1.76 0.51 1.23
nq 0.5582 0.5459 0.5575 0.5498 2.22 0.13 1.51
bioasq 0.7052 0.6887 0.6957 0.6920 2.35 1.36 1.87
svamp 0.6965 0.7233 0.6965 0.6820 -3.85 0.00 2.08

P(True)

Falcon-7b-Instruct

triviaQA 0.4866 0.4485 0.4547 0.4543 7.82 6.54 6.63
bioasq 0.4436 0.3315 0.4009 0.3975 25.26 9.62 10.38
svamp 0.2340 0.2121 0.2340 0.2178 9.37 0.00 6.93
nq 0.2953 0.2673 0.2747 0.2773 9.48 7.00 6.10

Mistral-7b-Instruct

triviaQA 0.8542 0.8272 0.8282 0.8376 3.17 3.04 1.94
bioasq 0.7296 0.7012 0.7067 0.7059 3.90 3.13 3.25
svamp 0.7532 0.7207 0.7274 0.7359 4.31 3.42 2.29
nq 0.6109 0.5832 0.5925 0.5936 4.54 3.00 2.84

Falcon-40b

nq 0.5519 0.5463 0.5100 0.5231 1.00 7.59 5.22
triviaQA 0.8844 0.8652 0.8759 0.8718 2.17 0.95 1.42
svamp 0.6819 0.6272 0.6091 0.6496 8.03 10.69 4.74
bioasq 0.7084 0.6782 0.6771 0.6901 4.26 4.41 2.58

Table 3: Performance comparison of UQ methods using AURAC score. Bold values show best
performance per scenario, with ∆ indicating difference from oracle baseline (lower ∆ is better).
Note: MCT ∆ may be negative when performance exceeds the oracle baseline
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