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ABSTRACT

We argue that there are two major distinct capabilities in long context understand-
ing: retrieval and holistic understanding. Understanding and further improving
LLMs’ long context capabilities would not be possible without knowing the tasks’
focus categories. We aim to automatically identify retrieval focused and holistic
understanding focused problems from suites of benchmarks and quantitatively
measure the difficulty within each focus. In this paper, we present the DOLCE
framework, which parameterizes each problem by λ (complexity) and k (redun-
dancy) and assigns to one of five predefined focus categories. We propose to sample
short contexts from the full context and estimate the probability an LLM solves
the problem using the sampled spans. To find the λ and k for each problem, we
further propose a mixture model of a non-parametric background noise component
and a parametric/non-parametric hybrid oracle component, where we derive the
probability functions parameterized by λ and k for both the correct-or-wrong
(COW) scenario and the partial-point-in-grading (PIG) scenario. Our proposed
methods can identify 0% to 67% of the problems are retrieval focused and 0% to
90% of the problems are holistic understanding focused across 44 existing long
context evaluation tasks.

1 INTRODUCTION

Large language models (LLMs) have become capable of processing long contexts up to 10M tokens
at a time (Achiam et al., 2023; Dubey et al., 2024; Anthropic, 2024; Reid et al., 2024). Model
developers have also identified a large number of long context use cases and accordingly compiled
existing and new long context evaluation tasks into benchmark suites to quantitatively measure LLMs’
long context capabilities (Shaham et al., 2023; An et al., 2024; Dong et al., 2024; Bai et al., 2024)1.

We argue there exist two major distinct capabilities in long context understanding: retrieval and
holistic understanding. The former involves identifying a single or a few relevant pieces of informa-
tion (“needle”) from chunks of irrelevant content (“haystack”), while the latter assumes that a large
chunk, if not all, of the content is relevant, and oftentimes even the order matters. This distinction is
important since it relates to the architecture design of an efficient long context LLM. For example,
divide-and-conquer approaches, such as blockwise parallel attention (Liu et al., 2024a) or parallel
decoding (Li et al., 2024b), can largely improve the efficiency a Transformer model without affecting
the performance on a retrieval focused task, but may put the performance of a holistic understanding
task in doubt. Recurrent models (Gu et al., 2022; Bulatov et al., 2022; Gu & Dao, 2023; Poli et al.,
2023; Beck et al., 2024) are believed more suited for holistic understanding, despite recent underper-
formance (Zhang et al., 2024a; Huang, 2024). Retrieval augmented generation (RAG) architecture
is tailored for a balanced scenario. Understanding and further improving LLMs’ long context
capabilities would not be possible without knowing the tasks’ focus categories, which however
are sometimes unavailable. Although we may infer them from their task names (e.g. -QA or -Ret
suffices often indicate retrieval) or via manual inspection, it’s not reliable and time-consuming.

1We use “problem” to represent a single input or prompt, “task” to represent a group of problems that usually
have a similar use case, “benchmark suite” for a group of tasks.
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CATEGORY λ k

I
(CBZS) 0 0

II
(Easy) [1, λp] (kp, L]

III
(Retrieval) [1, λp] [1, kp]

IV
(Balanced) (λp, λq] [1, L/λp]

V
(Holistic

Understanding)
(λq, L] [1, L/λq]

Figure 1: Problem parameterization by λ (complexity) and k (redundancy). Category mapping is
illustrated on the left and formally determined by the table on the right. L represents full context, λp,
λq and kp are hyperparameters (detailed in Section 4).

We present the DOLCE (Differentiate Our Long Context Evaluation Tasks) framework, which
aims to automatically identify retrieval and holistic understanding focused problems from suites
of benchmarks and quantitatively measure the difficulty within each focus. Intuitively, a retrieval
focused problem often has a relatively short evidence span, and the difficulty depends on the number
of the evidence span occurrences in the context. A holistic understanding focused problem has a
longer minimum sufficient evidence span or multiple necessary spans dispersed across the context.
We use two parameters λ and k to capture the span complexity and redundancy and map each area
of the λ-k plane to a category, as shown in Figure 1. We also define a special area for λ = 0 (no
context), where the model solves the problem in a closed-book or zero-shot (CBZS) condition.

How can we find λ and k for each problem? One simple idea is to retrieve the spans relevant to the
question and/or the ground-truth answer, and then claim that λ is the length of the span and k is the
number of retrieved spans. However, this approach does not only rely on the retriever but also hardly
identifies the supporting spans required in the reasoning process. In the DOLCE framework, we
propose to sample short contexts from the full context and estimate the probability an LLM solves the
problem using the sampled spans, which also prevents getting “lost in the middle” (Liu et al., 2024c).
We note that, although an LLM can often solve short context problems better than long context
problems, unlike humans or oracle models, it can still make mistakes. We therefore further propose
to use a mixture model of a non-parametric background noise component and a parametric/non-
parametric hybrid oracle component, making our method less sensitive to the quality of the probing
model. To model the parametric oracle component, we derive the probability functions parameterized
by λ and k for both the correct-or-wrong (COW) scenario and the partial-point-in-grading (PIG)
scenario. We use two independently trained models: Gemini 1.5 Flash (Reid et al., 2024) and PaLM
2-S (Anil et al., 2023), to 44 tasks from three benchmark suites, and then apply the DOLCE framework
to obtain their focus categories. We have identified 0% to 67% of the COW problems and 0% to 29%
of the PIG problems are retrieval focused (Category III), and 0% to 89% of the COW problems and
0% to 90% of the PIG problems are holistic understanding focused (Category V). These results have
helped us understand and guide development of long context capabilities of LLMs.

2 RELATED WORK

Long context evaluation benchmark suites have been developed, including LRA (Tay et al., 2020),
ZeroSCROLLS (Shaham et al., 2023), L-Eval (An et al., 2024), LongBench (Bai et al., 2024),
BAMBOO (Dong et al., 2024), LooGLE (Li et al., 2024a), Loong (Wang et al., 2024c), LV-Eval
(Yuan et al., 2024), ∞Bench (Zhang et al., 2024b), Marathon (Zhang et al., 2024a), BABILong
(Kuratov et al., 2024), Ruler (Hsieh et al., 2024), LOFT (Lee et al., 2024). Each comprises existing
and/or new tasks in various domains, use cases, with contexts of different lengths and syntheticity
levels. Domain and use case focused long context evaluation tasks have also been developed, including
Needle-In-A-Haystack (Kamradt, 2023), LongEval (Li et al., 2023), SummHay (Laban et al., 2024),
Task Haystack (Xu et al., 2024), Ada-LEval (Wang et al., 2024a), NovelQA (Wang et al., 2024b),
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FLenQA (Levy et al., 2024), NoCha (Karpinska et al., 2024), RepoQA (Liu et al., 2024b). Most
developers have observed performance degradation as the input context length increases. However,
except in the synthetic case, they have not explicitly distinguished between two length variables: the
input length (L) and an unknown necessary context length or complexity degree (λ).

More recent benchmarks have started to emphasize different difficulty types. Wang et al. (2024a) use
the notion of “full text comprehension” for tasks whose performances “decrease sharply when the text
is truncated”, despite lack of detail. Li et al. (2024a) distinguish between short and long dependencies.
Karpinska et al. (2024) annotate each question with a sentence, passage, or “global reasoning” scope.
Wang et al. (2024c) define four categories, from “spotlight locating” to “chain of reasoning”. Thus
far, developers have had to manually assign categories to tasks, which can be unreliable and costly.
We believe that difficulty should be a continuous spectrum, rather than categorical, and we need a
quantitative approach to automatically assign categories. Along this line, Qian et al. (2024) propose
LC-Boost, which iteratively interacts with an LLM agent to find “minimal necessary context”. They
adopt a simplified assumption of ours (with no k), but the quality highly relies on the retriever and
the LLM. Since their goal is to solve the tasks, rather than analyze the tasks, they do not report
the minimal necessary context lengths. Most relevant to ours, Goldman et al. (2024) coincidentally
propose two difficulty dimensions: scope and diffusion, in a position paper. Our DOLCE framework
not only formally defines λ and k and derive probability functions under two different assumptions,
but also quantitatively estimates λ and k. To the best of our knowledge, our paper is the first to study
the problem of automatic categorization of long context tasks.

3 DOLCE: DISTINGUISH OUR LONG CONTEXT EVALUATION TASKS

The DOLCE framework consists of two major steps: sampling & observation and parameter estimation.
In the first step, we use a probing model to observe responses given sampled short contexts, which
are then evaluated. We describe this step in Section 3.1. In the second step, we attempt to find λ
and k that maximize the likelihood of the observed evaluation outcomes. We use a mixture model
assumption that smooths out the model noise. The modeling process slightly differs between the
COW and PIG scenarios, which are defined and discussed in detail in Sections 3.2 and 3.3.

3.1 SAMPLING & OBSERVATION

For a given problem, we first chunk its context into L units, where L is also referred to as the length
of the context. We choose sentences as units in most cases, but also consider other granularities when
explicit structures are available. We define a span as a sequence of contiguous units. We randomly
sample an observation span of length C from the full context, and then observe an evaluation outcome
x. We may also iterate over all the possible spans (by shifting one unit at a time) when budget allows.

When using a binary evaluation metric, e.g. accuracy, the random variable x can only take two or
three values: “1” meaning fully correct, “0” meaning totally incorrect, and optionally “IDK” (or ∅
for brevity) when not enough information is provided, if instructed. We refer to this as the correct-
or-wrong (COW) scenario. When using a continuous evaluation metric, e.g. F-1 or ROUGE, the
interpretation of x may be ambiguous. Some problems lack a comprehensive list of answer variants
and instead employ F-1 for fuzzy matching. In this case, we should find a threshold to binarize x and
treat it as the COW case. Other problems that expect multi-aspect answers use continuous metrics to
allow partial points. In this case, we need an alternative partial-point-in-grading (PIG) scenario to
directly incorporate the raw continuous outcome x. We see in the following subsections that these
two scenarios will lead to different assumptions and probability functions. We use Hartigans’ Dip
Test (Hartigan & Hartigan, 1985) based on the collective observed outcomes to classify each problem
into either COW or PIG scenario, since both scenarios can co-exist in the same task. In particular, we
bucketize the scores into bins of equal width of 0.1, and assign COW to a problem if the p-value is
below 0.5, i.e. a multi-modal score distribution, and PIG otherwise.

Once we make multiple observations of different lengths and collect evaluation outcomes, we may
guess the length of a minimum sufficient span that can answer the question, which can be one
definition for λ. We consider an example of a COW scenario in Table 1. An optimistic person would
say λ = 1 because that’s when the model starts to output the correct answer (P (x = 1) > 0), and
a pessimistic person would say λ = 20 because that’s when the model never produces an incorrect
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Table 1: Example outcomes from multiple observations for a single problem.

OBSERVATION LENGTH 0 1 2 5 10 20 50 100 FULL

P (x = 1) 0.00 0.21 0.18 0.20 0.25 0.29 0.41 1.00 1.00
P (x = 0) 0.00 0.12 0.12 0.11 0.05 0.00 0.00 0.00 0.00
P (x = ∅) 1.00 0.66 0.70 0.69 0.70 0.71 0.59 0.00 0.00

answer (P (x = 0) = 0). In fact, the same model may make a lucky guess sometimes, and produce
an incorrect answer other times.

3.2 CORRECT-OR-WRONG (COW) SCENARIO

Mixture of Noise & Oracle Components. We assume both a background noise component N and
an oracle component O reside inside the probing model, and they jointly produce the final outcome
xij . The probability P (xij = xij) is a mixture of two generation processes. We use i to represent a
problem and j for a sampled span for problem i.

P (xij = xij) =
∑

z∈{N ,O}

P (xij = xij |zij = z)P (zij = z) (1)

where zij is a latent random variable, taking either N (noise) or O (oracle).

Background Noise Component. We use the term background noise to describe the process that the
model outputs the answer without referring to or understanding the given context, which does not
imply that the answer must be wrong. In fact, there are several scenarios that a background noise
component can produce correct answers. First, a dummy model can guess the correct answer with a
probability of 1/4 for a four-choice question. Also, a model can correctly answer some questions
when zero context is provided (i.e. a closed-book test setup), possibly due to the fact that it has
seen and memorized the hidden contexts during training, which is also noted by prior benchmark
developers (Dong et al., 2024; Li et al., 2024a; Wang et al., 2024c).

We make a non-parametric assumption that the background noise has three outcomes with constant
but unknown probabilities, i.e., P (xij = xij |zij = N ) is given by

P (xij = xij |zij = N ) = pN ,1
Jxij=1K pN ,0

Jxij=0K pN ,∅
Jxij=∅K (2)

where pN ,1, pN ,0, pN ,∅ are the only three parameters.

Oracle Component. We assume there exists a span of length λ that contains all the necessary
pieces of information for the oracle model to confidently answer the question. In many long context
problems, such length-λ ground-truth spans may appear multiple times in different parts of the input
context (e.g. concatenated search result pages for a given query). The oracle model only needs to
find any of them. Since we want to find the shortest ground-truth span, we further assume that the
oracle model cannot answer this question if it only sees a partial span.

Assumption 1 (COW: k-repeated length-λ sufficient spans) There exist k non-overlapping
ground-truth spans, each with a length of λ units (kλ ≤ L). An observation of length C can answer
this question if and only if the observation span completely covers one of the k ground-truth spans.

We derive combinatorially the probability π(λ, k;L,C) that the observation span covers the ground
truth span. The formula and the derivation are provided in Appendix A.1 and an example distribution
illustration is given in Appendix A.2. Under this assumption, the oracle model should observe
“1” with a probability equal to π, and ∅ with a probability equal to 1 − π. In most cases, the
oracle should never make mistakes, i.e. observe “0”. Then, the probability mass function (pmf)
Ppar(xij = xij |zij = O;λi, ki) can be written as:

Ppar(xij = xij |zij = O;λi, ki) = π(λi, ki;Li, Cij)
Jxij=1K

0 Jxij=0K (1− π(λi, ki;Li, Cij))
Jxij=∅K

(3)

Hybrid Oracle Component. We note that even the oracle model can make “correct” mistake.
Consider the question from the TopicRet task in the L-Eval suite: “What is the first topic we
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discussed?” When the oracle model is presented a span that only discusses the second topic, it may
output this topic since it is the first topic it sees. This type of mistake is different from a mistake
caused by the background noise component, where the latter does not understand what “first” means
and/or what “topic” means and outputs a random word. To accommodate this scenario, we further
propose a hybrid assumption that combines the parametric assumption in Eq 3 and a non-parametric
assumption similar to the background noise assumption. Specifically, the non-parametric assumption
first applies when the observation length C < λ, in which stage the output remains “chaotic” and “0”
is a valid outcome. Pnonpar(xij = xij |zij = O) is given by

Pnonpar(xij = xij |zij = O) = pO,1
Jxij=1K pO,0

Jxij=0K pO,∅
Jxij=∅K

And then, the parametric assumption applies when the observation length C ≥ λ. The hybrid
assumption defines P (xij = xij |zij = O;λi, ki) as follow:

P (xij |zij = O;λi, ki) = Pnonpar(xij |zij = O)JCij<λiKPpar(xij |zij = O;λi, ki)
JCij≥λiK (4)

3.3 PARTIAL-POINT-IN-GRADING (PIG) SCENARIO

Mixture of Noise & Oracle Components. Similar to the COW scenario, we assume the final
outcome xij = sij is a result of a mixture of noise background component and oracle component.
Different from the COW scenario, the PIG scenario assumes the mixture happens at the sub-unit level,
e.g. unigram, bigram, etc., depending on the metric (ROUGE-1, 2, etc.). We use a random variable
yijl to represent whether the output from j-th observation for the i-th problem also contains the l-th
sub-unit in the ground-truth answer. While xij is a continuous variable, yijl is a binary variable. In
particular, it is considered a hit (“1”) if the sub-unit is also identified in the prediction, and a miss (∅)
otherwise. Similar to Eq. 1, we can write the sub-unit level mixture for P (yijl).

P (yijl = yijl) =
∑

z∈{N ,O}

P (yijl = yijl|zijl = z)P (zijl = z)

We note that the final outcome sij is in fact P (yijl). We can also use sN and sN to represent the
component level outcomes, i.e. sij = P (yijl), sO,ij = P (yijl|zijl = O), and sN ,ij = P (yijl|zijl =

N ). Then, we can rewrite the sub-unit level mixture as
sij = sO,ijP (zij = O) + sN ,ijP (zij = N )

Intuitively, the final outcome sij lies on the line segment with endpoints at sO,ij and sN ,ij . The
distances to the two endpoints are inversely proportional to the respective priors. We also have

p(xij = sij) =
∑

z∈{N ,O}

p(xij = sz,ij |zij = z)P (zij = z) (5)

Background Noise Component. We simply assume p(xij = sN ,ij |zij = N ) = 1, i.e. a uniform
distribution, meaning that we have no preference (or prior) over the underlying probability distribution
sN ,ij . We can also consider other prior, i.e. Gaussian or beta.

Oracle Component. We assume there exist λ length-1 aspects distributed across the context, each
repeating k times. The partial point the oracle model will get is proportional to the number of aspects
the observation span covers.

Assumption 2 (PIG: k-repeated λ length-1 aspects) There are λ span groups, each having k unit
spans. All kλ spans do not overlap and are uniformly distributed. An observation span of length C
covers a span group if it covers at least one of k members of the group. A partial point s is awarded
if the observation span covers exactly sλ span groups.

We can also derive combinatorially the discrete probability ρ̃(s, λ, k;L,C) that a partial point s is
awarded, where s must be a multiple of 1/λ. The formula and derivation are given in Appendix
B.1. We further transform it into a continuous probability function ρ(s, λ, k;L,C) for an arbitrary
outcome s ∈ [0, 1]. We describe the detail in Appendix B.2 and illustrate an example distribution of
ρ in Appendix B.3, where we also compare and explain the difference between the π and ρ derived
from the two assumptions. We define p(xij = sO,ij |zij = O;λi, ki) as

p(xij = sO,ij |zij = O;λi, ki) = ρ(sO,ij , λi, ki;Li, Cij) (6)
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3.4 MAXIMUM LIKELIHOOD ESTIMATION OF λ, k

The goal for maximum likelihood estimation (MLE) is to find λ and k that best describe the data
{xij}ij by optimizing the joint distribution {p(xij)}ij using Eq 1 or 5. We use the expectation-
maximization technique to solve our mixture problem. We use the standard E-step to compute the
posterior probabilities q(zij = zij |xij = xij) or q(zij = zij |yijl = yijl), and the M-step to compute
the parameters, including pz,x (z = O,N and x = 0, 1, ∅), membership priors, λ and k.

Optimizing the parameters λ and k in these combinatorial probability functions is difficult. Also,
since all C, λ and k can vary from 0 or 1 to L, we cannot easily approximate these functions using
the asymptotic techniques. Fortunately, our goal is not to find the exact optimal parameters, instead
we can provide a small set of λ and k candidates, using exponential intervals (0, 1, 2, 5, 10, 20, . . .),
and find the maximum probability only among these combinations2. We provide pseudocodes of
our EM-based MLE algorithm for the two scenarios in Appendix C. Finally, we use the assignment
criteria described in Figure 1 to assign a category label to each problem.

4 PREPROCESSING & SETUPS

We identified three most cited new benchmark suites at the time of our preparation: L-Eval (An et al.,
2024), BAMBOO (Dong et al., 2024), and LongBench (Bai et al., 2024), and collected a total of 44
tasks, which also include most tasks in ZeroSCROLLS (Shaham et al., 2023). We understand that
most contexts used in these suites have much fewer than 100K tokens, which are considered only
“moderately long” by the current standard. Yet, we found that no task in the COW scenario has all
Category V problems, i.e. λ < L. We first apply the task specific preprocessing steps (described
in Appendix D), and expand the prompts with IDK instructions (exemplified in Appendix E). Next,
we find the most appropriate unit granularity and determine the observation lengths. We show an
example of the study in Appendix F and report the sampling and observation specs in Appendix G.

We primarily use the Gemini 1.5 Flash model (Reid et al., 2024), unless otherwise noted. We follow
the sampling and observation procedure described in Section 3.1. The tasks are evaluated using
accuracy, F-1, ROUGE-L, or EditSim, against the provided ground-truth answers. We conduct
the Hartigans’ Dip Test to the 29 tasks evaluated using F-1, ROUGE, or EditSim, and we found
that 4 tasks have COW only problems, 10 tasks have PIG only problems, and the 15 tasks have a
combination of COW and PIG problems. We present the Dip Test results in Appendix H. During
MLE, we optimize the likelihood function in the COW scenario (Eq. 1) for the accuracy-evaluated
problems as well as Dip Test identified COW subsets using a threshold of 0.5, and the likelihood
function in the PIG scenario (Eq. 5) for the Dip Test identified PIG subsets.

In both scenarios, p(x|z = N ) is shared across all problems of the same task, and P (z) is shared
across all samples of the same problem. In the COW scenario, Pnonpar(x|z = O) is shared across
all samples of the same problem, computed using only the outcomes when C < λ. In the PIG
scenario, Pnonpar(y|z = O) is shared across all samples with the same observation length. During
parameter inference, we try λi and ki from {Cij}j ∪{0,maxj Cij + 1, Li}, where maxj Cij + 1 can
help identify Category V problems in the PIG scenario, since the PIG assumption always expects
sij = Cij/L when λ = L, which happens rarely. We run the EM algorithm for 10 steps in the COW
scenario and 5 steps in the PIG scenario. We set thresholds λp and kp as the first tertile among the
N exponential candidates (excluding 0,maxj Cij + 1, L), i.e. p = bN/3c. We use λq = maxj Cij .
Four tasks exist in two suites, in which cases we use the smaller threshold for both tasks.

5 RESULTS

We note that, while λ and k are chosen objectively via MLE, the category assignment may be subjec-
tive, due to our choices of thresholds. These categories are nonetheless a reasonable simplification.

We report our main results in Figure 2, where tasks or task subsets are sorted by the total percentage
of Categories III to V among their COW or PIG peers. In Figures 9 and 10 in Appendix I, we further
sort the tasks by the percentage of retrieval focus (Category III) and holistic understanding focus

2We know these functions are not convex, but we suspect that they are unimodal. If so, we may also improve
the optimal solution search process.
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CORRECT-OR-WRONG (COW) CORRECT-OR-WRONG (COW) (CONT.)

PARTIAL-POINT-IN-GRADING (PIG)

Figure 2: Task focus categories. Tasks are sorted by the total percentage of Categories III to V.

(Category V). In sum, we found that 0% to 67% of the COW problems and 0% to 29% of the PIG
problems are retrieval focused (Category III), and 0% to 89% of the COW problems and 8% to 90%
of the PIG problems are holistic understanding focused (Category V).

5.1 CORRECT-OR-WRONG (COW) SCENARIO RESULTS

First, we see that a few COW tasks/subsets, e.g. TriviaQA and GSM, have a large percentage of the
questions that can be solved without the provided context (Category I), suggesting that the model
may have already seen and memorized the relevant contexts (and possibly alongside the questions
and answers) during training, or the questions have contained all the necessary relevant information.
Second, we see that the binary classification tasks (e.g. SenHallu and AbsHallu) and few-class
classification tasks (e.g. TREC, ShowsPred, where the latter often has very few candidates) tend to
have more easy questions (Category II), especially we found the model can more often answer “yes”
correctly in the SenHallu and AbsHallu tasks, even with short contexts, possibly based on its own
internal knowledge, in the same way as Category I, but refuses to answer when no context is given.

In Figure 9(a), we sort the tasks from the most retrieval focused to the least retrieval focused
(Category III). MeetingQA, which contains a number of factoid questions (e.g. “What additional
funding has been committed by the Welsh Government to support people arriving from Ukraine?”),
is ranked at the top. In fact, information seeking tasks, including PassageRetrieval and most QA
tasks are ranked higher in the list. In contrast, PassageCount, GSM, and TopicRet, and LCC’s COW
subset are the least retrieval focused tasks. Tasks that require more holistic understanding (Category
V) are mostly those that challenge retrieval capability less, which include coding problems (LCC’s
COW subset and CodeU), counting problems (PassageCount), and questions that involve ordinals
(TopicRet), as shown in Figure 9(b).
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Table 2: The most representative problem from each focus category for QuALITY and LongFQA.

CAT QuALITY LongFQA

II Why might one not want to live in
the universe in which this story takes
place? (λ = 1, k = 100)

What are some key accomplishments of FS
KKR Capital Corp. in 2018 as mentioned in
the call? (λ = 5, k = 10)

III Why does the text mean when it says
that Korvin was "unconscious" at the
time of his lessons in the local lan-
guage? (λ = 1, k = 1)

What were the consolidated revenue and the rev-
enue growth for the Surgical Product segment
over last year? (λ = 2, k = 1)

IV Why would Tom Dorr frame Asa Gray-
bar for stealing the Slider egg? (λ =
50, k = 1)

What impact did the introduction of the Valved
Tearaway and Pediatric Microslide Introducer
products have on the company’s market position
and potential future sales? (λ = 20, k = 1)

V How many sentences does this story
have approximately? (λ = L, k = 1)

Does JLL have greater market share in U.S. leas-
ing than in Capital Markets? (λ = L, k = 1)

We also found that structural format (e.g. passages for PassageRetrieval and paragraphs for Meet-
ingQA) could help shift the problem focus from more holistic understanding to more retrieval in the
spectrum. Passages and paragraphs are often self-contained, as opposed to algorithmically identified
sentences or lines of code. Relevant content can be found in fewer units as a result.

5.2 PARTIAL-POINT-IN-GRADING (PIG) SCENARIO RESULTS

For the PIG tasks and subsets, PrivateEval and RepoBench-p’s PIG subsets are identified as CBZS
(Category I). We suspect that the model may have seen their contexts or tasks during training.
HotpotQA and MuSiQue’s PIG subsets also have a large percentage of easy (Category II) problems.

We see, from Figure 10, that only two QA tasks, MuSiQue and HotpotQA’s PIG subsets, still have
a substantial percentage of retrieval focused problems (Category III). The majority of the PIG
tasks and subsets consists of balanced (Category IV) and holistic understanding focused (Category
V) problems. Among these tasks, we found that tasks that require first retrieval, then reasoning
and summarization, e.g. LongFQA, MultiFeildQA, and other QA tasks, are classified as balanced
(Category IV). Document summarization and long sequence generation tasks, e.g. GovReport,
SPACE, and OpenReview, tend to be considered holistic understanding focused (Category V).

5.3 EXAMPLES: QUALITY & LONGFQA

In this section, we look into two tasks: QuALITY and LongFQA. Both tasks have a blend of problems
from Categories II to V under the COW assumption. We show the category assignment of the most
representative problems in Table 2 and present the full answer, the raw outcomes, and intermediate
parameters in Appendix J. The most representative problems for Categories II to V are defined as
minλ-then-max k, minλ-then-min k, maxλ-then-max k, and maxλ-then-min k respectively.

We try to “speculate” the rationale behind the assignments. Category II is assigned to the first
QuALITY problem (“Why might ...”), since the correct answer “Survival itself is difficult” is also
true in our universe that the model is exposed to. The same Category II is assigned to the first
LongFQA problem (“What are ...”), since the answer (“receiving shareholder approval ...”) is repeated
multiple times in the speech. The most representative Category III problems for both tasks seem
to ask for very specific details of a fact mentioned in the context. It is even more obvious that the
LongFQA problem (“What were ...”) is a factoid question. The Category IV problem (“What impact
...”) for the LongFQA task is a set question, requiring collecting multiple facets from a longer span.
The Category V problem for the QuALITY task (“How many ...”) requires to count the number of
sentences, exhibiting a clear holistic intent. Despite the yes/no form of the Category V problem
of the LongFQA task (“Does JLL ...”), the provided transcript does not disclose the firm’s market
share in either division at all. However, a human may guess “yes” from some clues, e.g. the speaker
emphasized leasing more than capital market (“leasing and capital market” thrice vs. never “capital
market and leasing”), and hinted that leasing was a more established business than capital market.
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6 FURTHER ANALYSIS & DISCUSSIONS

Modeling decisions may affect the estimation of parameters. We define a few metrics to quantify
the difference between two sets of parameters estimated from the reference (ref) and the test setups,
including Relative Change (δ) of λ and k, defined as δ(λ) = |λref−λtest|

max(λref,λtest)
and δ(k) = |kref−ktest|

max(kref,ktest)
,

Spearman’s rank correlation coefficient (ρ) of λ and k, and KL Divergence of p(x|z = N ). We
summarize our findings in this section and provide details in Appendix K.

Sampling Strategies. We implement a few heuristics based sampling strategies and found that the
take-every strategy (i.e. shifting the observation window by a fixed number of units) generally works
well. In the case of L-Eval SFcition, using take-every-5 strategy (i.e. reducing the total required
resource by 80%), we can still obtain ρ(λ) of 0.93, ρ(k) of 0.99, and KL Divergence of P (x|z = N )
of 3.7× 10−5. We provide more details in Appendix K.1.

Unit Granularities. We use different unit granularities for seven tasks. We see that in the COW
scenario, the rankings of both λ and k are preserved between different unit granularities, with ρ(λ)
between 0.54 and 0.80 and ρ(λ) ≥ 0.50, i.e. strong correlation. The ranking of λ is sometimes less
preserved in the PIG scenario, with ρ(λ) between 0.35 and 0.84 across the tasks, i.e. moderate to
strong correlation, while the ranking of k is also well preserved with ρ(k) ≥ 0.64. The background
noise distribution estimation is mostly preserved as well, with the KL divergence ≤ 0.18 across all
tasks. We provide more details and explanations for the minor discordance in Appendix K.2.

Probing Models: Gemini 1.5 Flash vs. PaLM 2-S. We apply the PaLM 2-S model to the same
COW and PIG splits determined by the Hartigans’ Dip Test results using the Gemini 1.5 Flash model
scores. We compare λ and k estimated by the two models across all tasks and further ignore the
problems assigned to Category I by either model when computing δ and ρ. The median δ(λ) and
δ(k) are 0.30 and 0.16, and the median ρ(λ) and ρ(k) are 0.43 and 0.41, which fall into the moderate
correlation category. We provide more details and our thoughts on the disagreement in Appendix K.3.

Binarization Thresholds In Adapting COW Assumption For Continuous Scores. We compare
between the default binarization threshold (0.5) with 0, 0.25, 0.75, and 1 for the problems in the
tasks identified as the COW scenario by the Hartigans’ Dip Test. We found that, as we increase the
threshold, the category assignment either does not change or shifts from Category II or III towards
Category IV or V. When the threshold is changed from 0.5 to 0.25, 0.75, or 1, ρ(λ) and ρ(k) are
above 0.48 and 0.41 across all but two tasks. When the threshold is changed to 0, both ρ(λ) and ρ(k)
decrease, suggesting the threshold must be greater than 0. We give more details in Appendix K.4.

Same Tasks From Different Benchmark Suites. Four tasks exist in both L-Eval and LongBench
suites. We found that only the Qasper task has similar category distributions, and the L-Eval versions
of MultiNews and NarrativeQA have more holistic understanding “flavor” than the LongBench
versions, but the L-Eval version of GovReport has less holistic understanding than the LongBench
version. The discrepancy can be explained by the different problem selection schemes, leading to
different median context lengths and difficulty levels. We give more details in Appendix K.5.

Application In Model Development: KV Cache Update Schedule. This work is motivated by
our and others’ observations that different long context LLM architectures may behave differently
for different categories of long context tasks. In Appendix K.6, we present a case study on the
least recently attended (LRA) (Yang & Hua, 2024), an efficient KV cache update schedule for long
context LLMs. We found that if we want to utilize LRA to improve the efficiency of a long context
application, we need to understand its focus category and adjust the input format accordingly.

7 CONCLUSION & FUTURE WORK

In this paper, we introduce two parameters λ and k to quantitatively measure the difficulty along the
two dimensions: complexity and redundancy. Then, we propose the DOLCE framework that leverages
a mixture model to estimate these parameters. Our proposed methods can identify 0% to 67% of the
problems are retrieval focused and 0% to 90% of the problems are holistic understanding focused
across the tasks and scenario subsets. We also acknowledge that our paper has some limitations,
which we summarize in Appendix L. Practically, we plan to apply our framework to more recent
longer context tasks to help categorize their focuses.
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A DETAILS OF π IN THE COW SCENARIO (k-REPEATED LENGTH-λ
SUFFICIENT SPANS)

A.1 FORMULA & DERIVATION

We omit the subscript ij in this subsection.

The cover probability for the COW scenario (k-repeated length-λ spans) π(λ, k;L,C) is given by:

π(λ, k;L,C) = 1−
2
(
w+λ
k+1

)
+ k−1

k+1 (2kλ+ 2λ+ w − 2k − ku− 1)
(
w+u
k

)(
w+C
k

)
(L− C + 1)

where

w = L− C − kλ+ k and u = min(C, 2λ− 2)

We set π = 0 when k < 1, kλ > L or C < λ. There could be multiple ways to derive this
combinatorial expression. We provide one derivation below.

Derivation. There are a total of three scenarios that the observation does not cover a single valid
ground truth span.

Scenario 1: The observation and the ground truth span do not overlap.

The number of times this happens can be calculated via the star-and-bar process. The first step
involves inserting ground-truth spans and the second step involves inserting observation span. The
number of combinations for this scenario is then given by(

L− C − kλ+ k

k

)
(L− C − kλ+ k) =

(
w

k

)
w = (k + 1)

(
w + 1

k + 1

)
where w = L−C − kλ+ k is the sequence length before any ground-truth span or observation span
is inserted.

Scenario 2: The observation and a ground truth span overlap by x positions on one side.

This scenario describes a case where one side of the observation span partially covers a ground
truth span (by x). But since x < λ, this is still a failure case. Similar to Scenario 1, the number of
combinations in this scenario can also be derived via the star-and-bar process, as follows:

2

(
L− (C + λ− x)− (k − 1)λ+ k − 1

k − 1

)
(L− (C + λ− x)− (k − 1)λ+ k)

= 2

(
L− C − kλ+ k + x

k

)
k = 2k

(
w + x

k

)

We have a 2-multiplier since the partial overlapping can happen at either side of the observation.
Since x can have a range from 1 to λ− 1, the total number of combinations is given by

λ−1∑
x=1

2k

(
w + x

k

)
= 2k

w+λ−1∑
x=w

(
x

k

)
= 2k

(
w+λ−1∑
x=0

(
x

k

)
−

w∑
x=0

(
x

k

))
= 2k

(
w + λ

k + 1

)
− 2k

(
w + 1

k + 1

)

Scenario 3: The observation and a ground truth span overlap by x positions from both sides.

Now since that the overlap must happen on both sides of the observation, we should have x−1 ≤ λ−1
and x− (λ− 1) ≥ 1. Hence, the total number of possible left and right overlapping cases is

min(λ−1, x−1)−max(1, x− (λ−1))+1 = min(λ, x)−max(λ, x)−1+λ = −|x−λ|+λ−1
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Similar to Scenarios 1 and 2, the total number of combinations in this scenario when there are a total
of x overlapping positions from both sides is given by

(−|x− λ|+ λ− 1)

(
L− (C + 2λ− x)− (k − 2)λ+ k − 2

k − 2

)
(L− (C + 2λ− x)− (k − 2)λ+ k − 1)

= (−|x− λ|+ λ− 1)

(
L− C − kλ+ k + x− 1

k − 1

)
(k − 1)

= (−|x− λ|+ λ− 1)(k − 1)

(
w + x− 1

k − 1

)
Since this scenario requires overlapping on both sides, x can range from 2 to u = min(C, 2λ− 2).
The summation has the form:
u∑
x=2

(−|x− λ|+ λ− 1)(k − 1)

(
w + x− 1

k − 1

)

=

λ∑
x=2

(x− 1)(k − 1)

(
w + x− 1

k − 1

)
+

u∑
x=λ+1

(2λ− x− 1)(k − 1)

(
w + x− 1

k − 1

)

= (k − 1)

w+λ−1∑
x=w+1

(x− w)

(
x

k − 1

)
+ (k − 1)

w+u−1∑
x=w+λ

(2λ− x+ w − 2)

(
x

k − 1

)

= (k − 1)

w+λ−1∑
x=w+1

x

(
x

k − 1

)
− (k − 1)w

w+λ−1∑
x=w+1

(
x

k − 1

)
− (k − 1)

w+u−1∑
x=w+λ

x

(
x

k − 1

)

+ (k − 1)(2λ+ w − 2)

w+u−1∑
x=w+λ

(
x

k − 1

)

= (k − 1)

w+λ−1∑
x=w+1

[
(k − 1)

(
x

k − 1

)
+ k

(
x

k

)]
− (k − 1)w

w+λ−1∑
x=w+1

(
x

k − 1

)

− (k − 1)

w+u−1∑
x=w+λ

[
(k − 1)

(
x

k − 1

)
+ k

(
x

k

)]
+ (k − 1)(2λ+ w − 2)

w+u−1∑
w+λ

(
x

k − 1

)

= (k − 1)(k − 1− w)

w+λ−1∑
x=w+1

(
x

k − 1

)
+ k(k − 1)

w+λ−1∑
x=w+1

(
x

k

)

+ (k − 1)(2λ+ w − 2− k + 1)

w+u−1∑
x=w+λ

(
x

k − 1

)
− k(k − 1)

w+u−1∑
x=w+λ

(
x

k

)
= (k − 1)(k − 1− w)

[(
w + λ

k

)
−
(
w + 1

k

)]
+ k(k − 1)

[(
w + λ

k + 1

)
−
(
w + 1

k + 1

)]
+ (k − 1)(2λ+ w − 2− k + 1)

[(
w + u

k

)
−
(
w + λ

k

)]
− k(k − 1)

[(
w + u

k + 1

)
−
(
w + λ

k + 1

)]
=
k − 1

k + 1
(2kλ+ 2λ+ w − 2k − ku− 1)

(
w + u

k

)
− 2(k − 1)

(
w + λ

k + 1

)
+ (k − 1)

(
w + 1

k + 1

)
When we combine Scenarios 1 to 3, we have

(k + 1)

(
w + 1

k + 1

)
+ 2k

(
w + λ

k + 1

)
− 2k

(
w + 1

k + 1

)
+
k − 1

k + 1
(2kλ+ 2λ+ w − 2k − ku− 1)

(
w + u

k

)
− 2(k − 1)

(
w + λ

k + 1

)
+ (k − 1)

(
w + 1

k + 1

)
= 2

(
w + λ

k + 1

)
+
k − 1

k + 1
(2kλ+ 2λ+ w − 2k − ku− 1)

(
w + u

k

)
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The total number of possible combinations is given by(
L− kλ+ k

k

)
(L− C + 1)

The cover probability is given by

1−
2
(
w+λ
k+1

)
+ k−1

k+1 (2kλ+ 2λ+ w − 2k − ku− 1)
(
w+u
k

)(
L−kλ+k

k

)
(L− C + 1)

A.2 EXAMPLE PLOT

We consider a hypothetical problem whose entire context length L = 50, and we use an observation
span length C = 5. We show π(λ, k;L = 50, C = 5), i.e. the probability that the oracle model
correctly answers the problem (i.e. a “1” outcome), on the λ-k plane in Figure 3(a), as well as the
probability that the oracle model cannot answer the problem (i.e. an “IDK” outcome) in Figure 3(b).

(a) Probability observing “1” (π(λ, k;L =
50, C = 5))

(b) Probability observing “IDK” (1− π(λ, k;L =
50, C = 5))

Figure 3: Probability that the oracle model correctly answers the problem (i.e. a “1” outcome) and
cannot answer the problem (i.e. an “IDK” outcome) under the COW assumption.

B DETAILS OF ρ IN THE PIG SCENARIO (k-REPEATED λ LENGTH-1 ASPECTS)

B.1 FORMULA & DERIVATION

The cover probability for the PIG assumption (k-repeated λ length-1 aspects) ρ̃(s, λ, k;L,C) is given
by:

ρ̃(s, λ, k;L,C) =

(
λ
sλ

)(
L
C

) bmin(sλ,d)c∑
t=0

(−1)tmt

where

d =
L− C
k
− (1− s)λ

mt =

(
(d− t)k + C

C

)(
sλ

t

)
We now give one derivation using the inclusion-exclusion principle.

Derivation. First, we put uncovered k(1− s)λ segments into the sequence outside of the observation,
which has a length of L − C. Each aspect has k repeats, and thus k! duplicate counts. The total
unique count is given by (

L− C
k(1− s)λ

)
(k(1− s)λ)!

(k!)
(1−s)λ
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Then, we put sλ covered aspects onto the entire context of length L, excluding the occupied k(1−s)λ
positions. The total unique count is given by(

L− k(1− s)λ
ksλ

)
(ksλ)!

(k!)
sλ

There exist invalid allocations. In fact, we need to make sure each one of sλ aspects should appear in
the observation span at least once. We can count the number of combinations that a given aspect only
occurs outside of the observation. Since there are k occurrences, it is given by(

L− C − k(1− s)λ
k

)(
L− k(1− s)λ− k

k(sλ− 1)

)
(k(sλ− 1))!

(k!)
sλ−1

We can alternate the aspect from one of sλ covered aspects, so the total number of invalid combina-
tions is (

L− C − k(1− s)λ
k

)(
L− k(1− s)λ− k

k(sλ− 1)

)
(k(sλ− 1))!

(k!)
sλ−1

(
sλ

1

)
It “over-counts” when two aspects both occur outside of the observation, whose total number is given
by (

L− C − k(1− s)λ
2k

)
(2k)!

(k!)2

(
L− k(1− s)λ− 2k

k(sλ− 2)

)
(k(sλ− 2))!

(k!)
sλ−2

(
sλ

2

)
Using the inclusion-exclusion formula, we can derive the actual total count, which is given by

bmin(sλ,d)c∑
i=0

(−1)i
(
L− C − k(1− s)λ

ik

)
(ik)!

(k!)i

(
L− k(1− s)λ− ik

k(sλ− i)

)
(k(sλ− i))!

(k!)
sλ−i

(
sλ

i

)

=
(L− C − k(1− s)λ)!C!

(k!)sλ(L− kλ)!

bmin(sλ,d)c∑
i=0

(−1)i
(
L− k(1− s)λ− ik

C

)(
sλ

i

)
where d = L−C

k − (1− s)λ.

Then, there are
(
λ
sλ

)
ways to choose which aspects are covered. Finally, the total number of possible

combinations is given by (
λ

kλ

)
(kλ)!

(k!)λ

We put them all together to obtain the cover probability of ρ̃, which is given by(
L− C

k(1− s)λ

)
(k(1− s)λ)!

(k!)
(1−s)λ

(L− C − k(1− s)λ)!C!

(k!)sλ(L− kλ)!

bmin(sλ,d)c∑
i=0

(−1)i
(
L− k(1− s)λ− ik

C

)(
sλ

i

)
(
λ

sλ

)[(
λ

kλ

)
(kλ)!

(k!)λ

]−1
=

(
λ
sλ

)(
L
C

) bmin(sλ,d)c∑
i=0

(
L− k(1− s)λ− ik

C

)(
sλ

i

)

B.2 LINEAR INTERPOLATION OF ρ(s, λ, k;L,C)

The function ρ̃ only takes discrete values, i.e. s is a multiple of 1/λ. To further incorporate any
arbitrary proportion s, we need to further define s between i/λ and (i+ 1)/λ for any i. We use linear
interpolation and provide the formula for ρ(sOij , λi, ki;Li, Cij) as follows:

ρ(s, λ, k;L,C) =

{
(λ+ 1)ρ̃(s, λ, k;L,C) if s ∈ N

λ

(λ2 + λ) [(b− s)ρ̃(a, λ, k;L,C) + (s− a)ρ̃(b, λ, k;L,C)] o.w.
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where

a =
bsλc
λ

and b =
dsλe
λ

In order to make it a probability density function, we also need to integrate ρ over s, which we can
hardly find a closed form solution for. Instead, we simply multiply π by λ+ 1 to approximate. This
approximation can be inaccurate when λ is small. However, when we estimate λ and k, we will
compare the probability density function (pdf) of the oracle model to that of the noisy model. We
make a uniform prior assumption, and the probability mass function (pmf) of the discrete uniform
distribution and the probability density function of the continuous variant differ by a factor of λ+ 1.

B.3 EXAMPLE PLOT

We consider the same context as in Appendix A.2, with the entire context length L = 50 and the
observation length C = 5. We show ρ(λ, k; s = 1, L = 50, C = 5), ρ(λ, k; s = 0.5, L = 50, C =
5), and ρ(λ, k; s = 0, L = 50, C = 5), i.e. the probability that the oracle model observes a partial
point of 1, 0.5, or 0 respectively, on the λ-k plane in Figure 4.

We first see that ρ(λ, k; s = 1, L = 50, C = 5) has a very similar probability distribution as
π(λ, k;L = 50, C = 5) in Figure 3. The probability peaks when λ = 2 and k = 20 in both cases.
Then, when we compare between the probability of observing “IDK” under the COW assumption
(1 − π(λ, k;L = 50, C = 5)) and the probability of observing “0” under the PIG assumption
(ρ(λ, k; s = 0, L = 50, C = 5)), although they also appear similar, there is some subtle difference.
The most notable difference lies around the area of large λ. As λ increases, the probability of
observing “IDK” under the COW assumption also increases monotonically (before it falls into the
invalid area kλ > L), but the probability of observing “0” under the PIG assumption first increases
and then decreases to zero. In fact, with the “IDK” / “0” outcome, the COW assumption believes
the problem is very hard and requires a ground-truth context (λ) longer than the current observation
length to answer it. The PIG assumption, on the other hand, believes there are not that many aspects
(λ) in the context. Otherwise, the sample should at least get some partial point, not zero.

(a) ρ(λ, k; s = 1, L = 50, C =
5)

(b) ρ(λ, k; s = 0.5, L =
50, C = 5)

(c) ρ(λ, k; s = 0, L = 50, C =
5)

Figure 4: Probability that the oracle model observes a proportion at 1, 0.5 and 0 respectively, under
the PIG assumption.

C PSEUDOCODE OF EM-BASED MLE ALGORITHM

C.1 COW SCENARIO

We first list the EM-based MLE algorithm for DOLCE in the COW Scenario in Algorithm 1.

C.2 PIG SCENARIO

We then list the EM-based MLE algorithm for DOLCE in the PIG Scenario in Algorithm 2.
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Algorithm 1 EM-based MLE algorithm for DOLCE in the COW Scenario

Require: Number of steps: T > 0
Require: Candidate λ set: Λ
Require: Candidate k set: K
Require: Problem index set: I
Require: Full context length for problem i ∈ I: Li
Require: Observed evaluation outcome index set for i ∈ I: Ji
Require: Observation span length for observation i ∈ I, j ∈ J : Cij
Require: Observed evaluation outcome for i ∈ I, j ∈ J : xij ∈ {1, 0, ∅}
Ensure: Optimal λ∗i and k∗i for each i ∈ I

for all i ∈ I , j ∈ Ji, x ∈ {1, 0, ∅}, z ∈ {O,N} do . Initialize q(z|x).
qi,j(z = z|x = x)← 0.5

end for
for t = 1, . . . , T do . Main loop.

for all x ∈ {1, 0, ∅} do . Update P (x = x|z = N ) in M-step.

P (x = x|z = N )←
∑
i,j qi,j(z = N|x = x)Jxij = xK∑

i,j,x′ qi,j(z = N|x = x′)Jxij = x′K
end for
for all i ∈ I do . Update P (x|z = O) in M-step.

for all λ ∈ Λ do
for all x ∈ {1, 0, ∅} do

Pnonpar,i(x = x|z = O;λ)←
∑
j qi,j(z = O|x = x)Jxij = x,Cij < λK∑

j,x′ qi,j(z = O|x = x′)Jxij = x′, Cij < λK
end for
for all k ∈ K, j ∈ Ji do

Ppar,i,j(x = 1|z = O;λ, k)← π(λ, k;Li, Cij)
Jxij=1K . Eq. 3

Ppar,i,j(x = 0|z = O;λ, k)← 0Jxij=0K

Ppar,i,j(x = ∅|z = O;λ, k)← (1− π(λ, k;Li, Cij))
Jxij=∅K

for all x ∈ {1, 0, ∅} do
Pi,j(x = x|z = O;λ, k)←

[
Pnonpar,i(x = x|z = O;λ)Jxij=x,Cij<λK . Eq. 4
Ppar,i,j(x = x|z = O;λ, k)Jxij=x,Cij≥λK

]
end for

end for
end for
λ∗i , k

∗
i ← arg maxλ,k

∏
j [Pi,j(x = xij |z = O;λ, k)Pi(z = O) . Brute-force search.

+P (x = xij |z = N )Pi(z = N )]
for all x ∈ {1, 0, ∅}, j ∈ Ji do

Pi,j(x = x|z = O)← Pi,j(x = x|z = O;λ∗i , k
∗
i )

end for
end for
for all i ∈ I , z ∈ {N ,O} do . Update P (z) in M-step.

Pi(z = z)←
∑
j,x′ qi,j(z = z|x = x′)Jxij = xK

|Ji|
end for
for all i ∈ I , j ∈ Ji, x ∈ {1, 0, ∅} do . Update q(z|x) in E-step.

qi,j(z = N|x = x)← P (x = x|z = N )Pi(z = N )

P (x = x|z = N )Pi(z = N ) + Pi,j(x = x|z = O)Pi(z = O)

qi,j(z = O|x = x)← Pi,j(x = x|z = O)Pi(z = O)

P (x = x|z = N )Pi(z = N ) + Pi,j(x = x|z = O)Pi(z = O)
end for

end for
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Algorithm 2 EM-based MLE algorithm for DOLCE in the PIG Scenario

Require: Number of steps: T > 0
Require: Candidate λ set: Λ
Require: Candidate k set: K
Require: Problem index set: I
Require: Full context length for problem i ∈ I: Li
Require: Observed evaluation outcome index set for i ∈ I: Ji
Require: Observation span length for observation i ∈ I, j ∈ J : Cij
Require: Observed evaluation outcome for i ∈ I, j ∈ J : sij ∈ [0, 1] ∪ {∅}
Ensure: Optimal λ∗i and k∗i for each i ∈ I

for all i ∈ I , j ∈ Ji do . Initialize discrete y from continuous s.
if sij = ∅ then yij(1)← 0, yij(∅)← 1, yij(0)← 0
else yij(1)← sij , yij(∅)← 0, yij(0)← 1− sij
end if

end for
for all i ∈ I , j ∈ Ji, y ∈ {1, 0, ∅}, z ∈ {O,N} do . Initialize q(z|y).

qi,j(z = z|y = y)← 0.5
end for
for t = 1, . . . , T do . Main loop.

for all y ∈ {1, 0, ∅} do . Update P (y = y|z = N ) in M-step.

P (y = y|z = N )←
∑
i,j qi,j(z = N|y = y)yij(y)∑

i,j,y′ qi,j(z = N|y = y′)yij(y′)
end for
for all i ∈ I do . Update P (y|z = O) in M-step.

for all λ ∈ Λ do
for all y ∈ {1, 0, ∅}, c ∈ unique {Cij}j do

Pi,c(y = y|z = O)←
∑
j qi,j(z = O|y = y)yij(y)JCij = cK∑

j,y′ qi,j(z = O|y = y′)yij(y′)JCij = cK
end for
for all k ∈ K, j ∈ Ji do

pi,j(x = sij |z = O;λ, k)← ρ(Pi,Cij
(y = 1|z = O), λ, k;Li, Cij) . Eq. 6

pi,j(x = sij |z = N ;λ, k)← 1
end for

end for
λ∗i , k

∗
i ← arg maxλ,k

∏
j

∑
z [pi,j(x = sij |z = z;λ, k)Pi(z = z)] . Brute-force search.

for all c ∈ unique {Cij}j do
Pi,c(y = 1|z = O)← arg maxs ρ(s, λ∗i , k

∗
i ;Li, c)

for all y ∈ {0, ∅} do

Pi,c(y = y|z = O)← [1− Pi,c(y = 1|z = O)]Pi,c(y = y|z = O)∑
y′∈{0,∅} Pi,c(y = y′|z = O)

end for
end for

end for
for all i ∈ I , z ∈ {N ,O} do . Update P (z) in M-step.

Pi(z = z)←
∑
j,y′ qi,j(z = z|y = y′)yij(y)

|Ji|
end for
for all i ∈ I , j ∈ Ji, y ∈ {1, 0, ∅} do . Update q(z|y) in E-step.

qi,j(z = N|y = y)← P (y = y|z = N )Pi(z = N )

P (y = y|z = N )Pi(z = N ) + Pi,Cij
(y = y|z = O)Pi(z = O)

qi,j(z = O|y = y)←
Pi,Cij

(y = y|z = O)Pi(z = O)

P (y = y|z = N )Pi(z = N ) + Pi,Cij
(y = y|z = O)Pi(z = O)

end for
end for
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D SUITE & TASK SPECIFIC PREPROCESSING

We describe the task specific preprocessing steps in each benchmark suite in this section.

L-Eval. We use the “input” as the context, then flatten the “instructions” to create multiple indepen-
dent problems.

BAMBOO. We exclude the two sorting tasks, since they require special assumptions and sampling
based methods. Some of the BAMBOO tasks have a single “content” field consisting of instructions,
contexts, and questions. We need to identify individual parts from the “content”, since we can only
sample from the context while keep the entire instruction and question available to the model in all
samples. In particular,

• For an AltQA problem, we split the “content” into a question from the “Question” section, a
context from the “Document” section, and an actual instruction from the remaining content.

• For ShowsPred and MeetingPred tasks, we treat the last sentence as the question, and the
prior conversation as the context.

• For PrivateEval task, we use the lines between “# [start]” and “# [end]” as the context, and
the lines after “# [end]” and the question.

LongBench. We use the English subsets of this multilingual dataset. We use the original “input” and
“context” fields.

E PROMPTS & IDK INSTRUCTION

For all tasks, we reuse the instructions provided with the official distributions of benchmark suites.
Then, we extend the instructions in all but summarization tasks to allow the model to generate “IDK”
(“unanswerable” or “E” for a four-choice question) whenever needed, similar to the pre-existing
instruction for the LongBench Qasper task. Examples include:

If you cannot answer the question, you should answer "Unanswerable".

and

If the question cannot be answered based on the information in the article, write
"E" for "unanswerable"
...
E. The question is unanswerable.

F EXAMPLE OF LENGTH STATISTICS & UNIT IDENTIFICATION

We are not restricted from using sentences as the units. In fact, we may choose different unit
granularities, e.g. tokens or even characters at one extreme and one or several full document(s) at
the other extreme. The problem with the former setup is that we may end up with a large number of
spans that are not semantically coherent, which wastes our computation resource. The problem with
the latter is that we may still present irrelevant contexts to the model and get inflated numbers, which
also challenges the long context capability of the test model. A general rule of thumb is to choose a
unit granularity such that the derived units with which the context lengths have little variance when
measured in number of characters or tokens.

We have developed tools to help analyze the distribution of lengths and numbers of spans using
different unit granularities. An example for L-Eval NQ task is shown in Figure 5.

G UNIT GRANULARITIES & PREPROCESSING STEPS

For most tasks, we choose to use sentences, and in other cases (e.g. legal, scientific, or coding
tasks), we also use paragraphs. In some special cases, e.g. in-context few-shot problems, we
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Figure 5: Example of a length statistics for L-Eval NQ task, where it shows different length distribu-
tions across all problems: (1) number of tokens for each input, (2) number of units if the contexts are
split by the “<P>” tags, (3) number of tokens in each unit if the contexts are split by the “<P>” tag,
(4) number of units if the inputs are split into sentences as identified by NLTK, (5) number of tokens
in each unit if the inputs are split into sentences as identified by NLTK, (6) number of tokens in each
instruction, and (7) number of tokens in each ground-truth answer. 50-th and 99-th percentiles are
also annotated.

consider each shot, consisting of an input and an expected output, is an atomic unit of the con-
text. We summarize our decisions of unit granularities in this section. We define a set of unit
patterns, including single linebreaks, multi-linebreaks, NLTK-identified sentences, “<P>” and “</P>”
pairs, as well as special identifiers, e.g. “[scene NUMBER]”, “Review #”, “Passage NUMBER”,
“Passage:”/“Question:”/“Answer:” triplets, “Dialogue:”/“Summary:” pairs, etc, as well as some
preprocessing tools, including converting commas to periods (as TTS transcripts use only commas).
We list the specs selected in the experiment with their detailed descriptions in Table 3. For example,
we drop the explicit “[scene NUMBER]” marker, since the length of the scenes varies largely.

We list the task-specific preprocessing steps as well as other configuration specifications in Table
4. We select the observation lengths (i.e. number of units) exponentially. We stop increasing the
observation length when the maximum context length across all problems is below the observation
length, or the sampled span lengths start to exceed 16K, which we do not consider “short” any
more. We also need to take the instruction, question, as well as the maximum output length into the
computation of the maximum length.

We also show the answer extractor. We aim to find the answer span that matches the expected ground
truth answer format, due to lack of a human or oracle evaluator. For most ROUGE-evaluated tasks,
we take the entire output as the predicted answer. For accuracy and F-1 evaluated tasks, we extract
the answer phrase and skip other reasoning or commenting parts of the output. We note that if the
prompt has a clear format instruction, we impose little postprocessing. We notice this can happen in
some tasks, which we will discuss in Appendix K.3.

Table 3: Spec details for the unit preprocessing selected in the experiments.

SPEC DETAIL SPLIT-BY REGEX

b Blocks Multi-line breaks (?:\n *){2,}
c Every two lines
l Lines \n
n Reviews Review #\d+
o Passage Passage \d+:
q Passage/question/answer triplets Passage:.*?Question:.*?Answer:\n.*?\n
r Replace commas with periods.
s NLTK identified sentences
t NLTK identified sentences from pretokenized inputs
u Dialogue/summary pairs Dialogue:.*?Summary:.*?\n
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Table 4: Preprocessing and postprocessing specs for the tasks.

SUITE TASK UNIT OBSERVATION
LENGTHS

ANSWER
EXTRAC-
TOR

METRIC

L-Eval TOEFL (Tseng et al.,
2016)

rlt 0, 1, 2, 5, 10, 20, 50,
100, L

Extract first
word

Accuracy

GSM (Cobbe et al.,
2021; An et al., 2024)

b 0, 1, 2, 5, 10, L Extract
numeric
answer

Accuracy

QuALITY (Pang
et al., 2022; An et al.,
2024)

s 0, 1, 2, 5, 10, 20, 50,
100, L

Extract
4-choice
answer

Accuracy

Coursera (An et al.,
2024)

ls 0, 1, 2, 5, 10, 20, 50,
100, 200, L

Extract
4-choice
answer

Accuracy

TopicRet (Li et al.,
2023; An et al., 2024)

l 1, 2, 5, 10, 20, 50,
100, L

Take first
line

Accuracy

SFcition (An et al.,
2024)

s 1, 2, 5, 10, 20, 50,
100, 200, 500, L

Take first
line

Accuracy

CodeU (An et al.,
2024)

l 0, 1, 10, 20, 50, 100,
200, 500

Extract cod-
ing answer

Accuracy

b 0, 1, 2, 5, 10, 20, 50
MultiDoc2Dial (Feng
et al., 2021)

b 0, 1, 2, 5, 10, 20, L None F1

Qasper (Dasigi et al.,
2021)

ls 0, 1, 2, 5, 10, 20, 50,
L

None F1

LongFQA (An et al.,
2024)

ls 0, 1, 2, 5, 10, 20, 50,
100, L

None F1

NQ (Kwiatkowski
et al., 2019)

t 0, 1, 2, 5, 10, 20, 50,
100

None F1

CUAD (Hendrycks
et al.)

b 0, 1, 2, 5, 10, 20 None F1

NarrativeQA
(Kočiský et al.,
2018)

s 0, 1, 2, 5, 10, 20, 50,
100, 200

None F1

MultiNews (Fabbri
et al., 2019)

s 0, 1, 2, 5, 10, 20, 50,
L

None RougeL

GovReport (Huang
et al., 2021)

ls 0, 1, 2, 5, 10, 20, 50 None RougeL

BigPatent (Sharma
et al., 2019)

ls 0, 1, 2, 5, 10, 20, 50,
100, L

None RougeL

SummScreen (Chen
et al., 2022)

ls 0, 1, 2, 5, 10, 20, 50,
100, 200, 500, L

None RougeL

OpenReview (An
et al., 2024)

ls 0, 1, 2, 5, 10, 20, 50,
100, L

None RougeL

QMSum (Zhong et al.,
2021)

l 0, 1, 2, 5, 10, 20, 50 None RougeL

SPACE (Angelidis
et al., 2021; An et al.,
2024)

n 0, 1, 2, 5, 10, 20, L None RougeL

BAMBOO AltQA (Dong et al.,
2024)

lt 0, 1, 2, 5, 10, 20, 50,
100 (4K only), L

Extract an-
swer

Accuracy

PaperQA (Dong et al.,
2024)

ls 0, 1, 2, 5, 10, 20, 50,
100, L

Extract
4-choice
answer

Accuracy
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MeetingQA (Dong
et al., 2024)

b 0, 1, 2, 5, 10, 20,
50 (16K only), 100
(16K only), L

Extract
4-choice
answer

Accuracy

SenHallu (Dong et al.,
2024)

ls 0, 1, 2, 5, 10, 20, 50,
100, 200 (16K only),
L

Extract an-
swer

F1

AbsHallu (Dong et al.,
2024)

ls 0, 1, 2, 5, 10, 20, 50,
100, 200 (16K only),
L

Extract an-
swer

F1

ShowsPred (Dong
et al., 2024)

l 1, 2, 5, 10, 20, 50,
100 (16K only), L

Take first
line

Accuracy

MeetingPred (Dong
et al., 2024)

l 1, 2, 5, 10, 20, 50,
100 (16K only), L

Take first
line

Accuracy

PrivateEval (Dong
et al., 2024)

l 1, 2, 5, 10, 20, 50,
100 (16K only), L

None RougeL

b 1, L
LongBench NarrativeQA

(Kočiský et al.,
2018)

b 0, 1, 2, 5, 10, 20, 50 Extract an-
swer

F1

Qasper (Dasigi et al.,
2021)

ls 0, 1, 2, 5, 10, 20, 50,
100, 200, L

None F1

MultiFieldQA (Bai
et al., 2024)

ls 0, 1, 2, 5, 10, 20, 50,
100, L

None F1

HotpotQA (Yang
et al., 2018)

b 0, 1, 2, 5, 10, L Extract an-
swer

F1

2WikiMultihopQA
(Ho et al., 2020)

b 0, 1, 2, 5, 10, L Extract an-
swer

F1

o 0, 1, 2, 5, L
MuSiQue (Trivedi
et al., 2022)

b 0, 1, 2, 5, 10, L Extract an-
swer

F1

o 0, 1, 2, 5, 10, L
GovReport (Huang
et al., 2021)

s 1, 10, 20, 50, 100 None RougeL

QMSum (Zhong et al.,
2021)

lt 1, 10, 20, 50, 100,
200

None RougeL

MultiNews (Fabbri
et al., 2019)

ls 1, 10, 20, 50, 100, L None RougeL

o 1, 2, 5, L
TREC Li & Roth
(2002)

c 0, 1, 2, 5, 10, 20, 50,
100, 200, L

Extract
TREC
answer

Accuracy

TriviaQA (Joshi et al.,
2017)

q 0, 1, 2, 5, 10, L Extract an-
swer

F1

SAMSum (Gliwa
et al., 2019)

u 0, 1, 2, 5, 10, 20, L None RougeL

PassageCount (Bai
et al., 2024)

b 1, 2, 5, 10, 20, L None Accuracy

PassageRetrieval (Bai
et al., 2024)

b 1, 2, 5, 10, 20, L Take first
line

Accuracy

LCC (Guo et al.,
2023)

l 1, 10, 20, 50, 100,
200, L

None EditSim

RepoBench-p (Liu
et al., 2024d)

b 0, 1, 10, 20 Extract an-
swer

EditSim

l 0, 1, 100, 200
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H HARTIGANS’ DIP TEST RESULTS

In this section, we present the Hartigans’ Dip Test results. In Figure 6, we first show the distributions
of raw scores (x) across all problems in the task, if they are evaluated using F-1, ROUGE, or EditSim.
We can easily tell that some tasks exhibit clear bimodality, most notably BAMBOO SenHallu and
AbsHallu, in which cases accuracy might also be used instead. Many other QA tasks, including
HotpotQA, 2WikiMultihopQA, and TriviaQA, also have the most probability mass at 0 and 1, which
suggests that the majority of the problems at least should be categorized into the COW scenario. We
also found in these cases, 0.5 (or 50 percentage) is generally a reasonable threshold to set apart “1”
from “0”. On the other hand, most summarization tasks have a unimodal probability distribution and
little probability mass at 0 or 1.

We first bucketize the scores (between 0 and 1) from all observations with an equal width of 0.1, and
then apply the Hartigans’ Dip Test to the bucketized scores for each task. We calculate the p-value for
each task, and show 1− p-value in Figure 7. We assign a small value to the tasks when their y-axis is
0. A short bar (high p-value) indicates more likely a PIG scenario (unimodal), and a tall bar (low
p-value) indicates more likely a COW scenario (multi-modal). We use ∗ to suffix a task name and a
blue bar when it is evaluated using F-1, † and an orange bar when it it evaluated using ROUGE, and
� and a grey bar when it is evaluated using EditSim. We see while most ROUGE-evaluated tasks
belong to the PIG scenario and most F1-evaluated tasks belong to the COW scenario, there also exist
several exceptions.

We found that both COW and PIG scenarios can co-exist among the problems within the same task.
Next, we apply the Hartigans’ Dip Test at each problem level. We show the result in Figure 7. The
x-axis is 1− p-value and the y-axis is the number of problems. A bar at x = 0 indicates more likely a
PIG scenario, and a bar at x = 1 indicates more likely a COW scenario. We split the problem set of
each task into a COW subset and a PIG subset, if they both have more than ten problems. Otherwise,
we treat the problem set entirely as COW or PIG without subsetting. We report the final decision in
Table 5. We note that all tasks that are evaluated using accuracy are considered COW only.

Table 5: Problem level Hartigans’ Dip Test results for the tasks that are evaluated using F-1, ROUGE,
or EditSim.

MIXED COW & PIG COW ONLY PIG ONLY

L-Eval MultiDoc2Dial L-Eval NQ L-Eval MultiNews
L-Eval Qasper BAMBOO SenHallu 4K / 16K L-Eval GovReport
L-Eval LongFQA BAMBOO AbsHallu 4K / 16K L-Eval BigPatent
L-Eval CUAD LongBench Trivia QA L-Eval SummScreen
L-Eval NarrativeQA L-Eval OpenReview
LongBench NarrativeQA L-Eval QMSum
LongBench Qasper L-Eval SPACE
LongBench MultiFieldQA LongBench GovReport
LongBench HotpotQA LongBench QMSum
LongBench 2WikiMultihopQA LongBench MultiNews
LongBench MuSiQue
LongBench PrivateEval 4K / 16K
LongBench SamSum
LongBench LCC
LongBench RepoBench-p

I TASKS RANKED BY CATEGORIES III & V

We replot Figure 2 into Figures 9 and 10, where the tasks are sorted from the most retrieval focused
(top) to the least (bottom) in (a) and from the most holistic understanding focused (top) to the least
(bottom) in (b). Categories I and II are stacked to the left of the vertical axis, and III to V are
stacked to the right.
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Figure 6: Raw score (x) distribution of all problems in each task that is evaluated using F-1, ROUGE,
or EditSim. We use ∗ to suffix a task name when it is evaluated using F-1, † when it it evaluated using
ROUGE, and � when it is evaluated using EditSim. The x-axis is the percentage score (100s) and the
y-axis is the probability mass.
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Figure 7: Hartigans’ Dip Test results at the task level. We use ∗ to suffix a task name and a blue bar
when it is evaluated using F-1, † and an orange bar when it it evaluated using ROUGE, and � and a
grey bar when it is evaluated using EditSim. The y-axis is 1− p-value, scaled using sinh. We assign
a small value to the tasks when their y-axis is 0. A short bar indicates more likely a PIG scenario, and
a tall bar indicates more likely a COW scenario.

J OUTCOMES & FULL PARAMETERS OF REPRESENTATIVE PROBLEMS IN
QUALITY & LONGFQA

In this section, we again focus on the tasks QuALITY and LongFQA, and we provide additional
information beyond Table 2. We first report λ and k estimated by our proposed method before
applying the category assignment step (using the thresholds λp, kp, and λq) in Figure 11, and then
we show the detailed results for the most representative problems, which include original outcomes
P (x), the membership probability q(z = O|x = x), hybrid probability for the oracle component
P (x = x|O). as well as the background noise component P (x = x|N ), and P (z = z).

J.1 QUALITY

MOST REPRESENTATIVE QUESTION FOR CATEGORY II

Why might one not want to live in the universe in which this story takes place?

GROUND TRUTH ANSWER

(C) Survival itself is difficult

OUTCOMES & LENGTH-SPECIFIC PARAMETERS

C P (x = ·) q(z = O|x = ·) P (x = ·|O)
1 0 ∅ 1 0 ∅ 1 0 ∅

0 0.00 0.00 1.00 0.00 0.00 0.97 0.00 0.00 1.00
1 0.23 0.00 0.76 1.00 0.00 0.96 0.20 0.00 0.80
2 0.43 0.00 0.56 1.00 0.00 0.95 0.36 0.00 0.64
5 0.68 0.01 0.31 1.00 0.00 0.90 0.68 0.00 0.32

10 0.82 0.03 0.15 1.00 0.00 0.75 0.90 0.00 0.10
20 0.92 0.01 0.06 1.00 0.00 0.23 0.99 0.00 0.01
50 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
100 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
498 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

TASK OR PROBLEM-SPECIFIC PARAMETERS
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λ k P (x = ·|z = N ) P (z = ·)
1 0 ∅ O N

1 100 0.01 0.05 0.94 0.96 0.04

MOST REPRESENTATIVE QUESTION FOR CATEGORY III

Why does the text mean when it says that Korvin was "unconscious" at the time of his lessons in the
local language?

GROUND TRUTH ANSWER

(A) It means that the Tr’en put Korvin under drug hypnosis while they taught him their language.

OUTCOMES & LENGTH-SPECIFIC PARAMETERS

C P (x = ·) q(z = O|x = ·) P (x = ·|O)
1 0 ∅ 1 0 ∅ 1 0 ∅

0 0.00 0.00 1.00 0.00 0.00 0.60 0.00 0.00 1.00
1 0.00 0.00 0.99 0.26 0.00 0.60 0.00 0.00 1.00
2 0.00 0.00 0.99 0.41 0.00 0.60 0.00 0.00 1.00
5 0.01 0.01 0.98 0.64 0.00 0.60 0.01 0.00 0.99

10 0.02 0.03 0.95 0.78 0.00 0.60 0.02 0.00 0.98
20 0.05 0.04 0.91 0.88 0.00 0.59 0.05 0.00 0.95
50 0.13 0.01 0.87 0.95 0.00 0.57 0.12 0.00 0.88
100 0.15 0.00 0.85 0.97 0.00 0.53 0.25 0.00 0.75
408 1.00 0.00 0.00 0.99 0.00 0.00 1.00 0.00 0.00

TASK OR PROBLEM-SPECIFIC PARAMETERS

λ k P (x = ·|z = N ) P (z = ·)
1 0 ∅ O N

1 1 0.01 0.05 0.94 0.59 0.41

MOST REPRESENTATIVE QUESTION FOR CATEGORY IV

Why would Tom Dorr frame Asa Graybar for stealing the Slider egg?

GROUND TRUTH ANSWER

(A) Graybar’s discoveries could ruin the Hazeltyne business.

OUTCOMES & LENGTH-SPECIFIC PARAMETERS

C P (x = ·) q(z = O|x = ·) P (x = ·|O)
1 0 ∅ 1 0 ∅ 1 0 ∅

0 0.00 0.00 1.00 0.00 0.00 0.65 0.00 0.00 1.00
1 0.00 0.00 1.00 0.00 0.00 0.65 0.00 0.00 1.00
2 0.01 0.00 0.99 0.00 0.00 0.65 0.00 0.00 1.00
5 0.00 0.00 1.00 0.00 0.00 0.65 0.00 0.00 1.00

10 0.00 0.00 1.00 0.00 0.00 0.65 0.00 0.00 1.00
20 0.01 0.00 0.99 0.00 0.00 0.65 0.00 0.00 1.00
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50 0.03 0.00 0.97 0.35 0.00 0.65 0.00 0.00 1.00
100 0.05 0.00 0.95 0.96 0.00 0.61 0.15 0.00 0.85
381 1.00 0.00 0.00 0.99 0.00 0.00 1.00 0.00 0.00

TASK OR PROBLEM-SPECIFIC PARAMETERS

λ k P (x = ·|z = N ) P (z = ·)
1 0 ∅ O N

50 1 0.01 0.05 0.94 0.64 0.36

MOST REPRESENTATIVE QUESTION FOR CATEGORY V

How many sentences does this story have approximately?

GROUND TRUTH ANSWER

(D) 406

OUTCOMES & LENGTH-SPECIFIC PARAMETERS

C P (x = ·) q(z = O|x = ·) P (x = ·|O)
1 0 ∅ 1 0 ∅ 1 0 ∅

0 0.00 0.00 1.00 0.00 0.00 0.69 0.00 0.00 1.00
1 0.00 0.00 1.00 0.00 0.00 0.69 0.00 0.00 1.00
2 0.00 0.00 1.00 0.00 0.00 0.69 0.00 0.00 1.00
5 0.00 0.00 1.00 0.00 0.00 0.69 0.00 0.00 1.00

10 0.00 0.00 1.00 0.00 0.00 0.69 0.00 0.00 1.00
20 0.00 0.00 1.00 0.00 0.00 0.69 0.00 0.00 1.00
50 0.00 0.00 1.00 0.00 0.00 0.69 0.00 0.00 1.00
100 0.00 0.01 0.99 0.00 0.00 0.69 0.00 0.00 1.00
408 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00

TASK OR PROBLEM-SPECIFIC PARAMETERS

λ k P (x = ·|z = N ) P (z = ·)
1 0 ∅ O N

L 1 0.01 0.05 0.94 0.68 0.32

J.2 LONGFQA

MOST REPRESENTATIVE QUESTION FOR CATEGORY II

What are some key accomplishments of FS KKR Capital Corp. in 2018 as mentioned in the call?

GROUND TRUTH ANSWER

Key accomplishments included receiving shareholder approval for the partnership between FS
Investments and KKR, optimizing the company’s capital structure by closing a $2.1 billion revolver,
completing a merger between CCT and FSIC, and starting to capitalize on the benefits of the combined
FS Investments and KKR platforms.

OUTCOMES & LENGTH-SPECIFIC PARAMETERS
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C P (x = ·) q(z = O|x = ·) P (x = ·|O)
1 0 ∅ 1 0 ∅ 1 0 ∅

0 0.00 0.00 1.00 0.00 0.00 0.67 0.00 0.00 1.00
1 0.00 0.22 0.78 0.00 0.00 0.67 0.00 0.00 1.00
2 0.01 0.27 0.72 0.00 0.00 0.67 0.00 0.00 1.00
5 0.04 0.57 0.39 0.84 0.00 0.65 0.09 0.00 0.91

10 0.07 0.71 0.22 0.97 0.00 0.51 0.51 0.00 0.49
20 0.19 0.80 0.01 0.98 0.00 0.18 0.89 0.00 0.11
50 0.37 0.63 0.00 0.98 0.00 0.00 1.00 0.00 0.00
100 1.00 0.00 0.00 0.98 0.00 0.00 1.00 0.00 0.00
119 1.00 0.00 0.00 0.98 0.00 0.00 1.00 0.00 0.00

TASK OR PROBLEM-SPECIFIC PARAMETERS

λ k P (x = ·|z = N ) P (z = ·)
1 0 ∅ O N

5 10 0.01 0.73 0.26 0.35 0.65

MOST REPRESENTATIVE QUESTION FOR CATEGORY III

What were the consolidated revenue and the revenue growth for the Surgical Product segment over
last year?

GROUND TRUTH ANSWER

The consolidated revenue for the company was $21.6 million, which is our highest quarterly revenue
ever and up 7% over last year’s first quarter. The revenue for the Surgical Product segment was $15.5
million, which is also our highest quarterly surgical products revenue ever, and was up 8% over last
year.

OUTCOMES & LENGTH-SPECIFIC PARAMETERS

C P (x = ·) q(z = O|x = ·) P (x = ·|O)
1 0 ∅ 1 0 ∅ 1 0 ∅

0 0.00 0.00 1.00 0.00 0.00 0.92 0.00 0.00 1.00
1 0.00 0.01 0.99 0.00 0.00 0.92 0.00 0.00 1.00
2 0.01 0.02 0.97 0.68 0.00 0.92 0.01 0.00 0.99
5 0.03 0.03 0.93 0.89 0.00 0.92 0.03 0.00 0.97

10 0.06 0.07 0.86 0.95 0.00 0.92 0.06 0.00 0.94
20 0.13 0.18 0.69 0.98 0.00 0.91 0.12 0.00 0.88
50 0.12 0.53 0.35 0.99 0.00 0.89 0.31 0.00 0.69
100 0.12 0.88 0.00 1.00 0.00 0.81 0.63 0.00 0.37
157 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

TASK OR PROBLEM-SPECIFIC PARAMETERS

λ k P (x = ·|z = N ) P (z = ·)
1 0 ∅ O N

2 1 0.01 0.73 0.26 0.76 0.24

MOST REPRESENTATIVE QUESTION FOR CATEGORY IV
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What impact did the introduction of the Valved Tearaway and Pediatric Microslide Introducer products
have on the company’s market position and potential future sales?

GROUND TRUTH ANSWER

The Valved Tearaway product, which gained FDA clearance, is intended to compete with a significant
market leader. Initial interest in the product was brisk, with estimated sales of about $300,000 in
its first year and in excess of $1 million annually in subsequent years. The Pediatric Microslide
Introducer, developed in response to requests from pediatric nurses, may not itself be a massive
revenue generator, but it has enabled the company to gain access to accounts previously unavailable
for other vascular products. This has positioned the company as a listener and problem-solver within
the industry, enhancing our reputation and possibly future sales.

OUTCOMES & LENGTH-SPECIFIC PARAMETERS

C P (x = ·) q(z = O|x = ·) P (x = ·|O)
1 0 ∅ 1 0 ∅ 1 0 ∅

0 0.00 1.00 0.00 0.00 0.01 0.82 0.00 0.00 1.00
1 0.00 0.39 0.61 0.00 0.01 0.82 0.00 0.00 1.00
2 0.00 0.25 0.75 0.00 0.01 0.82 0.00 0.00 1.00
5 0.00 0.14 0.86 0.00 0.01 0.82 0.00 0.00 1.00

10 0.01 0.16 0.83 0.00 0.01 0.82 0.00 0.00 1.00
20 0.01 0.28 0.71 0.49 0.00 0.82 0.01 0.00 0.99
50 0.08 0.46 0.45 0.97 0.00 0.78 0.22 0.00 0.78
100 0.14 0.86 0.00 0.99 0.00 0.66 0.59 0.00 0.41
157 0.00 1.00 0.00 0.99 0.00 0.00 1.00 0.00 0.00

TASK OR PROBLEM-SPECIFIC PARAMETERS

λ k P (x = ·|z = N ) P (z = ·)
1 0 ∅ O N

20 1 0.01 0.73 0.26 0.55 0.45

MOST REPRESENTATIVE QUESTION FOR CATEGORY V

Does JLL have greater market share in U.S. leasing than in Capital Markets?

GROUND TRUTH ANSWER

Yes, much greater. This is our powerhouse, the U.S. leasing and tenant rep business, and it continues
to grow much stronger than the market is offering.

OUTCOMES & LENGTH-SPECIFIC PARAMETERS

C P (x = ·) q(z = O|x = ·) P (x = ·|O)
1 0 ∅ 1 0 ∅ 1 0 ∅

0 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
1 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
2 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
5 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00

10 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
20 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
50 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
100 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
162 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00
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TASK OR PROBLEM-SPECIFIC PARAMETERS

λ k P (x = ·|z = N ) P (z = ·)
1 0 ∅ O N

L 1 0.01 0.73 0.26 1.00 0.00

K FURTHER ANALYSIS

K.1 SAMPLING STRATEGIES

We compare between a few simple heuristics, including sampling at a fixed rate r (sample rate),
taking every N -th (fixed) candidate in the sequence (take every), sampling inversely proportionally
to the observation length (i.e. sampling more for short observations and less for long observations,
sample ip rate), and taking every N -th (inversely proportionally to the observation length) candidate
(take ip rate), as well as observing only long observations (>= 10 only), short observations (<= 10
only), and wider observation length intervals (0, 1, 5, 20, 100, max only).

We plot the Relative Change (δ) and Spearman’s rank correlation coefficient (ρ) of λ and k as well as
the KL Divergence of P (x|z = N ) between enumerating all observation spans and various sampling
strategies for L-Eval TOEFL and SFcition in Figures 12 and 13 respectively. To quantify the required
resources (i.e. the x-axis), we use the number of total units and the number of total tokens as proxies.
First, we found that the more the samples the more highly the inferred parameters can correlate
with those estimated from using all the possible observation spans. Then, we found that “take”
strategies (i.e. shifting the observation window by a fixed number of units) work better than the
random “sampling” strategies, suggesting that continuity exists in the sequence, i.e. the correctness
of a span is positively correlated with that of its neighboring span. Also, the take-every strategy
generally works well. For example, in the case of L-Eval SFcition, using take-every-5 strategy (i.e.
reducing the total required resource by 80%), we can still obtain ρ(λ) of 0.93, ρ(k) of 0.99, and KL
Divergence of P (x|z = N ) of 3.7× 10−5.

K.2 UNIT GRANULARITIES

We use different unit granularities for seven tasks among the benchmark suites: L-Eval CodeU, BAM-
BOO PrivateEval 4K/16K, LongBench HotpotQA, 2WikiMultiHopQA, MuSiQue,and MultiNews.
Detailed preprocessing specs for these tasks can be found in Table 3, where each task has two rows
corresponding to two unit granularity options. We report the Relative Change (δ) and Spearman’s
rank correlation coefficient (ρ) of λ and k and KL Divergence of P (X|Z = N ) between different
unit granularity selections for the same tasks in Table 8. With the unit definition change, the obtained
λ now measures the length of the span (in the COW scenario) or the number of length-1 aspects (in
the PIG scenario) w.r.t the new unit. Therefore, we note that δ(λ) might not be a reliable measure for
λ, and instead ρ, which ignores the exact number and uses the rank among the peers, is more preferred.
When the model predicts the same k for all the problems (most likely k = 1), the Spearman’s rank
correlation coefficient ρ(k) becomes undefined (NaN). We see in these cases, δ(k) is often 0 or close
to 0, which we may also interpret as high similarity.

We see that in the COW scenario, the ranking of λ and the ranking of k are both preserved between
different unit granularities, with ρ(λ) between 0.54 and 0.80 and ρ(λ) ≥ 0.50, i.e. strong correlation.
The ranking of λ is sometimes less preserved in the PIG scenario, with ρ(λ) between 0.35 and 0.84
across the tasks, corresponding to moderate to strong correlation, while the ranking of k is also well
preserved with ρ(k) ≥ 0.64. The background noise distribution estimation is mostly preserved as
well, with the KL divergence ≤ 0.18 across all tasks and subsets.

We found several reasons to explain the minor discordance between the parameter rankings derived
from the two unit granularities. First, it can sometimes be attributed to the rather noticeable difference
within Pnonpar(x|z = O) as part of the hybrid oracle component. We recall that we have assumed this
parameter is shared only among the observations of a single problem, instead of all observations of
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Figure 8: Hartigans’ Dip Test results at the problem level. We use ∗ to suffix a task name when it is
evaluated using F-1, † when it it evaluated using ROUGE, and � when it is evaluated using EditSim.
The x-axis is 1− p-value and the y-axis is the number of problems. A bar at x = 0 indicates more
likely a PIG scenario, and a bar at x = 1 indicates more likely a COW scenario.
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(a) From most retrieval focused (top) to least re-
trieval focused (bottom).

(b) From most holistic understanding focused (top)
to least holistic understanding focused (bottom).

Figure 9: Category distribution of problems in each task using the COW assumption. Bars are aligned
such that Category I and II are shown on the left and Category III to V are shown on the right.

all problems for the task, and computed using only observations whose C < λ, which can be a rather
small set and thus sensitive to the outcomes observed for small C. A hierarchical assumption that
a problem-specific Pnonpar(x|z = O) is generated from a task-specific meta distribution might help
alleviate the issue.

Second, we found that this also happens when there is huge discrepancy between the context lengths
when measured with the two unit granularities. Consider an example where problem i has a ground-
truth span that contains 4 paragraphs, with each paragraph having 5 sentences, and problem j has
a ground-truth span that contains 8 paragraphs, with each paragraph having 2 sentences. If we use
paragraphs as units, then we have λi = 4 < 8 = λj . If we use sentences as units, then we have
λi = 20 > 16 = λj . In this case, we should use a unit granularity with which the context lengths
have little variance when measured in tokens.

Third, in the PIG scenario, this might also be due to the fact that some aspects that are scattered
across multiple small granular spans may occur far from each other and thus require the same number
of larger granular spans, while others may occur close to each other and require much fewer larger
granular spans. We believe this is an expected outcome, as we do not explicitly model the locations
of the ground-truth spans.
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(a) From most retrieval focused (top) to least re-
trieval focused (bottom).

(b) From most holistic understanding focused (top)
to least holistic understanding focused (bottom).

Figure 10: Category distribution of problems in each task using the PIG assumption. Bars are aligned
such that Category I and II are shown on the left and Category III to V are shown on the right.

(a) QuALITY (b) LongFQA

Figure 11: Focus category distribution (in percentage) on the two-dimensional λ-k plane.

K.3 PROBING MODELS: GEMINI 1.5 FLASH VS PALM 2-S

Throughout the paper, we report the results using the Gemini 1.5 Flash model as the probing model.
In this section, we compare with another independently trained model PaLM 2-S (Anil et al., 2023).
We note that they differ in the model architecture as well as the training data mixture. This changes
not only the CBZS pattern, but also the short context understanding capability. We omit the problems
who are assigned to Category I (CBZS) by either model.

We show the Relative Change (δ) and the Spearman’s rank correlation coefficient (ρ) of λ and k
between the Gemini 1.5 Flash model and the PaLM 2-S model across the tasks in Figure 14. Each data
point represents a task, whose x-axis is the Relative Change (left) and Spearman’s rank correlation
coefficient (right) of λ between the two models and the y-axis is the Relative Change or Spearman’s
rank correlation coefficient of k. We also suffix the task name with the unit granularity and the subset
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Figure 12: Relative change (δ), Spearman’s rank correlation coefficient (ρ) of λ and k and the KL
divergence of p(X|Z = N ) between sampling strategies for the L-Eval TOEFL task. These strategies
include sampling at a fixed rate r (sample rate), taking every N -th (fixed) candidate in the sequence
(take every), sampling inversely proportionally to the observation length (i.e. sampling more for
short observations and less for long observations, sample ip rate), and taking every N -th (inversely
proportionally to the observation length) candidate (take ip rate), as well as observing only long
observations (>= 10 only), short observations (<= 10 only), and wider observation length intervals
(0, 1, 5, 20, 100, max only). Results using the same strategy series are connected with dashed lines.
We use the number of total units and the number of total tokens as the x-axes.

(COW or PIG) if any. The median δ(λ) and δ(k) are 0.30 and 0.16, and the median ρ(λ) and ρ(k)
are 0.43 and 0.41, which fall into the moderate correlation category.

There are several reasons for the disagreement between the two models. First, similar to our
investigation for unit granularities in Appendix K.2, we found there are a large number of cases
where, despite a small ρ, the corresponding δ is also close to 0, especially ρ(k) and δ(k). Examples
include L-Eval OpenReview, LongBench MuSiQue’s PIG subset (using “b” unit), LongBench
HotpotQA’s PIG subset (using “o” or “b” unit), etc. This happens when k takes mostly 1 but also a
few other small values.
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Figure 13: Relative change (δ), Spearman’s rank correlation coefficient (ρ) of λ and k and the
KL divergence of p(X|Z = N ) between sampling strategies for the L-Eval SFcition task. These
strategies include sampling at a fixed rate r (sample rate), taking every N -th (fixed) candidate in the
sequence (take every), sampling inversely proportionally to the observation length (i.e. sampling
more for short observations and less for long observations, sample ip rate), and taking every N -th
(inversely proportionally to the observation length) candidate (take ip rate), as well as observing
only long observations (>= 10 only), short observations (<= 10 only), and wider observation length
intervals (0, 1, 5, 20, 100, max only). Results using the same strategy series are connected with
dashed lines. We use the number of total units and the number of total tokens as the x-axes.

Next, the model’s short or median-length context understanding capability also matters. For example,
in the LongBench PassageRetrieval task or the L-Eval LongFQA task, we found the PaLM 2-S
model tends to mispredict (i.e. high P (x = 0)) and the Gemini 1.5 Flash model more likely predicts
correctly or refuses to predict (i.e. high P (x = 1) or P (x = ∅)). We manually look into the outputs
from both models for the most representative holistic understanding focused problem (the 106th line)
in the LongBench PassageRetrieval task. We found that the PaLM 2-S model tends to completely
ignore the instruction that “the answer format must be like ‘Paragraph 1’, ‘Paragraph 2’, etc.”, and
outputs the paragraph number directly instead. The Gemini 1.5 Flash model follows the instruction
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Table 8: Relative change (δ) and Spearman’s rank correlation coefficient (ρ) of λ and k and KL
P (x|z = N ) between different unit granularity selections for the same tasks and subsets.

TASK REF TEST δ(λ) ρ(λ) δ(k) ρ(k) KL

COW Scenario
L-Eval CodeU l b .80 .82 .00 NaN .02
HotpotQA b o .57 .55 .24 .56 .18
2WikiMultiHopQA b o .54 .58 .21 .50 .04
MuSiQue b o .67 .64 .20 .51 .11

PIG Scenario
HotpotQA b o .39 .47 .08 .73 .04
2WikiMultiHopQA b o .35 .84 .06 NaN .07
MuSiQue b o .75 .80 .00 NaN .02
BAMBOO PrivateEval 4K l b .67 .78 .60 .77 .02
BAMBOO PrivateEval 16K l b .55 .71 .67 .64 .00
LongBench MultiNews ls o .91 .35 .00 NaN .09

much better although sometimes formats using a markdown syntax e.g. “**Paragraph 3**”. These
answers are considered incorrect by the accuracy metric. Although we can manually tune the prompt
and/or the postprocessing steps to normalize the outputs and the targets, we try to keep the process
simple, since we believe the probing models’ mistakes are inevitable nevertheless.

Also, we found that pre-existing internal knowledge learned during training can be another reason for
the disagreement, although we have filtered out the problems as long as they are labeled as Category
I with either model. L-Eval TOEFL is an example. With PaLM 2-S model, 15% of the problems are
labeled as Category I and 24% are labeled as Category II, compared to 1% and 7% with Gemini
1.5 Flash model. Although we explicitly filtered the Category I problems, the whole distribution also
tends to shift from Category II to IV or V.

We plot the parameters λ and k estimated for the three tasks: LongBench PassageRetrieval, L-Eval
LongFQA, and L-Eval TOEFL, using Gemini 1.5 Flash and PaLM 2-S models in Figure 15. We also
discuss the probing model selection criteria further in Appendix L.

K.4 BINARIZATION THRESHOLD IN ADAPTING COW ASSUMPTION FOR CONTINUOUS
SCORES

In this paper, we propose to use Hartigans’ Dip Test to first identify the problems that have been
scored using a continuous metric, such as F-1, ROUGE, and EditSim, and then binarize the scores
using a predefined threshold before apply the COW assumption. Based on the observation from
Figure 6, we believe 0.5 (or 50 percentage) is a reasonable threshold for these tasks. In fact, this is a
subjective decision. The most reasonable threshold should depend on the task. Tasks that require to
output longer (or shorter) texts may expect a lower (or higher) threshold.

We first, in Figure 16, plot the category assignments with each threshold selection for all the COW
only tasks as well as COW subsets. In the latter case, we also compare with the category assignments
of their PIG subsets, used as references only, since they are estimated from completely disjoint sets.
We found that there are a few common patterns. The category assignment for BAMBOO SenHallu
4K/16K and AbsHallu 4K/16K, LongBench TriviaQA, SamSum, or RepoBench-p barely changes as
the threshold changes, suggesting that their score distributions have two modes near 0 and 1. For all
other tasks, we see that, as we increase the threshold, fewer Category II and/or III labels and more
Category V and/or IV labels are assigned. In these cases, although each COW problem tends to
have binary scores, as identified by the Hartigans’ Dip Test, its two modes and the expected threshold
differs across the problems. We may need to consider to use a per-problem threshold in a future work.

Then, in Figure 17, we plot the Relative Change (δ) and Spearman’s rank correlation coefficient
(ρ) of λ and k between using a threshold of 50 and using thresholds of 0, 0.25, 0.75, 1. Each data
point represents a task, whose x-axis is δ(λ) or ρ(λ) between the assumptions and the y-axis is δ(k)
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Figure 14: Relative Change (δ) and Spearman’s rank correlation coefficient (ρ) of λ and k between the
Gemini 1.5 Flash model and the PaLM 2-S model across the tasks. Each data point represents a task,
whose x-axis is the Relative Change (δ) or Spearman’s rank correlation coefficient (ρ) of λ between
the two models and the y-axis is the Relative Change (δ) or Spearman’s rank correlation coefficient
(ρ) of k. We also suffix the task name with the subset (COW or PIG) and the unit granularity if any.

or ρ(k). We found that δ(λ) and δ(k) are mostly below 0.48 and 0.37 across the tasks (except one
task with each threshold) and ρ(λ) and ρ(k) are above 0.48 and 0.41 (except two tasks with each
threshold), when the threshold is changed from 0.5 to either 0.25, 0.75, or even 1 across the tasks.
When the threshold is changed to 0, we see much large δ(λ) and δ(k) and small ρ(λ) and ρ(k),
suggesting the threshold must be greater than 0.
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(a) LongBench PassageRetrieval
w/ Gemini 1.5 Flash

(b) L-Eval LongFQA w/ Gemini
1.5 Flash

(c) L-Eval TOEFL w/ Gemini 1.5
Flash

(d) LongBench PassageRetrieval
w/ PaLM 2-S

(e) L-Eval LongFQA w/ PaLM 2-
S

(f) L-Eval TOEFL w/ PaLM 2-S

Figure 15: Parameters λ and k estimated using Gemini 1.5 Flash and PaLM 2-S models.

K.5 SAME TASKS FROM DIFFERENT BENCHMARK SUITES

We hypothesize that the different category distribution between the task versions in two benchmark
suites can be explained by their distinct problem selection schemes. We provide the median context
lengths for the four tasks used in both benchmark suites in Table 9. We see that the two versions of
the Qasper task have very similar median context lengths, resulting in similar category assignments.
L-Eval versions of the MultiNews task and the NarrativeQA task have more holistic understanding
“flavor” than the LongBench versions, where we found the L-Eval versions often have longer contexts.
In contrast, the L-Eval version of the GovReport task has fewer holistic understanding problems than
the LongBench version, where the L-Eval version has much shorter median context length compared
with the LongBench version.

Table 9: Median context length of problems (measured in tokens) in the four tasks that exist in both
benchmark suites.

Qasper MultiNews NarrativeQA GovReport

L-Eval 4,725 3,851 2,376 4,649
LongBench 4,791 2,150 1,373 8,955

K.6 APPLICATION IN MODEL DEVELOPMENT: KV CACHE UPDATE SCHEDULE

As detailed in Section 1, this work is motivated by our and others’ observations that different efficient
long context LLM architectures may behave differently for different categories of long context tasks,
namely retrieval focused and holistic understanding focused. In this section, we present a case study
by observing the benefit of the least recently attended (LRA) schedule (Yang & Hua, 2024) for
different long context tasks.
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(a) L-Eval
MultiDoc2Dial

(b) L-Eval
Qasper

(c) L-Eval
LongFQA

(d) L-Eval
NQ

(e) L-Eval
CUAD

(f) L-Eval
NarrativeQA

(g) BAMBOO
SenHallu 4K

(h) BAMBOO
SenHallu 16K

(i) BAMBOO
AbsHallu 4K

(j) BAMBOO
AbsHallu 16K

(k) LongBench
NarrativeQA

(l) LongBench
Qasper

(m) LongBench
MultiFieldQA

(n) LongBench
HotpotQA

(o) LongBench
2WikiMultiHopQA

(p) LongBench
MuSiQue

(q) LongBench
TriviaQA

(r) LongBench
SamSum

(s) LongBench
LCC

(t) LongBench
RepoBench-p

Figure 16: Category assignments with each threshold selection for all the COW only tasks as well as
COW subsets. In the latter case, we also compare with the category assignments of their PIG subsets
as reference.
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Figure 17: Relative Change (δ) and Spearman’s rank correlation coefficient (ρ) of λ and k between
using a threshold of 0.5 and using thresholds of 0, 0.25, 0.75, 1 across all COW tasks or subsets. Each
data point represents a task, whose x-axis is δ(λ) or ρ(λ) between the assumptions and the y-axis is
δ(k) or ρ(k).

In a nutshell, it splits the long input into C chunks, each having a length of S and processes one
chunk at each step. The LRA updates the KV cache by keeping only the top N attended KVs at each
step and dropping the other KVs. One advantage is that it can take an arbitrarily long input sequence
without a set limit. Also, it reduces the computation complexity by a factor of C, compared to the
vanilla attention taking the full CS sequence as a whole. Like many cache update schedules, these
efficiency benefits come at a cost: the least attended KV at certain stage may be essential for future
steps but have to be removed from the cache, potentially hurting the long context task performance.

Intuitively, a retrieval focused task often requires a relatively small KV cache to store only the most
relevant short span, only if the task instruction or question is prefixed to the context. This should
translate to a phenomenon that by reducing the size of the chunk and/or cache capacity, we should see
a retrieval focused task performance mildly drops. In contrast, when the task instruction is suffixed
to the context, the attention score reflects the importance of each token in the “text generation task”
in a query-independent fashion, and therefore the cache is not well maintained to properly answer the
question. We expect that the performance should drop more in this case. A holistic understanding
task, on the other hand, may expect a large KV cache. When we reduce the size of the KV cache, the
performance should generally drop more. Moreover, putting the question or task instruction before or
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after the context should not matter. When the question is suffixed to the context, the cache should
have already compressed itself to keep only the essential information from the entire context.

In the preliminary experiments, we evaluate the LRA schedule using four tasks: two (L-Eval TOEFL
and BAMBOO MeetingQA 4K) from the retrieval focused task categories, and two (LongBench
NarrativeQA and L-Eval Qasper) from the holistic understanding focused task category. We use
S = N = 4096 (large KV cache) and S = N = 1024 (small KV cache) respectively and report the
relative performance percentage between the two cache sizes in Table 10.

Table 10: Relative performance percentage (the evaluation score using S = N = 1024 divided by
the evaluation score using S = N = 4096).

TOEFL MeetingQA 4K NarrativeQA Qasper

Question is prefixed 91.03% 93.33% 74.46% 66.78%
Question is suffixed 70.09% 86.84% 85.06% 68.59%

We see that the results align perfectly with our intuition and are consistent between the tasks within
the same focus category. This suggests that if we want to utilize LRA to improve the efficiency of a
long context application, we need to understand the focus category. If it is a retrieval focused task,
we would encourage to state the question or task instruction before the context. If it is a holistic
understanding focused task, we may suggest to delay the description of the instruction until the
context is fully presented, which often gives better results.

L LIMITATIONS

First, we list the limitations of our proposed DOLCE framework.

Mixture assumption. The background noise module and the oracle module do not have to be
combined using our “additive” mixture assumption. In fact, we also implement an alternative
“multiplicative” or generative assumption. Under the multiplicative assumption, we continue to use
the random variable x to denote the observed outcome, but we use the random variable z to denote the
latent oracle outcome, which can take the same values as x. Then, p(x|z) represents the “transition”
between the oracle and the actual outcome. We found that the parameters are more difficult to
estimate if not regularized. Specifically, we sometimes learned a transition parameter p(x = 1|z = 0)
or p(x = 0|z = 1) close to 1, which should rarely happen given that even the probing model should
at least behave reasonably even when it is not confident.

Oracle component assumptions. We propose two assumptions: COW and PIG and derive π and ρ
in Section 3, which may not be accurate for all the tasks. In fact, we are not restricted from using
only the proposed assumptions. First, we can extend the COW assumption by further allowing
noncontiguous ground-truth spans, or extend the PIG assumption to accommodate ground-truth
aspect spans with length greater than one, which should allow us to further apply to synthetic needle-
in-the-haystack task variants, e.g. FLenQA (Levy et al., 2024), BABILong (Kuratov et al., 2024).
Next, we can also assume that we must find the aspects and put them in a certain order in order to
answer the problem, which can help distinguish sequential reasoning tasks from summarization-like
problems using “divide-and-conquer” (Levy et al., 2024). Finally, we may relax this restriction by
allowing that any unit may be used by multiple ground truth spans. However, in the PIG scenario,
the λ ground-truth aspects are distributed independently of other ground-truth spans, and hence the
probability becomes a function of only k but not λ any more. If we continue to model λ under this
additional “overlappable” aspect assumption, we need to make further assumption that the probability
ρ(s, λ, k;L,C) follows another distribution, where λ can still be relevant to all the moments except
the mean. We leave this for future work.

MLE objective & sampling strategy. We use MLE as the objective as it seems the most straight-
forward formulation of the problem. But it does not mean this is the only objective. Also, we may
modify the MLE formulation. For example, we currently give each sample an equal weight in our
experiment. Alternatively, we can also give each observation length an equal weight in the likelihood
function, regardless of the number of samples obtained using this observation length. As we show in
Appendix K.1, small sample sizes often hurt the estimation accuracy for λ and k when the heuristic
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sampling strategies are used. We may also improve the sampling strategy, i.e. by using a dynamic
strategy that can shift to the next start position based on the previous outcome(s), or one that uses
some global heuristics similar to important sampling. We can also combine retrieval methods into the
sampling process to initialize the “importance” scores.

Probing model. Although our framework is designed to tolerate observation noises from using a
probing model, its parameter inference effectiveness may still be impacted by the probing model,
especially when it ignores our instructions. For example, if the probing model decides not to refer
to the provided context, and instead retrieves the answer directly from its internal knowledge, it
essentially wastes this problem, which may eventually be labeled as Category I or II. Another
example is when the model has a conceited or humble characteristic by underusing or overusing
“IDK” when it is not confident to answer. Although the framework can learn the latent tendency of
the background noise component from the collective outcomes across the problems, the parameters
of each problem are eventually determined based on the probing model’s outcomes relative to the
peer problems. If all the evaluation outcomes are “0”, the mixture model assumption could hardly
distinguish the source between the background noise component or the oracle component. In this
work, we chose to use mid-sized models that should be capable of understanding short context
texts and following instructions. We intentionally avoided using larger models due to their strong
closed-book and zero-shot capabilities as a result of memorization of knowledge.

Evaluation. Evaluation plays a very crucial role in this process. While objective questions evaluated
using accuracy as the metric are generally reliable, subjective and generative questions evaluated
using ROUGE can be problematic, since the noise from the ROUGE scores can exceed the “denoising”
allowance of our framework. In our work, we do not use any external script executor, human or
LLM-as-a-rater service in this process, although we believe they should help improve the accuracy of
the inferred parameters.

Besides, we note that our paper has other limitations, include

Human evaluation verification. We did not employ human annotators to confirm the estimated
λ and k. We only manually checked the most representative examples for several tasks beyond
QuALITY and LongFQA. We note that more recent benchmarks, e.g. Karpinska et al. (2024) and
Wang et al. (2024c), have started to manually label the difficulty categories using their own taxonomy.
We can also consider to compare our automatically labeled categories with their manual difficulty
categories.
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