Under review as a conference paper at ICLR 2026

DISSECTING ATTENTION AND MLP ROLES: A STUDY
OF DOMAIN SPECIALIZATION IN LLLMSs

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) perform well across diverse domains such as
programming, medicine, and law, yet it remains unclear how domain information is
represented and distributed within their internal mechanisms. A key open question
is the division of labor between the Transformer’s core components: self-attention
and MLP layers. We address this question through a mechanistic study that
dissects their roles by integrating three complementary analyses: representation
separability via probes, parameter change under adaptation, and causal effects
from activation swaps. Across six domains and multiple models, we find that
both Attention and MLP layers encode domain information, but in systematically
different ways. We find that attention layers concentrate domain information in
localized "hotspots’ (high variance across depth), while MLP layers distribute it
uniformly. During fine-tuning, MLPs absorb 2-3x larger parameter updates, yet
causal interventions reveal that specific mid-depth attention layers (e.g., layers
13-15) directionally steer domain predictions, while MLP interventions disrupt
computation without directional control. These three lenses jointly support a
coherent functional picture: MLP layers serve as the primary workbenches for
domain-specific computation, while a small subset of attention layers act as high-
gain steering points that route domain identity. Finally, we show a proof-of-concept
parameter-efficient adaptation setup where tuning only the layers highlighted by
our analysis matches full-model fine-tuning on domain benchmarks, illustrating
the practical potential of mechanistically informed PEFT.

1 INTRODUCTION

Large Language Models (LLMs) master diverse domains, yet the internal mechanisms governing
this domain representation remain an open question. What is the division of labor between the
Transformer’s core components — the self-attention and the MLP layers? In this paper, we address
these questions through a causal, layer-level analysis and propose a functional specialization that
holds across models and domains.

The field of mechanistic interpretability has developed powerful methods for such analysis, pro-
gressing from correlational analysis to causal interventions. Initial probing (Alain & Bengiol 2018}
Tenney et al.,[2019) analyses used simple neural classifiers to differentiate the outputs of a layer for
varied inputs. A highly separable representation of domain identity, for example, would imply that a
component contains domain-specific information. The contribution can be quantified by calculating
the level of separation in the higher-dimensional space through separability scores, like v-usable
information (Ethayarajh et al.,2022) ,|Xu et al.|(2020) ,{Ju et al.|(2024b) Fisher separability |[Fisher
(1936), maximum mean discrepancyGretton et al.| (2008)) etc. Although these methods can show
where information separates, but not if or how the model uses it for downstream tasks.

Subsequently, the focus shifted towards establishing causality by reverse-engineering the circuits
(Elhage et al.l 2021) for specific behaviors, through methods like activation patching (Meng et al.,
2023a) [Wang et al| (2022) and zero-out testing (Dai et al., |2021). This research has yielded an
important result: MLP layers have been characterized as the primary locus of holding factual
knowledge. Concurrently, attention mechanisms are understood as routers, moving and aligning
information throughout the context, enabling capabilities like in-context learning (Olsson et al.|
2022).

Under review as a conference paper at ICLR 2026

A parallel line of evidence comes from studying parameter adaptation. Research on techniques
like Low-Rank Adaptation (LoRA) has shown that model behavior can be improved for targeted
adaptation by modifying only a small subset of weights (Hu et al.,[2022) |Zhang et al.|(2023). However,
a critical gap remains. These three powerful lenses—representational, causal, and adaptational—have
largely been applied in isolation and to micro-scale tasks (e.g., factual recall, syntactic phenomena).
It is unknown whether the “attention-as-router, MLP-as-compute” principle scales to govern how
models handle high-level, abstract domains like programming or medicine. Furthermore, no existing
framework exists to synthesize these three orthogonal sources of evidence into a single, coherent map
of a model’s functional architecture.

Our perspective. We study domain handling in LLMs by jointly applying three lenses to the
same models and domains. Concretely, we ask the following questions, at the level of individual
Transformer blocks:

1. Where is domain identity represented? We measure how separable domain labels are
from layer activations using Fisher ratio and kernel MMD.

2. Where does domain adaptation write new computation? We quantify layer-wise parame-
ter changes under domain-specific LoRA fine-tuning.

3. Which layers can steer domain-sensitive behavior under intervention? We perform acti-
vation swaps between matched domain prompts and measure both disruption and directional
shifts in predictions.

Here, we qualify that domain control is complex and distributed; no single component type exclusively
handles all aspects. Our analysis reveals relative differences in component contributions rather than
absolute divisions. In summary, our contributions are:

* Representational separability is shared, but distributed differently. After excluding trivially
input-driven and logit-driven layers, both Attention and MLP components broadly encode domain
identity. However, separability across depth has markedly higher variance in Attention than in
MLP: a few attention layers form sharp “hotspots” of domain-specific separability, whereas MLP
layers encode domain information more uniformly.

Evidence for a Scaled Division of Labor in Abstract Tasks: We provide direct evidence that the
“attention as router, MLP as memory” principle, previously observed in low-level factual tasks, also
governs how models handle high-level, abstract capabilities like domain control. This suggests it is
a fundamental organizing principle of the Transformer architecture.

* Demonstration of Mechanistically-Informed, Parameter-Efficient Fine-Tuning as proof of
concept: We show that our mechanistic map can be used to have direct practical utility. The
models’ performance matches full-model fine-tuning on our domain benchmarks, illustrating the
practical potential of mechanistically guided PEFT.

2 PROPOSED METHODOLOGY

Our work examines the roles of attention and MLP components across layers through/via three
perspectives: representational patterns (Probing analysis), parameter changes (Fine tuning analysis),
and causal interventions.

2.1 PROBING ANALYSIS

The objective of this experiment is to identify which layers contain the most linearly separable
information about domain identity. Classical classification accuracy saturated at around 100% across
all layers, providing insufficient discriminative power to determine where domain information is most
concentrated. We instead quantify the degree of separability using distributional metrics. A high
degree of separability indicates that a layer’s activations serve as a strong signal for the domain, a
necessary condition for a component involved in routing or high-level control.

To quantify where domain identity is explicitly represented, we compute pairwise separability between
domains for each layer and component using two complementary statistics: a scalar Fisher ratio
Fisher| (1936) and RBF-kernel Maximum Mean Discrepancy (MMD) |Gretton et al.| (2008)). Let

Under review as a conference paper at ICLR 2026

X € RVXP be pooled activations for a given (layer, component) and y € {1, ..., K}*V the domain

labels. Denote by X; the rows of X with label i, N; = | X;|, and pu; = Ni EzeXi T.

Fisher : We report the scalar Fisher score between domains ¢ and j:
i — 512
Sdir Var(Xi.a) + 340 Var(Xj.a) +
with e = 107 for numerical stability. This ratio is high when domain means are well-separated
relative to within-domain variance, indicating linear discriminability.
MMD (RBF). Using an RBF kernel k- (z, 2’) = exp(—7||z — 2’||?) we compute

1 1 2

2

MMD;,, (X, X;) = w2 > by + 22 > k- NN 22 ke
i oq,beX; J abeX; Y aeX; beX;

Fisherij =

and report MMD,; = /max(0, MMD?). The kernel bandwidth + is set by the median heuristic on
pairwise distances.

Activations are extracted by registered forward hooks at two probe points per block: post-attention
and post-MLP (before residual addition). (for details on pipeline see Appendix[A.2). We display only
Fisher and MMD scores because they capture complementary linear (mean-vs-variance) and nonlinear
(higher-moment) distributional differences and provide the clearest layer-wise differentiation in our
experiments. Rather than exhaustively reporting all (Iz() pairwise scores, we compute a 1-vs-all
statistic for each domain. For a domain D;, activations from D, are compared against the pooled
activations from all other domains | J i D;. This yields a per-layer, per-component separability
score S; ¢ indicating how well layer ¢ distinguishes D; from the rest of the corpus. To compare
components on the same scale, we z-normalize scores across layers for each domain. We observed
strong separability in the first and last layers, but further analysis (Appendix [E-T)) shows that these
peaks largely reflect input-distribution differences and logit effects, rather than internal steering. To
avoid these confounds and focus on internal specialization, we exclude these layers from summary
statistics such as variance and maximums in the main text.

2.2 FINE-TUNING ANALYSIS

Probing identifies where domain identity is separated in activations; the complementary question
is where parameters undergo adaptation. We answer this by measuring per-layer parameter updates
under fine-tuning and by testing whether the layers that change most are also the layers that suffice
for adaptation.

We use LoRA-style fine-tuning for targeted, parameter-efficient adaptation. For a dense weight
W € R™ ™ at layer / the adapted weight is W + AW, with AW, = < B,A, where A, € R"™*"™,
By € R™ ", r is the adapter rank and « is a scalar scaling. We summarize a layer’s adaptivity by the
Frobenius norm of the effective update

Se = [[AW,| F,

and aggregate multiple adapter tensors that belong to the same Transformer block by summation:
Ghlock — > ier, 1AW . A high Sy indicates that the parameters in / layer are a primary site for
storing new, domain-specific computation learned during adaptation |Gupta et al.[(2025).

We run three fine-tuning regimes: (i) full-model fine-tuning (baseline), (ii) LoRA targeted only
to attention projection matrices (e.g., g, k, v, o per block), and (iii) LoRA targeted only to MLP
projection matrices (e.g., gate/up/down). To validate the utility of our layer map, we additionally fine-
tune only the top-3 and bottom-3 layers ranked by separability. Crucially, to ensure robust adaptation
and prevent catastrophic forgetting, we augment the training data with a set of generic prompts and
apply loss masking so that gradients are backpropagated only from the model’s generated responses,
not the input instructions. For domain perplexity evaluation, we additionally fine-tune only the top 1
and top 3 layers under each of these regimes. All fine-tune runs use fixed hyperparameters (epochs,
learning rate, batch size, LoRA rank) and multiple random seeds to enable statistical comparison.

(See Appendix

Under review as a conference paper at ICLR 2026

2.3 CAUSAL ACTIVATION SWAPPING

Probing and fine-tuning establish where domain information is present and where the optimizer writes
it; to show that a layer’s activations actually cause domain-directed generation, we perform activation
swapping. The experiment asks: if we transplant the hidden state from a donor prompt in domain Dy,
into a recipient prompt in domain D,, does the model’s next-token distribution shift toward Dj?

To rigorously isolate domain routing from generation complexity, we replace the open-ended code
generation task with a controlled Domain Classification task. We construct matched prompt pairs
using the following template:

Below are two sets of keywords that you need to classify into two domains.
(A) : [List of n representative tokens from domain A]

(B) : [List of n representative tokens from domain B]

Which set is domain X? Answer: Option (

From this template, we define the recipient input x,, as the “correct” prompt where the queried domain
X corresponds to list (A). Conversely, the donor input x is a “conflicting” prompt where the queried
domain X corresponds to list (B). Ideally, the model predicts “A” for x,. Our goal is to determine if
injecting activations from x; steers the model to predict “B”.

We focus our causal analysis on multiple domain pairs (e.g., C++/Python, Medicine/Finance) to ensure
generalizability. This setup offers several methodological advantages: (1) structural prompt similarity
enables precise matched comparisons, (2) the output space is restricted to binary classification labels
(A vs B), providing a clean directional signal, and (3) computational complexity is identical across
samples, isolating domain identity from task difficulty. For a chosen layer ¢ and the final prompt
position t*, we:

1. run a forward pass on the donor (conflicting) input x; and save donor activations a?onor(t*);

2. run a forward pass on the recipient (correct) input z, but, at layer ¢ and position t*,
replace the recipient activation with a{°"°*(#*) and continue inference to obtain the patched
distribution pyyap(e) (- | a);

3. repeat across many donor-recipient pairs and average metrics (see[E.3).

Metrics. We quantify the effect of a swap with two complementary statistics that capture magnitude
and directionality.

(1) KL Divergence. For a donor input x; and recipient input x, we define

Kstapg = Eza [KL(p(| xa) ” pswap(é)(' | ma))]»

where p(- | x,) is the original next-token distribution and pgyap(s) (- | #a) is the patched distribu-
tion. KLgyap, measures how strongly the swap perturbs the model’s predictive distribution at the
intervention point.

(2) Delta bias. We define the target token sets Sy = {“A”} and S = {“B”} corresponding to the
options in the prompt. For a prompt x,, let P(S|z) be the probability mass on tokens S. Bias toward
the donor outcome is Bias(z) = P(Sp|z) — P(S4|x) We measure the change due to intervention as

ABias(D, & D) = E|Biassyap(za & xp) — Biasbase(a:a)] .

Positive values indicate a shift toward the donor label, since bias is computed as the preference of the
donor option over the recipient option. For complete details, see Appendix [E.4]

KL captures whether an intervention meaningfully alters the model’s beliefs; the domain-token Shift
tests whether the alteration is directionally consistent with the donor domain. Together they provide
strong, local causal evidence that activations at layer £ not only correlate with domain identity but
can drive domain-appropriate generation when transplanted into another context. The experimental
conditions ensure that trivial scale differences do not drive observed effects. For more implementation
details, see Experimental Setup

Under review as a conference paper at ICLR 2026

Attention Attention Attention

Separability
°
Separability
°
Separability
o

MLP

Separability
°
Separability
o
Separability
o

0 6 12 18 24 0 6 12 18 24 [6 12 18 24

Layer Layer Layer
(a) C++ (b) Python (c) Math
Attention Attention Attention

— Fisher
-~ MMD

Separability
°
Separability
°
Separability
o

MLP

Separability
°
Separability
°
Separability
o

0 6 12 18 24 0 6 12 18 24 [6 12 18 24

Layer Layer Layer
(d) Medical (e) Science (f) Finance

Figure 1: Separability scores across six domains. Each column displays Attention (top) and MLP (bottom)
blocks for one domain.

3 RESULTS

Our investigation spans six domains: Medicine, Finance, Science, Mathematics, C++, and Python,
and on four LLMs: Llama 3.2 3B, Llama 1B, Gemma 3 4B, and Gemma 3 1B (Grattafior1 et al., 2024;
Team et al, 2025). For more details on datasets used, see Appendix [B] The following discussion is
for the Llama 3.2 3B model, which consists of 28 layers, each with an MLP head and an attention
mechanism. Consistent with our analysis of the ‘Hydra effect’ (Appendix [ET)), we focus the following
quantitative results on the internal layers, excluding the immediate embedding and final output layers
where representations are dominated by input/output constraints rather than internal processing. For
results on other models, see Appendix [A]

3.1 WHERE DOMAIN KNOWLEDGE IS SEPARATED?

Figure [T] shows the 1-vs-all Fisher and MMD separability traces across layers for six domains,
z-normalized to highlight relative variation in depth. Both Attention and MLP components exhibit
non-uniform separability: some layers carry markedly stronger domain identity than others. While the

Under review as a conference paper at ICLR 2026

Domain Attention MLP
Fisher MMD Fisher MMD
Max Std Max Std Max Std Max Std
CPP 1.386 0.212 0.617 0.049 1.236 0.093 0.598 0.019

Python 1.359 0.202 0.615 0.048 1.038 0.067 0.592 0.020
Medical 1.532 0.218 0.657 0.037 1.392 0.110 0.664 0.017
Science 1.281 0.169 0.630 0.033 1.049 0.071 0.606 0.013
Math 1.356 0.191 0.639 0.035 1.062 0.060 0.613 0.011
Finance 2.307 0.323 0.717 0.031 1.987 0.133 0.714 0.010

Table 1: Maximum Value and standard deviation of 1-vs-all separability scores for Attention and
MLP layers across six domains. Higher values indicate greater domain specificity and localization
for that component.

overall trends are similar, the precise peaks do not fully coincide between Attention and MLP. This
suggests that both components participate in domain representation, but their strongest contributions
arise at slightly different depths.

After z-score normalization, Fisher and MMD traces nearly completely overlap across layers. This
indicates that both linear mean-based separation (Fisher) and higher-moment distributional divergence
(MMD) identify the same loci of domain information. Thus, the observed peaks are not artifacts of a
particular separability metric, but reflect genuine structural patterns in the residual stream.

To compare components, Table[T]reports the maximum and standard deviation of 1-vs-all separability
scores across layers. A clear pattern emerges. While both components possess domain information,
the distribution of this information differs fundamentally. MLP layers exhibit consistently low
standard deviation across all domains (e.g., C++ Fisher Std = 0.093), implying that domain-specific
features are distributed relatively uniformly across depth. In contrast, Attention layers show sig-
nificantly higher variance (e.g., C++ Fisher Std = 0.212), indicating that domain identity is not
uniform but highly concentrated at specific ‘hotspot’ layers. The maximum separability reinforces
this distinction. For all 6 domains, the maximum Fisher and MMD scores are higher for Attention
layers than for MLP layers. For the C++ domain, the peak Attention separability (1.386) exceeds the
peak MLP separability (1.236), but more importantly, the variance is over 2x higher in Attention.
This indicates that while domain information is generally available, it becomes highly concentrated
at specific bottleneck layers within the Attention mechanism.

3.2 ADAPTATIONAL ANALYSIS POINTS TO MLP LAYERS

While probing analysis suggests concentrated signals in attention layers, adaptational analysis reveals
a different picture. Figure 2| plots the average normalized weight change (|[AW||/||W||) per layer for
three LoRA fine-tuning regimes: targeting the full model, only MLP components, or only attention
components.

The magnitude of weight change in MLP-only fine-tuning is substantially and consistently higher
than in attention-only fine-tuning. This indicates that MLP layers are the primary locus where new,
domain-specific computation is written during adaptation to a specific domain. The results are
unambiguous across all six domains, persisting even when using loss masking and generic prompt
augmentation to prevent overfitting. This implies that while attention layers had concentrated signals
due to higher peaks of separability in specific layers, adapting to a new dataset consistently relies on
modifying the MLP layers more, proposing that domain-specific knowledge is stored in the latter.

3.3 VALIDATING THE PROPOSED LAYER MAP VIA TARGETED FINE-TUNING

Before performing causal interventions, we first seek to validate the practical utility of our proposed
layer map. If the layers, either those with the largest parameter deltas (primarily MLPs) or those
with the most separable representations (peak attention layers), are indeed the most important for
adaptation, then fine-tuning only these layers should achieve satisfactory results in comparison to
fine-tuning the entire model. We test this hypothesis by fine-tuning only the top-3 and bottom-3 layers

Under review as a conference paper at ICLR 2026

CPP Python Math

o

o
o
o

Component(s) Tuned
— Attention

Component(s) Tuned
== Attention

I
I
-= Mp 1
1
J

Component(s) Tuned 1

0.40 = Attention 1
- Mip ,’
e Al

0.32 1

[

=
o
kS

I
1
—= Mip 1
]

e Al e Al

[1AWIF 7 IWIlF
°
©
IAWIE/ IWIlE
°
©

o
N
o
)

Layer Layer Layer

Medical Science Finance

0.40 0.48 0.36
Component(s) Tuned |
0.40 = Attention 1
= Mip]
1

Component(s) Tuned Component(s) Tuned 1

0.30 —_— lh‘-;“lemmn /
- p ONe=_ N7
Al - e

1
— Attention [}
032 — W I
1
1

Al e Al

0.32

0.24

1AW/ IWIlF
[IAWILE 7 IWIlE

z\v_,_,"xz\,\“ 0.24
~
0.16 o016

Figure 2: Change in the weights on Lora-based fine-tuning, separately on (1) Entire model, (2) Only
Attention Layers, and (3) Only MLP Layers

(for both MLP and Attention) ranked by their separability scores and comparing their performance on
the respective domain’s specific perplexity task against fine-tuning the full model. For every domain,
the domain perplexity was devised using a benchmark evaluation method, normalized between 0 and
1. Details of domain-specific evaluation are mentioned in Appendix[C.2]

Interestingly, the results in Table 2] are even better than expected. Targeted fine-tuning of just the
top-3 layers achieves domain-specific performance that is comparable to, and in some cases exceeds,
that of fine-tuning the entire model, despite using a fraction of the parameters. For more insights,
refer to Appendix[C.1] The dataset used for fine-tuning had around 5000-7000 samples, as discussed
in

It is important to note that due to the small scale of the models and limited fine-tuning data, fine-tuning
can suffer from some forgetting of general capabilities. However, the relative performance gain
across all fine-tuned results demonstrates that our layer importance map successfully identifies the
most critical components for specialization. We emphasize that we do not claim targeted PEFT
is superior to full-model tuning. Instead, these results serve as a proof-of-concept indicating that
mechanistically-guided selection of layers can enable efficient adaptation, highlighting the potential
of interpretability to inform practical fine-tuning strategies.

PT Full Fine Tuning Bottom-3 MLP Bottom-3 Attn Top-3 MLP Top-3 Attn

Math 0.07 0.02 0.08 0.07 0.12 0.03
Science 0.88 0.88 0.87 0.88 0.88 0.86
CPP 0.31 0.41 0.30 0.34 0.39 0.41
Python 0.73 0.69 0.68 0.65 0.71 0.73
Finance 0.94 0.95 0.91 0.91 0.93 0.95
Medical 0.67 0.68 0.66 0.67 0.67 0.68

Table 2: Performance of Llama-3.2-3B across domains on that domain-perplexity metric (normalized
between 0 and 1). PT stands for pre-trained model. All the other column names resemble the
components fine-tuned during adaptation.

Under review as a conference paper at ICLR 2026

LLAMA_3B: Cpp vs Python (MLP)

o - cor =
== Python == Python
0
i ii i i ooof wgr [g i{if i }Txxxn,i!a,snﬂn,fixi
... ' '!

00 ! ! w Ty }; !i
! ! I ! ! ! ~025
-0z
050
FC I T R TR TR S

LLAMA_3B: Cpp vs Python (ATTN)

Mean Delta Bias
Mean Delta Bias

Figure 3: Causal intervention results across all layers for Llama-3.2-3B. Delta Bias when swapping
activations between C++ and Python prompts using our domain-classification task (Section 2.3).
X-axis: layer index (0-27). Y-axis: Delta bias. Swapping attention activations produces large, positive
shifts at specific mid-depth layers (e.g., 13-15, 23-25), indicating sparse routing hotspots. Error bands
show standard deviation over 200 prompt pairs. Full results for all domain pairs in Appendix @

3.4 CAUSAL SWAPPING REVEALS ATTENTION AS DOMAIN ROUTER

Probing identified separable domain representations, and adaptation revealed MLPs as the primary
locus of parameter change. To test which components actually cause domain-directed behavior, we
use activation swapping in our Domain Classification task.

We measure the overall magnitude of the intervention’s effect using KL divergence as shown in
figure[3] For components in layers with high Fisher separability, swapping activations from either
an attention block or an MLP block induces a significant relative perturbation in the next-token
distribution, resulting in high KL divergence. This confirms that both components in these layers are
computationally active and influential on the final output. Conversely, interventions on components
in low-Fisher layers produce a negligible KL divergence, confirming that the effect is localized to the
information-rich parts of the network. Early layers occasionally exhibit high Fisher but low causal
effect (e.g., Attention layer-2), suggesting the occurrence of “hydra” effect McGrath et al.| (2023)
(Discussion here.

However, a disruptive effect does not imply directional control. To test if a layer steers the output
towards a specific domain, we measure the shift in probability mass towards the donor option token
(i.e., the label corresponding to the conflicting domain). Crucially, we observe that this steering
capability is highly specialized, and can be seen as distinct routing hotspots within specific mid-depth
layers. In these concentrated points, swapping activations from a conflicting donor into a correct
prompt reliably shifts the prediction toward the conflicting label. This provides direct causal evidence
that these specific attention layers are not just active, but are providing a sparse, specific steering
signal for domain identity. In contrast, swapping the output of a high-Fisher MLP layer does not
produce a consistent directional shift. While the intervention is disruptive (high KL), the effect on
the target label probability (Delta Bias) is centered around zero across all layers, albeit with high
variance. This suggests that while the MLP is performing critical, domain-relevant computations, it
is not the source of the high-level control signal that dictates “the answer is Option B.”

On bringing together these observations, we can conclude that the MLP layers change most during
fine-tuning because they are the computational workbenches where domain-specific knowledge is
implemented. Intervening on them is disruptive because it interrupts this computation. However,
it is the sparse set of peak attention layers that act as the causal routers. Their activations, though
less plastic during fine-tuning, carry the high-level steering signal that directs the downstream
computational machinery of the MLPs.

4 DISCUSSION

Our investigation began with a foundational question: how does a monolithic network manage
distinct domains? By analyzing the three lenses as proposed, we have moved beyond simple
observation to a causal, mechanistic explanation. Our results resolve the apparent contradiction
between representational and adaptational analyses, revealing a clear and consistent division of
labor between the Transformer’s core components. Here, we synthesize these findings, discuss their
implications for the field, and outline the limitations of our work to chart a path for future research.

Under review as a conference paper at ICLR 2026

Transferability across models. Our findings are not confined to a single checkpoint. We executed
all analyses on LLaMA-1B, LLaMA-3.2B, and Gemma 3-1B/4B (See E[) ‘We further validated our
primary causal claims on the larger Llama-2-7B model to ensure scalability. The overall pattern
holds: specific attention layers exhibit localized, high-separability peaks that act as causal routers,
while MLP layers accumulate the bulk of adaptation updates. Interestingly, Gemma models display
sharper, more localized separability in causal swap experiments, with a single attention layer causing
large directional effects. This acute localization of causal influence suggests a more specialized,
hub-like routing mechanism within Gemma’s architecture, suggesting that architectural choices, such
as logit soft-capping or normalization, may influence the concentration of domain representation.
These findings highlight the need to explore how such architectural decisions affect causal control
and domain adaptation, offering a promising direction for future research.

A coherent mechanistic picture. Taken together, our three experiments point to a consistent
proposition. First, probing reveals a structural distinction: while both components encode domain
identity, MLP layers exhibit low variance across depth, implying a distributed representation. In
contrast, Attention layers exhibit high variance with sharp hotspots of separability. Second, adaptation
analysis confirms that MLPs function as the primary workbenches; even under robust fine-tuning
conditions preventing overfitting, they absorb the vast majority of parameter updates. Third, causal
interventions explain this structure. Swapping activations in the high-variance Attention layers
provides a clean steering signal , reliably flipping the model’s decision in classification tasks. In
contrast, swapping MLP activations causes disruption without directional steering. In the domain
level of abstraction, attention acts as the router, steering domain identity, while MLPs implement the
downstream computations that realize domain-specific behavior.

Implications. This proposal has two important implications. First, it provides a layer-level map of
where to look for domain control in Transformers, guiding mechanistic interpretability beyond micro-
circuits to higher-level behaviors. Second, it has practical value: our targeted fine-tuning experiments
serve as a proof-of-concept, demonstrating that a small set of components identified by our map
suffices to replicate full-model domain tuning. This highlights the potential for mechanistically-
grounded strategies to enable more efficient model adaptation.

Limitations and caveats. Our study has several limitations. (i) To isolate steering from generation,
we relied on a controlled Classification task; however, complex open-ended generation may involve
more distributed control signals that single-point swaps cannot fully capture. (ii) We adopt a 1-vs-all
separability framework, which simplifies analysis but may collapse informative pairwise distinctions
between domains. (iii) Our models are relatively small and fine-tuned on modest datasets; while we
validated causal effects on 7B models, emergent behaviors in 70B+ scale models remain an open
question. (iv) Early-layer separability peaks (e.g., A2) did not always yield causal effects, consistent
with the hydra effect, where distributed signals do not translate into single-point steering handles.
(v) Finally, our causal swaps measure immediate next-token shifts; long-horizon effects and global
coherence remain to be tested.

Future directions. These caveats suggest clear paths forward. Future work should extend our work to
even larger and more diverse models, refine domain prompts beyond code pairs, and analyze per-head
specialization within the identified router layers. A natural next step is to connect layer-level maps to
explicit circuit motifs, integrating coarse-grained and fine-grained mechanistic interpretability. On
the practical side, our study could be used to guide efficient domain adaptation or controlled editing,
narrowing the intervention space to the components that matter most. Finally, a critical direction is to
investigate how this implicit division of labor maps onto architectures with explicit routing, such as
Mixture-of-Experts (MoE).

5 RELATED WORK

Representation analysis : The use of simple linear classifiers, or probes, to correlate internal
activations with linguistic properties marked an early effort to map knowledge in neural networks
(Alain & Bengiol 2018 [Tenney et al.,2019). This method was quickly refined in response to critiques
that high accuracy does not guarantee task-relevance, leading to the development of control methods
and more sophisticated layer-wise analyses of information gain (Hewitt & Liang], 2019} Ravichander
et al., 2020; [Kunz & Kuhlmann, [2022). Applied to contemporary LLMs, these refined techniques

Under review as a conference paper at ICLR 2026

have revealed clear knowledge hierarchies: the “Concept Depth” hypothesis posits that complex
concepts are processed in deeper layers (Jin et al.,|2024)), while abstract traits like personality are
localized to the middle-to-upper layers (Ju et al.l 2024a)). The search for greater precision has led to
techniques like sparse probing for isolating the specific neurons responsible for a concept (Gurnee
et al.,|2023), and has connected analysis to action by using probe results to guide targeted edits on
model behavior (Li et al., 2024).

Critically, targeted fine-tuning of top-3 layers often matches or exceeds full-model performance,
suggesting that selective adaptation to mechanistically-identified layers can mitigate overfitting by
constraining the parameter space while preserving domain-relevant updates. However, we emphasize
that these results serve primarily as proof-of-concept for the utility of mechanistic layer selection,
not as a claim that our current PEFT approach is superior to full-model training at scale. Causal
interventions: To move from correlation to causation, a central method is activation patching: a
family of techniques that swap activations between inputs to measure their causal effect (Vig et al.|
2020; |Geiger et al., 2021 Heimersheim & Nandal [2024). Its application to model editing began with
locating and updating single facts via ROME (Meng et al., 2022, a process later scaled to thousands
of facts with MEMIT (Meng et al., 2023b)) and made more efficient by SaLEM (Mishra et al., 2024).
The scope of such causal analysis has since expanded beyond discrete facts, used to map the locality
of categorical knowledge (Burger et al.||2024)) and to reverse-engineer entire computational circuits
’in the wild’ (Wang et al., [2022).

Functional Specialization of Transformer Components : Causal analysis reveals a functional
specialization between a transformer’s primary sub-layers. MLP layers are established as key-value
memories that store factual knowledge (Geva et al.,[2021)), a view substantiated by causal editing
(Meng et al., 2022)) and shown to hold in multilingual contexts (Fierro et al., |2023). Conversely,
attention mechanisms act as dynamic routers, moving information through the residual stream (Elhage
et al.,|2021; |Olsson et al., [2022). This simple dichotomy has evolved into a more nuanced view of
integrated knowledge circuits, with work formalizing how attention filters information for MLPs to
store (Xu & Chenl [2023)) and detailing direct Attention-MLP interactions (Yao et al.|[2024} Neo et al.|
2024).

Parameter-Efficient Fine-Tuning as a Locus of Knowledge: A parallel line of research frames
Parameter-Efficient Fine-Tuning (PEFT) as a mechanistic diagnostic. While foundational methods
like Adapter-tuning (Houlsby et al.,2019) and LoRA (Hu et al.|[2022) were developed for engineering
efficiency, why and where they work has deep mechanistic implications. Analyses suggest LoRA
learns low-rank updates that mimic full fine-tuning (Zhang et al., 2023), and critically, that the efficacy
of these updates is highly dependent on their layer-wise placement (An et al.,[2024; He et al.| 2022).
This localization principle is further exemplified by methods like LoFiT, which use interpretability to
identify and then fine-tune only a sparse subset of task-critical attention heads (Yin et al., [2024).

6 CONCLUSION

We demonstrate a clear division of labor in Transformers at the high-level scale of complex, real-
world domains: attention layers route domain identity, while MLP layers store domain-specific
knowledge. This work establishes that the “router-compute” principle—previously observed in
low-level tasks—organizes high-level domain specialization across programming, medicine, and
other complex domains. By triangulating probing, adaptation, and causal interventions, we provide a
definitive functional map: attention layers serve as domain routers that causally steer model behavior,
while MLP layers act as domain-specific computational units. This architectural insight provides a
blueprint for more interpretable and efficient model adaptation, advancing our understanding of how
large language models master diverse capabilities.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes,
2018. URL https://arxiv.org/abs/1610.01644.

Zhaofeng An, Ziyang Wang, Hong-Kyun Li, and Eun-Kyu Park. Layer-domain control in llms. arXiv
preprint arXiv:2410.15858, 2024.

Christopher Burger, Yifan Hu, and Thai Le. Beyond individual facts: Investigating categorical knowl-
edge locality of taxonomy and meronomy concepts in gpt models. arXiv preprint arXiv:2404.18820,
2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, and others. Evaluating large language models trained on code, 2021. URL https:
//arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021b. URL https://arxiv.
org/abs/2110.14168.

Damai Dai, Li Dong, Furu Zheng, Yifei Wang, Hao Zhou, Ke Xu, and Furu Wei. Knowledge neurons
in pretrained transformers. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 4683-4695, 2021.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 2021.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with
V-usable information. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 5988-6008. PMLR,
17-23 Jul 2022. URL https://proceedings.mlr.press/v162/ethayarajh22al
html.

Constanza Fierro, Negar Foroutan, Desmond Elliott, and Anders Sggaard. How do multilingual
language models remember facts? In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 5555-5567, 2023.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):
179-188, 1936. doi: 10.1111/j.1469-1809.1936.tb02137 .x.

Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah D Goodman. Causal
abstractions of neural networks. In Advances in Neural Information Processing Systems, volume 34,
pp- 21147-21159, 2021.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5484-5495, 2021.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, et al. The llama 3 herd of models, 2024. URL |https://arxiv.org/abs/
2407 .21783.

11

https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://proceedings.mlr.press/v162/ethayarajh22a.html
https://proceedings.mlr.press/v162/ethayarajh22a.html
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

Under review as a conference paper at ICLR 2026

Arthur Gretton, Karsten Borgwardt, Malte J. Rasch, Bernhard Scholkopf, and Alexander J. Smola. A
kernel method for the two-sample problem, 2008. URL https://arxiv.org/abs/0805.
2368

Akshat Gupta, Christine Fang, Atahan Ozdemir, Maochuan Lu, Ahmed Alaa, Thomas Hartvigsen, and
Gopala Anumanchipalli. Norm growth and stability challenges in localized sequential knowledge
editing, 2025. URL https://arxiv.org/abs/2502.19416.

Wes Gurnee, Zizheng Beredo, Yonatan Belinkov, Max Tegmark, and Dimitris Bertsimas. Finding
neurons in a haystack: Case studies with sparse probing. arXiv preprint arXiv:2305.01610, 2023.

Junxian He, Kevin Kwok, Zhibin Zhou, Graham Neubig, and Pengtao Peng. Towards optimal adapter
placement for efficient transfer learning. In International Conference on Learning Representations
(ICLR), 2022. URL: https://openreview.net/forum?id=RxQOKupaui.

Stefan Heimersheim and Neel Nanda. How to use and interpret activation patching. arXiv preprint
arXiv:2404.15255, 2024.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2733—
2743, 2019.

Neil Houlsby, Andrei Giurgiu, Stanistaw Jastrzeribski, Bruna Morrone, Quentin de Laroussilhe,
Alberto Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In Advances in Neural Information Processing Systems, volume 32, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In International
Conference on Learning Representations (ICLR), 2022.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang,
J. H. Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu,
Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for
top-tier code large language models. 2024. URL https://arxiv.org/pdf/2411.04905.

Mingyu Jin, Qisheng Chen, Xiao Zhang, Jiahua Li, Yequan Liu, Wenyu Liu, Beichen Wang, Zhaofeng
Yang, Shuai Wang, and Yongfeng Zhang. Exploring concept depth: How large language models
acquire knowledge at different layers? arXiv preprint arXiv:2402.13289, 2024.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W. Cohen, and Xinghua Lu. Pubmedqa: A
dataset for biomedical research question answering, 2019. URL https://arxiv.org/abs/
1909.06146.

Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions.
2017.

Tianjie Ju, Zhenyu Shao, Bowen Wang, Yujia Chen, Zhuosheng Zhang, Hao Fei, Mong-Li Lee,
Wynne Hsu, Sufeng Duan, and Gongshen Liu. Probing then editing response personality of large
language models. arXiv preprint arXiv:2405.19522, 2024a.

Tianjie Ju, Weiwei Sun, Wei Du, Xinwei Yuan, Zhaochun Ren, and Gongshen Liu. How large
language models encode context knowledge? a layer-wise probing study, 2024b. URL https:
//arxiv.org/abs/2402.16061.

Jenny Kunz and Marco Kuhlmann. Where does linguistic information emerge in neural language
models? measuring gains and contributions across layers. In Proceedings of the 29th International
Conference on Computational Linguistics, pp. 4976—4988, 2022.

Yufan Li, Zongyi Ji, Huibing Duan, and Anthony Zhou. Probing then editing response personality of
large language models. arXiv preprint arXiv:2404.09849, 2024.

12

https://arxiv.org/abs/0805.2368
https://arxiv.org/abs/0805.2368
https://arxiv.org/abs/2502.19416
https://openreview.net/forum?id=RxQOKupaui
https://arxiv.org/pdf/2411.04905
https://arxiv.org/abs/1909.06146
https://arxiv.org/abs/1909.06146
https://arxiv.org/abs/2402.16061
https://arxiv.org/abs/2402.16061

Under review as a conference paper at ICLR 2026

Spencer Mateega, Carlos Georgescu, and Danny Tang. Financeqa: A benchmark for evaluating
financial analysis capabilities of large language models, 2025. URL https://arxiv.org/
abs/2501.18062.

Thomas McGrath, Matthew Rahtz, Janos Kramar, Vladimir Mikulik, and Shane Legg. The hydra
effect: Emergent self-repair in language model computations, 2023. URL https://arxiv,
org/abs/2307.15771.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual

associations in gpt. In Advances in Neural Information Processing Systems, volume 35, pp.
17359-17372, 2022.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt, 2023a. URL https://arxiv.org/abs/2202.05262,

Kevin Meng, Yonatan Belinkov, and David Bau. Mass-editing memory in a transformer. In Inferna-
tional Conference on Learning Representations, 2023b.

Kshitij Mishra, Aniket Singh, Ankur P Parikh, and Anoop Kumar. Correcting language model outputs
by editing salient layers. Findings of the Association for Computational Linguistics: EMNLP 2024,
2024.

Clement Neo, Shay B Cohen, and Fazl Barez. Interpreting context look-ups in transformers: Investi-
gating attention-mlp interactions. arXiv preprint arXiv:2405.02839, 2024.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Abhilasha Ravichander, Yonatan Belinkov, and Eduard Hovy. Probing the probing paradigm: Does
probing accuracy entail task relevance? In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, pp. 3109-3119, 2020.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhe;j,
et al. Gemma 3 technical report, 2025. URL https://arxiv.org/abs/2503.19786.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. In Anna
Korhonen, David Traum, and Lluis Marquez (eds.), Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 4593-4601, Florence, Italy, July 2019. Association
for Computational Linguistics. doi: 10.18653/v1/P19-1452. URL https://aclanthology!
org/P19-1452/.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating gender bias in language models using causal mediation analysis. In
Advances in Neural Information Processing Systems, volume 33, pp. 12388—12401, 2020.

Kevin Wang, Vatsal Varma, Neel Nanda, Jacob Steinhardt, and Catherine Ebel. Interpretability in the
wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint arXiv:2211.00593,
2022.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions,
2017. URL https://arxiv.org/abs/1707.062009.

Ruichen Xu and Kexin Chen. Filtering with self-attention and storing with mlp: One-layer transform-
ers can provably acquire and extract knowledge. arXiv preprint arXiv:2310.11495, 2023.

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon. A theory of usable infor-
mation under computational constraints. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rleBeyHFDH.

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang, Ziwen Xu, Shumin Deng, and Huajun Chen.
Knowledge circuits in pretrained transformers. arXiv preprint arXiv:2404.14358, 2024.

13

https://arxiv.org/abs/2501.18062
https://arxiv.org/abs/2501.18062
https://arxiv.org/abs/2307.15771
https://arxiv.org/abs/2307.15771
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2503.19786
https://aclanthology.org/P19-1452/
https://aclanthology.org/P19-1452/
https://arxiv.org/abs/1707.06209
https://openreview.net/forum?id=r1eBeyHFDH

Under review as a conference paper at ICLR 2026

Fangcong Yin, Xi Ye, and Greg Durrett. LoFiT: Localized fine-tuning on LLM representations. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2024.

Zihan Zhang, Ming Li, and Yang Liu. Understanding the mechanism of low-rank adaptation. arXiv
preprint arXiv:2304.01933, 2023.

14

Under review as a conference paper at ICLR 2026

APPENDIX

A RESULTS ON OTHER MODELS

A.1 FINE TUNING ANALYSIS

Stage 1: Comprehensive Adaptational Mapping. The initial stage conducted a broad, component-
wise analysis for each of the six domains independently. To map the division of labor between
Transformer components, we applied LoRA adapters under three distinct regimes:

* Attention-Only: LoRA was applied exclusively to the attention projection matrices
(g-proj, kproj, v_proj, o_proj)inevery layer.

* MLP-Only: LoRA was applied exclusively to the MLP projection matrices (gate_proj,
up_proj, down_proj)inevery layer.

* Full Model (All): LoRA was applied to all attention and MLP components simultaneously,
establishing a baseline for unconstrained, full-model adaptation.

The primary objective of this stage was to quantify the magnitude of parameter updates for each
component ¢ € {Attn, MLP} at each layer ¢, measured by the Frobenius norm of the effective weight
change, Sy . = ||AW,,.|| r. The results from this analysis provide the data for the adaptational plots
in the main paper (Figure 2) and this appendix.

STAGE 1 RESULTS FOR OTHER MODELS

The adaptational patterns observed in the Llama 3.2 3B model hold consistently across other model
families and sizes, as shown below.

CPP Python Math
40 40
Component(s) Tuned 7N\, Component(s) Tuned AN, 40| Component(s) Tuned PR
- — Attention pid u — Attention e " — Attention i
N < N - ’
N 32 N 32 S 32 - Mip -
= = = PRl ————
24 2 L2
: : :
= 16 =16 =16
0 5 10 15 0 5 10 15 0 5 10 15
Layer Layer Layer
Medical Science Finance
42
Component(s) Tuned // Component(s) Tuned ’/’ -~ Component(s) Tuned Pt
§m 35 — Attenton _ __ _ _ __ == - § 36 —— Attention Pt §u. 32 —— Attention P
=¥ o g
= = =
£ s s .
2 =1 =i
= = =
8
0 5 10 15 0 5 10 15 0 5 10 15
Layer Layer Layer

Figure 4: Layer-wise magnitude of parameter updates (Sy) for Llama 3.2 3B under three LoRA
fine-tuning regimes across six domains.

15

Under review as a conference paper at ICLR 2026

CPP Python Math
40| Component(s) Tuned I.ﬁ\ 40| component(s) Tuned LN \ 40| Component(s) Tuned roNS
o == Attention J \ u 5 Attention ,I \ o /N Attention Pid \
S 5|~ wp _ /v-v”/ \‘ Sa New 7 \ S 2 Mip o~ “
= VAL AN/ \ \ = ""\Al"/ v \ = Al 3
I N I e,
= = =24 Rt
= . N s, . N ear, .
3 5 3 3
=5 =56 =56
0 10 20 30 0 10 20 30 0 10 20 30
Layer Layer Layer
Medical Science Finance
36 Cow\em(s) Tuned A Component(s) Tuned o \\ 20, Component(s) Tuned Vi Zaant
w ~ Attention o= /NS N\~Z =S \ 401w Atention o~ i _ 74— Attention 4 \
S w0 _\\ Mp s Y \ s \ i ,-V’ \VAZanld “ s 5 =\ Mip // \
= S =, ey’ = Y
= = =
& & L2 N
RS 2| e, e 3
s = SRR 2 s
16 4
0 10 20 30 0 10 20 30 0 10 20 30
Layer Layer Layer

Figure 5: Layer-wise magnitude of parameter updates (S;) for Gemma 3 4B under three LoRA
fine-tuning regimes across six domains.

CPP Python Math
- 25
Component(s) Tuned s\ Component(s) Tuned ,’\\ Component(s) Tuned ’/\\
90 —— Attention Ve \ 9 — Attention R \ P — Attention _/’ \
2 2 2 == Mp =7 \
= = = "\'\Ai —_——)
~ 15 ~ 15 ~ 15
= _= _= TTNS
5 5 5
0 8 16 24 0 8 16 24 0 8 16 24
Layer Layer Layer
Medical Science Finance
- - 125 -
Component(s) Tuned R 25, Component(s) Tuned 7 Component(s) Tuned - =\
w 20 — Attention, #\ o’ S ~=" W — Atention 2 _ 7N~ \ W s Attention \
= e \ = - \ S 1000 LN wp ! \
S —_— = 2 S -, \
=5 T Al = = RN P
= e, g & 7 g
S) N N
=N =1 g 50
= =0 =
8
25
0 8 16 24 0 8 16 24 0 8 16 24
Layer Layer Layer

Figure 6: Layer-wise magnitude of parameter updates (S;) for Gemma 3 1B under three LoRA
fine-tuning regimes across six domains.

16

Under review as a conference paper at ICLR 2026

ADAPTATIONAL NORM ANALYSIS

To dissect the dynamics of targeted adaptation, we compare the norms of LoRA weight updates
([|AW]|| p) for the top-3 most-adapted layers across three analytical contexts. The summary tables
aggregate these norms to reveal overarching patterns.

* Avg. Full Run Norm: The average norm of a component group (e.g., Top-3 MLPs) from
the Stage 1 “Full Model” regime, where all layers were adapted on a single domain. This
represents the baseline update magnitude in an unconstrained setting.

* Avg. Ensemble Norm: The average norm of a component group from a Stage 2 "Ensemble
Tuning” run, where only those specific components (e.g., only the Top-3 MLP layers) were
adapted. This measures the update magnitude under targeted, multi-component fine-tuning.

* Top Solo Run Norm: The norm of the single highest-ranking component from a Stage 2
”Soloist Tuning” run, where it was the only component adapted in the entire model. This
quantifies a component’s adaptational capacity in complete isolation.

Table 3: Aggregated LoORA weight update norms for the Llama 3.2 3B model across all domains.

. Avg. Full Avg. Ensemble Top Solo
Domain Component Group Run Norm Norm Run Norm
CPP Top-3 MLP Components (Avg.) 1.019 x 107 1.287 x 102 1.651 x 107

Top-3 Attn Components (Avg.) 7.042 x 10* 9.357 x 10* 1.149 x 102

Finance 1oP-3 MLP Components (Avg.) 9.463 x 10* 6.990 x 10* 9.945 x 10*
Top-3 Attn Components (Avg.) 5.464 x 10* 4.687 x 10* 6.056 x 10*

Math ToP-3 MLP Components (Avg) 1.007 x 102 1.360 x 102 1.676 x 102
Top-3 Attn Components (Avg.) 6.580 x 10! 8.377 x 10* 9.766 x 10

Medical ToP-3 MLP Components (Avg.) ~ 9.545 x 10* 1.239 x 102 1.560 x 107
Top-3 Attn Components (Avg.) 9.134 x 10! 9.702 x 10* 1.181 x 102

Python ToP-3 MLP Components (Avg.) 1.010 x 102 1.311 x 102 1.744 x 102
y Top-3 Attn Components (Avg.) 6.978 x 10 9.599 x 10! 1.250 x 102
Science Top-3 MLP Components (Avg) ~ 1.019 x 10? 1.343 x 102 1.660 x 107
Top-3 Attn Components (Avg.) 8.013 x 10* 9.999 x 10* 1.145 x 102

Table 4: Aggregated LoRA weight update norms for the Llama 3.2 1B model across all domains.

. Avg. Full Avg. Ensemble Top Solo
Domain - Component Group Run Norm Norm Run Norm
CPP Top-3 MLP Components (Avg.) 1.131 x 102 1.508 x 102 1.944 x 102

Top-3 Attn Components (Avg.) 8.660 x 10* 1.150 x 102 1.389 x 102

Finance 1oP-3 MLP Components (Avg) ~ 1.063 x 10? 8.506 x 10! 1.201 x 102
Top-3 Attn Components (Avg.) 6.711 x 10 5.694 x 10* 7.221 x 10*

Math Top-3 MLP Components (Avg.) 1.151 x 107 1.607 x 102 2.025 x 102
Top-3 Attn Components (Avg.) 8.405 x 10! 1.062 x 107 1.209 x 102

Medical ToP-3 MLP Components (Avg) ~ 1.116 x 102 1.457 x 102 1.798 x 102
Top-3 Attn Components (Avg.) 1.139 x 10? 1.196 x 102 1.402 x 102

Python ToP-3 MLP Components (Avg) 1.123 x 102 1.535 x 102 2.042 x 102
Y Top-3 Attn Components (Avg.) 8.578 x 10! 1.173 x 102 1.493 x 102
Science Top-3 MLP Components (Avg.) ~ 1.189 x 10? 1.610 x 102 2.009 x 102
Top-3 Attn Components (Avg.) 1.024 x 107 1.278 x 102 1.446 x 102

17

Under review as a conference paper at ICLR 2026

Table 5: Aggregated LoRA weight update norms for the Gemma-3 4B model across all domains.

. Avg. Full Avg. Ensemble Top Solo
Domain Component Group Run Norm Norm Run Norm
CPP Top-3 MLP Components (Avg.) 7.481 x 10! 8.510 x 10* 9.509 x 10*

Top-3 Attn Components (Avg.) 4.523 x 10* 5.179 x 10* 6.092 x 10*

Finance 1oP-3 MLP Components (Avg.) 3.211 x 10* 3.883 x 10* 4.720 x 10!
Top-3 Attn Components (Avg.) 2.398 x 10* 2.806 x 10* 3.566 x 10*

Math ToP-3 MLP Components (Avg) 6.152 x 10* 7.033 x 10* 7.748 x 10
Top-3 Attn Components (Avg.) 3.345 x 10! 3.862 x 10* 4.418 x 10!

Medical ToP-3 MLP Components (Avg) ~ 7.913 x 10" 8.882 x 10! 1.060 x 102
Top-3 Attn Components (Avg.) 4.881 x 10! 5.361 x 10* 6.759 x 10*

Python T0P-3 MLP Components (Avg.) 7.612 x 10* 8.496 x 10* 9.706 x 10*
y Top-3 Attn Components (Avg.) 4.755 x 10 5.305 x 10! 6.187 x 10"
Science Top-3 MLP Components (Avg.) 8.339 x 10* 9.547 x 10" 1.049 x 102
Top-3 Attn Components (Avg.) 4.698 x 10* 5.223 x 10* 5.652 x 10*

Table 6: Aggregated LoRA weight update norms for the Gemma-3 1B model across all domains.

. Avg. Full Avg. Ensemble Top Solo
Domain Component Group Run Norm Norm Run Norm
CPP Top-3 MLP Components (Avg.) 4.315 x 10 5.039 x 10* 6.484 x 10*

Top-3 Attn Components (Avg.) 2.451 x 10* 2.822 x 10* 3.337 x 10*

Finance 1oP-3 MLP Components (Avg.) ~ 2.478 x 10" 2.891 x 10! 3.953 x 10!
Top-3 Attn Components (Avg.) 1.691 x 10 1.956 x 10* 3.240 x 10*

Math Top-3 MLP Components (Avg.) 4.022 x 10! 4.570 x 10* 5.823 x 10*
Top-3 Attn Components (Avg.) 2.003 x 10! 2.292 x 101 2.922 x 101

Medical ToP-3 MLP Components (Avg.) ~ 4.811 x 10! 5.544 x 10 7.106 x 10*
Top-3 Attn Components (Avg.) 2.955 x 10! 3.401 x 10* 4.053 x 10*

Python ToP-3 MLP Components (Avg.) ~ 4.297 x 10* 4.926 x 10* 6.502 x 10*
Y Top-3 Attn Components (Avg.) 2.501 x 10! 2.846 x 10* 3.237 x 10*
Science Top-3 MLP Components (Avg.) ~ 4.973 x 10" 5.627 x 10* 6.923 x 10*
Top-3 Attn Components (Avg.) 2.516 x 10* 2.830 x 10* 3.364 x 10*

18

Under review as a conference paper at ICLR 2026

A.2 PROBING ANALYSIS

The process of calculating separability scores between each pair of datasets, layer-wise, consists of 2
main components:

1) Hooking to get activations
2) Using these activations to get the Separability Scores

Hook placement and construction of per-sample representations. When analyzing representations
inside transformer layers, forward hooks are placed on sub-modules corresponding to the Attention
block, MLP block, and Residual stream activations. Each hook captures the output tensor of shape
[B, S, D], where B is the batch size (examples per forward pass), S is the sequence length (tokens
per example), and D is the hidden dimension of the representation. To simplify, the token dimension
is mean-pooled, giving a [B, D] embedding for each batch. These embeddings are concatenated
across multiple forward passes to construct a design matrix X € RY*P where N is the total number
of collected samples. Alongside, a label vector y € {0, ...,C — 1} is created so that each row X,
corresponds to its class label y,..

To compute Fisher separability between two classes ¢ and j, we first isolate the subsets of X
belonging to those labels, giving matrices X; € R™*" and X j ERM %D The mean representation
of each class (u;, j1;) is calculated across their samples, and the variance within each class (var;, var;)
is also estimated. Fisher’s score is then defined as the squared distance between the two class means,
normalized by the sum of their variances. Intuitively, if the means are far apart relative to how spread
out the classes are internally, the score is high, indicating that the two classes are well separated in
the representation space.

For the Maximum Mean Discrepancy (MMD), the same class-specific subsets X; and X are
compared using a kernel function, typically a Gaussian RBF kernel. Pairwise distances between
samples are used to determine the kernel bandwidth v, and kernel similarity matrices are constructed:
within-class (K;, K;;) and cross-class (,;;). The MMD score is then computed as the difference
between average within-class similarities and average cross-class similarities. A larger MMD value
means the two distributions X; and X; are more dissimilar, capturing not just differences in means
but also higher-order mismatches in distributional shape.

EXPERIMENT PARAMETERS

Samples per domain MLP hook Attention hook Batch size
(forward pass)

1000 up_proj 0_proj 8

Parameters used for all models: Llama 3.2 3B, Llama 3.2 1B, Gemma 3 4B, and Gemma 3 1B.

B DATASETS

C++, Python For our coding datasets, we have used the Open Coder LLM Annealing Corpus
(Huang et al.|(2024)) which contains functional code snippets on various coding questions. This
dataset aligns with our Human Benchmark Evaluation tests since it uses the same formatting. Each
data point has a top level comment describing the task followed by a function that implements the
task. The original dataset also contains inline comments inside the function body but these have been
striped for conciseness. Listing [l|and Listing showcase examples from our dataset on C++ and
Python snippets.

Science We have used the SciQ dataset (Johannes Welbl, [2017)) which contains crowd-sourced
questions on Physics, Chemistry and Biology. The questions are in multiple-choice format with 4
answer options each. For our purposes we have formatted the data-points into Context, Question and
Answer.

19

Under review as a conference paper at ICLR 2026

Attention Attention Attention
. 1.60 —— Fisher . 160 - — Fisher L 2009 — Fisher
£ --= MMD £ --- MMD £ 100 - --- MMD
5 0380 4 = 3 0.80 — NS 3
g 0.00 4 g 000 o g 297
3 080 4 & 0.0 - & 100 7
’ -2.00 = N
T T T T T T T T T T T T
0 4 8 12 0 4 8 12 0 4 8 12
Layer Layer Layer
1.60 4
1.60 1.00
Z 080 7 £ 0.0 ~ £ o000 A
K K K]
5 0.00 — 5 0.00 o 5 -1.00 —
oy oy 2 2.00 o
» -0.80 = “ .0.80 = & -2.00
-3.00 o
Layer Layer
(a) C++ (b) Python (c) Math
Attention Attention Attention
2.00
5. 2.00 o —— Fisher .. 2.00 - —— Fisher o B —— Fisher
2 --- MMD 2 --- MMD £ 100 --- MMD
5 E 1.00 2 000 -
2 0.00 2 0.00 o 2
g g g 10
-1.00 —
% -1.00 — 2.00 = \
T T T T T T T T T T T T
0 4 8 12 0 4 8 12 0 4 8 12
Layer Layer Layer
2.00
2.00 -
2z 2 1.00 o Z 2.00 4
g 100 4 3 000 A ® 1.00 4
]]]
g o000 2 -1.00 o 0.00 o
%] 1.00 - 1%2] (%2}
. -2.00 — 1.00 4
Layer
(d) Medical (e) Science (f) Finance

Figure 7: probe separability results for Llama 1B Model

Context: Enzymes are critical to the body’s healthy functioning.
They assist, for example, with the breakdown of food and its
conversion to energy. In fact, most of the chemical reactions
in the body are facilitated by enzymes.

Question: Most of the chemical reactions in the body
are facilitated by what?

Options: A. proteins B. enzymes C. vitamins D. carbohydrates

Answer: B

Mathematics The Math dataset is GSM8K (Cobbe et al., 2021al) which is a dataset of 8.5k
high quality math word problems. The dataset contains question answering on basic mathematical
problems that require multi-step reasoning. The datapoints are also similarly formatted into Question,
Answer and Final Answer.

Question: Natalia sold clips to 48 of her friends in April, and

then she sold half as many clips in May. How many clips did

Natalia sell altogether in April and May?
Answer: Natalia sold 48/2 = <<48/2=24>>24 clips in May. Natalia

sold 48+424 = <<48+424=72>>72 clips altogether in April and May. #### 72
Final Answer: 72.

20

Under review as a conference paper at ICLR 2026

Attention Attention Attention
o —— Fisher o 2.00 o o Fisher
) 1.50 o MMD £ 1.00 £ 1.50 -
Qo Qo Qo
£ 000 4 £ 0.00 A £ 0.00 o
& % 100 &
150 o o @ 150 4
T T T T T -2.00 =
0 6 12 18 24
Layer
MLP
2.00 2.00 o 1.00 —
2 1.00 A Z 100 z
EEN EEN 3 0004
2 0.00 C 0.00 ©
g § 100 g7
& -1.00 4 & -1 & 500 4
2.00 - -2.00 o
Layer Layer
(a) C++ (b) Python (c) Math
Attention Attention Attention
2.00 4
2.00 4 —— Fisher 2.00 —— Fisher
Z 100 4 2 1.00 § Z 1.00 5
3 7 3)
© 0.00 o © 0.00 T 0.00
2 2 2 100
g -1.00 & -1.00 4 g1
-2.00 -2.00 -2.00
3.00 4 2.00 o 2.00 4
z 200 Z 100 Z 1.00 4
g 100 € 0.00 o € 000 o
© © © :
S 0.00 o S -1.00 & -1.00
%] 1%2] (%2}
-1.00 -2.00 o -2.00
Layer
(d) Medical (e) Science (f) Finance

Figure 8: probe separability results for Gemma 1B Model

Finance The Finance dataset (Mateega et al.||2025) is a set of financial question and answer pairs
extracted from company annual reports, balance sheets, and financial statements.The datapoints
contain context with some financial values and the model is questioned upon some value that is
dependant on this information. A similar formatting technique is used where we explicitly state the
context, question and answer.

Context: Liabilities: 8,537.39 Total Capital And Liabilities:
13,410.53 ASSETS: nan NON-CURRENT ASSETS: nan Tangible
Assets: 74.2 Intangible Assets: 4.16 Capital Work-In-Progress:
0 Other Assets: 0 Fixed Assets: 98.73 Non-Current
Investments: 0 Deferred Tax Assets [Net]: 0 Long Term Loans And Advances:
Other Non-Current Assets: 15.61 Total Non-Current Assets: nan
Question: What is the total value of assets of the company?
Answer: The total value of assets of the company is $13,410.53.
Final Answer: 13410.53.

Medical We use the ReasonMed dataset (link lingshu-medical-mllm/ReasonMed) which is an open-
source synthetic medical reasoning dataset containing multi-step chain-of-thought (CoT) rationales
and concise summaries of LLMs such as Qwen-2.5-72B, DeepSeek-R1-Distill-Llama-70B, and
HuatuoGPT-01-70B on medical questions.

21

Under review as a conference paper at ICLR 2026

Attention Attention Attention
4.50 - 4.50 3.00 o -
N —— Fisher N —— Fisher o —— Fisher
Z 3.00 - -~ MMD 2 3.00 4 --- MMD £ 150 o
Qo Qo Qo
g 150 g 150 7 £ 0.00
2 0.00 o g 0.00 [y
n n » -1.50 —
-1.50 = -1.50 —
3.00 - 4
> 5 300 > 4.00
3 1509 3 150 4 3 200 o
]] ©
8 0.00 - 2 0.00 o 2 0.00 o
(%2} (%2} [%2]
-1.50 o -1.50 -2.00 o
Layer
(a) C++ (b) Python (c) Math
Attention Attention Attention
» 1507 2 150 - = 4.00
3 000 o 2 000 4 3 2.00 -
2 150 g 2 0.00
8 & -1.50 4 & /
-3.00 — 2,00 W
T T T T T
0 8 16 24 32
Layer
MLP
2.00 o
> 3.00 > 0 Fsher Z 4.00 o
5 150 o 3 1.00 o 2 o
g 0.00 g 000 7 g ”
] (7] @ -
O 150 4 & -1.00 & o0.00
-2.00 = 2.00 = T T T T
0 8 16 24 32
Layer Layer
(d) Medical (e) Science (f) Finance

Figure 9: probe separability results for Gemma 4B Model

The question presents a radiographic scenario: a PA
(posterocanterior) ulnar deviation view of the wrist, asking
for the most likely diagnosis among the following options:
Osteomyelitis, De Quervain tenosynovitis, Hypertrophic
osteoarthropathy, and Rheumatoid arthritis. The correct answer
is De Quervain tenosynovitis. To comprehensively understand
and justify this answer, it's essential to dissect

each component... (truncated)

C EVALUATION

C.1 EVALUATION RESULTS

Our evaluation of domain-specific performance uses two accuracy metrics tailored to the task type.
For the Math, Science, Finance, and Medical domains, we report standard classification accuracy,

defined as: ..
Number of Correct Predictions

A =
ccuracy Total Number of Samples

For the programming domains (C++ and Python), we evaluate code generation correctness using the
pass@k metric. Specifically, we use pass@10, where the model generates 10 candidate solutions for

22

Under review as a conference paper at ICLR 2026

def find_pivot_index (nums: list[int]) -> int:
Finds_the_pivot_index_of_a_list_of_numbers.

v The_pivot _index_is_where_the_sum_of the numbers_to_the_left of
_the_index

cis_equal_to_the_sum_of_the_numbers_to_the_right_of _the_index.

Args:

nums: A list_of_integers.

[ETETR——

[T T R T R T T

oo Returns:
The_pivot _index if_one_exists, otherwise_-1.

[T TR TR TR T

oo Examples:
oo >>> find_pivot_index ([1,.7,.3,.6,.5,.61)
oo >>> find_pivot_index ([1,.2,.31)
L_JL_M_JL_M_M_JL_M_J_l
> >>find_pivot_index ([2, 1, -11])
a0

total_sum = sum(nums)

left_sum = 0

for i, num in enumerate (nums) :

if left _sum == total_sum - left_sum — num:

return i
left_sum += num

return -1

Listing 1: A Python snippet from our dataset illustrating a simple coding problem with a doc-
string that explicitly describes the working of the function

23

Under review as a conference paper at ICLR 2026

// This function takes a positive integer as input and returns a
list of its prime factors,
// which are the prime numbers that multiply together to equal the
original number.
// The prime factors are returned in ascending order.

// Parameters:

// * number: A positive integer to be factorized into its prime
factors.

//

// Examples:

// * find prime_factors(8) => [2, 2, 2]

// + find _prime_factors (25) => [5, 5]

// * find prime_factors(70) => [2, 5, 7]

std::vector<int> find_prime_factors (int number) {
std::vector<int> prime_factors;

while (number % 2 == 0) {
prime_factors.push_back (2);
number /= 2;

for (int i1 = 3; i <= std::sqgrt (number) + 1; i += 2) {
while (number % 1 == 0) {
prime_factors.push_back (i) ;

number /= 1i;

if (number > 2) {
prime_factors.push_back (number) ;

return prime_factors;

Figure 10: A C++ snippet from our dataset featuring a prime factorization problem. Each example
contains a descriptive comment above the function body and clear naming conventions for the function
itself.

24

Under review as a conference paper at ICLR 2026

each problem. A problem is considered solved if at least one of these candidates passes all unit tests.
The accuracy is therefore calculated as:

Number of Problems with at least one passing solution

ass@10 =
P Total Number of Problems
It is important to note that the results presented, particularly for the smaller 1B models, may exhibit
some noise. These models operate with fewer parameters, making performance sensitive to minor
variations in fine-tuning, which can affect the robustness of the generated outputs.

PT MLP Attn Both Top-1 MLP Top-1Attn Top-3 MLP Top-3 Attn

Math 0.040 0.070 0.050 0.020 0.050 0.040 0.030 0.040

Science 0.395 0.390 0.535 0.475 0.385 0.290 0.310 0.325

CPP 0.120 0.020 0.020 0.000 0.050 0.040 0.130 0.040

Python 0.440 0.020 0.180 0.040 0.040 0.350 0.160 0.290

Finance 0.180 0.020 0.010 0.000 0.060 0.040 0.020 0.070

Medical 0.847 0.687 0.787 0.813 0.904 0.424 0.916 0.864
Llama-3.2-1B

PT MLP Attn Both Top-1 MLP Top-1Attn Top-3 MLP Top-3 Attn

Math 0.100 0.030 0.060 0.030 0.140 0.060 0.040 0.040

Science 0.625 0.755 0.700 0.650 0.610 0.600 0.425 0.425

CPP 0.320 0.000 0.030 0.000 0.000 0.286 0.000 0.150

Python 0.470 0.040 0.300 0.050 0.286 0.371 0.220 0.340

Finance 0.080 0.020 0.050 0.040 0.025 0.000 0.030 0.030

Medical 0.900 0.713 0.912 0.512 0.880 0.880 0.912 0.888
Gemma-3-1B

PT MLP Attn Both Top-1 MLP Top-1Attn Top-3 MLP Top-3 Attn

Math 0.080 0.080 0.060 0.080 0.200 0.133 0.400 0.267

Science 0.715 0.780 0.780 0.760 0.840 0.820 0.760 0.700

CPP 0.833 0.033 0.000 0.000 0.028 0.457 0.000 0.286

Python 0.300 0.233 0.333 0.033 0.371 0.343 0.286 0.343

Finance 0.040 0.000 0.000 0.000 0.000 0.000 0.025 0.025

Medical 0.925 0.950 0.950 0.300 0.875 0.950 0.725 0.850
Gemma-3-4B

As an alternative performance metric, we measured the asymptotic validation loss for different com-
ponent combinations. The results aligned with our separability analysis: layers identified as having
high activation separability consistently outperformed those with lower separability, converging to a
significantly lower validation loss.

C.2 DOMAIN EVALUATION
C.2.1 MATH

Dataset chosen: GSM8K (Grade School Math 8K) introduced by |Cobbe et al.|(2021b) is a collection
of grade-school level math word problems designed to evaluate multi-step arithmetic and reasoning
ability. The dataset emphasizes chain-of-thought style reasoning where intermediate steps are useful
to arrive at the correct numeric result.

25

Under review as a conference paper at ICLR 2026

GSMSK is used here as it’s a widely used benchmark for studying reasoning behavior in language
models and for evaluating self-consistency / majority-vote sampling methods. Also, it is not too
difficult, hence used for evaluation on the small models considered.

Prompt—Output Illustration:

reasoning and
Q: John has 3 apples.
He buys 2 more.
How many apples does he have Step 1: John starts with 3

now? apples.
Step 2: He buys 2 more.

A: Let's reason step by step. Step 3: Total apples = 3 + 2

At the end, give the final = 5.
numeric

answer on its own line in #H## 5
this exact format: Answer:

##44 <number>

Answer:

Iustration of the prompt (left) and an example of the expected LLM output (right).

Evaluation Samples Sampling Amount Per Max Generation Temperature Top-p
Sample Tokens
100 10 1024 0.7 0.90

(Hyper-Parameters used during Model inference For Evaluation(Self-Consistency)

C.2.2 FINANCE

Dataset chosen: FinanceQA introduced by [Mateega et al.| (2025) is a curated set of financial
question—answer pairs extracted from company filings (annual reports, balance sheets, and reports). It
supplies queries, short factual answers, and the supporting context passage from the source document
(e.g., a few sentences or table rows). Focus is on numerical output comparison and extraction.

FinanceQA is used for evaluation as it provides a domain-specific “finance + math” evaluation
setting, requiring both factual retrieval and quantitative reasoning.

Prompt-Output Illustration:

Example reasoning and
output

FinanceQA prompt builder

(context + query)
Step 1: From the context, the

Context:
<supporting passage from
financial filings>

Question:
<guery here>

Answer: The final answer is

Final Answer:

net profit

margin in 2021 is explicitly
given.

Step 2: The reported margin
is 11.04%.

Final Answer: 11.04%

Under review as a conference paper at ICLR 2026

[ustration of the FinanceQA prompt template (left) and an example expected LLM output (right).

Evaluation Samples Sampling Amount Per Max Generation Temperature Top_p
Sample Tokens
100 10 512 0.7 0.95

(Hyper-Parameters used during Model inference For Evaluation(Self-Consistency))

C.2.3 MEDICAL

Dataset chosen: PubMedQA introduced by [Jin et al. (2019) is a dataset of biomedical research
questions paired with contexts and a short (yes/no) final decision derived from biomedical articles.
Each sample often contains an abstract or supporting passage and a question about the clinical finding;
the ground truth is typically a binary decision. Sometimes if LLM is highly undecisive the output of
LLM is assumed ’None’

We use PubMedQA because it is a widely-used , biomedical QA benchmark for evaluating concise,
high-precision yes/no answers in the clinical/research domain.

Prompt-Output Illustration:

PubMedQA prompt builder (
question + context)

Context:
<concatenated context sentences
or abstract>

Question: <guestion here>

Based on the context above,
answer the question

with exactly 'yes' or 'no' (
lowercase),

and do NOT provide any
explanation.

Answer:

[lustration prompt template used Sample output is simply Yes/No , In case Bad output Then None is interpreted

Evaluation Samples Sampling Amount Per Max Generation Temperature Top-p
Sample Tokens
250 1 512 0.0 1.00

(Hyper-Parameters used during Model inference For Evaluation (Greedy))

C.2.4 SCIENCE

Dataset chosen: SciQ introduced by [Welbl et al.|(2017) is a data set of multiple choice science questions that
contains short grade-level science questions with four answer options (A-D) and optional supporting facts. Each
example includes a question, four candidate answers, and (sometimes) a support passage.

SciQ is used because it provides well-formed multiple-choice prompts suitable for evaluation,it is easy for a
small LLM hence it is used.

Prompt—Output Illustration:

27

Under review as a conference paper at ICLR 2026

// SciQ prompt builder (Answer:B
question + options)

Question:
<question text>

Options:

A. <option A>
B. <option B>
C. <option C>
D. <option D>

Answer with the letter of the
correct option only (A, B,
C, or D).

Do NOT provide any explanation.

Answer:

Ilustration: left = prompt template used for SciQ , model output is a single letter A/B/C/D.

Evaluation Samples Sampling Amount Per Max Generation Temperature Top_p
Sample Tokens
200 1 256 0.0 1.00

(Hyper-Parameters used during Model inference For Evaluation(Greedy))

C.2.5 PYTHON

Dataset chosen: HumanEvalPack (multilingual / Python subset) Introduced by |Chen et al.| (2021} is a collection
of programming problems with formal problem descriptions, expected function signatures, and test harnesses.

Inputs in the form of coding questions are provided, and the model is expected to output corresponding code
which is executed against test cases. The accuracy used for evaluation is pass@Kk, a standard metric for
code-generation tasks, rather than simple string-matching accuracy.

HumanEvalPack is used here because it provides language-specific (C++/Python/etc.) prompts with a standard
“declaration + examples + tests” scheme. The problems are relatively simple, making this dataset ideal for
comparing small models on code generation and correctness.

Prompt—Output Illustration:

28

Under review as a conference paper at ICLR 2026

Problem:
<prompt_or_instruction>

Signature:
<signature>

Docstring:
<docstring>

Examples:
<example_test>

Write the complete Python
function

implementation only.

Output only wvalid Python code
for the

function (no explanation, no
tests,

no surrounding markdown) .

signature match the signature
above.

Implementation:

Make sure the function name and

Example implementation for:
def add(a: int, b: int) ->
int

def add(a: int, b: int) -> int:
simple implementation
return a + b

INlustration of the Python prompt template (left) and an example expected LLM output (right).

Evaluation Samples Sampling Amount Per Max Generation Temperature Top_p
Sample Tokens
100 10 1024 0.7 0.95

(Hyper-Parameters used during Model inference For Evaluation(Self-Consistency))

C.2.6 CPP

Dataset chosen: HumanEvalPack (multilingual / C++ subset) Introduced by |Chen et al.|(2021) is a collection
of programming problems with formal problem descriptions, expected function declarations/signatures, and test
harnesses .Inputs in the form of coding questions are provided, and the model is expected to output corresponding

code which is compiled against test cases.

HumanEvalPack is used here because it provides language-specific (C++/Python/etc.) prompts with a standard
“declaration + examples + tests” scheme. The problems are relatively simple, making this dataset ideal for
comparing small models on code generation and correctness.

Prompt—Output Illustration:

29

Under review as a conference paper at ICLR 2026

// Problem: #include <bits/stdc++.h>
<prompt_or_instruction> using namespace std;
// Declaration: // Example implementation for:
<declaration> int add(int a, int b)

int add(int a, int b) {
// Docstring / Notes: // simple implementation
<docstring> return a + Db;

}

// Examples:
<example_test>

Write the C++ implementation
only

(no explanation, no tests, no
surrounding markdown) .

Include necessary #include
lines if needed.

Ensure function name and
signature match the
declaration above.

Implementation:

Ilustration of the C++ prompt template (left) and an example expected LLM output (right).

Evaluation Sampl Sampling A t Per Max Generation Temperature Top-p
Sample Tokens
100 10 1024 0.7 0.95

(Hyper-Parameters used during Model inference For Evaluation(Self-Consistency))

D EXPERIMENTAL SETUP

D.1 FINE TUNING

All experiments were run on NVIDIA H100 GPUs, using PyTorch and the Hugging Face ‘transformers* and
‘peft® libraries. To maximize computational throughput, the model was JIT-compiled using ‘torch.compile()‘. A
fixed set of hyperparameters, detailed in Tablem was used across all experiments to ensure fair comparison.

30

Under review as a conference paper at ICLR 2026

Table 7: Common hyperparameters for all fine-tuning experiments.

Parameter Value

Training Configuration

Optimizer AdamW
Learning Rate 1x1073
Batch Size 8

Epochs (Stage 1 Mapping) 10
Epochs (Stage 2 Validation) 3

Seed 42
Precision ‘bfloat16°

LoRA Configuration

Rank (r) 16

Alpha («) 322 x7)

Dropout 0.05

Target Modules (Attn) g.proj, k_proj, v_proj, oO_proj
Target Modules (MLP) gate_proj, up-proj, down_proj

D.2 PROBING ANALYSIS

In addition to Fisher Separability and Maximum Mean Discrepancy (MMD), we also evaluated probing sep-
arability using other metrics such as classification probing accuracy, cosine similarity, and V-bits. However,
for high-level abstraction tasks such as Domain Separability, the results across layers were not clearly dis-
tinguishable. This arises because, in such tasks, the points in the activation hyperspace are widely dispersed.
Consequently, strong metrics such as V-bits or probing classification accuracy can easily separate these spread-
out representations, making them less informative for fine-grained layer-wise analysis. In contrast, weaker
metrics such as Fisher separability and MMD are more useful in these cases, as they provide more sensitive
distinctions when the data is already well separated.

On the other hand, for low-level abstraction tasks such as Concept-level Separability, the points in the activation
hyperspace are closely packed. In these scenarios, strong metrics such as V-bits prove more effective, yielding
clearly distinguishable results across layers. This observation is consistent with findings reported in|Ju et al.
(2024b).

E EXTENDED DISCUSSION

E.1 HYDRA EFFECT

The Hydra Effect describes a form of self-repair capability present in LLMs. As described by McGrath et al.
(2023), it refers to the mismatch between a layer’s apparent contribution (measured by projecting its activations
through the unembedding mechanism, A ,empeq) and its functional importance (measured by ablating the layer,
Agbiate). We expect the ablation to reduce the model’s confidence proportionally to its apparent contribution,
but downstream layers reconstruct the corrupted signal so that

Aablale,l < Aunembed,l

During interventions, the KL divergence is lower for early layers with high fisher score due to this reason since
the intervention done is reverted to some extent by downstream layers.

31

Under review as a conference paper at ICLR 2026

CPP vs Medical

—— Attention Swap
== MLP Swap
1.0 A
Q
2
a 0.9
—
£
<
>
& 0.8 1
e
=1
19}
1%
<
=
o
D 0.7
Q
o
)
(a]
0.6 1
0.5 T T T T T T
0 5 10 15 20 25
Layer Index

Figure 11: Causal Impact of Attention and MLP Swaps on Domain Classification. The plot
shows the results of our last-token Causal Signal Probe for the CPP vs. Medical domains. Accuracy
reflects the model’s ability to correctly classify the original text after a single-token activation swap.
A lower accuracy indicates a more effective causal intervention (i.e., the swap successfully steered
the model’s output).

To directly test the causal role of different components and investigate this self-repair phenomenon, we performed
a Causal Signal Probe. As shown in Figure[TT]for the CPP vs. Medical pair, we found that swapping the last-
token activations from the Attention stream had a dramatically larger impact on the final classification than
swapping MLP activations, particularly in the latter half of the network. While interventions in early layers were
largely ignored by the model (accuracy ~ 1.0), consistent with the Hydra effect, swapping Attention activations
in layers 15-20 caused a significant drop in accuracy. This demonstrates that these late-stage attention blocks
possess a powerful causal steering handle over the model’s final domain representation, whereas the influence of
individual MLP blocks is less critical.

E.2 METHODOLOGY FOR THE LAST-TOKEN CAUSAL SIGNAL PROBE

E.2.1 OBIJECTIVE

The Causal Signal Probe was designed to move beyond correlational measures and establish a direct causal link
between the activations of specific model components and the model’s final domain classification. The primary
goal was to answer the question: “If we forcibly inject information from Domain B into the processing of a text
from Domain A at a specific layer L, does the model’s final thought flip to Domain B?” This experiment allows
us to identify which layers and components act as influential steering handles for domain representation.

E.2.2 EXPERIMENTAL DESIGN
The probe consists of three main stages: (1) training a reliable Truth Detector to classify the model’s final hidden

state, (2) performing a targeted causal intervention via activation swapping, and (3) measuring the effect of this
intervention using the Truth Detector.

Stage 1: Training the Truth Detector To create an objective arbiter of the model’s final representation,
we first trained a simple linear probe, which we term the Truth Detector.

* Purpose: The detector’s sole job is to look at the final hidden-state vector of the model and classify
which of the two domains it belongs to.

32

Under review as a conference paper at ICLR 2026

e Data Generation: We passed 500 text samples from the cpp domain and 500 from the medical
domain through the frozen Llama-3.2-3B model. We collected the final hidden-state activation vector
for each sample.

¢ Architecture: The detector is a simple linear model that maps to 2 output logits (one for each domain).

¢ Training: The collected activations were split into an 80/20 train/validation set. The detector was
trained for 7 epochs using an Adam optimizer and Cross-Entropy loss. For the CPP vs. Medical pair,
the detector rapidly achieved 100.0% validation accuracy, confirming it as a highly reliable ground
truth for our experiment.

Stage 2: The Causal Intervention (Last-Token Activation Swap) This is the core of the causal
experiment. We performed a precise activation swap for each layer and component under investigation.

e Procedure: For each trial, a base_text (true label) and a donor_text (opposing domain) are
randomly selected.

e The donor_text is passed through the model up to a target layer L. We cache the activation vector
of its very last token for a specific component (e.g., the output of the attention block).

e The base_text is then passed through the model. Using PyTorch forward hooks, we intercept
the computation at layer L, right after the target component (Attention or MLP) has finished its
computation.

* The hook replaces the last-token activation vector of the base_text with the cached vector from the
donor_text. All other token activations remain unchanged.

* The forward pass resumes, processing this patched sequence representation, and the final hidden-state
vector is collected.

This last-token methodology is crucial as it is a clean, minimal intervention that directly targets the same vector
representation our Truth Detector was trained on, avoiding confounding issues related to variable sequence
lengths.

E.2.3 DETAILED INTERPRETATION OF THE CPP vS. MEDICAL GRAPH

The provided graph (Figure[TT)) plots the Detector Accuracy After Swap for the CPP vs. Medical domain pair.

¢ Overall Trend: The most striking feature is the growing divergence between the Attention and MLP
swaps. While both start with high accuracy, the Attention swap becomes significantly more impactful
(lower accuracy) in the later layers.

Early Layers (0-8): Interventions here have minimal effect (Accuracy 76%-99%), indicating that the
initial distributed domain signal overpowers the single-token swap, and downstream layers repair the
representation.

¢ Mid-Layers (8-18): A crucial divergence begins. MLP swap impact remains low, while Attention
swap accuracy starts to dip, suggesting attention mechanisms here begin to refine the domain-specific
representation.

e Late Layers (18-27): This region shows the strongest causal effect. The Attention swap becomes
highly volatile and effective. This confirms that some attention layers act as powerful steering handles,
whereas the MLP influence is secondary and less decisive.

E.3 CHARACTERISTIC TOKENS

The process of selecting characteristic tokens is derived from the same causal intervention process done in
reverse. Instead of finding layers that do the most change to specific tokens, we find tokens that are most sensitive
to interventions on all layers. This process is coined as the reverse causal intervention on a model.

When we do an intervention on a single layer from one domain to another, the tokens of the new domain are
shifted up in probability. The overall shift across the vocabulary is averaged across all layers and the Top-k
“promoted” tokens are saved in a list for the intervening dataset. For example, we have found when intervening
C++ prompts with Python activations, tokens such as de f, import and python are promoted. These form the
characteristic token set for Python and this set is used in our causal intervention experiments further on.

33

Under review as a conference paper at ICLR 2026

E.4 DELTA BiAS

Let V be the entire vocabulary of the model. We denote the probability associated with a subset of vocabulary

S C Vas P(S|lz) =), g p(ilr) with a prompt z. Suppose we perform the intervention x4 &Loap
where activations of prompt of domain B are inserted into the forward pass of A at layer [. Before intervention,
Pigse(Salza) and Pogse (SB|za) denote the probabilities of characteristic tokens of A and B before intervention,

and Pswap(Salza & zp) and Psyap(SB|Ta L x) as the probabilities of the set of characteristic tokens of A
and B after intervention. The Bias present in the probability distribution is defined as Bias = P(Sg) — P(S4).
This represents the model’s preference on predicting the intervening subset of tokens.

Biasbase(xA) = Pbase(SB‘xA) - Pbase(SA‘-'EA)
Biasswap(za L ZB) = Pswap(SB|TA L ZB) — Pswap(Salza L xB)

ABias(A & B) =E;,~A,0p5~B [Biasswap(xA L xB) — Biasbase(a:A)]

In our results, we use the convention for when A < B is done, we plot bias with a positive sign, and when

we do intervention B < A, we plot bias with a negative sign to preserve perspective with respect to the set of
characteristic tokens B. So, all bias computations are visualized as the shift in preference of B over A.

E.5 CAUSAL INTERVENTION VARIATIONS

We extend our causal intervention study to other domain pairs beyond the C++/Python case discussed in the main
text. Below we present comprehensive results for all tested domain pairs across all four models: Llama-3.2-3B,
Llama-3.2-1B, Gemma-3-4B, and Gemma-3-1B.

34

Under review as a conference paper at ICLR 2026

E.5.1 LLAMA-3.2-3B: ALL DOMAIN PAIRS

LLAMA 3B: Cpp vs Python (MLP) LLAMA 3B: Cpp vs Python (ATTN)
== Cpp == Cpp
. Python m Python

Mean Delta Bias

Mean Delta Bias

lf#’f iﬁﬁiﬁ EIr!I' i!"‘*i!‘*i!f* } | i7! i! i #

~050

FEE T B R S S B R I I R R R R T R T R T E T B B B B R R I R R R R R T T TR TR)

(a) MLP: C++ <> Python (b) Attention: C++ <> Python
LLAMA 3B: Science vs Math (MLP) LLAMA 3B: Science vs Math (ATTN)
oss| et =
i EM ihdisdad
2 o ﬂ i! i! LN B !i k4
: lm EE e SETRTIRE |1 |1 PR
(c) MLP: Math <+ Science (d) Attention: Math <> Science
LLAMA_3B: Medical vs Finance (MLP) LLAMA_3B: Medical vs Finance (ATTN)
10 == Medical o8 == Medical
Emm Finance mmm Finance
%na - iﬁf?}EEHIfi!!iEifii!i!i!ili!i,x,i!i,il;xil!ill %‘“’ == == 3 1T 3p T HI{ Il i!“’i"i!i!x‘f’x""fii’
2 2

T3 35 3 3 57 5 35 DU LB LG LT B0 H A RS a5 % T3 35 3 3 57 5 35 DU LD GG LT 6L DH A RS a5 kD

(e) MLP: Medical <+ Finance (f) Attention: Medical <+ Finance

Figure 12: Llama-3.2-3B causal intervention results across all domain pairs. Each row shows
a different domain pair. Left column: MLP activations exhibit flat, high-variance profiles centered
near zero (disruption without directional control). Right column: Attention activations show sharp,
localized peaks at mid-depth layers (e.g., 13-15, 23-25), indicating sparse routing hotspots. The
pattern is consistent across all three domain pairs, supporting domain-agnostic routing mechanisms.

35

Under review as a conference paper at ICLR 2026

E.5.2 LLAMA-3.2-1B: ALL DOMAIN PAIRS

LLAMA 1B: Cpp vs Python (MLP) LLAMA 1B: Cpp vs Python (ATTN)
== Cpp
0.06 W= Python
ans
: e " : i
EARELRNT o by iy
003
~0.06- == Cpp
mm Python 008
(a) MLP: C++ <+ Python (b) Attention: C++ <> Python
LLAMA 1B: Science vs Math (MLP) LLAMA 1B: Science vs Math (ATTN)
0.041 mmm Science . Science
mm Math mmm Math
A, P ;H ﬁ#ﬂ
1
(c) MLP: Math < Science (d) Attention: Math <+ Science
LLAMA_1B: Medical vs Finance (MLP) LLAMA_1B: Medical vs Finance (ATTN)
m Medical 010 . Medical
0101 mmm Finance == Finance
* 005
L oo i .
2 o0 -H P E i! 11 i! 3 oo o H 2 -H- 1 i! E=3 !i i!
é —-0.05 ! g
010

T 3 T B S R LI R Y

(e) MLP: Medical <+ Finance (f) Attention: Medical <+ Finance

Figure 13: Llama-3.2-1B causal intervention results across all domain pairs. Despite the smaller
model size (1B parameters, 16 layers), the same qualitative pattern emerges: MLP swaps produce
non-directional disruption, while attention swaps yield localized steering peaks. The reduced depth
results in fewer but proportionally similar routing layers.

36

Under review as a conference paper at ICLR 2026

E.5.3 GEMMA-3-4B: ALL DOMAIN PAIRS

GEMMA _4B: Cpp vs Python (MLP)

GEMMA _4B: Cpp vs Python (ATTN)

E":; LI}{{H l{Llﬂ{%%hﬂﬂ{ll} qEifEen Iiﬁilhﬁifililf; E":; uph,{l \ ! f rr
(a) MLP: C++ <+ Python (b) Attention: C++ <> Python
GEMMA 4B: Science vs Math (MLP) GEMMA 4B: Science vs Math (ATTN)
L“l“ S 1 O
2 il ;;I_I;i iif’*‘ H i fff f f}}f ¥
(c) MLP: Math < Science (d) Attention: Math <+ Science
GEMMA 4B: Medical vs Finance (MLP) GEMMA 4B: Medical vs Finance (ATTN)
g l — ____”{_,__y ;{ - = — e é [i i

(e) MLP: Medical <+ Finance

(f) Attention: Medical <+ Finance

Figure 14: Gemma-3-4B causal intervention results across all domain pairs. Gemma models
exhibit sharper, more concentrated attention peaks compared to Llama models, suggesting a more
specialized hub-like routing architecture. This acute localization is particularly visible in the Medi-

cal/Finance pair (bottom right), where a single attention layer dominates the steering signal.

Under review as a conference paper at ICLR 2026

E.5.4 GEMMA-3-1B: ALL DOMAIN PAIRS

GEMMA 1B: Cpp vs Python (MLP) GEMMA 1B: Cpp vs Python (ATTN)

== Cpp == Cpp
= Python = Python

. ﬁhrh }hll ﬁﬂ%Jﬁﬁﬁ%h#ff 4 g hﬂl hf%?&nnfﬁﬁ

Mean Delta Bias
Mean Delta Bias
i

(a) MLP: C++ <> Python (b) Attention: C++ <> Python

GEMMA _1B: Science vs Math (MLP) GEMMA _1B: Science vs Math (ATTN)
= Science = Science
. Math 06 . Math

- ;JW’ e

Mean Delta Bias

Mean Delta Bias

***F“W* st

(c) MLP: Math < Science (d) Attention: Math <> Science

GEMMA_1B: Medical vs Finance (MLP) GEMMA_1B: Medical vs Finance (ATTN)
== Medical e == Medical
== Finance == Finance

. ﬁﬂﬁﬁ q% 3 #FH %#%%%%ﬁfﬁé .: S QL t #k A

Mean Delta Bias
Mean Delta Bias

T 2 3 F 5 & 7 5 5 W00 1250 5 U 1 % 22 5 85 T 2 3 F 5 & 7 5 5 W00 12505 U % a2 B 85

(e) MLP: Medical <+ Finance (f) Attention: Medical <+ Finance

Figure 15: Gemma-3-1B causal intervention results across all domain pairs. Even at the smallest
scale tested (1B parameters, 18 layers), the functional division persists: attention provides sparse
routing, MLP provides distributed computation. The consistency across all four models (1B-4B) and
three domain pairs provides robust evidence for this architectural organizing principle.

We extend our intervention study to a larger language models, such as Llama-7B, where we observe that
individual layers are not highly influential in the final prediction of the token. In these layers, we observe that
the earliest layers have the most impact since small changes in these layers snowball into larger changes in the
final output.

38

Under review as a conference paper at ICLR 2026

LLAMA_7B: Cpp vs Python (ATTN)

0.0005-

Mean Delta Bias

00010

- Cpp
== python

ﬂH H%]Hﬂ}ﬁhﬂ%thHﬂbﬂaﬂqﬂﬂkfﬁﬂﬂ

LLAMA 78B: Cpp vs Python (MLP)

0.0000-

~0.00-

Mean Delta Bias

00016

o024

- cpp
== python

ﬁr?ﬂqﬂﬁHP{BPHnﬂHﬂJpﬂqn{k{ﬂxgﬂ

Figure 16: Results for Llama-7B showing influence of Attention vs MLP layers.

We investigated other methods of finding representative tokens from fine-tuning datasets to check if more
frequent tokens are representative of a specific domain. We find that this is not the case since the even though the
relative effect of the causal shift in layer swapping is still the same, the absolute magnitude in shift is reduced by

%.

LLAMA 3B: Cpp vs Python (ATTN)

Mean Delta Bias

= Cpp
== Python

Hﬂﬁﬁﬂﬁ k” u HH%H%HHHHHHE

IR EREEEEEEEEEEEEEEE]

(a) Representative tokens using frequency analysis
(Attention)

LLAMA_3B: Cpp vs Python (ATTN)

Mean Delta Bias

== Cpp
= Python

Hffhﬁflfli!;{i? i! Hnlxﬁi!ﬁpuxlzzgfiﬁ

IR EEEEEEEEEEE R

(b) LLM Generated Representative Tokens (Atten-

tion)

Figure 17: Comparison of Attention layer shifts for different token selection methods.

39

Under review as a conference paper at ICLR 2026

LLAMA_3B: Cpp vs Python (MLP)

R b

== Python

Mean Delta Bias

(a) Representative tokens using frequency analysis
(MLP)

LLAMA_3B: Cpp vs Python (MLP)

= Cpp
= Python

ﬁ’yiﬁﬁ‘ﬂ'@%h‘. ol

Mean Delta Bias

(b) LLM Generated Representative Tokens (MLP)

Figure 18: Comparison of MLP layer shifts for different token selection methods. We observe in the
top graph the high variance and low quality of domain seperability.

LLM-generated tokens have been explicitly optimized for domain differentiation, whereas frequency-based
tokens lack the semantic depth required for the model to distinguish between lists. This information deficit
prevents effective separation, directly resulting in the higher variance observed in the top graphs.

E.5.5 ROBUSTNESS TO TOKEN COUNT (n)

We tested the sensitivity of our causal results to the number of domain-representative tokens (n) included in each
prompt list. Using the domain-classification task (Section 2.3), we varied n € {5, 10, 15,20} and measured
Delta Bias at the peak attention layers (13-15, 23-25).

40

	Introduction
	Proposed Methodology
	Probing Analysis
	Fine-tuning analysis
	Causal activation swapping

	Results
	Where domain knowledge is separated?
	Adaptational Analysis Points to MLP Layers
	Validating the proposed layer map via targeted fine-tuning
	Causal Swapping Reveals Attention as Domain Router

	Discussion
	Related Work
	Conclusion
	Results on Other Models
	Fine Tuning Analysis
	Probing Analysis

	Datasets
	Evaluation
	Evaluation Results
	Domain Evaluation
	Math
	Finance
	Medical
	Science
	Python
	CPP

	Experimental Setup
	Fine Tuning
	Probing Analysis

	Extended Discussion
	Hydra Effect
	Methodology for the Last-Token Causal Signal Probe
	Objective
	Experimental Design
	Detailed Interpretation of the CPP vs. Medical Graph

	Characteristic Tokens
	Delta Bias
	Causal Intervention Variations
	Llama-3.2-3B: All Domain Pairs
	Llama-3.2-1B: All Domain Pairs
	Gemma-3-4B: All Domain Pairs
	Gemma-3-1B: All Domain Pairs
	Robustness to Token Count (n)

