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Fig. 1: We propose training humanoids to hike complex trails, driving integrative skill development across visual perception,
decision-making, and motor execution. Center: The humanoid robot (H1) a) equipped with vision, learns to b) anticipate near-future local
goals to guide locomotion along the trail with self-autonomy. Bubble size (large → small) indicates anticipated goal direction; color shows
temporal order (orange → green → forest). Left: Our LEGO-H framework is universal to different humanoid robots (e.g., G1, a smaller
robot) to adaptively c) emerge diverse motor skills, and d) develop embodied path exploration strategies to hike on trails with varied terrains
and obstacles.

Abstract—Hiking on complex trails demands balance, agility,
and adaptive decision-making over unpredictable terrain. Current
humanoid research remains fragmented and inadequate for hiking:
locomotion focuses on motor skills without long-term goals or
situational awareness, while semantic navigation overlooks real-
world embodiment and local terrain variability. We propose
training humanoids to hike on complex trails, driving integrative
skill development across visual perception, decision making, and
motor execution.

We develop a learning framework, LEGO-H, that enables
a vision-equipped humanoid robot to hike complex trails
autonomously. We introduce two technical innovations: 1) A
temporal vision transformer variant - tailored into Hierarchical
Reinforcement Learning framework - anticipates future local goals
to guide movement, seamlessly integrating locomotion with goal-
directed navigation. 2) Latent representations of joint movement
patterns, combined with hierarchical metric learning - enhance
Privileged Learning scheme - enable smooth policy transfer from
privileged training to onboard execution. These components allow

LEGO-H to handle diverse physical and environmental challenges
without relying on predefined motion patterns. Experiments across
varied simulated trails and robot morphologies highlight LEGO-
H’s versatility and robustness, positioning hiking as a compelling
testbed for embodied autonomy and LEGO-H as a baseline for
future humanoid development.

I. INTRODUCTION

Hiking [32, 29] challenges humans to master diverse motor
skills and adapt to complex, and unpredictable terrain – such as
steep slopes, wide ditches, tangled roots, and sudden elevation
changes (Fig. 1). It demands continuous balance, agility, and
real-time decision-making, making it an ideal testbed for
advancing humanoid autonomy and the integration of vision,
planning, and motor control. Hiking-capable robots could
explore remote areas, assist in rescue missions, and guide
individuals along rugged paths.



Hiking poses challenges beyond traditional navigation, blind
locomotion, or single motor pattern learning. To succeed,
humanoid robots must master three core capabilities: 1)
Locomotion versatility – The ability to handle mixed terrains
like dirt, rocks, stairs, and streams, adapting dynamically with
skills like jumping and leaping while maintaining balance.
2) Perceptual awareness - The ability to sense and respond
to complex 3D environments, such as stepping over logs or
navigating around trees. 3) Body awareness – The ability to
adjust in real time to local obstacles, terrain changes, and body
states by coordinating vision and motor control for adaptive
foot placement and movement.

Current humanoids struggle to meet these demands due to
the lack of a unified framework that integrates low-level motor
skills with high-level navigation. 1) Locomotion methods lack
adaptability to terrain variation. They treat terrain as a fixed,
homogeneous, and passive background, focusing narrowly
on walking [36, 35], quasi-periodic motion patterns [22], or
mimicry [33]. Advanced frameworks for complex skills like
parkour [52, 11], often depend heavily on user commands or
engineered behaviors. Such isolated training paradigms and
abstraction overlook the embodied interaction essential for
real-world locomotion, limiting generalization beyond curated
environments. 2) Navigation methods struggle with real-
time adaptability. Traditional research efforts rely on scene
mapping [30] or rigid world geometry [28]. While LLMs and
VLMs can plan behaviors and correct execution failures from
textual instructions [48], they often lack the physical grounding
needed for real-world adaptability. A robot may know it needs
to step over the log, but without real-time perception and fine-
grained motor control, it cannot adjust mid-swing if the log
shifts or the ground gives way. Reflexive foot placement on
uneven terrain demands fast, sensor-driven adaptation - not just
faster planning - which symbolic planners struggle to provide.
Bridging motor skills and navigation remains challenging due to
their inherently different response levels (fast, reactive control
vs. slower, deliberative planning) requiring tight coordination
for context-sensitive execution in complex environments.

We introduce LEGO-H, a perceptual-aware, end-to-end,
embodied learning framework for acquiring situational visual-
motor skills and path exploration strategies that enable hu-
manoids to traverse complex trails autonomously (Fig. 1). It
unifies navigation and locomotion by advancing Hierarchical
Reinforcement Learning (HRL) and enhancing Privileged
Learning (PL) for effective skill development.

Our first technical contribution is task-grounded HRL for
situational visual-motor control, reformulating navigation
as a sequential local goal anticipation problem to guide
locomotion policy learning. While HRL can unify navigation
and locomotion via multi-level abstraction, existing methods
often oversimplify environments [13], or restrict low-level
control to basic skills like walking [1], limiting adaptability.
We address this caveat by proposing TC-ViT, a temporal
vision transformer variant tailored for HRL that combines
tokenization with embodied reinforcement learning. Instead
of treating the navigation target as a static token, TC-ViT

models 1) navigation goals and 2) temporal-spatial relations,
considering the robot’s past, present, and future states for
sequential anticipation. The locomotion policy network then
integrates these latent features with proprioceptive inputs and
partial anticipated navigation goals to produce motor actions,
enabling tight coordination between perception and control for
navigating complex, dynamic trails.

Our second technical contribution is enhanced PL
that distills diverse motor skills while preserving action
rationality. In PL, a teacher policy leverages privileged
signals such as known foothold locations to develop diverse,
optimal behaviors efficiently and safely. A student policy then
learns to replicate these behaviors using only proprioception
and onboard perception, enabling deployment in unstructured
environments without privileged information. It improves skill
acquisition but complicates action learning when integrating
visual inputs, increasing the risk of errors and damage from
unexpected actions. Existing distillation approaches supervise
global behaviors [43] or per-joint accuracy [19], often ignoring
inter-joint dependencies. We address this by proposing a
Hierarchical Latent Matching (HLM) metric that distills policy
based on action rationality. HLM utilizes structured latent
representations and masked reconstruction via VAEs [18] to
enforce relational consistency across joints. This task-agnostic
HLM loss set improves policy learning across motor tasks.
Crucially, the latent prior is derived from oracle policy, not
human demonstrations, allowing robot to learn self-reliant
behaviors suited to its own morphology.

To summarize, our work makes three key contributions:
1) We propose hiking as a testbed for integrative skill de-
velopment in humanoid robots. 2) We introduce LEGO-H, a
learning framework for autonomous humanoid hiking. 3) We
demonstrate LEGO-H’s robustness and versatility across diverse
simulated trails and humanoid morphologies, establishing
hiking as a compelling testbed for embodied autonomy and
LEGO-H as a baseline for future humanoid research.

II. RELATED WORK

Humanoid locomotion. Existing approaches to low-level motor
skill learning typically simplify environmental interactions,
abstracting terrains into static patterns at a momentary scale,
which neglects occlusions caused by obstacles or dynamic
environmental disruptions. Research in this domain has pri-
marily focused on learning specific locomotion skills such
as walking [36, 35, 6, 23, 15], running [41, 40], and soccer-
playing behaviors [16]. These approaches often rely on highly
engineered designs optimized for specific lower-body tasks.
Other works employ imitation learning [22, 33, 34, 26, 44]
to generate human-like behaviors from large-scale motion
datasets, but this comes at the cost of reduced embodiment.
Some frameworks attempt to push the boundaries of robotic
motor skills by exploring tasks like parkour [11, 52], acrobatic
flipping [8], or cliffside climbing [51]. While impressive, these
methods are often bogged down by complex engineering,
reliance on user commands for motion planning, or lack of
perceptual awareness.



Humanoid navigation. Research on this direction often
struggles to address real-time environmental constraints while
accounting for the unique mechanisms and actions of hu-
manoid robots. These limitations frequently lead to suboptimal
navigation plans in complex terrains. Conventional methods
typically rely on scene mapping [30, 10] or structured world
assumptions [28], which restrict adaptability in dynamic and
unstructured environments. Contact-aware approaches [24, 25]
attempt to bridge robot configurations with environmental
constraints, but they often depend on pre-generated trajectories,
limiting responsiveness. Similarly, mapless methods [4] lever-
age visual inputs for navigation but are typically constrained
to basic locomotion capabilities such as walking. Recent
advancements in LLM/VLM have shown potential for complex
high-level planning [48], yet remain uncoupled from motor
control systems, failing to achieve autonomous perceptual
awareness and last-step feasibility required for navigating
diverse, fine-grained environments, like hiking.

Joint learning of navigation and locomotion. Integrating
navigation and locomotion into a unified framework remains
a significant challenge. In the realm of wheeled-legged and
quadruped robots, several studies [21, 49, 17, 37] have explored
paradigms that unify local navigation and locomotion. While
these approaches provide valuable insights, tailoring them to
humanoid robots as a baseline for hiking tasks reveals several
critical gaps. First, humanoid robots possess significantly more
degrees of freedom (DoF) than quadrupeds or wheeled-legged
robots, complicating the development of stable locomotion
policies. Achieving balance across diverse lower-body motor
skills (e.g., walking, jumping, and leaping etc.) within a single
framework remains an open problem. Second, the greater body
height of humanoid robots introduces challenges in visual
perception, expanding their field of view and capturing a
broader range of distances. This increased perceptual com-
plexity exacerbates the misalignment between environmental
sensing and physical contact, further complicating decision-
making, navigation, and motor execution processes.

Hierarchical RL. It decomposes a complex RL problem into
multiple layers of policies [9, 42]. This paradigm naturally
structures in hierarchy, where a decision-making/control module
at higher levels manages temporal and behavioral abstraction,
while a low-level module focuses on atomic skills to execute
momentary actions in the environment, guided by the high-
level module. HRL includes two main methodologies: (1)
explicit goal setting [31], where the high-level policy assigns
target goals to the low level, enhancing reusability but limiting
adaptability, and (2) latent space policies [21], where high-
level module guides the low-level policy by providing latent
sub-goals at a lower frequency, offering flexibility but often
limiting generalization. However, HRL are generally not end-
to-end trainable due to complexity and distinct objectives of
each level. Our LEGO-H, is also hierarchical but avoids strict
goal adherence or explicit skill definitions. Instead, it presents a
unified, end-to-end policy learning framework, where high-level
module offers latent representations and intermediate goals
as flexible guidance, allowing low level to reference them

adaptively rather than following rigidly. This soft guidance
supports adaptability and coherence in complex environments,
addressing traditional HRL limitations.
Privileged Learning. It is a two-stage technique in robotics,
often employed to address sim-to-real transfer challenges [47,
20, 5]. For first teacher stage, the robot agent learns an oracle
policy via additionally accessing privileged information from
human demonstrations [5], or GT exteroceptive measurements
from simulator [20]. Since extra information reduces ambiguity
via precise physical states/terrain details/expert trajectories,
the agent could learn more precise actions. However, as this
information is unavailable in real-world deployment, in student
stage, the robot agent learns to imitate the teacher’s behavior
using only accessible data through knowledge distillation.
Common distillation losses target element-wise difference [5],
distribution alignment [34] or latent space alignment [19].
However, studies rarely address the structural consistency of
actions, a critical factor for humanoid hiking, where the robot’s
high articulation requires precise coordination across joints.

III. PROBLEM FORMULATION

A. Task Definition

Drawing from human hiking [2], we consider a humanoid
robot equipped with vision and GPS. A hiking trail is specified
by start and end points (PA, PB) in GPS, optionally with M
intermediate waypoints along the trail. We define the basic task
of humanoid hiking as follows: traversing a trail to reach the
trail’s end PB with safety, efficiency, and all-level autonomy.

The robot receives the following inputs:

1) GPS-based 2D vector Drb from robot’s current projected
2D root position PR[: 2] to end PB [: 2], which may
not be visible from start PA. This vector provides the
distance and direction of the endpoint relative to the
robot.

2) GPS-based 2D vectors {Drm}Mm=1 from PR to M
optional intermediate waypoints. We use M=1 to study
the basic trail structure and disambiguate forks. These
points provide guidance but need not be strictly followed.

3) The onboard proprioceptive input Xpro, like joint ve-
locities and angles, reflects the robot’s internal physical
state.

4) K forward-facing depth images {Ck}Kk=1 from a head-
mounted camera. Unlike prior quadruped approaches [37,
21] assuming full local 3D information, our setup limits
vision to a frontal field, making perceptual-motor learning
more realistic and challenging. Humanoids, being taller
than quadrupeds, see farther - enabling look-ahead
planning but complicating near-term action learning.

For ideal hiking, whole-body control would allow coordi-
nated use of arms and legs to maintain balance and support
denser contact points with trails. However, as a baseline
prototype for this new task – and noting that many trails
can still be traversed with leg movement alone – this study
simplifies the task by freezing humanoid’s upper-body pose,
focusing on lower-body functionality.



(b) Unified Hiking Policy Learning with Vision

(a) Oracle Policy Learning for Motor Skills
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Fig. 2: LEGO-H framework overview. LEGO-H equips humanoid
robots with adaptive hiking skills by integrating navigation H and
locomotion E in a unified, end-to-end learning framework (b). To
foster the versatility of motor skills, we train the unified policy via
privileged learning from the oracle policy (a).

IV. LEGO-H FOR INTEGRATIVE SKILL LEARNING

A. LEGO-H System Overview

In our setup, the robot is only given the relative position
of the endpoint. Thus, it must autonomously determine how
to traverse unknown, but locally observable trail with various
terrain changes to reach the destination safely. From a frame-
work perspective, a humanoid system must fulfill two core
requisites to succeed: 1) learn embodied path exploration
that is both target-driven and locally adaptive – the robot
must autonomously assess and adapt its local path based on
immediate sensory observations and current executable motor
skills, while maintaining alignment with the overall goal; 2)
enable emergent, context-aware, and safe motor execution
– the robot must learn a diverse set of motor skills and execute
actions that are not only safe for its body but also feasible
under local environmental constraints, like clearance and terrain
support. To this end, we propose an end-to-end, embodied
learning framework, LEGO-H (Fig. 2), short for Let Humanoids
Go Hiking.

To fulfill the first requisite, LEGO-H employs two levels
of modules within a unified policy learning pipeline (Fig. 2b),
combing a high-level navigation module (H) that encodes
trail’s latent representation and anticipates local goals, with
a low-level motor skill module (E) that learns reactive motor

policy in real time. Specifically: 1) The high-level navigation
module H, implemented via TC-ViT (Sec. IV-B), acts as
a trail scout, looking ahead and proposing local directions
based on visual cues, global goal, and motor execution. It
receives the state sreal (depth images {Ck}Kk=1, proprioception
Xpro, endpoint PB , and one middle waypoint M ), generates
a latent trail representation zuni, anticipates a sequence of N
future local navigation goals G= {gn}Nn=1, and calculates a
goal residual δg0 capturing the execution mismatch from the
previous step. Each gn ∈ [0, 2π] represents a goal direction as
a yaw angle relative to the robot’s root. 2) Then, the latent
trail representation zuni, proprioception Xpro, residual δg0 , and
the next anticipated goal g1, flow to the low-level motor skill
module E to guide softly. E plays the role of an agile trail
runner, reacting in real time to proprioceptive feedback and
terrain conditions to decide how best to execute each step. It
predicts an executable action at. Rather than strictly tracking
the sequence of local goals from H, E adapts to local terrain
and robot state to safely progress toward the endpoint.

By seamlessly leveraging visual and proprioceptive feedback
within an RL framework, this unified pipeline reflects HRL’s
abstraction, where local goal anticipation and reactive control
jointly enable the robot to autonomously adapt local paths
within traversable regions, avoiding entrapment and collisions
in challenging trail terrains, while maintaining steady progress
toward the trail’s end.

LEGO-H achieves the second requisite by enhancing privi-
leged learning scheme wrt structural rationality of actions: 1) It
first trains an oracle motor skill policy πtea(a|ssim) (Sec. IV-C)
with privileged information Xpri (e.g., terrain type, ground
friction, precise state measurements) and expert navigation
goals as inputs (Fig. 2a). While vision is not used at this stage,
scandots and Xpri provide clean, informative signals for high-
quality skill acquisition. 2) Then, in the unified pipeline training,
the teacher policy is distilled into E to initialize it. Aside from
basic imitation losses and rewards (Sec. IV-D), LEGO-H uses
a Hierarchical Latent Matching metric (Sec. IV-E) to learn
the final policy πuni(a|sreal) that balances robustness and
behavioral diversity across diverse trail terrains.

B. TC-ViT: Autonomous Local Goal Anticipation

The navigation module H is implemented via TC-ViT, a vari-
ant of Temporal Information Conditioned Vision Transformer.
It addresses four critical aspects to navigation module: 1)
cognize surroundings with balance of short-time reactivity and
final goal alignment, adapt anticipation of local goals to local
terrain with 2) spatial precision and 3) embodied awareness,
and 4) produces representations with synchronized perception
and action (shown in Fig. 3).
1) Cognize surroundings with final goal. A common strategy
for environment perception assumes Markovian observations
and processes adjacent depth images via methods like 3D
modeling [21]/reconstruction [50], temporal features [7], or
semantic traversability [12]. However, hiking poses two key
challenges: 1) Time scale: short-term dynamics and long-
term environmental dependencies must be handled jointly. 2)
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Fig. 3: TC-ViT Architecture. Three key components: a) a goal-
orientated temporal transformer encoder for robots cognizing sur-
roundings with the final goal; b) a parallel process on the current
depth frame for integrating spatially precise information to reflect the
current state c) a recurrent goal adaptation mechanism that integrates
visual awareness, goal information, and proprioception.

Specificity: Visual features must directly support execution of
immediate next step while aligning with final goal.

Thus, a direct solution is to integrate local perception with
a distant global goal PB , where we employ a temporal vision
transformer with goal conditioning (Fig.3a), adapted from
classic ViViT’s encoder[3]. It captures the information with
both spatial and long-range dependencies via processing 16-
frame depth sequences (downsampled to 4) into spatio-temporal
tokens (from 16× 16 patches) using 6 transformer layers with
spatial and temporal attention. The final goal PB is tiled as
an additional (1,H,W ) channel (H = W = 128) and fused
at tokenization. This early fusion ensures goal awareness is
preserved throughout spatio-temporal reasoning, yielding more
task-aligned predictions. The encoder outputs a flattened feature
vector α({Ck}Kk=1, PB).

Intuitively, this part of TC-ViT serves as a trail scout with
a map in hand: it interprets what’s immediately ahead through
sequences of depth images, while constantly factoring in the
direction of the final destination. Embedding the goal early -
before visual abstraction — ensures the robot always “looks”
with intent, allowing it to anticipate terrain-compatible moves
that remain globally purposeful.
2) Anticipate near-future goals with spatial precision.
While aboves might be effective to support long-horizon goal
prediction in coarse, body-agnostic navigation [39], humanoid
hiking demands fine-grained, multi-scale decision-making.
On uneven trails with sudden obstacles (Fig. 1), precise
foot placement and rapid balance adjustments are critical -
capabilities that suffer as temporal transformers abstract away
fine spatial structure critical for precise control.

The second component of TC-ViT (Fig. 3b) thus introduces a
parallel path focused on immediate perception. It processes the
current depth image Ck=t through a shallow CNN, producing
high-resolution spatial features β(Ck=t) that capture near-field
terrain details. This branch omits goal conditioning, as its
role is purely reactive. The final representation γ combines
long-range goal-informed context α with fine-grained local
perception β via feature concatenation followed by MLPs:
γ = MLPs(concat(α,β)). Intuitively, this merges the foresight
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Fig. 4: Dynamic adjustments of near goal anticipation. Snapshots
from left to right show a robot traversing mixed terrains along a
trail. TC-ViT does not provide a fixed trajectory that locomotion
module must rigidly follow. Instead, it predicts several near-future
goals (g1, g2, g3), which dynamically adapt to robot’s current state,
reflecting real-time adjustments to its navigation decisions. Bubble
size (large→ small) represents predicted local navigation direction.

of a trail guide - who knows where the path leads - with the
reflexes of a hiker watching their next step.

3) Adapt goals with embodied awareness. Beyond under-
standing environment, effective navigation must also account
for how motor actions and body state affect outcomes. TC-ViT
includes a third part - a recurrent goal adaptation mechanism
(Fig. 3c) - that fuses visual features, proprioception, and goal
information to adaptively anticipate a sequence of local goals,
and produce an embodied latent representation.

Specifically, inputs including the visual representation
γ, endpoint PB , intermediate cue Drm, and propriocep-
tion Xpro are passed through a two-layer MLP and a
GRU to model temporal dependencies: zuni, δg0, G =
GRU(MLPs(γ, PB ,Drm,Xpro)). The resulting latent encodes
perceptual context, physical embodiment. The residual correc-
tion δg0 and near-future goals G provide soft guidance for the
locomotion module. Intuitively, this mechanism helps the robot
learn not just what it sees, but how it moves through what it
sees, adapting its local goals based on how past actions played
out, and staying grounded in both vision and bodily awareness
(as shown in Fig 4).

4) Synchronize perception and control. Real-world systems
operate at mismatched time scales, e.g., Unitree H1’s depth
sensing runs at 10±2 Hz with RealSense D435i, while control
executes at 50 Hz on Jetson NX. TC-ViT addresses this latency
gap with two strategies. 1. Nearest-goal forwarding: Only the
immediate goal g1 is passed to the locomotion module, ensuring
timely response and reducing drift from delayed decisions.
Intuitively, this reflects the idea that – while multiple goals
are anticipated, only the immediate one shapes action, as it
reflects the step that matters right now. 2. Latent tiling: The
latent representation zuni is tiled five times per control cycle
to maintain a stable signal stream. Together, these mechanisms
bridge asynchronous modules and allow perception and action
to stay in sync despite hardware-level delays.



C. Oracle Policy Learning for Motor Skills

Before training the unified policy, we pretrain an oracle
locomotion policy (Fig. 2a) to acquire diverse motor skills. The
oracle takes as input proprioception Xpro, current navigation
goal, privileged state Xpri, and latent terrain features ztea
from scandots S ∈ R66×2. To encourage upright locomotion
with emergent motor behavior rather than pre-defined modes,
rewards in three aspects are essential in this stage: 1) direction-
aligned velocity tracking rtracking, 2) soft torso height constraint
rbase-height, 3) foot airtime accumulation rair-time.

D. Unified Hiking Policy Learning with Vision

After training the oracle policy πtea(a|ssim), we distill it
into a unified student policy πuni(a|sreal) that jointly learns
navigation and motor control from visual input (Fig. 2b).
Specifically, TC-ViT encodes depth sequences into latent zuni
and predicts near-future goals. The tuple (zuni, δg0 , g1) is
passed to the locomotion module to compute πuni(a|sreal),
which outputs current action at. Both policies are implemented
as MLPs. Basic training losses here are RL rewards and
reconstructions for imitation in goal, latent, and action levels
from teacher stage:

Lim = w1∥ztea − zuni∥2 + w2 SmoothL1(Gtea,Guni)

+ w3 SmoothL1(atea,auni). (1)

The oracle acts as a mentor guiding student through complex
terrain. By initializing πuni via imitation and optimizing it
together with TC-ViT under RL framework, πuni learns to
align vision, planning, and control into a cohesive behavior.

E. Hierarchical Latent Matching Metric

Standard action imitation loss aggregates per-joint errors,
overlooking joint coordination. Thus, we introduce Hierarchical
Latent Matching (HLM) loss metric, which captures structural
dependencies to bound the student’s action space. We first train
a masked VAE on oracle actions to learn a latent space that
encodes joint coordination. During distillation, student policy
is guided to match this latent structure, promoting physically
coherent and well-coordinated actions despite modality and
representation gaps. Analogous to feature matching in image
reconstruction, this method shifts imitation from pointwise
joint matching to holistic joint pattern matching, treating body
as a coordinated system rather than a set of independent joints.

Specifically, during distillation, VAE is iteratively trained
on teacher actions with randomly masked joints, learning to
reconstruct full actions from partial inputs, where:

Lrec = w4LKL + w5Lself + w6Lmask (2)
LKL = KL (q(zvae|atea) ∥ N (0, I)) (3)
Lself = SmoothL1(Dec(Enc(atea)),atea) (4)
Lmask = SmoothL1(Dec(Enc(atmask)),atea) (5)

Here, wx are weighting terms, zvae is latent vector, and
atmask denotes masked teacher action. KL term follows
VAE formulation [18]. To handle joint permutation invariance,
we apply sine-cosine positional embeddings to each joint.

The compact latent space, regularized by the Gaussian prior
and enriched by masking, encourages learning of inter-joint
dependencies and structural consistency, capturing coordination
patterns aligned with the robot’s physical embodiment, rather
than relying on human motion priors.

Once trained, the VAE encoder defines a structured feature
space for comparing teacher and student actions. We utilize it
to introduce a two-level HLM loss: full-feature alignment and
masked-subset matching.

Concretely, for each student action auni, we compute a
cosine similarity loss with the teacher action:

Lts = 1− cos_sim(Enc(atea),Enc(auni)) (6)

= 1− Enc(atea) · Enc(auni)
∥Enc(atea)∥∥Enc(auni)∥

(7)

We further apply a triplet-style consistency loss using a
randomly masked student action:

Ltrip = cmt(1− cos_sim(Enc(atea),Enc(aumask)))

+ cms(1− cos_sim(Enc(auni),Enc(aumask))) (8)

The combined hierarchical loss is:

Lhie = w7Lts+ w8Ltrip (9)

Without HLM, student robots can complete the task but with
frequent collisions and poor coordination (Tab. I). In contrast,
HLM promotes robots to exhibit more refined, collision-free
movements that align better with internal structural consistency.

V. RESULTS AND ANALYSIS
A. Experimental Settings

Robots. We use Unitree H1 [46] and G1 [45] humanoids, cho-
sen for their distinct differences in body scale and mechanism:
H1, at adult size (5.9 ft/47kg), contrasts with kid-sized G1
(4.26 ft/35kg), with notable variations in torque density and
morphology. These inherent differences impact key factors
like visual perception range/motor stability/overall movement
complexity even within identical trails.
Implementations. Proprioception (Xpro ∈ R45): covers lower-
body joint positions, velocities, torso roll and pitch, foot
contact indicators, and previous action at−1 for both robots.
Actions (at ∈ R10): the learned policy uses position control for
joints, with positions converted to torque via a PD controller.
Training: for both oracle and unified policy training, we use
PPO [38]. Rewards follow those introduced in method section,
with additional basic elements from [7, 14]. Physics simulations
perform in Isaac Gym simulator [27].
Metrics. We evaluate models based on three core criteria
with levels of granularity: goal completeness, safeness, and
efficiency. Concretely, we use 6 evaluation metrics – (1) Goal
Completeness: Success Rate (%) measuring the percentage
of episodes where robots reach the hiking endpoint; Trail
Completion (%) indicating the portion of the trail route a robot
passed; and Traverse Rate (%) reflecting the distance from
robot’s final position (if not complete goal) to endpoint relative
to total trail length. (2) Safeness: MEV (%) assessing foot-
edge collisions; and TTF (seconds) evaluating robot stability



based on episode duration before a fall occurs. (3) Efficiency:
Time-to-Reach (seconds) measuring average time required
for successful episodes to reach endpoint. Unless specified,
experiments are conducted with 512 randomly spawned robots
over 30 seconds on 5 distinct trail types, each featuring 5
difficulty levels. Results are averaged over 5 runs to minimize
random biases and verify robustness.

B. Ablation Study

Settings. We compare full LEGO-H with following de-
signs: (1)Oracle: trained with access to privileged info and
expert-designed navigation goals, representing an upper-bound
performance.(2) w TC-ViT: LEGO-H trained without Hierarchi-
cal Latent Matching (HLM) loss metric. (3)Vanilla: LEGO-H
variant where TC-ViT is replaced by a ConvGRU to predict
latent and goal, altering the navigation mechanism.

TABLE I: Ablation study of LEGO-H on H1. for best goal
completeness; for most safeness; for best efficiency.

Metrics Oracle LEGO-H w TC-ViTs Vanilla

Success Rate (SR) (%) ↑ 71.20± 0.72 68.40± 1.34 64.73± 2.22 42.97± 0.67
Trail Completion (TC) (%) ↑ 77.73± 0.92 52.78± 1.30 52.50± 1.52 32.01± 0.61

Traverse Rate (TR) (%) ↑ 73.60± 0.81 71.96± 2.37 72.04± 0.98 60.26± 0.94
MEV (%) ↓ 7.12± 0.92 7.84± 0.92 10.40± 1.50 9.41± 1.27
TTF (s) ↑ 7.25± 0.09 7.46± 0.17 7.00± 0.20 5.36± 0.10
T2R (s) ↓ 4.59± 0.08 4.95± 0.12 5.13± 0.12 6.50± 0.07

Results. Tab I indicates several insights. (1) TC-ViT is essential
for basic hiking functionality. The consistent, significant
performance advantage of w TC-ViT over Vanilla across all
metrics, except MEV, reveals the essence of balancing the
goal, physical state, and visual perception, which is crucial for
coordination between navigation and locomotion.(2) Structural
action behavior helps more efficient goal accomplishment and
better stability. The absence of HLM (w TC-ViT) results in
behaviors that complete tasks but compromise stability, often
leading to mechanical risks (worse MEV than others). Including
HLM (LEGO-H) ensures coordinated joint actions that align
with the robot’s physical structure, promoting both task success
(SR rises from 64.73% to 68.40%) and mechanical integrity
(MEV goes from 10.40% to 7.84%, TTF increase to 7.46s),
leading to more efficient task accomplishment (T2R improves
from 5.13s to 4.95s). (3) LEGO-H rivals oracle in efficiency
and safety. Compared to oracle which has perfect observation
conditions and expert navigation goals, LEGO-H falls behind
on success rate and trail completion. But surprising aspects are
the efficiency and safeness, where LEGO-H’s performances
are comparable to or slightly better than oracle. This stresses
again LEGO-H’s effectiveness and capacity.

C. Emerged Behaviors in Different Situations

We further explore the behaviors that emerge in humanoid
robots to unfold how robots autonomously adapt their motor
skills and decision-making in response to various factors.
Locomotion in diverse trail terrains. Different terrains trigger
distinct locomotion behaviors, like walking, stepping, jumping,
leaping, and leaning (Fig 5). Key observations include: (1) H1
robots typically opt for a walking gait on continuous surfaces,
regardless of variations in friction, adjusting their body tilt as
needed to maintain balance (Fig. 5a). (2) Irregular surfaces,

(a)

(b)

Walk LeanStep Jump Leap

Fig. 5: Locomotion in diverse trail terrains. Robots developed
distinct motor skills to tackle different terrains, e.g., walking on rough
surfaces/leaping across ditches/leaning away high obstacles.

Detour around Obstacle
Skip Obstacle

Fig. 6: Navigation in diverse situations. Robots developed different
navigation skills, such as directly skipping a small obstacle and
detouring around a high obstacle to edge through.

like fractured or sloped terrains, prompt gaits like stepping,
jumping, or leaping, depending on slope and gap size (Fig. 5b).
(3) In tight spaces, such as cracks between large obstacles, H1’s
adapt by leaning sideways to navigate through these confined
areas (Lean in Fig. 5b).
Navigation in blocked paths. Two key behaviors are evident
from Fig 6: (1) When faced with tall or large obstacles, the
robots typically choose to detour, maintaining a safe clearance
from the obstacles. (2) For obstacles below hip height, the
robots initially attempt to stride or step over; if unsuccessful,
they then choose to detour. These phenomena reveal the
embodied character in high-level decisions.
Motor behavior differences between robots. As shown
in Fig 7, when encountering identical trails like transitions
between platform and flat ground, H1 and G1 exhibit different
behaviors. H1 navigates down smoothly, while G1 bends its
knees to jump down. This difference highlights the impact of
physical mechanisms on emergent motor styles.

D. Humanoid Hiking Benchmark

Settings. As current research does not directly support hu-
manoid hiking, we selected two representative quadruped
pipelines, adapting them to this task using same input structure
and oracle policy as LEGO-H. This setup allows us to investi-
gate several key factors essential for humanoid hiking. The first
adapted pipeline, EP-H, represents a modified humanoid-hiking
version of EP [7]. Main methodological difference between EP-
H and LEGO-H is that EP-H handles visual-aware navigation
and locomotion by processing each depth frame independently,
disregarding farther depth data to avoid distributional shifts.
RMA-H and RMA-B are adapted pipeline from RMA [19]
– the former has vision inputs, and the later is blind. This
pipeline originally supports blind locomotion, and employs a



Walk Down Leap Down

Fig. 7: Motor behavior differences between robots. Robots with
different structures developed unique skills – H1, which is higher and
heavier, chooses to “walk down” step, while G1, which is shorter and
more lightweight, chooses to “leap down” the step.

LEGO-H EP-H RMA-B RMA-H LEGO-H EP-H RMA-B RMA-H
(b)(a)

LEGO-H EP-H RMA-B RMA-H
(c)

Fig. 8: Qualitative comparisons between LEGO-H and other
benchmarked methods. The colored lines represent the trajectories,
depicting the robots’ torso position as they traverse diverse trail
environments. (a) illustrates performance on a RandomMix trail
featuring unobstructed views with varied terrain types. (b) highlights
results on a Ditch trail, where uneven terrain with slopes and gaps
demands quick turns and agile leaps. (c) showcases performance on
a Forest trail, where extensive obstacles of different sizes and heights
block robot’s view. The zoomed-in regions highlight the robots’ issues.

frozen oracle policy with an adapter network to map real-world
sensory data to oracle’s latent space for policy adaptation.

TABLE II: Hiking benchmark for Humanoid Robot H1 across all
different trail categories. for best goal completeness; for most
safeness; for best efficiency.

Metrics LEGO-H EP-H RMA-H RMA-B

Success Rate (%) ↑ 68.40± 1.34 28.80± 0.88 65.17± 2.05 48.11± 0.72
Trail Completion (%) ↑ 52.78± 1.30 25.98± 0.22 52.51± 1.41 41.92± 0.34

Traverse Rate (%) ↑ 71.96± 2.37 64.16± 0.48 70.61± 0.93 69.85± 1.50
MEV (%) ↓ 7.84± 0.92 12.44± 1.32 8.70± 1.55 10.74± 1.13
TTF (s) ↑ 7.46± 0.17 4.64± 0.13 6.97± 0.17 5.22± 0.03

Time-to-Reach (s) ↓ 4.95± 0.12 9.79± 0.16 4.98± 0.11 6.19± 0.05

Results. We focus on three vital questions from the benchmark:
1) Is visual perception essential for integrated navigation
and locomotion? 2) What type of visual information is most
effective? 3) Is unified cross-level learning necessary? Key
findings in Tab II and Fig 8 revel the answers:(1) Vision
is essential. Without vision, RMA-B struggles across all
metrics, highlighting the need for visual feedback. (2) Goal-
aligned, multi-scale visual perception is critical. EP-H, which
processes each depth frame independently without continuous
goal alignment, and brute-force cutoff distance information,
results in frequent circles and fails to lock onto navigation
paths. The performance gap between LEGO-H and EP-H
across metrics underscores the importance of structured visual
information. (3) Unified learning is vital for adaptability.
RMA-H performs adequately on straight paths but fails with
turns or obstacles, showing that locomotion feedback alone
is insufficient for embodied-aware decision-making. A unified

learning framework supports essential cross-level interaction,
enabling adaption and effectiveness across all levels.

Rear-arm Tuck Athletic Twisting Stride

with Arms

Lower Body

Fig. 9: Preliminary observations for future work on WBC setting.
G1 exhibits distinct motor behaviors over with arms vs only lower
body. Besides, G1 emerges a rear-arm tuck posture while walking,
likely to minimize arm interference with vision (see depth map).

VI. CONCLUSION
We propose humanoid hiking as a new testbed for advancing

research in embodied autonomy. To address the challenges
it poses, we introduce LEGO-H, a unified policy learning
framework that highlights the importance of integrative skill
development for a humanoid to autonomously accomplish com-
plex tasks like hiking. Experiments demonstrate effectiveness
of LEGO-H and also uncover promising directions for future
research, like whole-body control, long-horizon exploration,
and visual-motor coordination.

VII. LIMITATIONS
There are three limitations: 1) Kilometer-scale hiking. In

this paper, we investigate humanoid robots on prototype trails
to establish a baseline on the importance of integrative high-
level navigation and low-level motor skills. However, real-
world trails are considerably more complex, with long-distance
traverse challenges. Future work could expand the framework
to handle kilometer-scale trails, where sustained adaptability,
energy efficiency, and long-term planning become crucial. 2)
Whole-body control for integrative navigation and locomotion
skills. Expanding control across the entire body would enable
a wider spectrum and adaptive behaviors, enhancing the
robot’s flexibility in complex, obstacle-rich environments. Our
preliminary results suggest that while robots exhibit distinct
motor styles based on physical constraints(Fig. 9), direct
involvement of the upper body does not significantly impact
performance in a positive manner. This opens opportunities
for future work on exploring how coordinated whole-body
strategies can enhance performance. 3) Real-world deployment.
In this paper, we conduct experiments on the simulator, enabling
controlled benchmarking, rapid iteration, and reproducibility —
key prerequisites for real-world deployment. However, applying
LEGO-H to real-world scenarios remains a vital next step
toward closing the sim-to-real gap and realizing field-ready
humanoid hikers.
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