
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISSECTING ATTENTION AND MLP ROLES: A STUDY
OF DOMAIN SPECIALIZATION IN LARGE LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) perform well across diverse domains such as
programming, medicine, and law, yet it remains unclear how domain information is
represented and distributed within their internal mechanisms. A key open question
is the division of labor between the Transformer’s core components: self-attention
and MLP layers. We address this question through a mechanistic study that
dissects their roles by integrating three complementary analyses: representation
separability via probes, parameter change under adaptation, and causal effects
from activation swaps. We propose a clear division of labor: attention layers
route domain identity, while MLP layers implement domain-specific computation.
Causal interventions strongly support our claims. For instance, swapping attention
activations at specific mid-depth layers (e.g., for Python↔ C++) reliably shifts
the next-token distribution, whereas layers with low domain separability have
a negligible effect. In contrast, while finetuning, MLP layers exhibit relatively
larger weight changes, consistent with domain-specific knowledge being stored
there. This pattern holds consistently across four models and six domains. In
a supplementary experiment, we demonstrate that selecting a few components
highlighted by our study can accelerate domain adaptation, indicating the potential
for more focused fine-tuning.

1 INTRODUCTION

Large Language Models (LLMs) master diverse domains, yet the internal mechanisms governing
this domain representation remain an open question. How does the single monolithic network of
blocks pivot from one domain’s specialization to another? What is the division of labor between the
Transformer’s core components – the self-attention and the MLP layers? In this paper, we address
these questions through a causal, layer-level analysis and propose a functional specialization that
holds across models and domains.

The field of mechanistic interpretability has developed powerful methods for such analysis, pro-
gressing from correlational analysis to causal interventions. Initial probing (Alain & Bengio, 2018;
Tenney et al., 2019) analyses used simple neural classifiers to differentiate the outputs of a layer for
varied inputs. A highly separable representation of domain identity, for example, would imply that a
component contains domain-specific information. The contribution can be quantified by calculating
the level of separation in the higher-dimensional space through separability scores, like v-usable
information (Ethayarajh et al., 2022) , Xu et al. (2020) , Ju et al. (2024b) Fisher separability Fisher
(1936), maximum mean discrepancyGretton et al. (2008) etc. Although these methods can show
where information separates, but not if or how the model uses it for downstream tasks.

Subsequently, the focus shifted towards establishing causality by reverse-engineering the circuits
(Elhage et al., 2021) for specific behaviors, through methods like activation patching (Meng et al.,
2023a) Wang et al. (2022) and zero-out testing (Dai et al., 2021). This research has yielded an
important result: MLP layers have been characterized as the primary locus of holding factual
knowledge. Concurrently, attention mechanisms are understood as routers, moving and aligning
information throughout the context, enabling capabilities like in-context learning (Olsson et al.,
2022).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A parallel line of evidence comes from studying parameter adaptation. Research on techniques
like Low-Rank Adaptation (LoRA) has shown that model behavior can be improved for targeted
adaptation by modifying only a small subset of weights (Hu et al., 2022) Zhang et al. (2023). However,
a critical gap remains. These three powerful lenses—representational, causal, and adaptational—have
largely been applied in isolation and to micro-scale tasks (e.g., factual recall, syntactic phenomena).
It is unknown whether the “attention-as-router, MLP-as-compute” principle scales to govern how
models handle high-level, abstract domains like programming or medicine. Furthermore, no existing
framework exists to synthesize these three orthogonal sources of evidence into a single, coherent map
of a model’s functional architecture.

Our work bridges this gap. In our study, we triangulate the function of components of each layer by
asking: (1) Is domain information present in its activations? (2) How much do the layer parameters
change during adaptation? (3) Does the layer have a causal effect on domain-specific output? The
answers to which lie in representational probing, fine-tuning deltas and activation swapping respec-
tively. Here, we qualify that domain control is complex and distributed; no single component type
exclusively handles all aspects. Our analysis reveals relative differences in component contributions
rather than absolute divisions. In summary, our contributions are:

• A Unified Methodological Study for Domain Analysis : We propose and validate three separate
sources of evidence - representational separability, parameter changes under adaptation, and causal
interventions - to produce a robust, layer-level study of a model’s domain-handling mechanisms.

• Evidence for a Scaled Division of Labor in Abstract Tasks : We provide direct evidence that the
“attention as router, MLP as memory” principle, previously observed in low-level factual tasks, also
governs how models handle high-level, abstract capabilities like domain control. This suggests it is
a fundamental organizing principle of the Transformer architecture.

• Demonstration of Mechanistically-Informed, Parameter-Efficient Fine-Tuning : We show that
our mechanistic map can be used to have direct practical utility. Fine-tuning a small subset of
components identified by our study as causally important yields equally satisfactory performance,
while being trained on much fewer parameters on domain-specific benchmarks compared to
fine-tuning the entire model.

2 PROPOSED METHODOLOGY

Our work examines the roles of attention and MLP components across layers through/via three
perspectives: representational patterns (Probing analysis), parameter changes (Fine tuning analysis),
and causal interventions.

2.1 PROBING ANALYSIS

The objective of this experiment is to identify which layers contain the most linearly separable
information about domain identity. Classical classification accuracy saturated at around 100% across
all layers, providing insufficient discriminative power to determine where domain information is most
concentrated. We instead quantify the degree of separability using distributional metrics. A high
degree of separability indicates that a layer’s activations serve as a strong signal for the domain, a
necessary condition for a component involved in routing or high-level control.

To quantify where domain identity is explicitly represented, we compute pairwise separability between
domains for each layer and component using two complementary statistics: a scalar Fisher ratio
Fisher (1936) and RBF-kernel Maximum Mean Discrepancy (MMD) Gretton et al. (2008). Let
X ∈ RN×D be pooled activations for a given (layer, component) and y ∈ {1, . . . ,K}N the domain
labels. Denote by Xi the rows of X with label i, Ni = |Xi|, and µi =

1
Ni

∑
x∈Xi

x.

Fisher : We report the scalar Fisher score between domains i and j:

Fisherij =
∥µi − µj∥2∑D

d=1 Var(Xi,·d) +
∑D

d=1 Var(Xj,·d) + ε
,

with ε = 10−6 for numerical stability. This ratio is high when domain means are well-separated
relative to within-domain variance, indicating linear discriminability.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

MMD (RBF). Using an RBF kernel kγ(x, x′) = exp(−γ∥x− x′∥2) we compute

MMD2
kγ
(Xi, Xj) =

1

N2
i

∑
a,b∈Xi

kγ +
1

N2
j

∑
a,b∈Xj

kγ −
2

NiNj

∑
a∈Xi

∑
b∈Xj

kγ ,

and report MMDij =
√
max(0,MMD2). The kernel bandwidth γ is set by the median heuristic on

pairwise distances.

Activations are extracted by registered forward hooks at two probe points per block: post-attention
and post-MLP (before residual addition). (for details on pipeline see Appendix A.2). We display only
Fisher and MMD scores because they capture complementary linear (mean-vs-variance) and nonlinear
(higher-moment) distributional differences and provide the clearest layer-wise differentiation in our
experiments. Rather than exhaustively reporting all

(
K
2

)
pairwise scores, we compute a 1-vs-all

statistic for each domain. For a domain Di, activations from Di are compared against the pooled
activations from all other domains

⋃
j ̸=i Dj . This yields a per-layer, per-component separability

score Si,ℓ indicating how well layer ℓ distinguishes Di from the rest of the corpus. To compare
components on the same scale, we z-normalize scores across layers for each domain. Additional
metrics (v-usable bits, cosine similarities, accuracy) are analyzed in Appendix D.3 for completeness.

2.2 FINE-TUNING ANALYSIS

Probing identifies where domain identity is separated in activations; the complementary question
is where parameters undergo adaptation. We answer this by measuring per-layer parameter updates
under fine-tuning and by testing whether the layers that change most are also the layers that suffice
for adaptation.

We use LoRA-style fine-tuning for targeted, parameter-efficient adaptation. For a dense weight
W ∈ Rn×m at layer ℓ the adapted weight is W +∆Wℓ with ∆Wℓ = α

r BℓAℓ where Aℓ ∈ Rr×m,
Bℓ ∈ Rn×r, r is the adapter rank and α is a scalar scaling. We summarize a layer’s adaptivity by the
Frobenius norm of the effective update

Sℓ = ∥∆Wℓ∥F ,

and aggregate multiple adapter tensors that belong to the same Transformer block by summation:
Sblock
ℓ =

∑
t∈Tℓ
∥∆Wt∥F . A high Sℓ indicates that the parameters in ℓ layer are a primary site for

storing new, domain-specific computation learned during adaptation Gupta et al. (2025).

We run three fine-tuning regimes: (i) full-model fine-tuning (baseline), (ii) LoRA targeted only
to attention projection matrices (e.g., q, k, v, o per block), and (iii) LoRA targeted only to MLP
projection matrices (e.g., gate/up/down). For domain perplexity evaluation, we additionally fine-
tune only the top 1 and top 3 layers under each of these regimes. All fine-tune runs use fixed
hyperparameters (epochs, learning rate, batch size, LoRA rank) and multiple random seeds to enable
statistical comparison. (See Appendix D.1)

2.3 CAUSAL ACTIVATION SWAPPING

Probing and fine-tuning establish where domain information is present and where the optimizer writes
it; to show that a layer’s activations actually cause domain-directed generation, we perform activation
swapping. The experiment asks: if we transplant the hidden state from a donor prompt in domain Db

into a recipient prompt in domain Da, does the model’s next-token distribution shift toward Db?

We construct matched prompt pairs (xa ∈ Da, xb ∈ Db) that share a template and differ only in
domain-specific tokens (e.g., “Write a short function in {Python/C++} that returns the n-th Fibonacci
number. Respond with code only.”). We focus our causal analysis on the C++ and Python domain
pair as our primary case study. This pair offers several methodological advantages: (1) structural
prompt similarity enables precise matched comparisons, (2) distinct tokenization patterns provide
clear directional indicators, and (3) both domains require similar computational complexity, isolating
domain identity from task difficulty effects. For a chosen layer ℓ and the first code token, we:

1. run a forward pass on the donor xb and save donor activations adonorℓ (t⋆);

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2. run a forward pass on the recipient xa but, at layer ℓ and position t⋆, replace the recip-
ient activation with adonorℓ (t⋆) and continue inference to obtain the patched distribution
pswap(ℓ)(· | xa);

3. repeat across many donor–recipient pairs and average metrics (see D.2).

Metrics. We quantify the effect of a swap with two complementary statistics that capture magnitude
and directionality.

(1) KL Divergence. For a donor domain Db and recipient domain Da we define

KLswapℓ(Da ← Db) = Exa∼Da

[
KL

(
p(· | xa) ∥ pswap(ℓ)(· | xa)

)]
,

where p(· | xa) is the original next-token distribution and pswap(ℓ)(· | xa) is the patched distribu-
tion. KLswapℓ measures how strongly the swap perturbs the model’s predictive distribution at the
intervention point.

(2) Delta bias. We define domain-token sets Sa, Sb (e.g., Python: {def, import, :, lambda,
print}; C++: {;, ::, std, cout, #, {}}). For a prompt xa, let P (S|x) be the probability
mass on tokens S. Bias toward Db is Bias(x) = P (Sb|x)− P (Sa|x) We measure the change due to
intervention as

∆Bias(Da
ℓ←− Db) = E

[
Biasswap(xa

ℓ←− xb)− Biasbase(xa)
]
.

Positive values indicate a shift toward the donor domain Db, since bias is always computed as
preference of Db over Da. For complete details, see Appendix E.3

KL captures whether an intervention meaningfully alters the model’s beliefs; the domain-token Shift
tests whether the alteration is directionally consistent with the donor domain. Together they provide
strong, local causal evidence that activations at layer ℓ not only correlate with domain identity but
can drive domain-appropriate generation when transplanted into another context. The experimental
conditions ensure that trivial scale differences do not drive observed effects. For more implementation
details, see Experimental Setup D.2

3 RESULTS AND DISCUSSION

Our investigation spans six domains: Medicine, Finance, Science, Mathematics, C++, and Python,
and on four LLMs: Llama 3.2 3B, Llama 1B, Gemma 3 4B, and Gemma 3 1B (Grattafiori et al., 2024)
(Team et al., 2025).For more details on datasets used, see Appendix B. The following discussion is
for the Llama 3.2 3B model, which consists of 27 layers, each with an MLP head and an attention
mechanism. For results on other models, see Appendix A.

3.1 WHERE DOMAIN KNOWLEDGE IS SEPARATED?

Figure 1 shows the 1-vs-all Fisher and MMD separability traces across layers for six domains,
z-normalized to highlight relative variation in depth. Both Attention and MLP components exhibit
non-uniform separability: some layers carry markedly stronger domain identity than others. While the
overall trends are similar, the precise peaks do not fully coincide between Attention and MLP. This
suggests that both components participate in domain representation, but their strongest contributions
arise at slightly different depths.

After z-score normalization, Fisher and MMD traces nearly completely overlap across layers. This
indicates that both linear mean-based separation (Fisher) and higher-moment distributional divergence
(MMD) identify the same loci of domain information. Thus, the observed peaks are not artifacts of a
particular separability metric, but reflect genuine structural patterns in the residual stream.

To compare components, Table 1 reports the mean and maximum 1-vs-all separability scores across
layers. A clear pattern emerges. The mean separability is comparable between the Attention and MLP
layers across all six domains. This suggests that domain-specific information is broadly and similarly
represented in the activations of both components throughout the network. The maximum separability,
however, tells a different story. For 5 out of 6 domains, the maximum Fisher and MMD scores are
higher for Attention layers than for MLP layers. This indicates that while domain information is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 6 12 18 24
Layer

-1.50

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 6 12 18 24
Layer

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(a) C++

0 6 12 18 24
Layer

-1.50

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 6 12 18 24
Layer

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(b) Python

0 6 12 18 24
Layer

-1.50

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 6 12 18 24
Layer

-1.50

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(c) Math

0 6 12 18 24
Layer

-1.50

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 6 12 18 24
Layer

-1.50

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(d) Medical

0 6 12 18 24
Layer

-1.50

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 6 12 18 24
Layer

-1.50

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(e) Science

0 6 12 18 24
Layer

-1.50

0.00

1.50

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 6 12 18 24
Layer

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(f) Finance

Figure 1: Separability scores across six domains. Each column displays Attention (top) and MLP (bottom)
blocks for one domain.

Table 1: Mean and maximum 1-vs-all separability scores for Attention and MLP layers across six
domains. Higher values indicate greater domain specificity for that component.

Domain Attention MLP

Fisher MMD Fisher MMD
Mean Max Mean Max Mean Max Mean Max

CPP 0.935 2.029 0.530 0.678 0.977 1.549 0.532 0.630
Python 0.868 1.783 0.519 0.660 0.912 1.356 0.520 0.615
Math 0.837 1.370 0.551 0.646 0.873 1.015 0.554 0.603
Medical 1.009 2.343 0.586 0.715 1.412 1.983 0.656 0.704
Science 0.849 1.528 0.550 0.662 0.960 1.123 0.567 0.615
Finance 1.696 2.668 0.677 0.741 2.140 3.158 0.726 0.767

generally available, it becomes highly concentrated at specific bottleneck layers within the Attention
mechanism. For example, for the C++ domain, the most separable Attention layer (max Fisher=2.029)
is 31% more distinct than the most separable MLP layer (max Fisher=1.549).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 8 16 24
Layer

24

32

40

48

W
F

/
W

F

CPP

Component(s) Tuned
Attention
Mlp
All

0 8 16 24
Layer

24

32

40

48

W
F

/
W

F

Python

Component(s) Tuned
Attention
Mlp
All

0 8 16 24
Layer

30

40

50

60

70

W
F

/
W

F

Math

Component(s) Tuned
Attention
Mlp
All

0 8 16 24
Layer

32

40

48

56

W
F

/
W

F

Medical

Component(s) Tuned
Attention
Mlp
All

0 8 16 24
Layer

32

40

48

56

64

W
F

/
W

F

Science

Component(s) Tuned
Attention
Mlp
All

0 8 16 24
Layer

10

20

30

40

50

W
F

/
W

F

Finance

Component(s) Tuned
Attention
Mlp
All

Figure 2: Change in the weights on Lora-based fine-tuning, separately on (1) Entire model, (2) Only
Attention Layers, and (3) Only MLP Layers

3.2 ADAPTATIONAL ANALYSIS POINTS TO MLP LAYERS

While probing analysis suggests concentrated signals in attention layers, adaptational analysis reveals
a different picture. Figure 2 plots the average normalized weight change (∥∆W∥/∥W∥) per layer for
three LoRA fine-tuning regimes: targeting the full model, only MLP components, or only attention
components.

The magnitude of weight change in MLP-only fine-tuning is substantially and consistently higher
than in attention-only fine-tuning. This indicates that MLP layers are the primary locus where new,
domain-specific computation is written during adaptation to a specific domain. The results are
unambiguous across all six domains. This implies that while attention layers had concentrated signals
due to higher peaks of separability in specific layers, adapting to a new dataset always changes the
MLP layers more, proposing that domain-specific knowledge is stored in the latter.

3.3 VALIDATING THE PROPOSED LAYER MAP VIA TARGETED FINE-TUNING

Before performing causal interventions, we first seek to validate the practical utility of our proposed
layer map. If the layers, either those with the largest parameter deltas (primarily MLPs) or those
with the most separable representations (peak attention layers), are indeed the most important for
adaptation, then fine-tuning only these layers should achieve satisfactory results in comparison to
fine-tuning the entire model. We test this hypothesis by fine-tuning only the top-1 and the top-3 layers
(for both MLP and Attention) with the highest separability scores and comparing their performance on
the respective domain’s specific perplexity task against fine-tuning the full model. For every domain,
the domain perplexity was devised using a benchmark evaluation method, normalized between 0 and
1. Details of domain-specific evaluation are mentioned in Appendix C.2.

Interestingly, the results in Table 2 are even better than expected. Targeted fine-tuning of just the
selected few layers (sometimes even 1) achieves domain-specific performance that is comparable
to, and in some cases exceeds, that of fine-tuning the entire model, despite using a fraction of the
parameters. For more insights, refer to Appendix C.1. The dataset used for fine-tuning had around
5000-7000 samples, as discussed in B.

It is important to note that due to the small scale of the models and limited fine-tuning data, fine-tuning
can suffer from some forgetting of general capabilities. However, the relative performance gain
across all fine-tuned results demonstrates that our layer importance map successfully identifies the
most critical components for specialization. This provides strong evidence that the map is not just
descriptive but predictive, highlighting its potential for interpretable fine-tuning strategies.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

PT MLP Attn Both Top-1 MLP Top-1 Attn Top-3 MLP Top-3 Attn

Math 0.07 0.03 0.00 0.02 0.08 0.07 0.12 0.03
Science 0.82 0.73 0.80 0.62 0.76 0.76 0.86 0.66
CPP 0.31 0.06 0.05 0.04 0.01 0.19 0.02 0.41
Python 0.60 0.16 0.36 0.02 0.14 0.57 0.19 0.56
Finance 0.16 0.06 0.05 0.02 0.05 0.05 0.08 0.06
Medical 0.58 0.91 0.84 0.89 0.93 0.30 0.91 0.54

Table 2: Performance of Llama-3.2-3B across domains on that domain-perplexity metric (normalized
between 0 and 1). PT stands for pre-trained model. All the other column names resemble the

components fine-tuned during adaptation.

19 17 20 7 12 11
Layer Index

0.00

0.25

0.50

0.75

1.00

KL
 D

iv
er

ge
nc

e

×10 1

CPP
PYTHON

22 27 20 10 7 6
Layer Index

6.00

3.00

0.00

3.00

6.00

De
lta

 B
ia

s

×10 3

CPP
PYTHON

Llama 3.2 3B - MLP Layer Analysis

17 16 2 12 11 5
Layer Index

0.00

2.00

4.00

6.00

KL
 D

iv
er

ge
nc

e

×10 2

CPP
PYTHON

16 23 17 5 12 8
Layer Index

1.50

0.00

1.50

3.00

De
lta

 B
ia

s

×10 3

CPP
PYTHON

Llama 3.2 3B - Attn Layer Analysis

Figure 3: Analysis of layers in Llama-3B, comparing KL divergence (left) and a Delta Bias (right)
between C++ and Python inputs. The layers on the left section of both graphs are the top-ranked
layers based on Fisher score, while the layers on the right section are layers with the lowest Fisher
score.

3.4 CAUSAL SWAPPING REVEALS ATTENTION AS DOMAIN ROUTER

Probing identified separable domain representations, and adaptation revealed MLPs as the primary
locus of parameter change. To test which components actually cause domain-directed behavior, we
use activation swapping in our C++/Python case study.

We measure the overall magnitude of the intervention’s effect using KL divergence as shown in
figure 3. For components in layers with high Fisher separability, swapping activations from either
an attention block or an MLP block induces a significant relative perturbation in the next-token
distribution, resulting in high KL divergence. This confirms that both components in these layers are
computationally active and influential on the final output. Conversely, interventions on components
in low-Fisher layers produce a negligible KL divergence, confirming that the effect is localized to the
information-rich parts of the network. Early layers occasionally exhibit high Fisher but low causal
effect (e.g., Attention layer-2), suggesting the occurrence of “hydra” effect McGrath et al. (2023)
(Discussion E.1) here.

However, a disruptive effect does not imply directional control. To test if a layer steers the output
towards a specific domain, we measure the shift in probability mass towards the donor domain’s
characteristic tokens (e.g., Python tokens like def after a Python→C++ swap). For more details,
see Discussion E.2. When swapping the output of a high-Fisher attention layer, the effect is strong
and, while being highly variational, consistently directional. Swapping Python activations into
a C++ prompt increases the probability of Python tokens, and vice-versa. This provides direct
causal evidence that these attention layers are not just active, but are providing a specific steering

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

signal for domain identity. In contrast, swapping the output of a high-Fisher MLP layer does not
produce a consistent directional shift. While the intervention is disruptive (high KL), the effect on
domain-specific token probability (Delta Bias) is centered around zero, albeit with high variance.
This suggests that while the MLP is performing critical, domain-relevant computations, it is not the
source of the high-level control signal that dictates “we are in the Python domain now.”

On bringing together these observations, we can conclude that the MLP layers change most during
fine-tuning because they are the computational workbenches where domain-specific knowledge (e.g.,
library functions, syntax patterns) is implemented. Intervening on them is disruptive because it
interrupts this computation. However, it is the peak attention layers that act as the causal routers.
Their activations, though less plastic during fine-tuning, carry the high-level steering signal that
directs the downstream computational machinery of the MLPs.

4 DISCUSSION

Our investigation began with a foundational question: how does a monolithic network manage
distinct domains? By analyzing the three lenses as proposed, we have moved beyond simple
observation to a causal, mechanistic explanation. Our results resolve the apparent contradiction
between representational and adaptational analyses, revealing a clear and consistent division of
labor between the Transformer’s core components. Here, we synthesize these findings, discuss their
implications for the field, and outline the limitations of our work to chart a path for future research.

Transferability across models. Our findings are not confined to a single checkpoint. We executed
all analyses on LLaMA-1B, LLaMA-3.2B, and Gemma 3-1B/4B (See A). The overall pattern holds:
attention layers exhibit localized, high-separability peaks that act as causal routers, while MLP
layers accumulate the bulk of adaptation updates. Interestingly, Gemma models display sharper,
more localized separability in causal swap experiments, with a single attention layer causing large
directional effects. This acute localization of causal influence suggests a more specialized, hub-like
routing mechanism within Gemma’s architecture, suggesting that architectural choices, such as logit
soft-capping or normalization, may influence the concentration of domain representation. These
findings highlight the need to explore how such architectural decisions affect causal control and
domain adaptation, offering a promising direction for future research.

A coherent mechanistic picture. Taken together, our three experiments point to a consistent proposi-
tion. Probes show that both Attention and MLP layers encode domain information, but Attention
peaks are sharper and more localized. Adaptation analysis shows that MLPs absorb the majority of
parameter changes when learning a new domain, functioning as workbenches for computation. Causal
swaps reveal that Attention layers provide clean, directional control: transplanting their activations re-
liably shifts token probabilities toward the donor domain. In the domain level of abstraction, attention
acts as the router, steering domain identity, while MLPs implement the downstream computations
that realize domain-specific behavior.

Implications. This proposal has two important implications. First, it provides a layer-level map
of where to look for domain control in Transformers, guiding mechanistic interpretability beyond
micro-circuits to higher-level behaviors. Second, it has practical value: we highlight the potential to
identify a small set of components whose targeted adaptation suffices to replicate full-model domain
tuning, offering a mechanistically-grounded complement to parameter-efficient fine-tuning.

Limitations and caveats. Our study has several limitations. (i) We focus our causal analysis on
C++ vs Python due to their structural similarity and distinct token sets; other domains are noisier and
require more refined prompt design. (ii) We adopt a 1-vs-all separability framework, which simplifies
analysis but may collapse informative pairwise distinctions between domains. (iii) Our models are
relatively small and fine-tuned on modest datasets; effects may differ in larger-scale LLMs with
broader training. (iv) Early-layer separability peaks (e.g., A2) did not always yield causal effects,
consistent with the hydra effect, where distributed signals do not translate into single-point steering
handles. (v) Finally, our causal swaps measure immediate next-token shifts; long-horizon effects and
global coherence remain to be tested.

Future directions. These caveats suggest clear paths forward. Future work should extend our work
to larger and more diverse models, refine domain prompts beyond code pairs, and analyze per-head

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

specialization within the identified router layers. A natural next step is to connect layer-level maps to
explicit circuit motifs, integrating coarse-grained and fine-grained mechanistic interpretability. On
the practical side, our study could be used to guide efficient domain adaptation or controlled editing,
narrowing the intervention space to the components that matter most.

5 RELATED WORK

Representation analysis : The use of simple linear classifiers, or probes, to correlate internal
activations with linguistic properties marked an early effort to map knowledge in neural networks
(Alain & Bengio, 2018; Tenney et al., 2019). This method was quickly refined in response to critiques
that high accuracy does not guarantee task-relevance, leading to the development of control methods
and more sophisticated layer-wise analyses of information gain (Hewitt & Liang, 2019; Ravichander
et al., 2020; Kunz & Kuhlmann, 2022). Applied to contemporary LLMs, these refined techniques
have revealed clear knowledge hierarchies: the “Concept Depth” hypothesis posits that complex
concepts are processed in deeper layers (Jin et al., 2024), while abstract traits like personality are
localized to the middle-to-upper layers (Ju et al., 2024a). The search for greater precision has led to
techniques like sparse probing for isolating the specific neurons responsible for a concept (Gurnee
et al., 2023), and has connected analysis to action by using probe results to guide targeted edits on
model behavior (Li et al., 2024).

Causal interventions: To move from correlation to causation, a central method is activation patching:
a family of techniques that swap activations between inputs to measure their causal effect (Vig et al.,
2020; Geiger et al., 2021; Heimersheim & Nanda, 2024). Its application to model editing began with
locating and updating single facts via ROME (Meng et al., 2022), a process later scaled to thousands
of facts with MEMIT (Meng et al., 2023b) and made more efficient by SaLEM (Mishra et al., 2024).
The scope of such causal analysis has since expanded beyond discrete facts, used to map the locality
of categorical knowledge (Burger et al., 2024) and to reverse-engineer entire computational circuits
’in the wild’ (Wang et al., 2022).

Functional Specialization of Transformer Components : Causal analysis reveals a functional
specialization between a transformer’s primary sub-layers. MLP layers are established as key-value
memories that store factual knowledge (Geva et al., 2021), a view substantiated by causal editing
(Meng et al., 2022) and shown to hold in multilingual contexts (Fierro et al., 2023). Conversely,
attention mechanisms act as dynamic routers, moving information through the residual stream (Elhage
et al., 2021; Olsson et al., 2022). This simple dichotomy has evolved into a more nuanced view of
integrated knowledge circuits, with work formalizing how attention filters information for MLPs to
store (Xu & Chen, 2023) and detailing direct Attention-MLP interactions (Yao et al., 2024; Neo et al.,
2024).

Parameter-Efficient Fine-Tuning as a Locus of Knowledge: A parallel line of research frames
Parameter-Efficient Fine-Tuning (PEFT) as a mechanistic diagnostic. While foundational methods
like Adapter-tuning (Houlsby et al., 2019) and LoRA (Hu et al., 2022) were developed for engineering
efficiency, why and where they work has deep mechanistic implications. Analyses suggest LoRA
learns low-rank updates that mimic full fine-tuning (Zhang et al., 2023), and critically, that the efficacy
of these updates is highly dependent on their layer-wise placement (An et al., 2024; He et al., 2022).
This localization principle is further exemplified by methods like LoFiT, which use interpretability to
identify and then fine-tune only a sparse subset of task-critical attention heads (Yin et al., 2024).

6 CONCLUSION

We demonstrate a clear division of labor in Transformers at the high-level scale of complex, real-
world domains: attention layers route domain identity, while MLP layers store domain-specific
knowledge. This work establishes that the “router-compute” principle—previously observed in
low-level tasks—organizes high-level domain specialization across programming, medicine, and
other complex domains. By triangulating probing, adaptation, and causal interventions, we provide a
definitive functional map: attention layers serve as domain routers that causally steer model behavior,
while MLP layers act as domain-specific computational units. This architectural insight provides a
blueprint for more interpretable and efficient model adaptation, advancing our understanding of how
large language models master diverse capabilities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes,
2018. URL https://arxiv.org/abs/1610.01644.

Zhaofeng An, Ziyang Wang, Hong-Kyun Li, and Eun-Kyu Park. Layer-domain control in llms. arXiv
preprint arXiv:2410.15858, 2024.

Christopher Burger, Yifan Hu, and Thai Le. Beyond individual facts: Investigating categorical knowl-
edge locality of taxonomy and meronomy concepts in gpt models. arXiv preprint arXiv:2404.18820,
2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021b. URL https://arxiv.
org/abs/2110.14168.

Damai Dai, Li Dong, Furu Zheng, Yifei Wang, Hao Zhou, Ke Xu, and Furu Wei. Knowledge neurons
in pretrained transformers. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 4683–4695, 2021.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 2021.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with
V-usable information. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 5988–6008. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/ethayarajh22a.
html.

Constanza Fierro, Negar Foroutan, Desmond Elliott, and Anders Søgaard. How do multilingual
language models remember facts? In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 5555–5567, 2023.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):
179–188, 1936. doi: 10.1111/j.1469-1809.1936.tb02137.x.

Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah D Goodman. Causal
abstractions of neural networks. In Advances in Neural Information Processing Systems, volume 34,
pp. 21147–21159, 2021.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5484–5495, 2021.

10

https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://proceedings.mlr.press/v162/ethayarajh22a.html
https://proceedings.mlr.press/v162/ethayarajh22a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vı́tor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Arthur Gretton, Karsten Borgwardt, Malte J. Rasch, Bernhard Scholkopf, and Alexander J. Smola. A
kernel method for the two-sample problem, 2008. URL https://arxiv.org/abs/0805.
2368.

Akshat Gupta, Christine Fang, Atahan Ozdemir, Maochuan Lu, Ahmed Alaa, Thomas Hartvigsen, and
Gopala Anumanchipalli. Norm growth and stability challenges in localized sequential knowledge
editing, 2025. URL https://arxiv.org/abs/2502.19416.

Wes Gurnee, Zizheng Beredo, Yonatan Belinkov, Max Tegmark, and Dimitris Bertsimas. Finding
neurons in a haystack: Case studies with sparse probing. arXiv preprint arXiv:2305.01610, 2023.

Junxian He, Kevin Kwok, Zhibin Zhou, Graham Neubig, and Pengtao Peng. Towards optimal adapter
placement for efficient transfer learning. In International Conference on Learning Representations
(ICLR), 2022. URL: https://openreview.net/forum?id=RxQOKupaui.

Stefan Heimersheim and Neel Nanda. How to use and interpret activation patching. arXiv preprint
arXiv:2404.15255, 2024.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2733–
2743, 2019.

Neil Houlsby, Andrei Giurgiu, Stanisław Jastrzeńbski, Bruna Morrone, Quentin de Laroussilhe,
Alberto Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In Advances in Neural Information Processing Systems, volume 32, 2019.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/0805.2368
https://arxiv.org/abs/0805.2368
https://arxiv.org/abs/2502.19416
https://openreview.net/forum?id=RxQOKupaui

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In International
Conference on Learning Representations (ICLR), 2022.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang,
J. H. Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu,
Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for
top-tier code large language models. 2024. URL https://arxiv.org/pdf/2411.04905.

Mingyu Jin, Qisheng Chen, Xiao Zhang, Jiahua Li, Yequan Liu, Wenyu Liu, Beichen Wang, Zhaofeng
Yang, Shuai Wang, and Yongfeng Zhang. Exploring concept depth: How large language models
acquire knowledge at different layers? arXiv preprint arXiv:2402.13289, 2024.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W. Cohen, and Xinghua Lu. Pubmedqa: A
dataset for biomedical research question answering, 2019. URL https://arxiv.org/abs/
1909.06146.

Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions.
2017.

Tianjie Ju, Zhenyu Shao, Bowen Wang, Yujia Chen, Zhuosheng Zhang, Hao Fei, Mong-Li Lee,
Wynne Hsu, Sufeng Duan, and Gongshen Liu. Probing then editing response personality of large
language models. arXiv preprint arXiv:2405.19522, 2024a.

Tianjie Ju, Weiwei Sun, Wei Du, Xinwei Yuan, Zhaochun Ren, and Gongshen Liu. How large
language models encode context knowledge? a layer-wise probing study, 2024b. URL https:
//arxiv.org/abs/2402.16061.

Jenny Kunz and Marco Kuhlmann. Where does linguistic information emerge in neural language
models? measuring gains and contributions across layers. In Proceedings of the 29th International
Conference on Computational Linguistics, pp. 4976–4988, 2022.

Yufan Li, Zongyi Ji, Huibing Duan, and Anthony Zhou. Probing then editing response personality of
large language models. arXiv preprint arXiv:2404.09849, 2024.

Spencer Mateega, Carlos Georgescu, and Danny Tang. Financeqa: A benchmark for evaluating
financial analysis capabilities of large language models, 2025. URL https://arxiv.org/
abs/2501.18062.

Thomas McGrath, Matthew Rahtz, Janos Kramar, Vladimir Mikulik, and Shane Legg. The hydra
effect: Emergent self-repair in language model computations, 2023. URL https://arxiv.
org/abs/2307.15771.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. In Advances in Neural Information Processing Systems, volume 35, pp.
17359–17372, 2022.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt, 2023a. URL https://arxiv.org/abs/2202.05262.

Kevin Meng, Yonatan Belinkov, and David Bau. Mass-editing memory in a transformer. In Interna-
tional Conference on Learning Representations, 2023b.

Kshitij Mishra, Aniket Singh, Ankur P Parikh, and Anoop Kumar. Correcting language model outputs
by editing salient layers. Findings of the Association for Computational Linguistics: EMNLP 2024,
2024.

Clement Neo, Shay B Cohen, and Fazl Barez. Interpreting context look-ups in transformers: Investi-
gating attention-mlp interactions. arXiv preprint arXiv:2405.02839, 2024.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

13

https://arxiv.org/pdf/2411.04905
https://arxiv.org/abs/1909.06146
https://arxiv.org/abs/1909.06146
https://arxiv.org/abs/2402.16061
https://arxiv.org/abs/2402.16061
https://arxiv.org/abs/2501.18062
https://arxiv.org/abs/2501.18062
https://arxiv.org/abs/2307.15771
https://arxiv.org/abs/2307.15771
https://arxiv.org/abs/2202.05262

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Abhilasha Ravichander, Yonatan Belinkov, and Eduard Hovy. Probing the probing paradigm: Does
probing accuracy entail task relevance? In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, pp. 3109–3119, 2020.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai
Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-
Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar
Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene
Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-
Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne,
Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan
Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy
Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho,
Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma,
Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Noveen
Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton,
Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna,
Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome,
Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Põder, Sijal Bhatnagar,
Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty,
Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov,
Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed,
Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat Black, Nabila Babar, Jessica Lo,
Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris
Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia
Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff
Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-Baptiste
Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin,
Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot. Gemma 3 technical report,
2025. URL https://arxiv.org/abs/2503.19786.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. In Anna
Korhonen, David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 4593–4601, Florence, Italy, July 2019. Association
for Computational Linguistics. doi: 10.18653/v1/P19-1452. URL https://aclanthology.
org/P19-1452/.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating gender bias in language models using causal mediation analysis. In
Advances in Neural Information Processing Systems, volume 33, pp. 12388–12401, 2020.

Kevin Wang, Vatsal Varma, Neel Nanda, Jacob Steinhardt, and Catherine Ebel. Interpretability in the
wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint arXiv:2211.00593,
2022.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions,
2017. URL https://arxiv.org/abs/1707.06209.

Ruichen Xu and Kexin Chen. Filtering with self-attention and storing with mlp: One-layer transform-
ers can provably acquire and extract knowledge. arXiv preprint arXiv:2310.11495, 2023.

14

https://arxiv.org/abs/2503.19786
https://aclanthology.org/P19-1452/
https://aclanthology.org/P19-1452/
https://arxiv.org/abs/1707.06209

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon. A theory of usable infor-
mation under computational constraints. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=r1eBeyHFDH.

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang, Ziwen Xu, Shumin Deng, and Huajun Chen.
Knowledge circuits in pretrained transformers. arXiv preprint arXiv:2404.14358, 2024.

Fangcong Yin, Xi Ye, and Greg Durrett. LoFiT: Localized fine-tuning on LLM representations. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2024.

Zihan Zhang, Ming Li, and Yang Liu. Understanding the mechanism of low-rank adaptation. arXiv
preprint arXiv:2304.01933, 2023.

15

https://openreview.net/forum?id=r1eBeyHFDH

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A RESULTS ON OTHER MODELS

A.1 FINE TUNING ANALYSIS

Stage 1: Comprehensive Adaptational Mapping. The initial stage conducted a broad, component-
wise analysis for each of the six domains independently. To map the division of labor between
Transformer components, we applied LoRA adapters under three distinct regimes:

• Attention-Only: LoRA was applied exclusively to the attention projection matrices
(q proj, k proj, v proj, o proj) in every layer.

• MLP-Only: LoRA was applied exclusively to the MLP projection matrices (gate proj,
up proj, down proj) in every layer.

• Full Model (All): LoRA was applied to all attention and MLP components simultaneously,
establishing a baseline for unconstrained, full-model adaptation.

The primary objective of this stage was to quantify the magnitude of parameter updates for each
component c ∈ {Attn, MLP} at each layer ℓ, measured by the Frobenius norm of the effective weight
change, Sℓ,c = ∥∆Wℓ,c∥F . The results from this analysis provide the data for the adaptational plots
in the main paper (Figure 2) and this appendix.

STAGE 1 RESULTS FOR OTHER MODELS

The adaptational patterns observed in the Llama 3.2 3B model hold consistently across other model
families and sizes, as shown below.

0 5 10 15
Layer

16

24

32

40

W
F

/
W

F

CPP

Component(s) Tuned
Attention
Mlp
All

0 5 10 15
Layer

16

24

32

40

W
F

/
W

F

Python

Component(s) Tuned
Attention
Mlp
All

0 5 10 15
Layer

16

24

32

40
W

F
/

W
F

Math

Component(s) Tuned
Attention
Mlp
All

0 5 10 15
Layer

20

25

30

35

W
F

/
W

F

Medical

Component(s) Tuned
Attention
Mlp
All

0 5 10 15
Layer

18

24

30

36

42

W
F

/
W

F

Science

Component(s) Tuned
Attention
Mlp
All

0 5 10 15
Layer

8

16

24

32

W
F

/
W

F

Finance

Component(s) Tuned
Attention
Mlp
All

Figure 4: Layer-wise magnitude of parameter updates (Sℓ) for Llama 3.2 3B under three LoRA
fine-tuning regimes across six domains.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 10 20 30
Layer

16

24

32

40

W
F

/
W

F

CPP

Component(s) Tuned
Attention
Mlp
All

0 10 20 30
Layer

16

24

32

40

W
F

/
W

F

Python

Component(s) Tuned
Attention
Mlp
All

0 10 20 30
Layer

16

24

32

40

W
F

/
W

F

Math

Component(s) Tuned
Attention
Mlp
All

0 10 20 30
Layer

18

24

30

36

W
F

/
W

F

Medical

Component(s) Tuned
Attention
Mlp
All

0 10 20 30
Layer

16

24

32

40
W

F
/

W
F

Science

Component(s) Tuned
Attention
Mlp
All

0 10 20 30
Layer

4

8

12

16

20

W
F

/
W

F

Finance

Component(s) Tuned
Attention
Mlp
All

Figure 5: Layer-wise magnitude of parameter updates (Sℓ) for Gemma 3 4B under three LoRA
fine-tuning regimes across six domains.

0 8 16 24
Layer

5

10

15

20

W
F

/
W

F

CPP

Component(s) Tuned
Attention
Mlp
All

0 8 16 24
Layer

5

10

15

20

W
F

/
W

F

Python

Component(s) Tuned
Attention
Mlp
All

0 8 16 24
Layer

5

10

15

20

25

W
F

/
W

F

Math

Component(s) Tuned
Attention
Mlp
All

0 8 16 24
Layer

8

12

16

20

W
F

/
W

F

Medical

Component(s) Tuned
Attention
Mlp
All

0 8 16 24
Layer

10

15

20

25

W
F

/
W

F

Science

Component(s) Tuned
Attention
Mlp
All

0 8 16 24
Layer

2.5

5.0

7.5

10.0

12.5

W
F

/
W

F

Finance

Component(s) Tuned
Attention
Mlp
All

Figure 6: Layer-wise magnitude of parameter updates (Sℓ) for Gemma 3 1B under three LoRA
fine-tuning regimes across six domains.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

ADAPTATIONAL NORM ANALYSIS

To dissect the dynamics of targeted adaptation, we compare the norms of LoRA weight updates
(∥∆Wℓ∥F) for the top-3 most-adapted layers across three analytical contexts. The summary tables
aggregate these norms to reveal overarching patterns.

• Avg. Full Run Norm: The average norm of a component group (e.g., Top-3 MLPs) from
the Stage 1 ”Full Model” regime, where all layers were adapted on a single domain. This
represents the baseline update magnitude in an unconstrained setting.

• Avg. Ensemble Norm: The average norm of a component group from a Stage 2 ”Ensemble
Tuning” run, where only those specific components (e.g., only the Top-3 MLP layers) were
adapted. This measures the update magnitude under targeted, multi-component fine-tuning.

• Top Solo Run Norm: The norm of the single highest-ranking component from a Stage 2
”Soloist Tuning” run, where it was the only component adapted in the entire model. This
quantifies a component’s adaptational capacity in complete isolation.

Table 3: Aggregated LoRA weight update norms for the Llama 3.2 3B model across all domains.

Domain Component Group Avg. Full
Run Norm

Avg. Ensemble
Norm

Top Solo
Run Norm

CPP Top-3 MLP Components (Avg.) 1.019× 102 1.287× 102 1.651× 102

Top-3 Attn Components (Avg.) 7.042× 101 9.357× 101 1.149× 102

Finance Top-3 MLP Components (Avg.) 9.463× 101 6.990× 101 9.945× 101

Top-3 Attn Components (Avg.) 5.464× 101 4.687× 101 6.056× 101

Math Top-3 MLP Components (Avg.) 1.007× 102 1.360× 102 1.676× 102

Top-3 Attn Components (Avg.) 6.580× 101 8.377× 101 9.766× 101

Medical Top-3 MLP Components (Avg.) 9.545× 101 1.239× 102 1.560× 102

Top-3 Attn Components (Avg.) 9.134× 101 9.702× 101 1.181× 102

Python Top-3 MLP Components (Avg.) 1.010× 102 1.311× 102 1.744× 102

Top-3 Attn Components (Avg.) 6.978× 101 9.599× 101 1.250× 102

Science Top-3 MLP Components (Avg.) 1.019× 102 1.343× 102 1.660× 102

Top-3 Attn Components (Avg.) 8.013× 101 9.999× 101 1.145× 102

Table 4: Aggregated LoRA weight update norms for the Llama 3.2 1B model across all domains.

Domain Component Group Avg. Full
Run Norm

Avg. Ensemble
Norm

Top Solo
Run Norm

CPP Top-3 MLP Components (Avg.) 1.131× 102 1.508× 102 1.944× 102

Top-3 Attn Components (Avg.) 8.660× 101 1.150× 102 1.389× 102

Finance Top-3 MLP Components (Avg.) 1.063× 102 8.506× 101 1.201× 102

Top-3 Attn Components (Avg.) 6.711× 101 5.694× 101 7.221× 101

Math Top-3 MLP Components (Avg.) 1.151× 102 1.607× 102 2.025× 102

Top-3 Attn Components (Avg.) 8.405× 101 1.062× 102 1.209× 102

Medical Top-3 MLP Components (Avg.) 1.116× 102 1.457× 102 1.798× 102

Top-3 Attn Components (Avg.) 1.139× 102 1.196× 102 1.402× 102

Python Top-3 MLP Components (Avg.) 1.123× 102 1.535× 102 2.042× 102

Top-3 Attn Components (Avg.) 8.578× 101 1.173× 102 1.493× 102

Science Top-3 MLP Components (Avg.) 1.189× 102 1.610× 102 2.009× 102

Top-3 Attn Components (Avg.) 1.024× 102 1.278× 102 1.446× 102

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Aggregated LoRA weight update norms for the Gemma-3 4B model across all domains.

Domain Component Group Avg. Full
Run Norm

Avg. Ensemble
Norm

Top Solo
Run Norm

CPP Top-3 MLP Components (Avg.) 7.481× 101 8.510× 101 9.509× 101

Top-3 Attn Components (Avg.) 4.523× 101 5.179× 101 6.092× 101

Finance Top-3 MLP Components (Avg.) 3.211× 101 3.883× 101 4.720× 101

Top-3 Attn Components (Avg.) 2.398× 101 2.806× 101 3.566× 101

Math Top-3 MLP Components (Avg.) 6.152× 101 7.033× 101 7.748× 101

Top-3 Attn Components (Avg.) 3.345× 101 3.862× 101 4.418× 101

Medical Top-3 MLP Components (Avg.) 7.913× 101 8.882× 101 1.060× 102

Top-3 Attn Components (Avg.) 4.881× 101 5.361× 101 6.759× 101

Python Top-3 MLP Components (Avg.) 7.612× 101 8.496× 101 9.706× 101

Top-3 Attn Components (Avg.) 4.755× 101 5.305× 101 6.187× 101

Science Top-3 MLP Components (Avg.) 8.339× 101 9.547× 101 1.049× 102

Top-3 Attn Components (Avg.) 4.698× 101 5.223× 101 5.652× 101

Table 6: Aggregated LoRA weight update norms for the Gemma-3 1B model across all domains.

Domain Component Group Avg. Full
Run Norm

Avg. Ensemble
Norm

Top Solo
Run Norm

CPP Top-3 MLP Components (Avg.) 4.315× 101 5.039× 101 6.484× 101

Top-3 Attn Components (Avg.) 2.451× 101 2.822× 101 3.337× 101

Finance Top-3 MLP Components (Avg.) 2.478× 101 2.891× 101 3.953× 101

Top-3 Attn Components (Avg.) 1.691× 101 1.956× 101 3.240× 101

Math Top-3 MLP Components (Avg.) 4.022× 101 4.570× 101 5.823× 101

Top-3 Attn Components (Avg.) 2.003× 101 2.292× 101 2.922× 101

Medical Top-3 MLP Components (Avg.) 4.811× 101 5.544× 101 7.106× 101

Top-3 Attn Components (Avg.) 2.955× 101 3.401× 101 4.053× 101

Python Top-3 MLP Components (Avg.) 4.297× 101 4.926× 101 6.502× 101

Top-3 Attn Components (Avg.) 2.501× 101 2.846× 101 3.237× 101

Science Top-3 MLP Components (Avg.) 4.973× 101 5.627× 101 6.923× 101

Top-3 Attn Components (Avg.) 2.516× 101 2.830× 101 3.364× 101

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.2 PROBING ANALYSIS

The process of calculating separability scores between each pair of datasets, layer-wise, consists of 2
main components:

1) Hooking to get activations

2) Using these activations to get the Separability Scores

Hook placement and construction of per-sample representations. When analyzing representations
inside transformer layers, forward hooks are placed on sub-modules corresponding to the Attention
block, MLP block, and Residual stream activations. Each hook captures the output tensor of shape
[B,S,D], where B is the batch size (examples per forward pass), S is the sequence length (tokens
per example), and D is the hidden dimension of the representation. To simplify, the token dimension
is mean-pooled, giving a [B,D] embedding for each batch. These embeddings are concatenated
across multiple forward passes to construct a design matrix X ∈ RN×D, where N is the total number
of collected samples. Alongside, a label vector y ∈ {0, . . . , C − 1}N is created so that each row Xr

corresponds to its class label yr.

To compute Fisher separability between two classes i and j, we first isolate the subsets of X
belonging to those labels, giving matrices Xi ∈ Rni×D and Xj ∈ Rnj×D. The mean representation
of each class (µi, µj) is calculated across their samples, and the variance within each class (vari, varj)
is also estimated. Fisher’s score is then defined as the squared distance between the two class means,
normalized by the sum of their variances. Intuitively, if the means are far apart relative to how spread
out the classes are internally, the score is high, indicating that the two classes are well separated in
the representation space.

For the Maximum Mean Discrepancy (MMD), the same class-specific subsets Xi and Xj are
compared using a kernel function, typically a Gaussian RBF kernel. Pairwise distances between
samples are used to determine the kernel bandwidth γ, and kernel similarity matrices are constructed:
within-class (Kii,Kjj) and cross-class (Kij). The MMD score is then computed as the difference
between average within-class similarities and average cross-class similarities. A larger MMD value
means the two distributions Xi and Xj are more dissimilar, capturing not just differences in means
but also higher-order mismatches in distributional shape.

EXPERIMENT PARAMETERS

Samples per domain
(forward pass)

MLP hook Attention hook Batch size

1000 up proj o proj 8

Parameters used for all models: Llama 3.2 3B, Llama 3.2 1B, Gemma 3 4B, and Gemma 3 1B.

A.3 CAUSAL INTERVENTION

The results for the causal activation swapping case study of C++↔ Python, for other models, are
given in Figures 10-12.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 4 8 12
Layer

-0.80

0.00

0.80

1.60

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 4 8 12
Layer

-0.80

0.00

0.80

1.60

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(a) C++

0 4 8 12
Layer

-0.80
0.00
0.80
1.60

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 4 8 12
Layer

-0.80

0.00

0.80

1.60

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(b) Python

0 4 8 12
Layer

-2.00
-1.00
0.00
1.00
2.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 4 8 12
Layer

-3.00
-2.00
-1.00
0.00
1.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(c) Math

0 4 8 12
Layer

-1.00
0.00
1.00
2.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 4 8 12
Layer

-1.00

0.00

1.00

2.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(d) Medical

0 4 8 12
Layer

-1.00

0.00

1.00

2.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 4 8 12
Layer

-2.00
-1.00
0.00
1.00
2.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(e) Science

0 4 8 12
Layer

-2.00
-1.00
0.00
1.00
2.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 4 8 12
Layer

-1.00

0.00

1.00

2.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(f) Finance

Figure 7: probe separability results for Llama 1B Model

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 6 12 18 24
Layer

-1.50

0.00

1.50

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 6 12 18 24
Layer

-2.00

-1.00

0.00

1.00

2.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(a) C++

0 6 12 18 24
Layer

-2.00
-1.00
0.00
1.00
2.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 6 12 18 24
Layer

-2.00
-1.00
0.00
1.00
2.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(b) Python

0 6 12 18 24
Layer

-1.50

0.00

1.50

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 6 12 18 24
Layer

-2.00

-1.00

0.00

1.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(c) Math

0 6 12 18 24
Layer

-2.00
-1.00
0.00
1.00
2.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 6 12 18 24
Layer

-1.00
0.00
1.00
2.00
3.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(d) Medical

0 6 12 18 24
Layer

-2.00
-1.00
0.00
1.00
2.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 6 12 18 24
Layer

-2.00
-1.00
0.00
1.00
2.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(e) Science

0 6 12 18 24
Layer

-2.00
-1.00
0.00
1.00
2.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 6 12 18 24
Layer

-2.00
-1.00
0.00
1.00
2.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(f) Finance

Figure 8: probe separability results for Gemma 1B Model

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 8 16 24 32
Layer

-1.50
0.00
1.50
3.00
4.50

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 8 16 24 32
Layer

-1.50

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(a) C++

0 8 16 24 32
Layer

-1.50
0.00
1.50
3.00
4.50

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 8 16 24 32
Layer

-1.50

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(b) Python

0 8 16 24 32
Layer

-1.50

0.00

1.50

3.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 8 16 24 32
Layer

-2.00

0.00

2.00

4.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(c) Math

0 8 16 24 32
Layer

-3.00

-1.50

0.00

1.50

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 8 16 24 32
Layer

-1.50
0.00
1.50
3.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(d) Medical

0 8 16 24 32
Layer

-1.50

0.00

1.50

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 8 16 24 32
Layer

-2.00
-1.00
0.00
1.00
2.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(e) Science

0 8 16 24 32
Layer

-2.00

0.00

2.00

4.00

Se
pa

ra
bi
lit
y

Attention

Fisher
MMD

0 8 16 24 32
Layer

-2.00

0.00

2.00

4.00

Se
pa

ra
bi
lit
y

MLP

Fisher
MMD

(f) Finance

Figure 9: probe separability results for Gemma 4B Model

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

19 17 20 7 12 11
Layer Index

0.00

0.25

0.50

0.75

1.00

KL
 D

iv
er

ge
nc

e

×10 1

CPP
PYTHON

22 27 20 10 7 6
Layer Index

6.00

3.00

0.00

3.00

6.00

De
lta

 B
ia

s

×10 3

CPP
PYTHON

Llama 3.2 3B - MLP Layer Analysis

17 16 2 12 11 5
Layer Index

0.00

2.00

4.00

6.00

KL
 D

iv
er

ge
nc

e

×10 2

CPP
PYTHON

16 23 17 5 12 8
Layer Index

1.50

0.00

1.50

3.00

De
lta

 B
ia

s

×10 3

CPP
PYTHON

Llama 3.2 3B - Attn Layer Analysis

Figure 10: Analysis of layers in Llama-3B, comparing KL divergence (left) and a Delta Bias (right)
between C++ and Python inputs. The layers on left section ar e layers with highest Fisher score and
right section have lowest Fisher score. Top-ranked layers show substantially higher KL divergence
and Delta Bias, reflecting higher influence on final output.

13 11 12 1 9 8
Layer Index

0.00

1.50

3.00

4.50

6.00

KL
 D

iv
er

ge
nc

e

×10 1

CPP
PYTHON

15 2 13 6 5 9
Layer Index

0.80

0.00

0.80

1.60

2.40

De
lta

 B
ia

s

×10 2

CPP
PYTHON

Llama 3.2 1B - MLP Layer Analysis

13 11 2 14 3 15
Layer Index

0.00

1.00

2.00

3.00

4.00

KL
 D

iv
er

ge
nc

e

×10 1

CPP
PYTHON

13 11 12 15 14 9
Layer Index

0.80

0.00

0.80

1.60

De
lta

 B
ia

s

×10 2

CPP
PYTHON

Llama 3.2 1B - Attn Layer Analysis

Figure 11: Analysis of layers in Llama-1B, comparing KL divergence (left) and Delta Bias between
C++ and Python inputs. Top MLP layers have high variance in Delta Bias, and high fisher layers
show more KL divergence.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

32 31 24 13 12 16
Layer Index

0.00

1.00

2.00

3.00

4.00
KL

 D
iv

er
ge

nc
e

×10 4

CPP
PYTHON

25 23 32 16 12 14
Layer Index

0.80

0.00

0.80

1.60

De
lta

 B
ia

s

×10 12

CPP
PYTHON

Gemma-3 4B - MLP Layer Analysis

1 24 25 9 29 13
Layer Index

0.00

1.50

3.00

4.50

KL
 D

iv
er

ge
nc

e

×10 2

CPP
PYTHON

31 25 1 12 9 13
Layer Index

1.50

0.00

1.50

3.00

De
lta

 B
ia

s

×10 12

CPP
PYTHON

Gemma-3 4B - Attn Layer Analysis

Figure 12: Analysis of layers in Gemma-4B, comparing KL divergence (left) and a Delta Bias (right)
between C++ and Python inputs. A handful of layers show significant spikes in contribution and
shifting operation in this model. Reason being high confidence of model on a single token in logits

24 22 21 3 1 12
Layer Index

0.00

0.30

0.60

0.90

1.20

KL
 D

iv
er

ge
nc

e

×10 2

CPP
PYTHON

16 24 21 9 11 3
Layer Index

1.60

0.80

0.00

De
lta

 B
ia

s

×10 7

CPP
PYTHON

Gemma-3 1B - MLP Layer Analysis

18 1 25 12 3 6
Layer Index

0.00

1.00

2.00

3.00

4.00

KL
 D

iv
er

ge
nc

e

×10 1

CPP
PYTHON

18 24 25 23 8 9
Layer Index

2.50

0.00

2.50

5.00

De
lta

 B
ia

s

×10 8

CPP
PYTHON

Gemma-3 1B - Attn Layer Analysis

Figure 13: Analysis of layers in Gemma-1B, comparing KL divergence (left) and Delta Bias (right)
between C++ and Python inputs. A handful of layers show significant spikes in contribution and
shifting operation in this model.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

B DATASETS

C++, Python For our coding datasets, we have used the Open Coder LLM Annealing Corpus
(Huang et al. (2024)) which contains functional code snippets on various coding questions. This
dataset aligns with our Human Benchmark Evaluation tests since it uses the same formatting. Each
data point has a top level comment describing the task followed by a function that implements the
task. The original dataset also contains inline comments inside the function body but these have been
striped for conciseness. Listing 1 and Listing 14 showcase examples from our dataset on C++ and
Python snippets.

Science We have used the SciQ dataset (Johannes Welbl, 2017) which contains crowd-sourced
questions on Physics, Chemistry and Biology. The questions are in multiple-choice format with 4
answer options each. For our purposes we have formatted the data-points into Context, Question and
Answer.

Context: Enzymes are critical to the body’s healthy functioning.
They assist, for example, with the breakdown of food and its
conversion to energy. In fact, most of the chemical reactions
in the body are facilitated by enzymes.

Question: Most of the chemical reactions in the body
are facilitated by what?

Options: A. proteins B. enzymes C. vitamins D. carbohydrates
Answer: B

Mathematics The Math dataset is GSM8K (Cobbe et al., 2021a) which is a dataset of 8.5k
high quality math word problems. The dataset contains question answering on basic mathematical
problems that require multi-step reasoning. The datapoints are also similarly formatted into Question,
Answer and Final Answer.

Question: Natalia sold clips to 48 of her friends in April, and
then she sold half as many clips in May. How many clips did
Natalia sell altogether in April and May?

Answer: Natalia sold 48/2 = <<48/2=24>>24 clips in May. Natalia
sold 48+24 = <<48+24=72>>72 clips altogether in April and May. #### 72

Final Answer: 72.

Finance The Finance dataset (Mateega et al., 2025) is a set of financial question and answer pairs
extracted from company annual reports, balance sheets, and financial statements.The datapoints
contain context with some financial values and the model is questioned upon some value that is
dependant on this information. A similar formatting technique is used where we explicitly state the
context, question and answer.

Context: Liabilities: 8,537.39 Total Capital And Liabilities:
13,410.53 ASSETS: nan NON-CURRENT ASSETS: nan Tangible
Assets: 74.2 Intangible Assets: 4.16 Capital Work-In-Progress:
0 Other Assets: 0 Fixed Assets: 98.73 Non-Current
Investments: 0 Deferred Tax Assets [Net]: 0 Long Term Loans And Advances: 0
Other Non-Current Assets: 15.61 Total Non-Current Assets: nan

Question: What is the total value of assets of the company?
Answer: The total value of assets of the company is $13,410.53.
Final Answer: 13410.53.

Medical We use the ReasonMed dataset (link lingshu-medical-mllm/ReasonMed) which is an open-
source synthetic medical reasoning dataset containing multi-step chain-of-thought (CoT) rationales
and concise summaries of LLMs such as Qwen-2.5-72B, DeepSeek-R1-Distill-Llama-70B, and
HuatuoGPT-o1-70B on medical questions.

The question presents a radiographic scenario: a PA
(posteroanterior) ulnar deviation view of the wrist, asking
for the most likely diagnosis among the following options:
Osteomyelitis, De Quervain tenosynovitis, Hypertrophic
osteoarthropathy, and Rheumatoid arthritis. The correct answer

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

def find_pivot_index(nums: list[int]) -> int:
"""Finds the pivot index of a list of numbers.

The pivot index is where the sum of the numbers to the left of
the index

is equal to the sum of the numbers to the right of the index.

Args:
nums: A list of integers.

Returns:
The pivot index if one exists, otherwise -1.

Examples:
>>> find_pivot_index([1, 7, 3, 6, 5, 6])
3
>>> find_pivot_index([1, 2, 3])
-1
>>> find_pivot_index([2, 1, -1])
0

"""
total_sum = sum(nums)
left_sum = 0

for i, num in enumerate(nums):
if left_sum == total_sum - left_sum - num:

return i
left_sum += num

return -1

Listing 1: A Python snippet from our dataset illustrating a simple coding problem with a doc-
string that explicitly describes the working of the function

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

// This function takes a positive integer as input and returns a
list of its prime factors,

// which are the prime numbers that multiply together to equal the
original number.

// The prime factors are returned in ascending order.
//
// Parameters:
// * number: A positive integer to be factorized into its prime

factors.
//
// Examples:
// * find_prime_factors(8) => [2, 2, 2]
// * find_prime_factors(25) => [5, 5]
// * find_prime_factors(70) => [2, 5, 7]
std::vector<int> find_prime_factors(int number) {

std::vector<int> prime_factors;

while (number % 2 == 0) {
prime_factors.push_back(2);
number /= 2;

}

for (int i = 3; i <= std::sqrt(number) + 1; i += 2) {
while (number % i == 0) {

prime_factors.push_back(i);
number /= i;

}
}

if (number > 2) {
prime_factors.push_back(number);

}

return prime_factors;
}

Figure 14: A C++ snippet from our dataset featuring a prime factorization problem. Each example
contains a descriptive comment above the function body and clear naming conventions for the function
itself.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

is De Quervain tenosynovitis. To comprehensively understand
and justify this answer, it's essential to dissect
each component... (truncated)

C EVALUATION

C.1 EVALUATION RESULTS

Our evaluation of domain-specific performance uses two accuracy metrics tailored to the task type.
For the Math, Science, Finance, and Medical domains, we report standard classification accuracy,
defined as:

Accuracy =
Number of Correct Predictions

Total Number of Samples
For the programming domains (C++ and Python), we evaluate code generation correctness using the
pass@k metric. Specifically, we use pass@10, where the model generates 10 candidate solutions for
each problem. A problem is considered solved if at least one of these candidates passes all unit tests.
The accuracy is therefore calculated as:

pass@10 =
Number of Problems with at least one passing solution

Total Number of Problems
It is important to note that the results presented, particularly for the smaller 1B models, may exhibit
some noise. These models operate with fewer parameters, making performance sensitive to minor
variations in fine-tuning, which can affect the robustness of the generated outputs.

PT MLP Attn Both Top-1 MLP Top-1 Attn Top-3 MLP Top-3 Attn
Math 0.040 0.070 0.050 0.020 0.050 0.040 0.030 0.040
Science 0.395 0.390 0.535 0.475 0.385 0.290 0.310 0.325
CPP 0.120 0.020 0.020 0.000 0.050 0.040 0.130 0.040
Python 0.440 0.020 0.180 0.040 0.040 0.350 0.160 0.290
Finance 0.180 0.020 0.010 0.000 0.060 0.040 0.020 0.070
Medical 0.847 0.687 0.787 0.813 0.904 0.424 0.916 0.864

Llama-3.2-1B

PT MLP Attn Both Top-1 MLP Top-1 Attn Top-3 MLP Top-3 Attn
Math 0.100 0.030 0.060 0.030 0.140 0.060 0.040 0.040
Science 0.625 0.755 0.700 0.650 0.610 0.600 0.425 0.425
CPP 0.320 0.000 0.030 0.000 0.000 0.286 0.000 0.150
Python 0.470 0.040 0.300 0.050 0.286 0.371 0.220 0.340
Finance 0.080 0.020 0.050 0.040 0.025 0.000 0.030 0.030
Medical 0.900 0.713 0.912 0.512 0.880 0.880 0.912 0.888

Gemma-3-1B

PT MLP Attn Both Top-1 MLP Top-1 Attn Top-3 MLP Top-3 Attn
Math 0.080 0.080 0.060 0.080 0.200 0.133 0.400 0.267
Science 0.715 0.780 0.780 0.760 0.840 0.820 0.760 0.700
CPP 0.833 0.033 0.000 0.000 0.028 0.457 0.000 0.286
Python 0.300 0.233 0.333 0.033 0.371 0.343 0.286 0.343
Finance 0.040 0.000 0.000 0.000 0.000 0.000 0.025 0.025
Medical 0.925 0.950 0.950 0.300 0.875 0.950 0.725 0.850

Gemma-3-4B

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

As an alternative performance metric, we measured the asymptotic validation loss for different com-
ponent combinations. The results aligned with our separability analysis: layers identified as having
high activation separability consistently outperformed those with lower separability, converging to a
significantly lower validation loss.

C.2 DOMAIN EVALUATION

C.2.1 MATH

Dataset chosen: GSM8K (Grade School Math 8K) introduced by Cobbe et al. (2021b) is a collection
of grade-school level math word problems designed to evaluate multi-step arithmetic and reasoning
ability. The dataset emphasizes chain-of-thought style reasoning where intermediate steps are useful
to arrive at the correct numeric result.

GSM8K is used here as it’s a widely used benchmark for studying reasoning behavior in language
models and for evaluating self-consistency / majority-vote sampling methods. Also, it is not too
difficult, hence used for evaluation on the small models considered.

Prompt–Output Illustration:

<prefix text (8-shot demos)
provided for context>

Q: John has 3 apples.
He buys 2 more.
How many apples does he have

now?

A: Let's reason step by step.
At the end, give the final

numeric
answer on its own line in

this exact format:
<number>
Answer:

Example reasoning and
output

Step 1: John starts with 3
apples.

Step 2: He buys 2 more.
Step 3: Total apples = 3 + 2

= 5.

5
Answer:

Illustration of the prompt (left) and an example of the expected LLM output (right).

Evaluation Samples Sampling Amount Per
Sample

Max Generation
Tokens

Temperature Top p

100 10 1024 0.7 0.90

(Hyper-Parameters used during Model inference For Evaluation(Self-Consistency)

C.2.2 FINANCE

Dataset chosen: FinanceQA introduced by Mateega et al. (2025) is a curated set of financial
question–answer pairs extracted from company filings (annual reports, balance sheets, and reports). It
supplies queries, short factual answers, and the supporting context passage from the source document
(e.g., a few sentences or table rows). Focus is on numerical output comparison and extraction.

FinanceQA is used for evaluation as it provides a domain-specific “finance + math” evaluation
setting, requiring both factual retrieval and quantitative reasoning.

Prompt–Output Illustration:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

FinanceQA prompt builder

(context + query)

Context:
<supporting passage from

financial filings>

Question:
<query here>

Answer: The final answer is

Final Answer:

Example reasoning and
output

Step 1: From the context, the
net profit

margin in 2021 is explicitly
given.

Step 2: The reported margin
is 11.04%.

Final Answer: 11.04%

Illustration of the FinanceQA prompt template (left) and an example expected LLM output (right).

Evaluation Samples Sampling Amount Per
Sample

Max Generation
Tokens

Temperature Top p

100 10 512 0.7 0.95

(Hyper-Parameters used during Model inference For Evaluation(Self-Consistency))

C.2.3 MEDICAL

Dataset chosen: PubMedQA introduced by Jin et al. (2019) is a dataset of biomedical research
questions paired with contexts and a short (yes/no) final decision derived from biomedical articles.
Each sample often contains an abstract or supporting passage and a question about the clinical finding;
the ground truth is typically a binary decision. Sometimes if LLM is highly undecisive the output of
LLM is assumed ’None’

We use PubMedQA because it is a widely-used , biomedical QA benchmark for evaluating concise,
high-precision yes/no answers in the clinical/research domain.

Prompt–Output Illustration:

PubMedQA prompt builder (
question + context)

Context:
<concatenated context sentences

or abstract>

Question: <question here>

Based on the context above,
answer the question

with exactly 'yes' or 'no' (
lowercase),

and do NOT provide any
explanation.

Answer:

Illustration prompt template used Sample output is simply Yes/No , In case Bad output Then None is interpreted

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Evaluation Samples Sampling Amount Per
Sample

Max Generation
Tokens

Temperature Top p

250 1 512 0.0 1.00

(Hyper-Parameters used during Model inference For Evaluation (Greedy))

C.2.4 SCIENCE

Dataset chosen: SciQ introduced by Welbl et al. (2017) is a data set of multiple choice science questions that
contains short grade-level science questions with four answer options (A–D) and optional supporting facts. Each
example includes a question, four candidate answers, and (sometimes) a support passage.

SciQ is used because it provides well-formed multiple-choice prompts suitable for evaluation,it is easy for a
small LLM hence it is used.

Prompt–Output Illustration:

// SciQ prompt builder (
question + options)

Question:
<question text>

Options:
A. <option A>
B. <option B>
C. <option C>
D. <option D>

Answer with the letter of the
correct option only (A, B,
C, or D).

Do NOT provide any explanation.
Answer:

Answer:B

Illustration: left = prompt template used for SciQ , model output is a single letter A/B/C/D.

Evaluation Samples Sampling Amount Per
Sample

Max Generation
Tokens

Temperature Top p

200 1 256 0.0 1.00

(Hyper-Parameters used during Model inference For Evaluation(Greedy))

C.2.5 PYTHON

Dataset chosen: HumanEvalPack (multilingual / Python subset) Introduced by Chen et al. (2021) is a collection
of programming problems with formal problem descriptions, expected function signatures, and test harnesses.

Inputs in the form of coding questions are provided, and the model is expected to output corresponding code
which is executed against test cases. The accuracy used for evaluation is pass@k, a standard metric for
code-generation tasks, rather than simple string-matching accuracy.

HumanEvalPack is used here because it provides language-specific (C++/Python/etc.) prompts with a standard
”declaration + examples + tests” scheme. The problems are relatively simple, making this dataset ideal for
comparing small models on code generation and correctness.

Prompt–Output Illustration:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Problem:
<prompt_or_instruction>

Signature:
<signature>

Docstring:
<docstring>

Examples:
<example_test>

Write the complete Python
function

implementation only.
Output only valid Python code

for the
function (no explanation, no

tests,
no surrounding markdown).
Make sure the function name and
signature match the signature

above.

Implementation:

Example implementation for:
def add(a: int, b: int) ->

int

def add(a: int, b: int) -> int:
simple implementation
return a + b

Illustration of the Python prompt template (left) and an example expected LLM output (right).

Evaluation Samples Sampling Amount Per
Sample

Max Generation
Tokens

Temperature Top p

100 10 1024 0.7 0.95

(Hyper-Parameters used during Model inference For Evaluation(Self-Consistency))

C.2.6 CPP

Dataset chosen: HumanEvalPack (multilingual / C++ subset) Introduced by Chen et al. (2021) is a collection
of programming problems with formal problem descriptions, expected function declarations/signatures, and test
harnesses .Inputs in the form of coding questions are provided, and the model is expected to output corresponding
code which is compiled against test cases.

HumanEvalPack is used here because it provides language-specific (C++/Python/etc.) prompts with a standard
”declaration + examples + tests” scheme. The problems are relatively simple, making this dataset ideal for
comparing small models on code generation and correctness.

Prompt–Output Illustration:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

// Problem:
<prompt_or_instruction>

// Declaration:
<declaration>

// Docstring / Notes:
<docstring>

// Examples:
<example_test>

Write the C++ implementation
only

(no explanation, no tests, no
surrounding markdown).

Include necessary #include
lines if needed.

Ensure function name and
signature match the
declaration above.

Implementation:

#include <bits/stdc++.h>
using namespace std;

// Example implementation for:
int add(int a, int b)

int add(int a, int b) {
// simple implementation
return a + b;

}

Illustration of the C++ prompt template (left) and an example expected LLM output (right).

Evaluation Samples Sampling Amount Per
Sample

Max Generation
Tokens

Temperature Top p

100 10 1024 0.7 0.95

(Hyper-Parameters used during Model inference For Evaluation(Self-Consistency))

D EXPERIMENTAL SETUP

D.1 FINE TUNING

All experiments were run on NVIDIA H100 GPUs, using PyTorch and the Hugging Face ‘transformers‘ and
‘peft‘ libraries. To maximize computational throughput, the model was JIT-compiled using ‘torch.compile()‘. A
fixed set of hyperparameters, detailed in Table 7, was used across all experiments to ensure fair comparison.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 7: Common hyperparameters for all fine-tuning experiments.

Parameter Value

Training Configuration

Optimizer AdamW
Learning Rate 1× 10−3

Batch Size 8
Epochs (Stage 1 Mapping) 10
Epochs (Stage 2 Validation) 3
Seed 42
Precision ‘bfloat16‘

LoRA Configuration

Rank (r) 16
Alpha (α) 32 (2× r)
Dropout 0.05
Target Modules (Attn) q proj, k proj, v proj, o proj

Target Modules (MLP) gate proj, up proj, down proj

D.2 CAUSAL INTERVENTION

For causal intervention we use specific prompts on Python and C++ that follow the same format. It is ensured
that the prompts differ with most 1 tokens at the exact same spot. This reduces noise and makes the model’s
output predictable.

C++ Prompt:
Write a short function in C++ that returns
the n-th Fibonacci number.\nRespond
with code only.\n```

Python Prompt:
Write a short function in Python that returns
the n-th Fibonacci number.\nRespond
with code only.\n```

The ``` at the end prompts the model to output ”cpp” or ”python” to conform to markdown conventions and
thus also forcing the model to focus on domain specific information. Both prompts also ask the model to perform
the same task but in different languages. This eliminates all unknown variables regarding linguistics and content
of the task itself, so the differentiating point is the language used only.

For our experiments we use 100 such sample prompt pairs on all 4 models. The top 5 layers and bottom 5 layers
are selected according to ranking by Fisher score metric for visualizing the contrasting behavior. Token sets are
generated by reverse intervention process (See E.2) and used to compute Delta Bias values.

D.3 PROBING ANALYSIS

In addition to Fisher Separability and Maximum Mean Discrepancy (MMD), we also evaluated probing sep-
arability using other metrics such as classification probing accuracy, cosine similarity, and V-bits. However,
for high-level abstraction tasks such as Domain Separability, the results across layers were not clearly dis-
tinguishable. This arises because, in such tasks, the points in the activation hyperspace are widely dispersed.
Consequently, strong metrics such as V-bits or probing classification accuracy can easily separate these spread-
out representations, making them less informative for fine-grained layer-wise analysis. In contrast, weaker
metrics such as Fisher separability and MMD are more useful in these cases, as they provide more sensitive
distinctions when the data is already well separated.

On the other hand, for low-level abstraction tasks such as Concept-level Separability, the points in the activation
hyperspace are closely packed. In these scenarios, strong metrics such as V-bits prove more effective, yielding

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

clearly distinguishable results across layers. This observation is consistent with findings reported in Ju et al.
(2024b).

E EXTENDED DISCUSSION

E.1 HYDRA EFFECT

The Hydra Effect describes a form of self-repair capability present in LLMs. As described by McGrath et al.
(2023), it refers to the mismatch between a layer’s apparent contribution (measured by projecting its activations
through the unembedding mechanism, ∆unembed) and its functional importance (measured by ablating the layer,
∆ablate). We expect the ablation to reduce the model’s confidence proportionally to its apparent contribution,
but downstream layers reconstruct the corrupted signal so that

∆ablate,l < ∆unembed,l

During interventions, the KL divergence is lower for early layers with high fisher score due to this reason since
the intervention done is reverted to some extent by downstream layers.

E.2 CHARACTERISTIC TOKENS

The process of selecting characteristic tokens is derived from the same causal intervention process done in
reverse. Instead of finding layers that do the most change to specific tokens, we find tokens that are most sensitive
to interventions on all layers. This process is coined as the reverse causal intervention on a model.

When we do an intervention on a single layer from one domain to another, the tokens of the new domain are
shifted up in probability. The overall shift across the vocabulary is averaged across all layers and the Top-k
”promoted” tokens are saved in a list for the intervening dataset. For example, we have found when intervening
C++ prompts with Python activations, tokens such as def , import and python are promoted. These form the
characteristic token set for Python and this set is used in our causal intervention experiments further on.

E.3 DELTA BIAS

Let V be the entire vocabulary of the model. We denote the probability associated with a subset of vocabulary
S ⊂ V as P (S|x) =

∑
i∈S p(i|x) with a prompt x. Suppose we perform the intervention xA

l←− xB

where activations of prompt of domain B are inserted into the forward pass of A at layer l. Before intervention,
Pbase(SA|xa) and Pbase(SB |xa) denote the probabilities of characteristic tokens of A and B before intervention,

and Pswap(SA|xA
l←− xB) and Pswap(SB |xA

l←− xB) as the probabilities of the set of characteristic tokens of A
and B after intervention. The Bias present in the probability distribution is defined as Bias = P (SB)−P (SA).
This represents the model’s preference on predicting the intervening subset of tokens.

Biasbase(xA) = Pbase(SB |xA)− Pbase(SA|xA)

Biasswap(xA
l←− xB) = Pswap(SB |xA

l←− xB)− Pswap(SA|xA
l←− xB)

∆Bias(A l←− B) = ExA∼A,xB∼B

[
Biasswap(xA

l←− xB)− Biasbase(xA)
]

In our results, we use the convention for when A
l←− B is done, we plot bias with a positive sign, and when

we do intervention B
l←− A, we plot bias with a negative sign to preserve perspective with respect to the set of

characteristic tokens B. So, all bias computations are visualized as the shift in preference of B over A.

36

	Introduction
	Proposed Methodology
	Probing Analysis
	Fine-tuning analysis
	Causal activation swapping

	Results and Discussion
	Where domain knowledge is separated?
	Adaptational Analysis Points to MLP Layers
	Validating the proposed layer map via targeted fine-tuning
	Causal Swapping Reveals Attention as Domain Router

	Discussion
	Related Work
	Conclusion
	Results on Other Models
	Fine Tuning Analysis
	Probing Analysis
	Causal Intervention

	Datasets
	Evaluation
	Evaluation Results
	Domain Evaluation
	Math
	Finance
	Medical
	Science
	Python
	CPP

	Experimental Setup
	Fine Tuning
	Causal Intervention
	Probing Analysis

	Extended Discussion
	Hydra Effect
	Characteristic Tokens
	Delta Bias

