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ABSTRACT

Large language models (LLMs) perform well across diverse domains such as
programming, medicine, and law, yet it remains unclear how domain information is
represented and distributed within their internal mechanisms. A key open question
is the division of labor between the Transformer’s core components: self-attention
and MLP layers. We address this question through a mechanistic study that
dissects their roles by integrating three complementary analyses: representation
separability via probes, parameter change under adaptation, and causal effects
from activation swaps. We propose a clear division of labor: attention layers
route domain identity, while MLP layers implement domain-specific computation.
Causal interventions strongly support our claims. For instance, swapping attention
activations at specific mid-depth layers (e.g., for Python↔ C++) reliably shifts
the next-token distribution, whereas layers with low domain separability have
a negligible effect. In contrast, while finetuning, MLP layers exhibit relatively
larger weight changes, consistent with domain-specific knowledge being stored
there. This pattern holds consistently across four models and six domains. In
a supplementary experiment, we demonstrate that selecting a few components
highlighted by our study can accelerate domain adaptation, indicating the potential
for more focused fine-tuning.

1 INTRODUCTION

Large Language Models (LLMs) master diverse domains, yet the internal mechanisms governing
this domain representation remain an open question. How does the single monolithic network of
blocks pivot from one domain’s specialization to another? What is the division of labor between the
Transformer’s core components – the self-attention and the MLP layers? In this paper, we address
these questions through a causal, layer-level analysis and propose a functional specialization that
holds across models and domains.

The field of mechanistic interpretability has developed powerful methods for such analysis, pro-
gressing from correlational analysis to causal interventions. Initial probing (Alain & Bengio, 2018;
Tenney et al., 2019) analyses used simple neural classifiers to differentiate the outputs of a layer for
varied inputs. A highly separable representation of domain identity, for example, would imply that a
component contains domain-specific information. The contribution can be quantified by calculating
the level of separation in the higher-dimensional space through separability scores, like v-usable
information (Ethayarajh et al., 2022) , Xu et al. (2020) , Ju et al. (2024b) Fisher separability Fisher
(1936), maximum mean discrepancyGretton et al. (2008) etc. Although these methods can show
where information separates, but not if or how the model uses it for downstream tasks.

Subsequently, the focus shifted towards establishing causality by reverse-engineering the circuits
(Elhage et al., 2021) for specific behaviors, through methods like activation patching (Meng et al.,
2023a) Wang et al. (2022) and zero-out testing (Dai et al., 2021). This research has yielded an
important result: MLP layers have been characterized as the primary locus of holding factual
knowledge. Concurrently, attention mechanisms are understood as routers, moving and aligning
information throughout the context, enabling capabilities like in-context learning (Olsson et al.,
2022).
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A parallel line of evidence comes from studying parameter adaptation. Research on techniques
like Low-Rank Adaptation (LoRA) has shown that model behavior can be improved for targeted
adaptation by modifying only a small subset of weights (Hu et al., 2022) Zhang et al. (2023). However,
a critical gap remains. These three powerful lenses—representational, causal, and adaptational—have
largely been applied in isolation and to micro-scale tasks (e.g., factual recall, syntactic phenomena).
It is unknown whether the “attention-as-router, MLP-as-compute” principle scales to govern how
models handle high-level, abstract domains like programming or medicine. Furthermore, no existing
framework exists to synthesize these three orthogonal sources of evidence into a single, coherent map
of a model’s functional architecture.

Our work bridges this gap. In our study, we triangulate the function of components of each layer by
asking: (1) Is domain information present in its activations? (2) How much do the layer parameters
change during adaptation? (3) Does the layer have a causal effect on domain-specific output? The
answers to which lie in representational probing, fine-tuning deltas and activation swapping respec-
tively. Here, we qualify that domain control is complex and distributed; no single component type
exclusively handles all aspects. Our analysis reveals relative differences in component contributions
rather than absolute divisions. In summary, our contributions are:

• A Unified Methodological Study for Domain Analysis : We propose and validate three separate
sources of evidence - representational separability, parameter changes under adaptation, and causal
interventions - to produce a robust, layer-level study of a model’s domain-handling mechanisms.

• Evidence for a Scaled Division of Labor in Abstract Tasks : We provide direct evidence that the
“attention as router, MLP as memory” principle, previously observed in low-level factual tasks, also
governs how models handle high-level, abstract capabilities like domain control. This suggests it is
a fundamental organizing principle of the Transformer architecture.

• Demonstration of Mechanistically-Informed, Parameter-Efficient Fine-Tuning : We show that
our mechanistic map can be used to have direct practical utility. Fine-tuning a small subset of
components identified by our study as causally important yields equally satisfactory performance,
while being trained on much fewer parameters on domain-specific benchmarks compared to
fine-tuning the entire model.

2 PROPOSED METHODOLOGY

Our work examines the roles of attention and MLP components across layers through/via three
perspectives: representational patterns (Probing analysis), parameter changes (Fine tuning analysis),
and causal interventions.

2.1 PROBING ANALYSIS

The objective of this experiment is to identify which layers contain the most linearly separable
information about domain identity. Classical classification accuracy saturated at around 100% across
all layers, providing insufficient discriminative power to determine where domain information is most
concentrated. We instead quantify the degree of separability using distributional metrics. A high
degree of separability indicates that a layer’s activations serve as a strong signal for the domain, a
necessary condition for a component involved in routing or high-level control.

To quantify where domain identity is explicitly represented, we compute pairwise separability between
domains for each layer and component using two complementary statistics: a scalar Fisher ratio
Fisher (1936) and RBF-kernel Maximum Mean Discrepancy (MMD) Gretton et al. (2008). Let
X ∈ RN×D be pooled activations for a given (layer, component) and y ∈ {1, . . . ,K}N the domain
labels. Denote by Xi the rows of X with label i, Ni = |Xi|, and µi =

1
Ni

∑
x∈Xi

x.

Fisher : We report the scalar Fisher score between domains i and j:

Fisherij =
∥µi − µj∥2∑D

d=1 Var(Xi,·d) +
∑D

d=1 Var(Xj,·d) + ε
,

with ε = 10−6 for numerical stability. This ratio is high when domain means are well-separated
relative to within-domain variance, indicating linear discriminability.
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MMD (RBF). Using an RBF kernel kγ(x, x′) = exp(−γ∥x− x′∥2) we compute

MMD2
kγ
(Xi, Xj) =

1

N2
i

∑
a,b∈Xi

kγ +
1

N2
j

∑
a,b∈Xj

kγ −
2

NiNj

∑
a∈Xi

∑
b∈Xj

kγ ,

and report MMDij =
√
max(0,MMD2). The kernel bandwidth γ is set by the median heuristic on

pairwise distances.

Activations are extracted by registered forward hooks at two probe points per block: post-attention
and post-MLP (before residual addition). (for details on pipeline see Appendix A.2). We display only
Fisher and MMD scores because they capture complementary linear (mean-vs-variance) and nonlinear
(higher-moment) distributional differences and provide the clearest layer-wise differentiation in our
experiments. Rather than exhaustively reporting all

(
K
2

)
pairwise scores, we compute a 1-vs-all

statistic for each domain. For a domain Di, activations from Di are compared against the pooled
activations from all other domains

⋃
j ̸=i Dj . This yields a per-layer, per-component separability

score Si,ℓ indicating how well layer ℓ distinguishes Di from the rest of the corpus. To compare
components on the same scale, we z-normalize scores across layers for each domain. Additional
metrics (v-usable bits, cosine similarities, accuracy) are analyzed in Appendix D.3 for completeness.

2.2 FINE-TUNING ANALYSIS

Probing identifies where domain identity is separated in activations; the complementary question
is where parameters undergo adaptation. We answer this by measuring per-layer parameter updates
under fine-tuning and by testing whether the layers that change most are also the layers that suffice
for adaptation.

We use LoRA-style fine-tuning for targeted, parameter-efficient adaptation. For a dense weight
W ∈ Rn×m at layer ℓ the adapted weight is W +∆Wℓ with ∆Wℓ = α

r BℓAℓ where Aℓ ∈ Rr×m,
Bℓ ∈ Rn×r, r is the adapter rank and α is a scalar scaling. We summarize a layer’s adaptivity by the
Frobenius norm of the effective update

Sℓ = ∥∆Wℓ∥F ,

and aggregate multiple adapter tensors that belong to the same Transformer block by summation:
Sblock
ℓ =

∑
t∈Tℓ
∥∆Wt∥F . A high Sℓ indicates that the parameters in ℓ layer are a primary site for

storing new, domain-specific computation learned during adaptation Gupta et al. (2025).

We run three fine-tuning regimes: (i) full-model fine-tuning (baseline), (ii) LoRA targeted only
to attention projection matrices (e.g., q, k, v, o per block), and (iii) LoRA targeted only to MLP
projection matrices (e.g., gate/up/down). For domain perplexity evaluation, we additionally fine-
tune only the top 1 and top 3 layers under each of these regimes. All fine-tune runs use fixed
hyperparameters (epochs, learning rate, batch size, LoRA rank) and multiple random seeds to enable
statistical comparison. (See Appendix D.1)

2.3 CAUSAL ACTIVATION SWAPPING

Probing and fine-tuning establish where domain information is present and where the optimizer writes
it; to show that a layer’s activations actually cause domain-directed generation, we perform activation
swapping. The experiment asks: if we transplant the hidden state from a donor prompt in domain Db

into a recipient prompt in domain Da, does the model’s next-token distribution shift toward Db?

We construct matched prompt pairs (xa ∈ Da, xb ∈ Db) that share a template and differ only in
domain-specific tokens (e.g., “Write a short function in {Python/C++} that returns the n-th Fibonacci
number. Respond with code only.”). We focus our causal analysis on the C++ and Python domain
pair as our primary case study. This pair offers several methodological advantages: (1) structural
prompt similarity enables precise matched comparisons, (2) distinct tokenization patterns provide
clear directional indicators, and (3) both domains require similar computational complexity, isolating
domain identity from task difficulty effects. For a chosen layer ℓ and the first code token, we:

1. run a forward pass on the donor xb and save donor activations adonorℓ (t⋆);

3
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2. run a forward pass on the recipient xa but, at layer ℓ and position t⋆, replace the recip-
ient activation with adonorℓ (t⋆) and continue inference to obtain the patched distribution
pswap(ℓ)(· | xa);

3. repeat across many donor–recipient pairs and average metrics (see D.2).

Metrics. We quantify the effect of a swap with two complementary statistics that capture magnitude
and directionality.

(1) KL Divergence. For a donor domain Db and recipient domain Da we define

KLswapℓ(Da ← Db) = Exa∼Da

[
KL

(
p(· | xa) ∥ pswap(ℓ)(· | xa)

) ]
,

where p(· | xa) is the original next-token distribution and pswap(ℓ)(· | xa) is the patched distribu-
tion. KLswapℓ measures how strongly the swap perturbs the model’s predictive distribution at the
intervention point.

(2) Delta bias. We define domain-token sets Sa, Sb (e.g., Python: {def, import, :, lambda,
print}; C++: {;, ::, std, cout, #, {}}). For a prompt xa, let P (S|x) be the probability
mass on tokens S. Bias toward Db is Bias(x) = P (Sb|x)− P (Sa|x) We measure the change due to
intervention as

∆Bias(Da
ℓ←− Db) = E

[
Biasswap(xa

ℓ←− xb)− Biasbase(xa)
]
.

Positive values indicate a shift toward the donor domain Db, since bias is always computed as
preference of Db over Da. For complete details, see Appendix E.3

KL captures whether an intervention meaningfully alters the model’s beliefs; the domain-token Shift
tests whether the alteration is directionally consistent with the donor domain. Together they provide
strong, local causal evidence that activations at layer ℓ not only correlate with domain identity but
can drive domain-appropriate generation when transplanted into another context. The experimental
conditions ensure that trivial scale differences do not drive observed effects. For more implementation
details, see Experimental Setup D.2

3 RESULTS AND DISCUSSION

Our investigation spans six domains: Medicine, Finance, Science, Mathematics, C++, and Python,
and on four LLMs: Llama 3.2 3B, Llama 1B, Gemma 3 4B, and Gemma 3 1B (Grattafiori et al., 2024)
(Team et al., 2025).For more details on datasets used, see Appendix B. The following discussion is
for the Llama 3.2 3B model, which consists of 27 layers, each with an MLP head and an attention
mechanism. For results on other models, see Appendix A.

3.1 WHERE DOMAIN KNOWLEDGE IS SEPARATED?

Figure 1 shows the 1-vs-all Fisher and MMD separability traces across layers for six domains,
z-normalized to highlight relative variation in depth. Both Attention and MLP components exhibit
non-uniform separability: some layers carry markedly stronger domain identity than others. While the
overall trends are similar, the precise peaks do not fully coincide between Attention and MLP. This
suggests that both components participate in domain representation, but their strongest contributions
arise at slightly different depths.

After z-score normalization, Fisher and MMD traces nearly completely overlap across layers. This
indicates that both linear mean-based separation (Fisher) and higher-moment distributional divergence
(MMD) identify the same loci of domain information. Thus, the observed peaks are not artifacts of a
particular separability metric, but reflect genuine structural patterns in the residual stream.

To compare components, Table 1 reports the mean and maximum 1-vs-all separability scores across
layers. A clear pattern emerges. The mean separability is comparable between the Attention and MLP
layers across all six domains. This suggests that domain-specific information is broadly and similarly
represented in the activations of both components throughout the network. The maximum separability,
however, tells a different story. For 5 out of 6 domains, the maximum Fisher and MMD scores are
higher for Attention layers than for MLP layers. This indicates that while domain information is
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Figure 1: Separability scores across six domains. Each column displays Attention (top) and MLP (bottom)
blocks for one domain.

Table 1: Mean and maximum 1-vs-all separability scores for Attention and MLP layers across six
domains. Higher values indicate greater domain specificity for that component.

Domain Attention MLP

Fisher MMD Fisher MMD
Mean Max Mean Max Mean Max Mean Max

CPP 0.935 2.029 0.530 0.678 0.977 1.549 0.532 0.630
Python 0.868 1.783 0.519 0.660 0.912 1.356 0.520 0.615
Math 0.837 1.370 0.551 0.646 0.873 1.015 0.554 0.603
Medical 1.009 2.343 0.586 0.715 1.412 1.983 0.656 0.704
Science 0.849 1.528 0.550 0.662 0.960 1.123 0.567 0.615
Finance 1.696 2.668 0.677 0.741 2.140 3.158 0.726 0.767

generally available, it becomes highly concentrated at specific bottleneck layers within the Attention
mechanism. For example, for the C++ domain, the most separable Attention layer (max Fisher=2.029)
is 31% more distinct than the most separable MLP layer (max Fisher=1.549).
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Figure 2: Change in the weights on Lora-based fine-tuning, separately on (1) Entire model, (2) Only
Attention Layers, and (3) Only MLP Layers

3.2 ADAPTATIONAL ANALYSIS POINTS TO MLP LAYERS

While probing analysis suggests concentrated signals in attention layers, adaptational analysis reveals
a different picture. Figure 2 plots the average normalized weight change (∥∆W∥/∥W∥) per layer for
three LoRA fine-tuning regimes: targeting the full model, only MLP components, or only attention
components.

The magnitude of weight change in MLP-only fine-tuning is substantially and consistently higher
than in attention-only fine-tuning. This indicates that MLP layers are the primary locus where new,
domain-specific computation is written during adaptation to a specific domain. The results are
unambiguous across all six domains. This implies that while attention layers had concentrated signals
due to higher peaks of separability in specific layers, adapting to a new dataset always changes the
MLP layers more, proposing that domain-specific knowledge is stored in the latter.

3.3 VALIDATING THE PROPOSED LAYER MAP VIA TARGETED FINE-TUNING

Before performing causal interventions, we first seek to validate the practical utility of our proposed
layer map. If the layers, either those with the largest parameter deltas (primarily MLPs) or those
with the most separable representations (peak attention layers), are indeed the most important for
adaptation, then fine-tuning only these layers should achieve satisfactory results in comparison to
fine-tuning the entire model. We test this hypothesis by fine-tuning only the top-1 and the top-3 layers
(for both MLP and Attention) with the highest separability scores and comparing their performance on
the respective domain’s specific perplexity task against fine-tuning the full model. For every domain,
the domain perplexity was devised using a benchmark evaluation method, normalized between 0 and
1. Details of domain-specific evaluation are mentioned in Appendix C.2.

Interestingly, the results in Table 2 are even better than expected. Targeted fine-tuning of just the
selected few layers (sometimes even 1) achieves domain-specific performance that is comparable
to, and in some cases exceeds, that of fine-tuning the entire model, despite using a fraction of the
parameters. For more insights, refer to Appendix C.1. The dataset used for fine-tuning had around
5000-7000 samples, as discussed in B.

It is important to note that due to the small scale of the models and limited fine-tuning data, fine-tuning
can suffer from some forgetting of general capabilities. However, the relative performance gain
across all fine-tuned results demonstrates that our layer importance map successfully identifies the
most critical components for specialization. This provides strong evidence that the map is not just
descriptive but predictive, highlighting its potential for interpretable fine-tuning strategies.
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PT MLP Attn Both Top-1 MLP Top-1 Attn Top-3 MLP Top-3 Attn

Math 0.07 0.03 0.00 0.02 0.08 0.07 0.12 0.03
Science 0.82 0.73 0.80 0.62 0.76 0.76 0.86 0.66
CPP 0.31 0.06 0.05 0.04 0.01 0.19 0.02 0.41
Python 0.60 0.16 0.36 0.02 0.14 0.57 0.19 0.56
Finance 0.16 0.06 0.05 0.02 0.05 0.05 0.08 0.06
Medical 0.58 0.91 0.84 0.89 0.93 0.30 0.91 0.54

Table 2: Performance of Llama-3.2-3B across domains on that domain-perplexity metric (normalized
between 0 and 1). PT stands for pre-trained model. All the other column names resemble the

components fine-tuned during adaptation.
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Figure 3: Analysis of layers in Llama-3B, comparing KL divergence (left) and a Delta Bias (right)
between C++ and Python inputs. The layers on the left section of both graphs are the top-ranked
layers based on Fisher score, while the layers on the right section are layers with the lowest Fisher
score.

3.4 CAUSAL SWAPPING REVEALS ATTENTION AS DOMAIN ROUTER

Probing identified separable domain representations, and adaptation revealed MLPs as the primary
locus of parameter change. To test which components actually cause domain-directed behavior, we
use activation swapping in our C++/Python case study.

We measure the overall magnitude of the intervention’s effect using KL divergence as shown in
figure 3. For components in layers with high Fisher separability, swapping activations from either
an attention block or an MLP block induces a significant relative perturbation in the next-token
distribution, resulting in high KL divergence. This confirms that both components in these layers are
computationally active and influential on the final output. Conversely, interventions on components
in low-Fisher layers produce a negligible KL divergence, confirming that the effect is localized to the
information-rich parts of the network. Early layers occasionally exhibit high Fisher but low causal
effect (e.g., Attention layer-2), suggesting the occurrence of “hydra” effect McGrath et al. (2023)
(Discussion E.1) here.

However, a disruptive effect does not imply directional control. To test if a layer steers the output
towards a specific domain, we measure the shift in probability mass towards the donor domain’s
characteristic tokens (e.g., Python tokens like def after a Python→C++ swap). For more details,
see Discussion E.2. When swapping the output of a high-Fisher attention layer, the effect is strong
and, while being highly variational, consistently directional. Swapping Python activations into
a C++ prompt increases the probability of Python tokens, and vice-versa. This provides direct
causal evidence that these attention layers are not just active, but are providing a specific steering
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signal for domain identity. In contrast, swapping the output of a high-Fisher MLP layer does not
produce a consistent directional shift. While the intervention is disruptive (high KL), the effect on
domain-specific token probability (Delta Bias) is centered around zero, albeit with high variance.
This suggests that while the MLP is performing critical, domain-relevant computations, it is not the
source of the high-level control signal that dictates “we are in the Python domain now.”

On bringing together these observations, we can conclude that the MLP layers change most during
fine-tuning because they are the computational workbenches where domain-specific knowledge (e.g.,
library functions, syntax patterns) is implemented. Intervening on them is disruptive because it
interrupts this computation. However, it is the peak attention layers that act as the causal routers.
Their activations, though less plastic during fine-tuning, carry the high-level steering signal that
directs the downstream computational machinery of the MLPs.

4 DISCUSSION

Our investigation began with a foundational question: how does a monolithic network manage
distinct domains? By analyzing the three lenses as proposed, we have moved beyond simple
observation to a causal, mechanistic explanation. Our results resolve the apparent contradiction
between representational and adaptational analyses, revealing a clear and consistent division of
labor between the Transformer’s core components. Here, we synthesize these findings, discuss their
implications for the field, and outline the limitations of our work to chart a path for future research.

Transferability across models. Our findings are not confined to a single checkpoint. We executed
all analyses on LLaMA-1B, LLaMA-3.2B, and Gemma 3-1B/4B (See A). The overall pattern holds:
attention layers exhibit localized, high-separability peaks that act as causal routers, while MLP
layers accumulate the bulk of adaptation updates. Interestingly, Gemma models display sharper,
more localized separability in causal swap experiments, with a single attention layer causing large
directional effects. This acute localization of causal influence suggests a more specialized, hub-like
routing mechanism within Gemma’s architecture, suggesting that architectural choices, such as logit
soft-capping or normalization, may influence the concentration of domain representation. These
findings highlight the need to explore how such architectural decisions affect causal control and
domain adaptation, offering a promising direction for future research.

A coherent mechanistic picture. Taken together, our three experiments point to a consistent proposi-
tion. Probes show that both Attention and MLP layers encode domain information, but Attention
peaks are sharper and more localized. Adaptation analysis shows that MLPs absorb the majority of
parameter changes when learning a new domain, functioning as workbenches for computation. Causal
swaps reveal that Attention layers provide clean, directional control: transplanting their activations re-
liably shifts token probabilities toward the donor domain. In the domain level of abstraction, attention
acts as the router, steering domain identity, while MLPs implement the downstream computations
that realize domain-specific behavior.

Implications. This proposal has two important implications. First, it provides a layer-level map
of where to look for domain control in Transformers, guiding mechanistic interpretability beyond
micro-circuits to higher-level behaviors. Second, it has practical value: we highlight the potential to
identify a small set of components whose targeted adaptation suffices to replicate full-model domain
tuning, offering a mechanistically-grounded complement to parameter-efficient fine-tuning.

Limitations and caveats. Our study has several limitations. (i) We focus our causal analysis on
C++ vs Python due to their structural similarity and distinct token sets; other domains are noisier and
require more refined prompt design. (ii) We adopt a 1-vs-all separability framework, which simplifies
analysis but may collapse informative pairwise distinctions between domains. (iii) Our models are
relatively small and fine-tuned on modest datasets; effects may differ in larger-scale LLMs with
broader training. (iv) Early-layer separability peaks (e.g., A2) did not always yield causal effects,
consistent with the hydra effect, where distributed signals do not translate into single-point steering
handles. (v) Finally, our causal swaps measure immediate next-token shifts; long-horizon effects and
global coherence remain to be tested.

Future directions. These caveats suggest clear paths forward. Future work should extend our work
to larger and more diverse models, refine domain prompts beyond code pairs, and analyze per-head
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specialization within the identified router layers. A natural next step is to connect layer-level maps to
explicit circuit motifs, integrating coarse-grained and fine-grained mechanistic interpretability. On
the practical side, our study could be used to guide efficient domain adaptation or controlled editing,
narrowing the intervention space to the components that matter most.

5 RELATED WORK

Representation analysis : The use of simple linear classifiers, or probes, to correlate internal
activations with linguistic properties marked an early effort to map knowledge in neural networks
(Alain & Bengio, 2018; Tenney et al., 2019). This method was quickly refined in response to critiques
that high accuracy does not guarantee task-relevance, leading to the development of control methods
and more sophisticated layer-wise analyses of information gain (Hewitt & Liang, 2019; Ravichander
et al., 2020; Kunz & Kuhlmann, 2022). Applied to contemporary LLMs, these refined techniques
have revealed clear knowledge hierarchies: the “Concept Depth” hypothesis posits that complex
concepts are processed in deeper layers (Jin et al., 2024), while abstract traits like personality are
localized to the middle-to-upper layers (Ju et al., 2024a). The search for greater precision has led to
techniques like sparse probing for isolating the specific neurons responsible for a concept (Gurnee
et al., 2023), and has connected analysis to action by using probe results to guide targeted edits on
model behavior (Li et al., 2024).

Causal interventions: To move from correlation to causation, a central method is activation patching:
a family of techniques that swap activations between inputs to measure their causal effect (Vig et al.,
2020; Geiger et al., 2021; Heimersheim & Nanda, 2024). Its application to model editing began with
locating and updating single facts via ROME (Meng et al., 2022), a process later scaled to thousands
of facts with MEMIT (Meng et al., 2023b) and made more efficient by SaLEM (Mishra et al., 2024).
The scope of such causal analysis has since expanded beyond discrete facts, used to map the locality
of categorical knowledge (Burger et al., 2024) and to reverse-engineer entire computational circuits
’in the wild’ (Wang et al., 2022).

Functional Specialization of Transformer Components : Causal analysis reveals a functional
specialization between a transformer’s primary sub-layers. MLP layers are established as key-value
memories that store factual knowledge (Geva et al., 2021), a view substantiated by causal editing
(Meng et al., 2022) and shown to hold in multilingual contexts (Fierro et al., 2023). Conversely,
attention mechanisms act as dynamic routers, moving information through the residual stream (Elhage
et al., 2021; Olsson et al., 2022). This simple dichotomy has evolved into a more nuanced view of
integrated knowledge circuits, with work formalizing how attention filters information for MLPs to
store (Xu & Chen, 2023) and detailing direct Attention-MLP interactions (Yao et al., 2024; Neo et al.,
2024).

Parameter-Efficient Fine-Tuning as a Locus of Knowledge: A parallel line of research frames
Parameter-Efficient Fine-Tuning (PEFT) as a mechanistic diagnostic. While foundational methods
like Adapter-tuning (Houlsby et al., 2019) and LoRA (Hu et al., 2022) were developed for engineering
efficiency, why and where they work has deep mechanistic implications. Analyses suggest LoRA
learns low-rank updates that mimic full fine-tuning (Zhang et al., 2023), and critically, that the efficacy
of these updates is highly dependent on their layer-wise placement (An et al., 2024; He et al., 2022).
This localization principle is further exemplified by methods like LoFiT, which use interpretability to
identify and then fine-tune only a sparse subset of task-critical attention heads (Yin et al., 2024).

6 CONCLUSION

We demonstrate a clear division of labor in Transformers at the high-level scale of complex, real-
world domains: attention layers route domain identity, while MLP layers store domain-specific
knowledge. This work establishes that the “router-compute” principle—previously observed in
low-level tasks—organizes high-level domain specialization across programming, medicine, and
other complex domains. By triangulating probing, adaptation, and causal interventions, we provide a
definitive functional map: attention layers serve as domain routers that causally steer model behavior,
while MLP layers act as domain-specific computational units. This architectural insight provides a
blueprint for more interpretable and efficient model adaptation, advancing our understanding of how
large language models master diverse capabilities.
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A RESULTS ON OTHER MODELS

A.1 FINE TUNING ANALYSIS

Stage 1: Comprehensive Adaptational Mapping. The initial stage conducted a broad, component-
wise analysis for each of the six domains independently. To map the division of labor between
Transformer components, we applied LoRA adapters under three distinct regimes:

• Attention-Only: LoRA was applied exclusively to the attention projection matrices
(q proj, k proj, v proj, o proj) in every layer.

• MLP-Only: LoRA was applied exclusively to the MLP projection matrices (gate proj,
up proj, down proj) in every layer.

• Full Model (All): LoRA was applied to all attention and MLP components simultaneously,
establishing a baseline for unconstrained, full-model adaptation.

The primary objective of this stage was to quantify the magnitude of parameter updates for each
component c ∈ {Attn, MLP} at each layer ℓ, measured by the Frobenius norm of the effective weight
change, Sℓ,c = ∥∆Wℓ,c∥F . The results from this analysis provide the data for the adaptational plots
in the main paper (Figure 2) and this appendix.

STAGE 1 RESULTS FOR OTHER MODELS

The adaptational patterns observed in the Llama 3.2 3B model hold consistently across other model
families and sizes, as shown below.
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Figure 4: Layer-wise magnitude of parameter updates (Sℓ) for Llama 3.2 3B under three LoRA
fine-tuning regimes across six domains.
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Figure 5: Layer-wise magnitude of parameter updates (Sℓ) for Gemma 3 4B under three LoRA
fine-tuning regimes across six domains.
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Figure 6: Layer-wise magnitude of parameter updates (Sℓ) for Gemma 3 1B under three LoRA
fine-tuning regimes across six domains.
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ADAPTATIONAL NORM ANALYSIS

To dissect the dynamics of targeted adaptation, we compare the norms of LoRA weight updates
(∥∆Wℓ∥F ) for the top-3 most-adapted layers across three analytical contexts. The summary tables
aggregate these norms to reveal overarching patterns.

• Avg. Full Run Norm: The average norm of a component group (e.g., Top-3 MLPs) from
the Stage 1 ”Full Model” regime, where all layers were adapted on a single domain. This
represents the baseline update magnitude in an unconstrained setting.

• Avg. Ensemble Norm: The average norm of a component group from a Stage 2 ”Ensemble
Tuning” run, where only those specific components (e.g., only the Top-3 MLP layers) were
adapted. This measures the update magnitude under targeted, multi-component fine-tuning.

• Top Solo Run Norm: The norm of the single highest-ranking component from a Stage 2
”Soloist Tuning” run, where it was the only component adapted in the entire model. This
quantifies a component’s adaptational capacity in complete isolation.

Table 3: Aggregated LoRA weight update norms for the Llama 3.2 3B model across all domains.

Domain Component Group Avg. Full
Run Norm

Avg. Ensemble
Norm

Top Solo
Run Norm

CPP Top-3 MLP Components (Avg.) 1.019× 102 1.287× 102 1.651× 102

Top-3 Attn Components (Avg.) 7.042× 101 9.357× 101 1.149× 102

Finance Top-3 MLP Components (Avg.) 9.463× 101 6.990× 101 9.945× 101

Top-3 Attn Components (Avg.) 5.464× 101 4.687× 101 6.056× 101

Math Top-3 MLP Components (Avg.) 1.007× 102 1.360× 102 1.676× 102

Top-3 Attn Components (Avg.) 6.580× 101 8.377× 101 9.766× 101

Medical Top-3 MLP Components (Avg.) 9.545× 101 1.239× 102 1.560× 102

Top-3 Attn Components (Avg.) 9.134× 101 9.702× 101 1.181× 102

Python Top-3 MLP Components (Avg.) 1.010× 102 1.311× 102 1.744× 102

Top-3 Attn Components (Avg.) 6.978× 101 9.599× 101 1.250× 102

Science Top-3 MLP Components (Avg.) 1.019× 102 1.343× 102 1.660× 102

Top-3 Attn Components (Avg.) 8.013× 101 9.999× 101 1.145× 102

Table 4: Aggregated LoRA weight update norms for the Llama 3.2 1B model across all domains.

Domain Component Group Avg. Full
Run Norm

Avg. Ensemble
Norm

Top Solo
Run Norm

CPP Top-3 MLP Components (Avg.) 1.131× 102 1.508× 102 1.944× 102

Top-3 Attn Components (Avg.) 8.660× 101 1.150× 102 1.389× 102

Finance Top-3 MLP Components (Avg.) 1.063× 102 8.506× 101 1.201× 102

Top-3 Attn Components (Avg.) 6.711× 101 5.694× 101 7.221× 101

Math Top-3 MLP Components (Avg.) 1.151× 102 1.607× 102 2.025× 102

Top-3 Attn Components (Avg.) 8.405× 101 1.062× 102 1.209× 102

Medical Top-3 MLP Components (Avg.) 1.116× 102 1.457× 102 1.798× 102

Top-3 Attn Components (Avg.) 1.139× 102 1.196× 102 1.402× 102

Python Top-3 MLP Components (Avg.) 1.123× 102 1.535× 102 2.042× 102

Top-3 Attn Components (Avg.) 8.578× 101 1.173× 102 1.493× 102

Science Top-3 MLP Components (Avg.) 1.189× 102 1.610× 102 2.009× 102

Top-3 Attn Components (Avg.) 1.024× 102 1.278× 102 1.446× 102
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Table 5: Aggregated LoRA weight update norms for the Gemma-3 4B model across all domains.

Domain Component Group Avg. Full
Run Norm

Avg. Ensemble
Norm

Top Solo
Run Norm

CPP Top-3 MLP Components (Avg.) 7.481× 101 8.510× 101 9.509× 101

Top-3 Attn Components (Avg.) 4.523× 101 5.179× 101 6.092× 101

Finance Top-3 MLP Components (Avg.) 3.211× 101 3.883× 101 4.720× 101

Top-3 Attn Components (Avg.) 2.398× 101 2.806× 101 3.566× 101

Math Top-3 MLP Components (Avg.) 6.152× 101 7.033× 101 7.748× 101

Top-3 Attn Components (Avg.) 3.345× 101 3.862× 101 4.418× 101

Medical Top-3 MLP Components (Avg.) 7.913× 101 8.882× 101 1.060× 102

Top-3 Attn Components (Avg.) 4.881× 101 5.361× 101 6.759× 101

Python Top-3 MLP Components (Avg.) 7.612× 101 8.496× 101 9.706× 101

Top-3 Attn Components (Avg.) 4.755× 101 5.305× 101 6.187× 101

Science Top-3 MLP Components (Avg.) 8.339× 101 9.547× 101 1.049× 102

Top-3 Attn Components (Avg.) 4.698× 101 5.223× 101 5.652× 101

Table 6: Aggregated LoRA weight update norms for the Gemma-3 1B model across all domains.

Domain Component Group Avg. Full
Run Norm

Avg. Ensemble
Norm

Top Solo
Run Norm

CPP Top-3 MLP Components (Avg.) 4.315× 101 5.039× 101 6.484× 101

Top-3 Attn Components (Avg.) 2.451× 101 2.822× 101 3.337× 101

Finance Top-3 MLP Components (Avg.) 2.478× 101 2.891× 101 3.953× 101

Top-3 Attn Components (Avg.) 1.691× 101 1.956× 101 3.240× 101

Math Top-3 MLP Components (Avg.) 4.022× 101 4.570× 101 5.823× 101

Top-3 Attn Components (Avg.) 2.003× 101 2.292× 101 2.922× 101

Medical Top-3 MLP Components (Avg.) 4.811× 101 5.544× 101 7.106× 101

Top-3 Attn Components (Avg.) 2.955× 101 3.401× 101 4.053× 101

Python Top-3 MLP Components (Avg.) 4.297× 101 4.926× 101 6.502× 101

Top-3 Attn Components (Avg.) 2.501× 101 2.846× 101 3.237× 101

Science Top-3 MLP Components (Avg.) 4.973× 101 5.627× 101 6.923× 101

Top-3 Attn Components (Avg.) 2.516× 101 2.830× 101 3.364× 101
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A.2 PROBING ANALYSIS

The process of calculating separability scores between each pair of datasets, layer-wise, consists of 2
main components:

1) Hooking to get activations

2) Using these activations to get the Separability Scores

Hook placement and construction of per-sample representations. When analyzing representations
inside transformer layers, forward hooks are placed on sub-modules corresponding to the Attention
block, MLP block, and Residual stream activations. Each hook captures the output tensor of shape
[B,S,D], where B is the batch size (examples per forward pass), S is the sequence length (tokens
per example), and D is the hidden dimension of the representation. To simplify, the token dimension
is mean-pooled, giving a [B,D] embedding for each batch. These embeddings are concatenated
across multiple forward passes to construct a design matrix X ∈ RN×D, where N is the total number
of collected samples. Alongside, a label vector y ∈ {0, . . . , C − 1}N is created so that each row Xr

corresponds to its class label yr.

To compute Fisher separability between two classes i and j, we first isolate the subsets of X
belonging to those labels, giving matrices Xi ∈ Rni×D and Xj ∈ Rnj×D. The mean representation
of each class (µi, µj) is calculated across their samples, and the variance within each class (vari, varj)
is also estimated. Fisher’s score is then defined as the squared distance between the two class means,
normalized by the sum of their variances. Intuitively, if the means are far apart relative to how spread
out the classes are internally, the score is high, indicating that the two classes are well separated in
the representation space.

For the Maximum Mean Discrepancy (MMD), the same class-specific subsets Xi and Xj are
compared using a kernel function, typically a Gaussian RBF kernel. Pairwise distances between
samples are used to determine the kernel bandwidth γ, and kernel similarity matrices are constructed:
within-class (Kii,Kjj) and cross-class (Kij). The MMD score is then computed as the difference
between average within-class similarities and average cross-class similarities. A larger MMD value
means the two distributions Xi and Xj are more dissimilar, capturing not just differences in means
but also higher-order mismatches in distributional shape.

EXPERIMENT PARAMETERS

Samples per domain
(forward pass)

MLP hook Attention hook Batch size

1000 up proj o proj 8

Parameters used for all models: Llama 3.2 3B, Llama 3.2 1B, Gemma 3 4B, and Gemma 3 1B.

A.3 CAUSAL INTERVENTION

The results for the causal activation swapping case study of C++↔ Python, for other models, are
given in Figures 10-12.
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Figure 7: probe separability results for Llama 1B Model
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Figure 8: probe separability results for Gemma 1B Model

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 8 16 24 32
Layer

-1.50
0.00
1.50
3.00
4.50

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 8 16 24 32
Layer

-1.50

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(a) C++

0 8 16 24 32
Layer

-1.50
0.00
1.50
3.00
4.50

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 8 16 24 32
Layer

-1.50

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(b) Python

0 8 16 24 32
Layer

-1.50

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 8 16 24 32
Layer

-2.00

0.00

2.00

4.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(c) Math

0 8 16 24 32
Layer

-3.00

-1.50

0.00

1.50

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 8 16 24 32
Layer

-1.50
0.00
1.50
3.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(d) Medical

0 8 16 24 32
Layer

-1.50

0.00

1.50

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 8 16 24 32
Layer

-2.00
-1.00
0.00
1.00
2.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(e) Science

0 8 16 24 32
Layer

-2.00

0.00

2.00

4.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 8 16 24 32
Layer

-2.00

0.00

2.00

4.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(f) Finance

Figure 9: probe separability results for Gemma 4B Model
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Figure 10: Analysis of layers in Llama-3B, comparing KL divergence (left) and a Delta Bias (right)
between C++ and Python inputs. The layers on left section ar e layers with highest Fisher score and
right section have lowest Fisher score. Top-ranked layers show substantially higher KL divergence
and Delta Bias, reflecting higher influence on final output.
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Figure 11: Analysis of layers in Llama-1B, comparing KL divergence (left) and Delta Bias between
C++ and Python inputs. Top MLP layers have high variance in Delta Bias, and high fisher layers
show more KL divergence.
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Figure 12: Analysis of layers in Gemma-4B, comparing KL divergence (left) and a Delta Bias (right)
between C++ and Python inputs. A handful of layers show significant spikes in contribution and
shifting operation in this model. Reason being high confidence of model on a single token in logits
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Figure 13: Analysis of layers in Gemma-1B, comparing KL divergence (left) and Delta Bias (right)
between C++ and Python inputs. A handful of layers show significant spikes in contribution and
shifting operation in this model.
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B DATASETS

C++, Python For our coding datasets, we have used the Open Coder LLM Annealing Corpus
(Huang et al. (2024)) which contains functional code snippets on various coding questions. This
dataset aligns with our Human Benchmark Evaluation tests since it uses the same formatting. Each
data point has a top level comment describing the task followed by a function that implements the
task. The original dataset also contains inline comments inside the function body but these have been
striped for conciseness. Listing 1 and Listing 14 showcase examples from our dataset on C++ and
Python snippets.

Science We have used the SciQ dataset (Johannes Welbl, 2017) which contains crowd-sourced
questions on Physics, Chemistry and Biology. The questions are in multiple-choice format with 4
answer options each. For our purposes we have formatted the data-points into Context, Question and
Answer.

Context: Enzymes are critical to the body’s healthy functioning.
They assist, for example, with the breakdown of food and its
conversion to energy. In fact, most of the chemical reactions
in the body are facilitated by enzymes.

Question: Most of the chemical reactions in the body
are facilitated by what?

Options: A. proteins B. enzymes C. vitamins D. carbohydrates
Answer: B

Mathematics The Math dataset is GSM8K (Cobbe et al., 2021a) which is a dataset of 8.5k
high quality math word problems. The dataset contains question answering on basic mathematical
problems that require multi-step reasoning. The datapoints are also similarly formatted into Question,
Answer and Final Answer.

Question: Natalia sold clips to 48 of her friends in April, and
then she sold half as many clips in May. How many clips did
Natalia sell altogether in April and May?

Answer: Natalia sold 48/2 = <<48/2=24>>24 clips in May. Natalia
sold 48+24 = <<48+24=72>>72 clips altogether in April and May. #### 72

Final Answer: 72.

Finance The Finance dataset (Mateega et al., 2025) is a set of financial question and answer pairs
extracted from company annual reports, balance sheets, and financial statements.The datapoints
contain context with some financial values and the model is questioned upon some value that is
dependant on this information. A similar formatting technique is used where we explicitly state the
context, question and answer.

Context: Liabilities: 8,537.39 Total Capital And Liabilities:
13,410.53 ASSETS: nan NON-CURRENT ASSETS: nan Tangible
Assets: 74.2 Intangible Assets: 4.16 Capital Work-In-Progress:
0 Other Assets: 0 Fixed Assets: 98.73 Non-Current
Investments: 0 Deferred Tax Assets [Net]: 0 Long Term Loans And Advances: 0
Other Non-Current Assets: 15.61 Total Non-Current Assets: nan

Question: What is the total value of assets of the company?
Answer: The total value of assets of the company is $13,410.53.
Final Answer: 13410.53.

Medical We use the ReasonMed dataset (link lingshu-medical-mllm/ReasonMed) which is an open-
source synthetic medical reasoning dataset containing multi-step chain-of-thought (CoT) rationales
and concise summaries of LLMs such as Qwen-2.5-72B, DeepSeek-R1-Distill-Llama-70B, and
HuatuoGPT-o1-70B on medical questions.

The question presents a radiographic scenario: a PA
(posteroanterior) ulnar deviation view of the wrist, asking
for the most likely diagnosis among the following options:
Osteomyelitis, De Quervain tenosynovitis, Hypertrophic
osteoarthropathy, and Rheumatoid arthritis. The correct answer
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def find_pivot_index(nums: list[int]) -> int:
"""Finds the pivot index of a list of numbers.

The pivot index is where the sum of the numbers to the left of
the index

is equal to the sum of the numbers to the right of the index.

Args:
nums: A list of integers.

Returns:
The pivot index if one exists, otherwise -1.

Examples:
>>> find_pivot_index([1, 7, 3, 6, 5, 6])
3
>>> find_pivot_index([1, 2, 3])
-1
>>> find_pivot_index([2, 1, -1])
0

"""
total_sum = sum(nums)
left_sum = 0

for i, num in enumerate(nums):
if left_sum == total_sum - left_sum - num:

return i
left_sum += num

return -1

Listing 1: A Python snippet from our dataset illustrating a simple coding problem with a doc-
string that explicitly describes the working of the function
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// This function takes a positive integer as input and returns a
list of its prime factors,

// which are the prime numbers that multiply together to equal the
original number.

// The prime factors are returned in ascending order.
//
// Parameters:
// * number: A positive integer to be factorized into its prime

factors.
//
// Examples:
// * find_prime_factors(8) => [2, 2, 2]
// * find_prime_factors(25) => [5, 5]
// * find_prime_factors(70) => [2, 5, 7]
std::vector<int> find_prime_factors(int number) {

std::vector<int> prime_factors;

while (number % 2 == 0) {
prime_factors.push_back(2);
number /= 2;

}

for (int i = 3; i <= std::sqrt(number) + 1; i += 2) {
while (number % i == 0) {

prime_factors.push_back(i);
number /= i;

}
}

if (number > 2) {
prime_factors.push_back(number);

}

return prime_factors;
}

Figure 14: A C++ snippet from our dataset featuring a prime factorization problem. Each example
contains a descriptive comment above the function body and clear naming conventions for the function
itself.
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is De Quervain tenosynovitis. To comprehensively understand
and justify this answer, it's essential to dissect
each component... (truncated)

C EVALUATION

C.1 EVALUATION RESULTS

Our evaluation of domain-specific performance uses two accuracy metrics tailored to the task type.
For the Math, Science, Finance, and Medical domains, we report standard classification accuracy,
defined as:

Accuracy =
Number of Correct Predictions

Total Number of Samples
For the programming domains (C++ and Python), we evaluate code generation correctness using the
pass@k metric. Specifically, we use pass@10, where the model generates 10 candidate solutions for
each problem. A problem is considered solved if at least one of these candidates passes all unit tests.
The accuracy is therefore calculated as:

pass@10 =
Number of Problems with at least one passing solution

Total Number of Problems
It is important to note that the results presented, particularly for the smaller 1B models, may exhibit
some noise. These models operate with fewer parameters, making performance sensitive to minor
variations in fine-tuning, which can affect the robustness of the generated outputs.

PT MLP Attn Both Top-1 MLP Top-1 Attn Top-3 MLP Top-3 Attn
Math 0.040 0.070 0.050 0.020 0.050 0.040 0.030 0.040
Science 0.395 0.390 0.535 0.475 0.385 0.290 0.310 0.325
CPP 0.120 0.020 0.020 0.000 0.050 0.040 0.130 0.040
Python 0.440 0.020 0.180 0.040 0.040 0.350 0.160 0.290
Finance 0.180 0.020 0.010 0.000 0.060 0.040 0.020 0.070
Medical 0.847 0.687 0.787 0.813 0.904 0.424 0.916 0.864

Llama-3.2-1B

PT MLP Attn Both Top-1 MLP Top-1 Attn Top-3 MLP Top-3 Attn
Math 0.100 0.030 0.060 0.030 0.140 0.060 0.040 0.040
Science 0.625 0.755 0.700 0.650 0.610 0.600 0.425 0.425
CPP 0.320 0.000 0.030 0.000 0.000 0.286 0.000 0.150
Python 0.470 0.040 0.300 0.050 0.286 0.371 0.220 0.340
Finance 0.080 0.020 0.050 0.040 0.025 0.000 0.030 0.030
Medical 0.900 0.713 0.912 0.512 0.880 0.880 0.912 0.888

Gemma-3-1B

PT MLP Attn Both Top-1 MLP Top-1 Attn Top-3 MLP Top-3 Attn
Math 0.080 0.080 0.060 0.080 0.200 0.133 0.400 0.267
Science 0.715 0.780 0.780 0.760 0.840 0.820 0.760 0.700
CPP 0.833 0.033 0.000 0.000 0.028 0.457 0.000 0.286
Python 0.300 0.233 0.333 0.033 0.371 0.343 0.286 0.343
Finance 0.040 0.000 0.000 0.000 0.000 0.000 0.025 0.025
Medical 0.925 0.950 0.950 0.300 0.875 0.950 0.725 0.850

Gemma-3-4B
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As an alternative performance metric, we measured the asymptotic validation loss for different com-
ponent combinations. The results aligned with our separability analysis: layers identified as having
high activation separability consistently outperformed those with lower separability, converging to a
significantly lower validation loss.

C.2 DOMAIN EVALUATION

C.2.1 MATH

Dataset chosen: GSM8K (Grade School Math 8K) introduced by Cobbe et al. (2021b) is a collection
of grade-school level math word problems designed to evaluate multi-step arithmetic and reasoning
ability. The dataset emphasizes chain-of-thought style reasoning where intermediate steps are useful
to arrive at the correct numeric result.

GSM8K is used here as it’s a widely used benchmark for studying reasoning behavior in language
models and for evaluating self-consistency / majority-vote sampling methods. Also, it is not too
difficult, hence used for evaluation on the small models considered.

Prompt–Output Illustration:

# <prefix text (8-shot demos)
provided for context>

Q: John has 3 apples.
He buys 2 more.
How many apples does he have

now?

A: Let's reason step by step.
At the end, give the final

numeric
answer on its own line in

this exact format:
#### <number>
Answer:

# Example reasoning and
output

Step 1: John starts with 3
apples.

Step 2: He buys 2 more.
Step 3: Total apples = 3 + 2

= 5.

#### 5
Answer:

Illustration of the prompt (left) and an example of the expected LLM output (right).

Evaluation Samples Sampling Amount Per
Sample

Max Generation
Tokens

Temperature Top p

100 10 1024 0.7 0.90

(Hyper-Parameters used during Model inference For Evaluation(Self-Consistency)

C.2.2 FINANCE

Dataset chosen: FinanceQA introduced by Mateega et al. (2025) is a curated set of financial
question–answer pairs extracted from company filings (annual reports, balance sheets, and reports). It
supplies queries, short factual answers, and the supporting context passage from the source document
(e.g., a few sentences or table rows). Focus is on numerical output comparison and extraction.

FinanceQA is used for evaluation as it provides a domain-specific “finance + math” evaluation
setting, requiring both factual retrieval and quantitative reasoning.

Prompt–Output Illustration:
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# FinanceQA prompt builder

(context + query)

Context:
<supporting passage from

financial filings>

Question:
<query here>

Answer: The final answer is

Final Answer:

# Example reasoning and
output

Step 1: From the context, the
net profit

margin in 2021 is explicitly
given.

Step 2: The reported margin
is 11.04%.

Final Answer: 11.04%

Illustration of the FinanceQA prompt template (left) and an example expected LLM output (right).

Evaluation Samples Sampling Amount Per
Sample

Max Generation
Tokens

Temperature Top p

100 10 512 0.7 0.95

(Hyper-Parameters used during Model inference For Evaluation(Self-Consistency))

C.2.3 MEDICAL

Dataset chosen: PubMedQA introduced by Jin et al. (2019) is a dataset of biomedical research
questions paired with contexts and a short (yes/no) final decision derived from biomedical articles.
Each sample often contains an abstract or supporting passage and a question about the clinical finding;
the ground truth is typically a binary decision. Sometimes if LLM is highly undecisive the output of
LLM is assumed ’None’

We use PubMedQA because it is a widely-used , biomedical QA benchmark for evaluating concise,
high-precision yes/no answers in the clinical/research domain.

Prompt–Output Illustration:

# PubMedQA prompt builder (
question + context)

Context:
<concatenated context sentences

or abstract>

Question: <question here>

Based on the context above,
answer the question

with exactly 'yes' or 'no' (
lowercase),

and do NOT provide any
explanation.

Answer:

Illustration prompt template used Sample output is simply Yes/No , In case Bad output Then None is interpreted
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Evaluation Samples Sampling Amount Per
Sample

Max Generation
Tokens

Temperature Top p

250 1 512 0.0 1.00

(Hyper-Parameters used during Model inference For Evaluation (Greedy))

C.2.4 SCIENCE

Dataset chosen: SciQ introduced by Welbl et al. (2017) is a data set of multiple choice science questions that
contains short grade-level science questions with four answer options (A–D) and optional supporting facts. Each
example includes a question, four candidate answers, and (sometimes) a support passage.

SciQ is used because it provides well-formed multiple-choice prompts suitable for evaluation,it is easy for a
small LLM hence it is used.

Prompt–Output Illustration:

// SciQ prompt builder (
question + options)

Question:
<question text>

Options:
A. <option A>
B. <option B>
C. <option C>
D. <option D>

Answer with the letter of the
correct option only (A, B,
C, or D).

Do NOT provide any explanation.
Answer:

Answer:B

Illustration: left = prompt template used for SciQ , model output is a single letter A/B/C/D.

Evaluation Samples Sampling Amount Per
Sample

Max Generation
Tokens

Temperature Top p

200 1 256 0.0 1.00

(Hyper-Parameters used during Model inference For Evaluation(Greedy))

C.2.5 PYTHON

Dataset chosen: HumanEvalPack (multilingual / Python subset) Introduced by Chen et al. (2021) is a collection
of programming problems with formal problem descriptions, expected function signatures, and test harnesses.

Inputs in the form of coding questions are provided, and the model is expected to output corresponding code
which is executed against test cases. The accuracy used for evaluation is pass@k, a standard metric for
code-generation tasks, rather than simple string-matching accuracy.

HumanEvalPack is used here because it provides language-specific (C++/Python/etc.) prompts with a standard
”declaration + examples + tests” scheme. The problems are relatively simple, making this dataset ideal for
comparing small models on code generation and correctness.

Prompt–Output Illustration:
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# Problem:
<prompt_or_instruction>

# Signature:
<signature>

# Docstring:
<docstring>

# Examples:
<example_test>

Write the complete Python
function

implementation only.
Output only valid Python code

for the
function (no explanation, no

tests,
no surrounding markdown).
Make sure the function name and
signature match the signature

above.

Implementation:

# Example implementation for:
# def add(a: int, b: int) ->

int

def add(a: int, b: int) -> int:
# simple implementation
return a + b

Illustration of the Python prompt template (left) and an example expected LLM output (right).

Evaluation Samples Sampling Amount Per
Sample

Max Generation
Tokens

Temperature Top p

100 10 1024 0.7 0.95

(Hyper-Parameters used during Model inference For Evaluation(Self-Consistency))

C.2.6 CPP

Dataset chosen: HumanEvalPack (multilingual / C++ subset) Introduced by Chen et al. (2021) is a collection
of programming problems with formal problem descriptions, expected function declarations/signatures, and test
harnesses .Inputs in the form of coding questions are provided, and the model is expected to output corresponding
code which is compiled against test cases.

HumanEvalPack is used here because it provides language-specific (C++/Python/etc.) prompts with a standard
”declaration + examples + tests” scheme. The problems are relatively simple, making this dataset ideal for
comparing small models on code generation and correctness.

Prompt–Output Illustration:
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// Problem:
<prompt_or_instruction>

// Declaration:
<declaration>

// Docstring / Notes:
<docstring>

// Examples:
<example_test>

Write the C++ implementation
only

(no explanation, no tests, no
surrounding markdown).

Include necessary #include
lines if needed.

Ensure function name and
signature match the
declaration above.

Implementation:

#include <bits/stdc++.h>
using namespace std;

// Example implementation for:
int add(int a, int b)

int add(int a, int b) {
// simple implementation
return a + b;

}

Illustration of the C++ prompt template (left) and an example expected LLM output (right).

Evaluation Samples Sampling Amount Per
Sample

Max Generation
Tokens

Temperature Top p

100 10 1024 0.7 0.95

(Hyper-Parameters used during Model inference For Evaluation(Self-Consistency))

D EXPERIMENTAL SETUP

D.1 FINE TUNING

All experiments were run on NVIDIA H100 GPUs, using PyTorch and the Hugging Face ‘transformers‘ and
‘peft‘ libraries. To maximize computational throughput, the model was JIT-compiled using ‘torch.compile()‘. A
fixed set of hyperparameters, detailed in Table 7, was used across all experiments to ensure fair comparison.
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Table 7: Common hyperparameters for all fine-tuning experiments.

Parameter Value

Training Configuration

Optimizer AdamW
Learning Rate 1× 10−3

Batch Size 8
Epochs (Stage 1 Mapping) 10
Epochs (Stage 2 Validation) 3
Seed 42
Precision ‘bfloat16‘

LoRA Configuration

Rank (r) 16
Alpha (α) 32 (2× r)
Dropout 0.05
Target Modules (Attn) q proj, k proj, v proj, o proj

Target Modules (MLP) gate proj, up proj, down proj

D.2 CAUSAL INTERVENTION

For causal intervention we use specific prompts on Python and C++ that follow the same format. It is ensured
that the prompts differ with most 1 tokens at the exact same spot. This reduces noise and makes the model’s
output predictable.

C++ Prompt:
Write a short function in C++ that returns
the n-th Fibonacci number.\nRespond
with code only.\n```

Python Prompt:
Write a short function in Python that returns
the n-th Fibonacci number.\nRespond
with code only.\n```

The ``` at the end prompts the model to output ”cpp” or ”python” to conform to markdown conventions and
thus also forcing the model to focus on domain specific information. Both prompts also ask the model to perform
the same task but in different languages. This eliminates all unknown variables regarding linguistics and content
of the task itself, so the differentiating point is the language used only.

For our experiments we use 100 such sample prompt pairs on all 4 models. The top 5 layers and bottom 5 layers
are selected according to ranking by Fisher score metric for visualizing the contrasting behavior. Token sets are
generated by reverse intervention process (See E.2) and used to compute Delta Bias values.

D.3 PROBING ANALYSIS

In addition to Fisher Separability and Maximum Mean Discrepancy (MMD), we also evaluated probing sep-
arability using other metrics such as classification probing accuracy, cosine similarity, and V-bits. However,
for high-level abstraction tasks such as Domain Separability, the results across layers were not clearly dis-
tinguishable. This arises because, in such tasks, the points in the activation hyperspace are widely dispersed.
Consequently, strong metrics such as V-bits or probing classification accuracy can easily separate these spread-
out representations, making them less informative for fine-grained layer-wise analysis. In contrast, weaker
metrics such as Fisher separability and MMD are more useful in these cases, as they provide more sensitive
distinctions when the data is already well separated.

On the other hand, for low-level abstraction tasks such as Concept-level Separability, the points in the activation
hyperspace are closely packed. In these scenarios, strong metrics such as V-bits prove more effective, yielding
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clearly distinguishable results across layers. This observation is consistent with findings reported in Ju et al.
(2024b).

E EXTENDED DISCUSSION

E.1 HYDRA EFFECT

The Hydra Effect describes a form of self-repair capability present in LLMs. As described by McGrath et al.
(2023), it refers to the mismatch between a layer’s apparent contribution (measured by projecting its activations
through the unembedding mechanism, ∆unembed) and its functional importance (measured by ablating the layer,
∆ablate). We expect the ablation to reduce the model’s confidence proportionally to its apparent contribution,
but downstream layers reconstruct the corrupted signal so that

∆ablate,l < ∆unembed,l

During interventions, the KL divergence is lower for early layers with high fisher score due to this reason since
the intervention done is reverted to some extent by downstream layers.

E.2 CHARACTERISTIC TOKENS

The process of selecting characteristic tokens is derived from the same causal intervention process done in
reverse. Instead of finding layers that do the most change to specific tokens, we find tokens that are most sensitive
to interventions on all layers. This process is coined as the reverse causal intervention on a model.

When we do an intervention on a single layer from one domain to another, the tokens of the new domain are
shifted up in probability. The overall shift across the vocabulary is averaged across all layers and the Top-k
”promoted” tokens are saved in a list for the intervening dataset. For example, we have found when intervening
C++ prompts with Python activations, tokens such as def , import and python are promoted. These form the
characteristic token set for Python and this set is used in our causal intervention experiments further on.

E.3 DELTA BIAS

Let V be the entire vocabulary of the model. We denote the probability associated with a subset of vocabulary
S ⊂ V as P (S|x) =

∑
i∈S p(i|x) with a prompt x. Suppose we perform the intervention xA

l←− xB

where activations of prompt of domain B are inserted into the forward pass of A at layer l. Before intervention,
Pbase(SA|xa) and Pbase(SB |xa) denote the probabilities of characteristic tokens of A and B before intervention,

and Pswap(SA|xA
l←− xB) and Pswap(SB |xA

l←− xB) as the probabilities of the set of characteristic tokens of A
and B after intervention. The Bias present in the probability distribution is defined as Bias = P (SB)−P (SA).
This represents the model’s preference on predicting the intervening subset of tokens.

Biasbase(xA) = Pbase(SB |xA)− Pbase(SA|xA)

Biasswap(xA
l←− xB) = Pswap(SB |xA

l←− xB)− Pswap(SA|xA
l←− xB)

∆Bias(A l←− B) = ExA∼A,xB∼B

[
Biasswap(xA

l←− xB)− Biasbase(xA)
]

In our results, we use the convention for when A
l←− B is done, we plot bias with a positive sign, and when

we do intervention B
l←− A, we plot bias with a negative sign to preserve perspective with respect to the set of

characteristic tokens B. So, all bias computations are visualized as the shift in preference of B over A.
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