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Abstract

We study a model of machine teaching where
the teacher mapping is constructed from a size
function on both concepts and examples. The
main question in machine teaching is the mini-
mum number of examples needed for any concept,
the so-called teaching dimension. A recent paper
(Ferri et al., 2024) conjectured that a worst case
for this model, as a function of the size of the con-
cept class, occurs when the consistency matrix
contains the binary representations of numbers
from zero and up. In this paper we prove their
conjecture. The result can be seen as a generaliza-
tion of a theorem resolving the edge isoperimetry
problem for hypercubes (Hart, 1976). Our proof is
based on a generalization of a lemma of (Graham,
1970).

1. Introduction

In formal models of machine learning (Valiant, 1984) we
have a concept class C' of possible hypotheses, an unknown
target concept ¢* € C and training data given by correctly
labelled random examples. The concept class C' is given
by a binary matrix M whose rows are concepts and whose
column set is the domain of examples X, with M (¢, z) =
1 if ¢ is consistent with z labelled positively, i.e. with
(z, 1) rather than with (z, 0). In formal models of machine
teaching a set of labelled examples w called a witness is
instead carefully chosen by a teacher T', i.e. T'(¢*) = w, so
the learner can reconstruct ¢*. The common goal is to keep
the teaching dimension, i.e., the cardinality of the witness
set, max.cc |T'(c)|, as small as possible. In recent years,
the field of machine teaching has seen various applications
in fields like pedagogy (Shafto et al., 2014), trustworthy
Al (Zhu et al., 2018), reinforcement learning (Zhang et al.,
2021), active learning (Wang et al., 2021) and explainable
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Al (Yang et al., 2021).

Various models of machine teaching have been proposed,
e.g. the classical teaching dimension model (Goldman &
Kearns, 1995), the optimal teacher model (Balbach, 2008),
recursive teaching (Zilles et al., 2011), preference-based
teaching (Gao et al., 2017), no-clash teaching (Fallat et al.,
2023), and probabilistic teaching (Ferri et al., 2022). In
(Telle et al., 2019) a model focusing on teaching size is
introduced, and in (Ferri et al., 2024) an algorithm called
Greedy constructing the teacher mapping in this model is
given.

Greedy assumes two total orderings <¢ on C' and <x on
X, with < x extended to <y on subsets of labelled exam-
ples W = 2X*10.1} py shortlex ordering. In the Greedy
algorithm the teacher defines its mapping iteratively: go
through W in the order of <y, and for a given witness
w = {(x1,b1)...(x4, bq)}, find the earliest (in <¢ order)
¢ € C consistent with w (i.e. with M (¢, x;) = b; for all
1 < i < @) such that T'(c) is not yet defined, then set
T'(¢) = w and continue with next witness (or drop this w if
no such c exists).

To compare the teaching dimension achievable by Greedy
to that of other models, the authors of (Ferri et al., 2024)
argued as follows when a large witness is used: If Greedy
assigns T'(¢) = w for some w = {(z1,b1)...(x4,bq)}, then
we may ask why was ¢ not assigned to a smaller witness?
Assuming there are | X'| = n examples, any subset Q C X
of size g—1 when labelled consistent with ¢ has already been
tried by Greedy, and hence some other concept must already
have been assigned to any such @, and all these concepts
are distinct. This means we must have taught ( ﬁl) =k
other concepts already. But then we have already taught at
least k 4+ 1 concepts and we can again ask why were any of
these not taught by a smaller witness of size ¢ — 2? It must
be that any such witnesses (labelled to be consistent with
some concept among the k£ 4+ 1 we already have) must have
been used to teach other, again distinct, concepts.

Note that, to verify how many distinct witnesses exist, cor-
responding to new concepts, that are labelled consistently
with one of these k£ + 1 concepts, one must sum up the
number of distinct rows when projecting on ¢ — 2 columns,
for all choices of these columns. Note that the number of
distinct rows, i.e., witnesses, and hence the number of con-
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cepts, when projecting on ¢ — 2 columns, for all choices
of these columns, depends on the matrix M one does the
projection on. The authors of (Ferri et al., 2024) wanted
to find the matrix M minimizing the sum of unique rows
after doing the projection, thus arriving at the following
combinatorial question. What is the binary matrix M on
k distinct rows and n columns that would give the small-
est sum when projecting on ¢ columns? They conjectured
that this was achieved by the matrix H,, j consisting of the
k rows corresponding to the binary representations of the
numbers between zero and k£ — 1, with leading Os to give
them length n. In this paper we prove this conjecture.

Consider the binary consistency graph G¢ on the set of
concepts versus the set W of subsets of labelled exam-
ples, with a concept ¢ adjacent to w € W if ¢ is consis-
tent with each labelled example in w. We can view the
Greedy Matching algorithm as working on G¢. Note that
the above-mentioned sum for a matrix M when projecting
on ¢ columns (called m, (M) in the next section) is then the
number of W-vertices on ¢ examples that have at least one
neighbor among the concepts. Since we prove that H, j,
minimizes this value for all ¢, it means that it minimizes the
number of W -vertices having a neighbor in the consistency
graph, over all concept classes on k concepts over a domain
of size n. As the consistency graph is of importance in
machine teaching, this is an indication that our result has a
general relevance in that field.

When ¢ = n — 1 this minimization question is equivalent
to asking for the induced subgraph on £ vertices of the hy-
percube of dimension n having the maximum number of
edges, for the following reason. The rows of the k by n
binary matrix M are viewed as k vertices of the hypercube
of dimension n, labelled in the standard way, with two ver-
tices adjacent iff their labels differ in exactly one coordinate.
When ¢ = n — 1 we have (,",) = n choices for the pro-
jection on ¢ columns and each such projection leaves out
exactly one column (and a column corresponds to a dimen-
sion of the hypercube). Each such projection could give at
most k unique rows, so the maximum achievable sum of
unique projection rows is k times n. The main observation
when ¢ = n — 1 is the following: three or more rows cannot
have the same projection row, but two rows can, and two
rows of M give the same projection row (when leaving out
a column/dimension) if and only if the corresponding pair
of vertices are adjacent (across the dimension we left out),
and thus when ¢ = n — 1, the sum of unique projection
rows for M is k times n minus the number of edges induced
in the hypercube. Thus, a matrix minimizing the sum of
unique projection rows for ¢ = n — 1 will also maximize
the number of induced edges in the hypercube of dimension
n.

The question of finding the matrix achieving the maximum

mentioned above is called the edge isoperimetry problem
for the hypercube. This has been shown (Hart, 1976) to
be achieved by H,, i, and the edge isoperimetry of the hy-
percube has been studied extensively in (Mcllroy, 1974;
Delange, 1975; Hart, 1976; Greene & Knuth, 1990; Agnars-
son, 2013) to name a few articles. The result we give in this
paper is thus a generalization of the edge isoperimetry prob-
lem on the hypercube, as we show that [, ;, is the solution
not only when ¢ = n — 1, but for all values of 1 < q < n.

The rest of our paper is organized as follows. In Section 2
we give the formal definition of the conjecture. In Section
3 we show that the conjecture would be settled if we could
prove a stronger theorem. Then in Section 4 we prove this
stronger theorem, using a generalization of an old result
from (Graham, 1970).

2. Statement of the main theorem

Let M be a k x n binary matrix whose all k rows are distinct.
Let M, . be the set of all such matrices. For any binary
matrix A, let dif(A4) denote the number of unique rows in
the matrix A. For Q C {1,2,...,n}, let M(Q) be the sub-
matrix of M € M,, ;, formed by taking the columns with
indices from (). Finally for integers a and b where a < b let
[a,b] = {a,a+ 1,...,b}. Our main interest is the number

mg(M) =) dif(M(Q))

Q<(™)

which is the sum of the numbers of unique rows for each
submatrix of M created by picking a subset of the columns
of size ¢q. For fixed positive integers k,n and ¢, we are
interested in finding a matrix M € My, ,, with the minimum
value of mq(M). Let my(n, k) be this minimum value, i.e.,

mg(n, k) = min my(M).

MeMy, i

We show that the k x n binary matrix H,, , whose rows are
the binary representations of all numbers between zero and
k — 1 achieves this minimum value of mg(n, k).

Example 1.
0 0 0O 0 0 0O
0 0 01 0 010
Hys5=|0 0 1 0]=]0 1 0 0
0 011 0 0 01
01 0 0 0 0 1 1

with ml(H475) =17, mg(H475) = 16, m3(H4’5) = 15and
m4(H4,5) = 5.

It will be useful for us to use the following recursive defini-
tion of H,, ;. Note that the invariants we are interested in
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remain unchanged by permutations of rows or columns of
the matrices under consideration. In this sense we consider
all such matrices equivalent. Let O be the all 0 row vector
and let 07" be the all 0 column vector, and similarly for 1
and 17, Then

0 k=1

— T
Hn,k = (Hn—l,[g] 0 ) E>1
17 '

Hppov15)
Let hy(n, k) = mqy(H, ). Our goal is thus to prove the
following theorem.

Theorem 2.1. For any positive integers q,n, k where ¢ < n
and k < 2",
mg(n, k) = he(n, k).

Here is a diagram showing how we will prove Theorem 2.1.

\

Thm. 2.1

[Lemma 4.1 )—{ Cor. 4.2

[Lemma 4.3 (Graham, 197())]—{ Lemma 4.5 )—{ Lemma 4.7 ]

3. A sufficient condition

The goal of this section is to prove that the following the-
orem (whose proof we leave to the next section) implies
Theorem 2.1.

Theorem 3.1. For any positive integers q,n, k where ¢ < n
and k < 2",

rg];nxigk_l hg(n,z) + hg_1(n — 1,k — )

k

= o, [51) + hyaln = 1,15,

which is just stating that the minimum value of the expres-

sion on the left occurs when = = [£].

Lemma 3.2. The h numbers satisfy the recurrence relation

=2

ol k) = byl [51) + By 1 (=1, [ 5)

and

fork > 1.

Proof. Let @) be a g-element subset of the column-index set
{1,2,...,n}. If n € Q, then each of the bottom | £ | rows
of H, 1 (Q) appears as a row among the [%£] top ones, and
hence my(Hp 1 ({1,2,...,n — 1})) = mq(anl,[%]) =
hg(n — 1,[%7). Since the value of the last column (the
n-th column) is 0 for the | £ | rows and 1 for the rest we
have that if n € @, every row from the bottom | % | rows
of H,(Q) differs from any row from the [%] top ones,
and so the sum over those () that contain n contributes
exactly mq—1(H, _y rx7) +mg-1(H, 1 |5)) = hg_1(n—

1, [57) + hg—1(n — 1, £]). Thus

hg(n, k)

= hq(n—1, fg})—khqfl(n—l7 I_g—‘)""hqfl(n_l, LSJ)

This can be slightly simplified as follows. Note that
hg(n — 1,757) + hq_1(n — 1,[£7) is exactly the con-
tribution of the [£] top rows of H, j to mg(H, ), ie.,

mq((H, _ug]OT)) what equals mq((OTHn_l’[%])) =

n

mq(Hnng) = hy(n, [£7) and the claim follows. O

Lemma 3.3. For any positive integers q,n, k where ¢ < n
and k < 2",

- .
ma(n, ) 2 (£ Srek1
2 I1XT>

mg(n,z) +mg_1(n — 1,k — x)
Proof. Let A € M,, j, be a matrix that minimizes m, over
M, i, 1.e., it satisfies mg(A) = mg(n, k).

If £k =1, thenevery Q € ([1(’1"]) contributes 1 to the sum

Yo dif(M(Q)), and hence m,(A) = (7).

q
Let £ > 1. Suppose w.l.o.g. that the last column contains
both 0’s and 1’s and that the number of 1’s does not exceed
the number of 0’s. Let y be the number of 0’s in it, and
assume that the 0’s are in rows 1, ...,y and the 1’s in rows
y+1,....k withy >k —y,ie,y > [%]. Let T be the

submatrix of A determined by rows 1, ...,y and columns
1...,n—1, and let B be the submatrix determined by rows
y+1,...,kandcolumns 1,...,n — 1,i.e.,
T o7
A= ( Lo ) .

We further denote by 7% = (T 0T') the submatrix of A
formed by its top y rows.

We first observe that

YodrA@) > Y

Qe("")meQ Qe(" )

dif(T(Q)) (1)
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since in this case we do not include the n-th col-
umn in ). Because the n-th column is not included,
we observe that any unique row projection counted by
ZQe(“”’;’”) dif(T'(Q)) will be a subset of the unique row

projections counted by ZQE(E):nQQ dif(A(Q)).

‘We also see that

dif(T(Q"))
@

S odfAQ): Y

Qe(")me@ Qe

+ Y difB@)
<)
since when n € (), each row leading to a unique projection
in A, the entire row, except that last column, was in 7" or in
B. As we know that each projection of rows in B will differ
from rows in 7" in at least the n-th column, we can count
up the number of unique projections in 7" and B separately,
using @)’ of size (¢ — 1) as we will increase the size by 1
when we add back n.

We see that my (T*) > my_1(n—1, k—y) since for a given
T™ for n columns and y rows, the m,, value will be greater
or equal to the minimum value over all matrices of size
(n,y). We also see that my_1(B) > mg_1(n — 1,k — y)
using the same idea. Given a matrix B of size (n— 1,k —y),
the m, value of this matrix will be larger or equal to the
minimum value over all matrices of size (n — 1,k — y).
Combining these we get the inequality

mg(T*) +mg—1(B) >

3)
mg—1(n—1Lk—y)+mg_1(n—1,k—vy)

Finally we need the inequality

mq(n,y) + mq—l(” - lvk - y) Z
min ~ my(n,z) + my_1(n — 1,k — x). @
[E]<a<k—1

To show the soundness of this inequality we observe that
when 2 = [5] wehave z < y,as z = [5] < y. We
also have y < k — 1, as we assume that the last column
has both 0’s and 1’s. When z = k — 1, we have y < «z,
as we do the minimization over all possible values of x
in this range, we know that we are evaluating * = y as
well. Hence the minimum will be equal to or less than

mg(n,y) + mg_1(n — 1,k —y).

Using these four relations we can now finish the proof.

mq(A) =
S oaA@)+ S dif(AQ) >

Qe(My)meQ Qe(My")meQ

(by combining (1) and (2))

>

Q<(™ )

DY

Q/e([léfl_*ll])

dif(T(Q)) +

dif(B(Q")) =

- =

Qe("7, )

LY

Q/e([ll-;:*ll])

dif(T(@Q)+ Y.

Qe([ll,zn]),neQ

dif(T™(Q))

dif(B(Q')) =

=mg(T*) + my_1(B) >
(by (3))

= mg(n,y) + meg_1(n -1,k —y) >
(and by (4))

> min

> mg(n,z) + mg_1(n — 1,k — x).
[£1<z<k-1

Lemma 3.4. Theorem 3.1 implies Theorem 2.1

Proof. Certainly my(n, k) < hq(n, k), we prove the other
inequality by induction on k. The base case £ = 1 follows
from my(n, 1) = hy(n,1) = (Z)

Suppose k£ > 1. Lemmas 3.2 and 3.3 imply that

mg(n, k) > min

’ mg(n, ) +mg_1(n—1,k—z) >
[E]<z<k—1

(by the induction hypothesis)

> min

—[H<<k1%0“@+hrﬂn—Lk—x):
2 ISTSR—

(by Theorem 3.1)

= hy(n, fg}) + hg—1(n —1, LSJ) =

(by Lemma 3.2)
= hq(n, k).
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4. Proving Theorem 3.1

In this section we will prove Theorem 3.1 by showing that
hqe(n, x) "increases” at least as fast as hy_1(n — 1,k — )
“decreases” when z starts at [ %] and increases until k& — 1.
To be more precise, we will show that

ha(n, T51+3) — hy(n, [51)

> hyrn - 115 )~ by (n =1, 1E] -

&)

for any j > 1 such that [g] + j < k — 1. Since the above
inequality is equivalent to

ho(m, 151 +9) + Ry s (0 =1, 151~ 5)
> hy(n, [51) + by a(n =1, [5]),

it follows straightforwardly that the minimum value of
hg(n,x) + hg—1(n — 1,k — z) over x € [[§],k — 1] is
attained by z = [£7].

We first need to understand the behavior of the h,(n, k)
numbers as k increases or decreases. Let |x| denote the
Hamming weight (number of 1°s) in the binary representa-
tion of integer z. We recall that the binomial coefficient ()
by definition evaluates to 0 when k < 0 or & > n. Similarly,
we define the boundary values of h,(n, k) for ¢ = 0 and
k=0as ho(n,k) =1 (for k > 0) and hy(n,0) = 0.

Lemma 4.1. For any integers x,q,n such that 0 < x <
2" —1and 0 < q < n, we have

n— |zl
ho(n,x+1) = hy(n,x —l—( >,
Q( ) q( ) Q*|I|
and for integers x,q,n such that 1 < xz < 2 land 1 <
q < n, we have

n—1—|z—1]
h‘]*l(n_lvl'_l) = hql(n_l’x)_(q— 1— |J}— 1|>

Proof. We prove the first formula, the second one then fol-
lows directly by applying the first one for z — 1,¢ — 1 and
n—1.

For the boundary values of ¢ and z, we have hg(n,1) =
1=0+1=ho(n,0)+ (), ho(n,z+1)=1=1+0=
ho(n,z) + ("721) for z > 1, and hy(n,1) = (") =

—|z| q
0+ (1) = he(n,0) + (Z:l'g“).
For the notrivial cases, suppose that ¢ > 1 and x > 1. The
only difference between H,, , and H,, ;11 is that H, ;1
has one extra row, which is the binary representation of x
with zeroes padded to the left if needed. Let S be the set of
column indices where the last row of H,, ;1 hasa 1.

We first observe that dif(H, ,(Q)) = dif(H, +1(Q))

whenever S € @ C {1,2,...,n}. To see this let i € S\Q
and y be the number with binary representation having the
same entry as z in the positions belonging to ) and 0’s
in all other positions. Then y < x and H, , contains a
row which is the binary representation of y. Since this
row of H,, , is equal to the last row of H,, 1 when only
looking at the columns with indices in @, dif(H,, ,(Q)) =
dif(Hn,x+1 (Q))
Then we see that dif(H,, ,+1(Q)) = dif(H, (Q)) + 1
whenever S C (). This is because there is no row in H,, ,
where all the columns with indices in .S are equal to 1, since
the number of this row would be greater or equal to x.
So we are left with counting how many subsets ) of
{1,...,n} satisfy S C @ and |Q| = ¢. This is exactly

n—|S n—|x

(qf“S'||) - (q7||:r“)'

O

Corollary 4.2. For any integers q,n, x, j such that 0 < g <
n,0<xz 1< jandx+ 5 < 2" we have

z+j—1 n— |Z|
hQ(n7x+j):hq(nax)+ Z ( —Z|)
1=x q
Moreover, whenever 1 < g <mand1 < j <x <2 ! we
have

z—1 .
: n—1—13
hq_l(n—17a’,‘—j) = hq—l(n_l,l‘)— Z ( |>’
i=r—j (]*17|Z|
=z—]
and whenever 1 < ¢ <mnandl1 <j<x—1<2"1 e
have

hg—1(n—1,2 —j—1)
r—2

—hya(—Le—1)— 3 <Z_i_||;|>'

i=z—j—1

Proof. The first two formulae follow from Lemma 4.1 by
induction on j, the third formula follows from the second
by substituting = — 1 for x. O

In view of this corollary, the inequality (5) is equivalent to
the claim that our goal is to prove that

’Z’ (n—|i|> N %:1 <n—1—|i|>
— il ) — —1—1i
a—lil) = 4 Na=1-1i
holds true for all feasible ¢, n, k and j.

We first show some useful properties of Hamming weights
which extend the following lemma from (Graham, 1970)
whose proof was finalized in (Jones & Torrence, 1999).
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Lemma 4.3. ((Graham, 1970; Jones & Torrence, 1999))

Let s,t be non-negative integers. Then there exists a bijec-
tive mapping 0 : [0,7] — [s, s + r] such that |0(k)| > |k|
forevery k € [0, r].

We will need a generalization of this lemma whose proof
depends on the following observation:

Observation 4.4. Let z > ¢ be non-negative integers. Then
|z =t > || — [¢].

Proof. This follows directly from the standard subtraction
algorithm for integers in binary representation. O

Lemma 4.5. Let s, r,t be non-negative integers such that
r,t>1lands > r+t— 1 DenotebyT = [s,s + 1 — 1]
and B = [s —r —t + 1, s — t]|. Then there exists a bijective
mapping 0 : T — B such that |0(x)| > |z| — |t| for all
zeT.

Proof. Our proof works by induction on r. When r = 1,
we have T = {s} and B = {s — t}. The only possible
mapping 6 then simply maps s to s — ¢ and we see that
|60(s)| = |s —t| > |s| — |t| by Observation 4.4. Thus, the
base case » = 1 is established for all values of ¢t > 1.

Let » > 1. Create two matrices with r rows each

s—t—

Mp = and Mp =

s+i :
S sfrftJri

where 7' is the base 2 representation of x as a binary vector
with 0-s padded to the left so that all vectors have the same
. Mr

length. Finally let M = ( MB) .

Reformulating the lemma in this matrix context we seek
a bijective mapping 6 of the rows of My to the rows
of Mp such that |(z)| > |x| — |¢| holds true for every
row z of Mr. (With a slight abuse of notation we write
0 : My — Mp.) The induction hypothesis states that this
holds true, for this value of ¢, if the number of rows of each
matrix is less than 7.

Without loss of generality we may assume that the first
(leftmost) column of M contains at least one 0 and
at least one 1 (since we could disregard this column
otherwise). Then if we look at the first column of M,
there will be a point where a 1 appears for the first time,
when moving through the rows from the bottom row up.
This could happen either in the M7 part or in the Mp
part of the matrix. We will deal with these 2 cases separately.

Case 1 (The first leftmost 1 appears in the M7 part of the
matrix) We divide both the M7 and M p matrices further

and write M as

M:

where the bottom row of 7j is the row where the first
1 appears (thus that row is 100...0), with 75 being the
remainder of M7, and we let B; have the same number of
rows as T7. We will map 77 to B; and 75 to Bs. Since 15
and B> have fewer rows than r (since 7} and B; always
have at least one row) and are on the form specified by the
lemma since the smallest number in 75 are the same as in T’
and the largest number in B, is the same as in B and we
simply deleted some of the largest/smallest numbers of T’
and B to create T» and Bs respectively so it will still be
an interval. It follows by the induction hypothesis applied
to 15, By and r as the number of rows of 75, By that, for
the same value of ¢, there exists the required mapping
0, : Ty, — Bs. Note also that this is vacuously true if T5
and By are empty. Now if we ignore the first column of
Ty, then T1({2,3,...}) is the binary representation of the
numbers 0,1,....|77| — 1. So by Lemma 4.3 there is a
mapping 03 : T1({2,3,...}) — B such that |03(z)| > |z
for every x. Adding back the first column of 77 and
using the same mapping between the rows as 65, we get a
mapping 63 : T1 — By where |05(z)| > |z| — 1 for every
z (since the Hamming weight of z increases by 1). Clearly
|x] — 1 > |z| — |t| when ¢ > 1, hence combining 6; and 05
gives us a bijective mapping 6 : T' — B with the required
properties.

Case 2 (The first leftmost 1 appears in the Mp part) We
divide the matrix in a similar way as in the first case

so that the bottom row of B is the row where the first
1 appears in the leftmost column (so this row is 100...0)
and we let T, have the same number of rows as By. For
a binary vector z let T be the complement of z, so z =
(1,1,1,...,1) — 2. For a binary matrix 4, let A be the
matrix whose rows are the complements of the rows of A.

By the induction hypothesis, as there are fewer rows and we
have the same value of ¢, there is a mapping 6 : 7o — Bs
with the required properties. The top row of By is (011...1)
so if we look at By, the top row will be (100...0), the next
row will be (100...01) and so on, meaning that if we ignore
the first column we are counting up from 0 in binary. Lemma
4.3 then gives us a mapping 05 : B ({2,3,...}) — T with
|62(x)| > |z| for every . Adding back the first column but
keeping the row mapping we get a mapping 65 : By — T}
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where |05(x)| > |z| — 1. Now define 6, : By — T by
04(x) = 05() and let ||z|| be the length of the vector z.

|04 (2)| — || = |03(7)] — ||
= [l]] = 103(@)| = (]| - |z])
= [z] = 105(7)] ©)
<1

To get (6) we use the fact that |05(x)| > |z| — 1.

We will now look at the inverse mapping 04_1 Ty — Ba.
For any y € T}, there is an x € Bj such that 04(z) = y.
We just showed that |04 (z)| — |2| < 1 which is the same as
ly| — || < 1 which we can rewrite as |y| — [0, (y)| < 1.
Multiplying both sides by —1 we get |0, (y)| > |y| — 1.
Combining 94_1 and 6, in the natural way we get the desired
mapping 6 : T — B satisfying |0(x)| > |x| — 1 > |x| — |¢|
for every x.

Thus the lemma is proven for any r,¢t > 1 and any s >
r+t—1. O

We are now set to prove that the sum in the first formula
of the Corollary 4.2 is always larger than the sums in the
second and third formulae. We will need the following well
known observation:

Observation 4.6. For any integers n, k, j such that 0 <

j<k<n,
N .
k)= \k—j

Lemma 4.7. For all positive integers q,n,x,j such that
r+j—1<2"andx—35 >0,

“il (n—z) N i (n—1—|i|)

2 \g—1il) = 2= \a—1-1i)°
andifx — j > 1, then

“zj:"l (n—|i|> N f (n—1—|i|>

= \a—lil) — e \a—1-il)
Proof. We show that there exists a bijection 6 from [z, z +
j—1]to[z—j,x—1] (orto [x —j — 1,2 — 2], respectively)

such that |6(7)| > |é| — 1 for all . This will prove the lemma

since then for every term (Z:“l?l') in the sum of the left hand
side there will be a corresponding term in the sum on the

right side
(n —-1- |9(z)>
q—1-100)]

and we see that by Observation 4.6

o) =G =G

So if such a bijection exists, then for every term in the sum
on the left hand side there will be a unique element in the
sum on the right hand side which is no greater than the
element on the left hand side. So then the sum on the left
hand side must be greater than or equal to the sum on the
right hand one. Now we just need to show that there exist
such bijections #. We will use Lemma 4.5.

Case 1. Let s = z,r = j and t = 1. Then by Lemma 4.5
there is a mapping 6 : [x,2+j — 1] — [z — 1,z — j]} such
that |0(7)| > |i| — |¢t| = |i] — 1 for every i, which is the first
bijection we wanted.

Case 2. If we sett = 2, then Lemma 4.5 gives us a mapping
0:z,x+j—1] — [z — 2,2 — j — 1] such that |0(¢)| >
|i] — |t| = |é] — 1 for every 7, which is the second bijection
we wanted. O

We are now ready to prove Theorem 3.1.
Theorem 3.1. For any positive integers q,n, k where ¢ < n
and k < 27,

min  hy(n,z) + hg—1(n — 1,k — )
[E]<a<k—1

= o, [51) + hyaln = 1,15 ).

Proof. We consider the two cases depending on whether &
is either even or odd.

Case 1 - k is even. Set x = g and rewrite the left hand side
of Theorem 3.1 as

min  hg(n,z +j) + hg—1(n— 1,2 — j)

0<j<e—1

Then by the first and second part of Corollary 4.2 whenever
1 < j < 2 — 1, we can rewrite the expression which is
minimized as

hﬂmm+f§?<nm)+h%ﬂn—L@

q— il

(n— 1-— |z|)
q—1-—1i

1=z

t=x—j
z+j—1 (m—|i|
By Lemma 4.7 we have > 777 (Z—Izl) >
e, (iZfi]) forany 1 < j < @ — 1, which

means that the smallest value occurs when 7 = 0.
Case 2 - k is odd. Set z = [£] and rewrite the expression
of the left hand side of Theorem 3.1 as

omin he(n,z+j) + hg—1(n—1,2 —1—j).
By the first and third part of Corollary 4.2 we can rewrite
the part which is minimized for 1 < j <z — 1 as

z+75—1 .
he(n, z) + Z <Z_ ||Z||> +hg—1(n—1,2—1)

1=
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- f (n—l—z’|>
L \a—1-i)

i=x—j
o+j—1 (n—|i|
By Lemma 4.7 we have > ;' (27“?') >
S () for 1< j < @ — 1 so the

smallest value of the expression will occur for j = 0.

O
By Lemma 3.4 this proves Theorem 2.1.

5. Conclusion

We have proven a conjecture of (Ferri et al., 2024), identify-
ing a binary matrix M minimizing my (M), the sum of the
numbers of distinct rows over all submatrices on g columns.
Let us further consider the complexity of computing m (M)
when the binary matrix M with k£ rows and n columns is
given as input. There is a straightforward algorithm with
runtime O(n%kqlog k). The question arises if computing
mg(M) is FPT (Fixed Parameter Tractable, see Cygan et al.
(2015)) when parameterized by ¢. In other words, is there
an algorithm whose runtime is polynomial in the size of M,
with any superpolynomial dependency restricted to ¢ only?
We leave this as an open problem.
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