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Abstract

Analogical reasoning is a unique ability of001
humans to address unfamiliar challenges by002
transferring strategies from relevant past expe-003
riences. One key finding in psychology is that004
compared with irrelevant past experiences, re-005
calling relevant ones can help humans better006
handle new tasks (Gentner and Smith, 2012).007
Coincidentally, the NLP community has also re-008
cently found that self-generating relevant exam-009
ples in the context can help large language mod-010
els (LLMs) better solve a given problem than011
hand-crafted prompts (Yasunaga et al., 2024).012
However, it is yet not clear whether relevance013
is the key factor eliciting such capability, i.e.,014
can LLMs benefit more from self-generated015
relevant examples than irrelevant ones? In this016
work, we systematically explore whether LLMs017
can truly perform analogical reasoning on a di-018
verse set of reasoning tasks. With extensive019
experiments and analysis, we show that self-020
generated random examples can surprisingly021
achieve comparable or even better performance,022
e.g., 4% performance boost on GSM8K with023
random biological examples. We find that the024
accuracy of self-generated examples is the key025
factor and subsequently design two improved026
methods with significantly reduced inference027
costs. Overall, we aim to advance a deeper un-028
derstanding of LLM analogical reasoning and029
hope this work stimulates further research in030
the design of self-generated contexts.031

1 Introduction032

A hallmark of human intelligence is that they can033

solve novel problems by drawing analogy from034

relevant past experiences, a concept known as ana-035

logical reasoning in cognitive science (Vosniadou036

and Ortony, 1989). As indicated by the name, re-037

calling previously acquired relevant experiences038

can facilitate humans to better tackle new tasks,039

whereas irrelevant ones are rarely beneficial and040

can even be distracting (Gentner and Smith, 2012).041

Input

Output

Q: The second and ninth terms of an arithmetic sequence 
are 2 and 30, respectively. What is the fiftieth term?

# Instruction:
## Recall relevant examples:
## Solve the initial problem:

# Relevant examples:
Q: In an arithmetic sequence, the first term is 3 and the 

A: To find the tenth term, we can use the formula for the 
common difference is 4. What is the tenth term?

nth term of the sequence ... So the tenth term is 39. ...

# Solve the initial problem:
We can use the formula for the nth term of an arithmetic 
sequence a_n = a_1 + (n-1)d. We are given the values of 
a_2 and a_9 ... So the fiftieth term is 194.

Figure 1: Illustration of LLM analogical reasoning in
Yasunaga et al. (2024). LLMs are prompted to self-
generate relevant examples as context before solving
the new problem.

For instance, when faced with a novel math prob- 042

lem about determinants (e.g., calculating the value 043

of a given fourth-order determinant), humans can 044

resolve this by reflecting upon the methodology 045

employed to ascertain the value of a third-order 046

determinant, whereas biological knowledge (e.g., 047

how the human body regulates its temperature) can 048

generally be considered irrelevant. 049

With the recent advancements in scaling up 050

model size and data, LLMs have demonstrated 051

impressive zero-shot and few-shot performance 052

across various reasoning tasks, especially, through 053

advanced prompting methods like chain-of-thought 054

(CoT) (Wei et al., 2022). Compared to common ap- 055

proaches such as zero or few-shot CoT (Zhou et al., 056

2022; Kojima et al., 2022; Wang et al., 2022b), 057

Yasunaga et al. (2024) introduce LLM analogical 058

reasoning, i.e., LLMs self-generate examples rel- 059

evant to the query as context to better solve new 060

problems; see Fig. 1 for an example. However, 061

it remains unclear whether relevance is the key 062

to eliciting such capability in LLMs. While sev- 063

eral studies explore the influence of the relevance 064
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of demonstrations in in-context learning and CoT065

(Liu et al., 2022; Kim et al., 2022; Lyu et al., 2023;066

Chen et al., 2023; Yang et al., 2023; Wang et al.,067

2023a; Yasunaga et al., 2024), none of them in-068

vestigate whether self-generated relevant examples069

consistently outperform irrelevant ones in LLM070

analogical reasoning.071

In this paper, to systematically assess the capa-072

bility of LLMs to perform analogical reasoning,073

we conduct a series of ablation experiments on a074

variety of reasoning tasks including problems from075

GSM8K (Cobbe et al., 2021), MATH (Hendrycks076

et al., 2021), and BIG-Bench Hard (BBH) (Suzgun077

et al., 2022). With extensive experiments, we aim078

to address the following two research questions:079

• Q1. Are self-generated relevant examples more080

beneficial to LLMs than random ones?081

• Q2. If not, what is the pivotal factor for LLMs’082

performance in analogical reasoning?083

To answer these questions, we empirically ana-084

lyze the analogical reasoning abilities of GPT-3.5085

(turbo) and Llama series models (Touvron et al.,086

2023). Surprisingly, experimental results show that087

prompting LLMs to self-generate random exam-088

ples can achieve comparable or even better perfor-089

mance on certain tasks which is not in line with090

the key claim of analogical reasoning in Gentner091

and Smith (2012), indicating that LLMs cannot092

always perform analogical reasoning. As for Q2,093

we point out through controlled experiments that094

the key factor is the accuracy of self-generated ex-095

amples. Informed by these findings, we design two096

approaches that can outperform existing methods097

with significantly reduced inference costs. Specif-098

ically, we ask LLMs to randomly generate a few099

problems and manually verify their correctness,100

then use this fixed set of problems as in-context101

learning demonstrations for all test samples. Con-102

sistent observations across different model types103

consolidate the conclusions. We summarize the104

major contributions of our work below:105

• To the best of our knowledge, we, for the first106

time, extensively assess the ability of LLMs to107

perform analogical reasoning and explore their108

counterintuitive behavior on certain tasks.109

• With extensive experiments and analysis, we110

demonstrate the effectiveness and limitations of111

different types of self-generated contexts. Our112

code base is available at https://anonymous.113

4open.science/r/Analogical_Reasoning.114

2 Related Work 115

This work mainly explores whether LLMs can truly 116

perform analogical reasoning. In light of this, we 117

review two lines of research that form the basis of 118

this work: chain-of-thought prompting and LLM 119

analogical reasoning. 120

2.1 Chain-of-Thought Prompting 121

Chain-of-thought (CoT) prompting induces LLMs 122

to generate intermediate reasoning steps before gen- 123

erating the final answer (Wei et al., 2022), greatly 124

improving the reasoning capabilities of LLMs. Typ- 125

ical CoT prompting approaches include few-shot 126

CoT (Wei et al., 2022; Zhou et al., 2022; Wang 127

et al., 2022b; Li et al., 2022; Wang et al., 2022a), 128

taking several labeled demonstrations of the reason- 129

ing process, and zero-shot CoT, comprising only 130

instructions like “Let’s think step by step” (Ko- 131

jima et al., 2022; Zelikman et al., 2022; Zhang 132

et al., 2023a). Other ongoing research on CoT 133

has also explored (i) optimizing the demonstration 134

selection (Fu et al., 2022; Li and Qiu, 2023; Qin 135

et al., 2024), (ii) optimizing the quality of reason- 136

ing chains (Khot et al., 2022; Chen et al., 2022; 137

Shinn et al., 2023; Besta et al., 2024), and (iii) CoT 138

in smaller models (Magister et al., 2022; Ho et al., 139

2022; Fu et al., 2023; Ranaldi and Freitas, 2024). 140

2.2 LLM Analogical Reasoning 141

While few-shot CoT can provide more detailed 142

reasoning guidance, it requires labeled examples 143

which can be unavailable for a new task. To tackle 144

this problem, Yasunaga et al. (2024) propose ana- 145

logical prompting to guide LLMs to self-generate 146

relevant exemplars as few-shot demonstrations, 147

which is similar to analogical reasoning, i.e., hu- 148

mans can address new problems by drawing anal- 149

ogy from relevant past experience (Vosniadou and 150

Ortony, 1989; Holyoak, 2012). In this work, we 151

step forward to explore the intrinsic principle of 152

LLM analogical reasoning. Specifically, we aim 153

to investigate whether LLMs can authentically ex- 154

hibit such reasoning capabilities and determine the 155

extent to which the relevance of self-generated ex- 156

amples contributes to enhancing this process. 157

3 Methodology 158

Our analysis is based on the analogical prompt- 159

ing approach outlined in Yasunaga et al. (2024). 160

Specifically, for a given target problem x, analogi- 161

cal prompting introduces instructions like: 162
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Prompt: self-generate relevant examples
Your task is to tackle mathematical problems. When presented with a math problem, recall relevant problems as examples. Afterward, proceed to 
solve the initial problem.

# Initial Problem: [The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Analogous Problems:
Offer five diverse examples of math problems that are relevant or analogous to the initial problem. For each problem, elaborate on the solution and 
conclude with the ultimate answer (enclosed in \boxed{}). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random examples
Your task is to tackle mathematical problems. When presented with a math problem, recall random problems as examples. Afterward, proceed to 
solve the initial problem.

# Initial Problem: [The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Random Problems:
Randomly offer five diverse examples of math problems. For each problem, elaborate on the solution and conclude with the ultimate answer 
(enclosed in \boxed{}). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Figure 2: Example prompts for GSM8K (mathematical reasoning). Top: The original prompt used in Yasunaga et al.
(2024) for self-generating relevant math problems. Bottom: The prompt designed for self-generating random math
problems. We mark the differences between these two prompts in blue and green respectively.

# Problem: [x]163
# Relevant problems: Recall five relevant and
diverse problems. For each problem, describe
it and explain the solution.

164

# Solve the initial problem:165

The goal is to induce LLMs to self-generate rel-166

evant examples, aiding them to solve the target167

problem via in-context learning. To ensure better168

performance and efficiency, several key technical169

decisions are made in Yasunaga et al. (2024):170

• The self-generated examples should be relevant171

and diverse, achieved through a specially de-172

signed instruction.173

• Generate relevant problems and the solution to174

the initial problem in one pass.175

• 3 to 5 self-generated examples perform the best.176

In this work, we leverage similar prompts1 to177

guide LLMs to generate different types of irrele-178

vant examples as context; see Fig. 2 for example179

prompts:180

1Since our work aims to comprehensively explore and
analyze the intrinsic principle of LLM analogical reasoning
proposed in Yasunaga et al. (2024), we should follow the
original design of the instructions to have a fair comparison
and reliable analysis.

• N/A: generate problems that are N/A (not appli- 181

cable) to the initial problem. 182

• Randomsame: randomly generate examples of the 183

same problem type (e.g., math). 184

• Randomdiff: randomly generate examples of dif- 185

ferent problem types (e.g., any type except math). 186

• Randombio: randomly generate biological prob- 187

lems. 188

Yasunaga et al. (2024) demonstrate that self- 189

generating relevant examples can consistently out- 190

perform zero-shot CoT and few-shot CoT (hand- 191

crafted examples or retrieved top-k most similar 192

training samples) on different tasks. Therefore, 193

we do not include these two methods in our work. 194

Interested readers can refer to the corresponding 195

results and analysis in Yasunaga et al. (2024). In 196

addition, we show prompts for different methods 197

on all datasets in Appendix A.1. 198

4 Experiment 199

4.1 Experimental Setup 200

We construct the evaluation suite based on diverse 201

reasoning-intensive tasks, including mathematical 202

reasoning and other reasoning (e.g., logical and 203

temporal reasoning) tasks: 204
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Method Temporal
sequences

Logical deduction
five objects

Reasoning about
colored objects

Formal
fallacies

Word
sorting Average

Relevant 60.0 51.2 76.7 51.2 76.9 63.2

N/A 57.5 45.3 75.5 53.3 77.7 61.9
Randomsame 53.1 48.8 73.5 52.4 74.1 60.4
Randomdiff 44.3 44.8 72.4 51.2 69.2 56.4
Randombio 57.1 49.5 76.1 50.8 74.9 61.7

Table 1: Accuracy (%) of different methods on five reasoning tasks in BBH. Bold indicates the best results. Self-
generated relevant examples achieve the best average performance. Detailed results for different seeds are reported
in Appendix A.2.

Method Task

GSM8K MATH Average

Relevant 71.5 33.3 52.4

N/A 75.5 36.1 55.8
Randomsame 75.1 36.3 55.7
Randomdiff 76.3 34.1 55.2
Randombio 75.3 34.6 54.9

Table 2: Accuracy (%) of different methods on two
mathematical reasoning tasks. Self-generated irrele-
vant examples are consistently better than relevant ones.
Table 13 in Appendix A.2 reports detailed results for
different seeds.

• Mathematical reasoning. We work with two205

commonly used datasets, GSM8K (Cobbe et al.,206

2021) and MATH (Hendrycks et al., 2021). For207

each dataset, we randomly sample 500 examples208

from the original test set and run experiments209

three times with different random seeds (resulting210

in different test samples).211

• Other reasoning. Following Yasunaga et al.212

(2024), we evaluate five reasoning tasks in BIG-213

Bench Hard (BBH) (Suzgun et al., 2022): tem-214

poral sequences (temporal reasoning), logical de-215

duction five objects and reasoning about colored216

objects (logical reasoning), formal fallacies (de-217

ductive reasoning) and word sorting (symbolic218

reasoning). For each task, we use all test samples219

for evaluation and run experiments three times220

with different random seeds.221

We mainly use GPT-3.5 (gpt-3.5-turbo) as the222

LLM and obtain all outputs from it with the temper-223

ature set to 0. We ask the LLM to self-generate 5224

examples for GSM8K, 3 examples for MATH and225

BBH following Yasunaga et al. (2024).226

4.2 Main Results227

We now address the research questions asked in §1228

with empirical results.229

Q1. Are self-generated relevant examples more bene-

ficial to LLMs than random ones?

The results averaged over all random seeds are 230

reported in Table 1 and Table 2; more detailed 231

results for every seed are shown in Appendix A.2. 232

• Self-generated relevant examples achieve the 233

best average performance on BBH. From the 234

results in Table 1, we can observe that the superi- 235

ority of self-generated relevant examples is empiri- 236

cally substantiated on BBH. Specifically, using rel- 237

evant examples, denoted by ‘relevant’, outperforms 238

other approaches on temporal and logical reason- 239

ing tasks. While it performs worse than ‘N/A’ on 240

deductive and symbolical reasoning, it can still im- 241

prove the accuracy by 1.3% on average compared 242

to ‘N/A’. 243

However, the results on mathematical reasoning 244

tasks are quite counterintuitive as described below: 245

• Relevant examples do not guarantee better 246

performance. Different from BBH, all types of 247

self-generated irrelevant examples consistently out- 248

perform relevant ones on both mathematical rea- 249

soning datasets, showing that LLMs cannot yet per- 250

form analogical reasoning on these tasks. Interest- 251

ingly, when we use randomly generated biological 252

examples (e.g., how the process of photosynthe- 253

sis occurs in plants), they can yield about 2.5% 254

better results on average compared to generating 255

relevant math problems. Besides, ‘N/A’ achieves 256

the best average result as it is the second-best on 257

both datasets. 258

Problems in MATH span various subjects and 259

difficulty levels. To investigate whether the infe- 260

rior performance of relevant examples on MATH 261

is accidentally caused by certain categories, we fur- 262

ther report the accuracy across different subjects 263

and difficulty levels in Table 3 and Fig. 3. The 264

consistent performance gap between ‘relevant’ and 265
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Method Precalculus
Intermediate

Algebra
Algebra Prealgebra

Counting &
Probability Geometry

Number
Theory

Relevant 10.4 9.8 51.8 56.8 22.1 24.2 37.0

N/A 9.1 15.7 55.5 61.0 28.7 25.8 34.2
Randomsame 12.3 17.6 54.4 60.6 25.4 25.8 34.9
Randomdiff 13.0 14.1 52.7 56.8 26.2 24.2 33.6
Randombio 13.0 12.2 53.0 59.2 28.7 25.8 32.2

Table 3: Accuracy (%) across different subjects in the MATH dataset. Self-generated irrelevant examples outperform
relevant ones on 6 out of 7 subjects.

Level 1

Level 2

Level 3Level 4

Level 5
73.2

75.4

77.6

79.8

49.6
51.2

52.8
54.4

38.4

39.8

41.2

42.6

25.2

26.4

27.6

28.8

14.8
15.6

16.4
17.2

Relevant
N/A
Random (same)
Random (diff)
Random (bio)

Figure 3: Comparison of all methods at different diffi-
culty levels on the MATH dataset. Level 1 represents
the easiest and level 5 is the hardest. ‘relevant’ clearly
performs worse than other approaches at all difficulty
levels.

other methods across different problem categories266

demonstrates the inherent flaws of relevant exam-267

ples, indicating that mathematical reasoning tasks268

exhibit different analogical reasoning paradigms269

from other reasoning tasks.270

It might present challenges to prompt LLMs to271

accurately generate specific types of demonstra-272

tions. Therefore, given the unexpected results on273

mathematical reasoning tasks, one may wonder:274

Q1-1. Are self-generated examples really relevant or

irrelevant to the query?

To quantitatively measure the relevance between275

the generated examples and the query, we com-276

pute the average cosine similarity between them.277

Following Zhang et al. (2023a), we use the sen-278

tence transformer (Reimers and Gurevych, 2019)279

to encode all samples. For each method, the re-280

ported result is averaged across three seeds (see281

Appendix A.3 for the decomposition of relevance).282

As observed from Table 4, relevant examples283

are much more semantically similar to the query284

than irrelevant ones and the relevance score of ‘rel-285

Method GSM8K MATH Average

Relevant 0.54 0.41 0.48

N/A 0.19 0.28 0.24
Randomsame 0.30 0.20 0.25
Randomdiff 0.15 0.10 0.13
Randombio 0.06 0.11 0.09

Oracle 0.65 0.63 0.64

Table 4: Average relevance score (semantic similarity)
between self-generated examples and the query. ‘Oracle’
stands for the average similarity score between the query
and k most similar training samples (k is the number of
self-generated examples).

Relevant N/A Randomsame

Accuracy 62.0 72.0 86.0

Table 5: Accuracy (%) of self-generated examples on
the MATH dataset. The examples generated by ‘rele-
vant’ are less accurate.

evant’ is more biased towards ‘oracle’ rather than 286

‘random’ or ‘N/A’, demonstrating that LLMs in- 287

deed follow instructions to generate specific types 288

of demonstrations. Furthermore, we calculate the 289

average similarity score between self-generated rel- 290

evant examples and queries for BBH (0.46), which 291

is slightly lower than the score of mathematical rea- 292

soning tasks (0.48). This result demonstrates that 293

the difference in analogical reasoning performance 294

between BBH (Table 1) and mathematical reason- 295

ing (Table 2) is not because LLMs can generate 296

more relevant examples for BBH. 297

We provide a case study in Table 6 to delve 298

deeper into the demonstrations of different meth- 299

ods. As we can notice, the example generated by 300

‘relevant’ is more related to the query as they both 301

involve the mathematical concept ‘number bases’. 302

In contrast, examples such as ‘What is the value of 303

x in the equation 2x + 5 = 10?’ (N/A) or ‘How 304

do you bake chocolate chip cookies?’ (Randomdiff) 305
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Query: For how many ordered pairs (A,B) where A and B are positive integers is AAA7 +BBB7 = 6667?

Relevant
In a certain base, the sum of two three-digit numbers is 777. If the digits of one of the numbers are
reversed, the sum becomes 888. What is the base of this number system?

N/A What is the value of x in the equation 2x + 5 = 10?

Randomsame
In a bag, there are 5 red marbles, 3 blue marbles, and 2 green marbles. If you randomly pick 2 marbles
from the bag without replacement, what is the probability that both marbles are red?

Randomdiff How do you bake chocolate chip cookies?
Randombio How does the process of photosynthesis occur in plants?
Oracle Find the number of ordered pairs (a, b) of complex numbers such that a3b5 = a

7
b
2
= 1.

Table 6: Demonstration examples of different methods on the MATH dataset. The example generated by ‘relevant’
is more related to the query than other examples generated by ‘N/A’ or ‘random’.

Variant GSM8K MATH

Relevant N/A Randomsame Relevant N/A Randomsame

ICL 71.2 73.8 72.0 37.0 39.8 39.2
GPT4-Calibration 75.2 75.6 75.6 44.4 41.2 40.0
Random 70.0 72.0 68.4 36.0 38.0 37.8

Table 7: Accuracy (%) of different variants on GSM8K and MATH. When using GPT4-generated answers (mostly
accurate), ‘GPT4-Calibration’ consistently outperforms ‘ICL’ for all methods. In contrast, ‘random’ always performs
worse than ‘ICL’.

are less relevant to the query. This comparison306

highlights once again that relevance may not be the307

key factor for analogical reasoning performance on308

mathematical reasoning tasks. To understand bet-309

ter the underlying reasons for the counterintuitive310

results, we then ask the following question:311

Q2. If relevance is not the key factor, what is more

important for the accuracy of analogical reasoning?

Looking back at Table 6, an interesting obser-312

vation is that the self-generated relevant example313

appears to be more difficult to solve than the irrel-314

evant ones, regardless of whether they are math315

problems or not. Consequently, the accuracy of316

relevant examples may be lower. To verify this, we317

conduct a pilot experiment on MATH. Specifically,318

we randomly select 50 samples for different types319

of generated math problems, i.e., Relevant, N/A320

and Randomsame, and manually evaluate their ac-321

curacy. We exclude other methods as it is difficult322

to define the ‘accuracy’ of the examples they gen-323

erate. From the results in Table 5, we can observe324

that while the examples generated by ‘relevant’ are325

more related to the test query, they are less accu-326

rate, raising the question whether the performance327

of different approaches on mathematical reasoning328

tasks is strongly correlated with the accuracy of329

self-generated examples.330

Proxy Approaches However, as the accuracy of331

the examples located at the output cannot be di-332

Method Task

GSM8K MATH Average

Relevant 71.5 33.3 52.4
N/A 75.5 36.1 55.8
Randomsame 75.1 36.3 55.7
Randomdiff 76.3 34.1 55.2
Randombio 75.3 34.6 54.9

ICLmath 75.7 36.8 56.3
ICLbio 77.9 34.9 56.4

Table 8: Comparison of different methods on two math-
ematical reasoning tasks.

rectly controlled, we meticulously design a vari- 333

ant called ICL, which extracts the generated ex- 334

amples from the model output as in-context learn- 335

ing (ICL) demonstrations and combines them with 336

the query as input to LLMs, as a proxy for the 337

original method. We also consider the following 338

two variants: (a) GPT4-Calibration which replaces 339

the answers of demonstrations in ICL with GPT4- 340

generated answers, and (b) Random changes the 341

answers of demonstrations in ICL to random num- 342

bers. Our manual verification confirmed that GPT4- 343

generated answers were mostly accurate. We con- 344

duct this experiment on GSM8K and MATH with 345

GPT-3.5 as the LLM reasoner. 346

From the results of different variants reported 347

in Table 7, we can see that increasing the accu- 348

racy of generated examples can indeed improve 349

the performance: GPT4-Calibration consistently 350
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Input

Output

Randomly recall five examples of math problems. Note that your problems should be distinct from each other (e.g., involving 
different numbers and names). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

Q: If John has 5 apples and he buys 8 more, how many apples does he have in total?
A: To find the total number of apples John has, we add the number of apples he initially has to the number of apples he buys. 
So, we calculate 5 + 8 = 13. Therefore, John has \boxed{13} apples in total.

Q: Find the derivative of the function f(x) = 3x^2 + 2x - 5.
A: To find the derivative of f(x), we apply the power rule to each term. The derivative of 3x^2 is 6x, the derivative of 2x is 2, 
and the derivative of a constant -5 is 0. Therefore, the derivative of f(x) is f'(x) = 6x + 2. So, the derivative is \boxed{6x + 2}.

...

Figure 4: Example prompts and outputs for randomly generating math problems. We manually verify the answers
to ensure the correctness of the generated examples.

outperforms ICL by incorporating more accurate351

answers. In contrast, random always performs the352

worst among all variants. Therefore, the key factor353

influencing the performance on mathematical rea-354

soning is the accuracy of self-generated examples355

rather than their relevance.356

It is worthwhile to note that while several pa-357

pers explore how the correctness of demonstration358

answers influences in-context learning (Min et al.,359

2022; Yoo et al., 2022; Wei et al., 2023; Pan et al.,360

2023; Kossen et al., 2024), our work differs from361

them in the following aspects: (i) The examples in362

our work are generated by LLMs rather than real363

data from NLP benchmarks, i.e., randomly sampled364

from the training set. In addition, there are ratio-365

nales (CoT) in self-generated examples, which are366

different from the input-label format of in-context367

learning investigated in these papers; and (ii) These368

studies mainly evaluate in-context learning on dif-369

ferent classification or multi-choice datasets, i.e.,370

the output space is a finite set. In contrast, we are371

evaluating mathematical reasoning tasks, where the372

output space is infinite.373

Given the above findings, a natural question is:374

Q2-1. Can we ask the LLM to randomly generate a

few math or biological problems and manually verify

their correctness, then use this fixed set of problems

as ICL demonstrations for all test queries?

We refer to these two methods as ICLmath and375

ICLbio, and conduct experiments with them on376

GSM8K and MATH (see Fig. 4 for example377

prompts and outputs for generating math problems).378

Detailed prompts and outputs for different methods379

are provided in Appendix A.4. Following the origi-380

nal setting, we ask the LLM to randomly generate381

5 examples for GSM8K and 3 examples for MATH.382

As observed from Table 8, ensuring the accuracy383

of self-generated examples does lead to better per- 384

formance regardless of the problem type. ICLmath 385

and ICLbio achieve similar average performance, 386

once again demonstrating that relevance does not 387

matter (see Appendix A.5 for more analysis on rel- 388

evance). Moreover, both ICL variants only need 389

to generate examples once, which significantly re- 390

duces the inference cost and further demonstrates 391

their superiority. 392

4.3 Further Analysis 393

Difference from Previous Work Apart from the 394

comprehensive analysis, we have designed two 395

novel ICL-based approaches that are completely 396

different from the one in Yasunaga et al. (2024) 397

(Q2-1). The difference lies mainly in the following 398

two aspects: (i) The key claim in Yasunaga et al. 399

(2024) is that we should guide the model to self- 400

generate relevant examples as context. Motivated 401

by the analysis and findings in our work (Q1 and 402

Q2), our methods focus on ensuring the accuracy of 403

self-generated examples rather than their relevance, 404

which leads to better performance regardless of 405

the problem type. (ii) As we have demonstrated 406

that the relevance of self-generated examples does 407

not matter, there is no need to generate relevant 408

examples for each test query (the original method 409

in Yasunaga et al. (2024)). In contrast, our meth- 410

ods use a fixed set of examples for all test queries, 411

which significantly reduces the inference cost. 412

Generalization to Open-source LLMs Our ex- 413

periments and analysis so far used GPT-3.5 as the 414

LLM, which is closed-source and gets updated over 415

time. To verify whether the observations and con- 416

clusions are consistent across different models and 417

additionally for reproducibility, we extend the ex- 418

periments to Llama-2-Chat (Touvron et al., 2023). 419

Specifically, we use vLLM (Kwon et al., 2023) to 420
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Method Relevant N/A Randomsame Randomdiff Randombio ICLmath ICLbio

Llama-2-70b-Chat 45.1 51.4 50.9 54.3 47.1 55.5 56.1
Llama-3-8B-Instruct 69.5 72.3 72.6 74.1 73.5 75.8 76.8
Llama-3.1-8B-Instruct 74.8 77.3 78.4 78.8 77.6 80.2 81.0

Table 9: Accuracy (%) of different methods on GSM8K using Llama-2-70b-Chat, Llama-3-8B-Instruct and Llama-
3.1-8B-Instruct models. Self-generated relevant examples always perform worse than irrelevant ones and both ICL
variants outperform other approaches.

Variant Method

Relevant N/A Randomsame

ICL 56.2 58.2 58.6
GPT4-Calibration 60.8 61.0 60.8
Random 53.2 54.0 59.6

Table 10: Accuracy (%) of different variants on GSM8K
using Llama-2-70b-Chat. ‘GPT4-Calibration’ consis-
tently performs better than ‘ICL’ and ‘random’ for dif-
ferent methods.

serve a Llama-2-70b-Chat model for experiments421

and report the results of different methods/variants422

on GSM8K in Table 9 and Table 10. We can draw423

similar observations: (i) self-generated relevant ex-424

amples underperform all types of irrelevant ones,425

(ii) ‘GPT4-Calibration’ consistently outperforms426

the other two variants, and (iii) ICLmath and ICLbio427

perform better than other approaches, demonstrat-428

ing that the conclusions can be generalized to dif-429

ferent models.430

We further conduct experiments with Llama-3-431

8B-Instruct and Llama-3.1-8B-Instruct. The results432

reported in Table 9 demonstrate the generalizabil-433

ity of the conclusions across different models. In434

addition, since investigating analogical reasoning435

requires LLMs to self-generate different types of436

problems, we only experiment with instruction-437

tuned LLMs to ensure that they can follow the438

given instructions.439

Generalization to Different Tasks To test the440

generalizability of our findings beyond the math441

domain, we further conduct experiments on Com-442

monsenseQA (commonsense reasoning) (Talmor443

et al., 2019), MBPP (code generation) (Austin et al.,444

2021) and GPQA (question answering of very hard445

questions) (Rein et al., 2024). The comparison446

between different methods is shown in Table 11,447

which demonstrates that our findings can be gener-448

alized to different types of tasks.449

Comparison Beyond Analogical Reasoning We450

consider two widely used methods Self-consistency451

(Wang et al., 2023b) and Auto-CoT (Zhang et al.,452

Dataset Relevant N/A Randomsame Randomdiff Randombio ICLsame ICLbio

CSQA 70.8 73.4 71.2 72.9 72.6 74.6 74.1
MBPP 58.2 59.8 60.6 59.6 60.2 62.0 61.4
GPQA 31.6 34.4 33.7 33.1 32.6 35.8 36.2

Table 11: Accuracy (%) of different methods on Com-
monsenseQA, MBPP, and GPQA. ‘same’ in ICLsame
stands for ‘generating correct problems of the same
type as the dataset’.

Relevant Self-consistency Auto-CoT ICLmath ICLbio

74.8 77.6 75.9 80.2 81.0

Table 12: Comparison between our designed methods
and baselines beyond analogical reasoning.

2023b), and compare our designed approaches with 453

them on GSM8K using Llama-3.1-8B-Instruct. For 454

Self-consistency, we employ 5 decoding paths for 455

majority voting. The results reported in Table 12 456

demonstrate that our methods can also outperform 457

other baselines beyond analogical reasoning. 458

In addition, we show the robustness to prompt 459

format, the effect of the number of demonstrations, 460

more analysis on ICLmath and ICLbio, the results of 461

repeating problems and explicitly controlling the 462

semantics of generated examples in Appendix A.6 463

∼ A.10, respectively. 464

5 Conclusion 465

In this work, we have systematically assessed the 466

capability of LLMs to perform analogical reason- 467

ing. We have identified key research questions and 468

empirically analyzed a representative set of LLMs 469

on a diverse collection of reasoning tasks. Exten- 470

sive experimental results and analysis show that 471

LLMs cannot always perform analogical reason- 472

ing and the key influencing factor is the accuracy 473

of self-generated examples rather than their rele- 474

vance. Given these findings, we have designed two 475

ICL-based approaches with better performance and 476

significantly reduced inference costs. In the future, 477

we would like to investigate additional analogical 478

prompting methods to generate more accurate ex- 479

amples. 480
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Limitations481

This work has several limitations. First, due to the482

inference cost of ChatGPT2, we conduct experi-483

ments on subsets of the test data for mathematical484

reasoning tasks. Besides, we include 6 datasets re-485

quiring different reasoning capabilities in this work.486

A further improvement could be to explore more487

diverse types of tasks.488
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A Appendix730

A.1 Prompts for Different Methods731

The prompts for different methods on all datasets732

are shown in Fig. 5 ∼ Fig. 7.733

A.2 Detailed Results for Different Random734

Seeds735

We report detailed results for different random736

seeds in Table 13 ∼ Table 14.737

A.3 Decomposition of Relevance738

The relevance can be further separated into seman-739

tic relevance and procedure (reasoning steps) rel-740

evance. Our analysis in Q1-1 has demonstrated741

that semantic relevance does not matter. To in-742

vestigate the importance of procedure relevance,743

we perform a similar analysis. Specifically, we744

compute the average cosine similarity between the745

rationales of the generated examples and the ratio-746

nale of the query to quantitatively measure their747

relevance. The results on GSM8K are reported748

in Table 15, which highlight that procedure rele- 749

vance is not the key factor for analogical reasoning 750

performance on mathematical reasoning tasks. 751

A.4 Prompts and Outputs for Example 752

Generation 753

We show detailed prompts and outputs for ran- 754

domly generating math and biological problems 755

in Fig. 8 and Fig. 9, respectively. 756

A.5 Guided Problem Generation 757

In addition to random problem generation in §4.2- 758

Q2-1, we further investigate guided problem gener- 759

ation. Specifically, we randomly select 5 training 760

samples to guide LLMs to self-generate relevant 761

math problems. We then manually verify their cor- 762

rectness and use this fixed set of problems as ICL 763

demonstrations for experiments. The performance 764

of this approach (56.1) is slightly lower than that of 765

ICLmath (56.3), verifying that relevance is not the 766

key influencing factor. 767

A.6 Robustness to Prompt Format 768

To verify the robustness of different methods 769

to prompt format, we experiment with two new 770

prompts paraphrased from the original one by GPT- 771

4 and present the results on GSM8K in Table 16. 772

We also observe better performance with irrelevant 773

examples than relevant ones, showing the robust- 774

ness. 775

A.7 Different Numbers of Demonstrations 776

While we mainly follow the setting in Yasunaga 777

et al. (2024) to ask the LLM to generate k = 5 778

examples for GSM8K, we further investigate the ef- 779

fect of the number of demonstrations. Specifically, 780

we conduct controlled experiments with k = 3 and 781

report the results in Table 17. We can observe 782

that irrelevant examples consistently outperform 783

relevant ones across different numbers of demon- 784

strations, emphasizing their effectiveness. 785

A.8 More Analysis on ICLmath and ICLbio 786

Our designed method ICLmath generates correct 787

and relevant examples, and ICLbio generates cor- 788

rect and irrelevant examples. From the results in 789

Table 8, we can see that ICLmath and ICLbio achieve 790

similar average performance, demonstrating that 791

relevance does not matter. 792

We further change the correct answers of the 793

demonstrations in ICLmath and ICLbio to random 794
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Seed GSM8K MATH

Relevant N/A Randomsame Randomdiff Randombio Relevant N/A Randomsame Randomdiff Randombio

42 71.8 76.6 73.2 74.0 74.0 37.4 42.2 41.6 39.0 39.2

100 71.2 75.2 75.2 75.8 74.8 29.0 30.6 32.6 29.4 31.2

1000 71.4 74.8 77.0 79.2 77.0 33.6 35.6 34.6 34.0 33.4

Average 71.5±0.3 75.5±0.8 75.1±1.5 76.3±2.1 75.3±1.2 33.3±3.4 36.1±4.7 36.3±3.8 34.1±3.9 34.6±3.3

Table 13: Accuracy (%) of all methods with different random seeds on two mathematical reasoning tasks.

Seed Temporal
sequences

Logical deduction
five objects

Reasoning about
colored objects

Formal
fallacies

Word
sorting Average

42

Relevant 58.0 52.8 76.0 50.4 77.2 62.9
N/A 56.4 44.8 77.6 54.0 76.8 61.9
Randomsame 52.4 48.8 74.8 51.6 72.8 60.1
Randomdiff 43.2 46.8 74.0 52.4 67.6 56.8
Randombio 56.8 52.0 74.0 52.0 76.4 62.2

100

Relevant 58.4 50.8 78.4 51.2 76.8 63.1
N/A 55.2 46.0 74.8 52.8 79.2 61.6
Randomsame 50.8 48.4 73.6 53.2 75.2 60.2
Randomdiff 46.4 46.8 72.8 50.0 70.4 57.3
Randombio 58.0 48.4 78.4 51.2 73.6 61.9

1000

Relevant 63.6 50.0 75.6 52.0 76.8 63.6
N/A 60.8 45.2 74.0 53.2 77.2 62.1
Randomsame 56.0 49.2 72.0 52.4 74.4 60.8
Randomdiff 43.2 40.8 70.4 51.2 69.6 55.0
Randombio 56.4 48.0 76.0 49.2 74.8 60.9

Average

Relevant 60.0±2.6 51.2±1.2 76.7±1.2 51.2±0.7 76.9±0.2 63.2±0.3
N/A 57.5±2.4 45.3±0.5 75.5±1.5 53.3±0.5 77.7±1.0 61.9±0.2
Randomsame 53.1±2.1 48.8±0.3 73.5±1.1 52.4±0.6 74.1±1.0 60.4±0.3
Randomdiff 44.3±1.5 44.8±2.8 72.4±1.5 51.2±1.0 69.2±1.2 56.4±1.0
Randombio 57.1±0.7 49.5±1.8 76.1±1.8 50.8±1.2 74.9±1.1 61.7±0.6

Table 14: Accuracy (%) of all methods with different random seeds on BBH.

Relevant N/A Randomsame Randomdiff Randombio Oracle

GSM8K 0.50 0.16 0.28 0.19 0.08 0.62

Table 15: Procedure (reasoning steps) relevance be-
tween self-generated examples and the query.

Relevant N/A Randomsame Randomdiff Randombio

Prompt1 71.2 74.9 75.3 75.9 74.3
Prompt2 72.0 75.2 74.7 76.2 75.5

Table 16: Accuracy (%) of different methods with two
new prompts.

answers, obtaining ICLwrong
math and ICLwrong

bio . Obvi-795

ously, ICLwrong
math generates incorrect and relevant796

examples, and ICLwrong
bio generates incorrect and ir-797

relevant examples. The comparison between these798

four methods in Table 18 further supports our claim799

that the key factor influencing the performance800

on mathematical reasoning is the accuracy of self-801

Number Relevant N/A Randomsame Randomdiff Randombio

3 73.1 77.3 75.0 75.3 75.5
5 71.5 75.5 75.1 76.3 75.3

Table 17: Accuracy (%) of all methods with different
numbers of demonstrations.

ICLmath ICLwrong
math ICLbio ICLwrong

bio

56.3 50.9 56.4 51.3

Table 18: Comparison between different ICL variants.

generated examples rather than their relevance. 802

A.9 Repeating Problems 803

While generating a few accurate problems as ICL 804

demonstrations can achieve better performance, a 805

bolder idea might be to generate one problem and 806

repeat it multiple times as few-shot demonstrations 807
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Method Task

GSM8K MATH Average

ICLmath 75.7 36.8 56.3
ICLmath_repeat 73.8 36.2 55.0

Table 19: Comparison of two ICL variants on the
GSM8K and MATH datasets.

Relevant N/A Randomsame Similar and Correct Different and Correct

74.8 77.3 78.4 80.3 80.6

Table 20: Accuracy (%) of different methods on
GSM8K using Llama-3.1-8B-Instruct.

for ICL. To investigate this, we randomly select a808

generated math problem and repeat it to perform809

ICL, denoted by ICLmath_repeat. From the results810

shown in Table 19, we can see that ICLmath_repeat811

consistently performs worse than ICLmath on both812

datasets, indicating that the diversity of generated813

problems also matters.814

A.10 Explicit Semantic Control815

We explore explicitly controlling the semantics of816

generated examples (including both problems and817

reasoning paths) on GSM8K using Llama-3.1-8B-818

Instruct. Specifically, we investigate the following819

two approaches: (i) prompting the model to gen-820

erate semantically similar and correct examples,821

and (ii) prompting the model to generate semanti-822

cally different and correct examples. The results823

reported in Table 20 further verify the correctness824

of our conclusions.825
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Prompt: self-generate relevant examples

Your task is to tackle mathematical problems. When presented with a math problem, recall relevant problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Analogous Problems:
Offer five diverse examples of math problems that are relevant or analogous to the initial problem. For each problem, elaborate on the solution and conclude with the 
ultimate answer (enclosed in \boxed{}). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate N/A examples

Your task is to tackle mathematical problems. When presented with a math problem, recall n/a problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## N/A Problems:
Offer five diverse examples of math problems that are n/a to the initial problem. For each problem, elaborate on the solution and conclude with the ultimate answer 
(enclosed in \boxed{}). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random math examples

Your task is to tackle mathematical problems. When presented with a math problem, recall random problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Random Problems:
Randomly offer five diverse examples of math problems. For each problem, elaborate on the solution and conclude with the ultimate answer (enclosed in \boxed{}). For 
each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random no-math examples

Your task is to tackle mathematical problems. When presented with a math problem, recall random problems (remember not to output math problems) as examples. 
Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Random Problems:
Randomly offer five diverse examples of any type, except math problems. For each problem, elaborate on the solution and conclude with the ultimate answer (enclosed in 
\boxed{}). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random biological examples

Your task is to tackle mathematical problems. When presented with a math problem, recall random biological problems (remember not to output math problems) as 
examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Random Problems:
Randomly offer five diverse examples of biological problems (remember not to output math problems). For each problem, elaborate on the solution and conclude with 
the ultimate answer (enclosed in \boxed{}). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Figure 5: Prompts for different methods on GSM8K.
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Prompt: self-generate relevant examples

Your task is to tackle mathematical problems. When presented with a math problem, recall relevant problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Relevant Problems:
Recall three examples of math problems that are relevant to the initial problem. Note that your problems should be distinct from each other and from the initial problem 
(e.g., involving different numbers and names). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following math problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate N/A examples

Your task is to tackle mathematical problems. When presented with a math problem, recall n/a problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## N/A Problems:
Recall three examples of math problems that are n/a to the initial problem. Note that your problems should be distinct from each other and from the initial problem (e.g., 
involving different numbers and names). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following math problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random math examples

Your task is to tackle mathematical problems. When presented with a math problem, recall random problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Random Problems:
Randomly recall three examples of math problems. Note that your problems should be distinct from each other and from the initial problem (e.g., involving different 
numbers and names). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following math problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random no-math examples

Your task is to tackle mathematical problems. When presented with a math problem, recall random problems (remember not to output math problems) as examples. 
Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Random Problems:
Randomly recall three examples of any type, except math problems. Note that your problems should be distinct from each other and from the initial problem. For each 
problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following math problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random biological examples

Your task is to tackle mathematical problems. When presented with a math problem, recall random biological problems (remember not to output math problems) as 
examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Random Problems:
Randomly recall three examples of biological problems (remember not to output math problems). Note that your problems should be distinct from each other and 
from the initial problem. For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following math problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Figure 6: Prompts for different methods on MATH.
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Prompt: self-generate relevant examples

Your task is to tackle reasoning problems. When presented with a problem, recall relevant problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Relevant Problems:
Recall three examples of problems that are relevant to the initial problem. Note that your problems must be distinct from each other and from the initial problem. For each 
problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate N/A examples

Your task is to tackle reasoning problems. When presented with a problem, recall n/a problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## N/A Problems:
Recall three examples of problems that are n/a to the initial problem. Note that your problems must be distinct from each other and from the initial problem. For each 
problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random reasoning examples

Your task is to tackle reasoning problems. When presented with a problem, recall random problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Random Problems:
Randomly recall three examples of reasoning problems. Note that your problems must be distinct from each other and from the initial problem. For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random no-reasoning examples

Your task is to tackle reasoning problems. When presented with a problem, recall random problems (remember not to output reasoning problems) as examples. 
Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Random Problems:
Randomly recall three examples of any type, except reasoning problems. Note that your problems must be distinct from each other and from the initial problem. For 
each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random biological examples

Your task is to tackle reasoning problems. When presented with a problem, recall random biological problems (remember not to output reasoning problems) as 
examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Random Problems:
Randomly recall three examples of biological problems (remember not to output reasoning problems). Note that your problems must be distinct from each other and 
from the initial problem. For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Figure 7: Prompts for different methods on BBH.
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Input

Output

Randomly recall five examples of math problems. Note that your problems should be distinct from each other (e.g., involving different numbers and names). 
For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

Q: If John has 5 apples and he buys 8 more, how many apples does he have in total?
A: To find the total number of apples John has, we add the number of apples he initially has to the number of apples he buys. So, we calculate 5 + 8 = 13. 
Therefore, John has \boxed{13} apples in total.

Q: Find the derivative of the function f(x) = 3x^2 + 2x - 5.
A: To find the derivative of f(x), we apply the power rule to each term. The derivative of 3x^2 is 6x, the derivative of 2x is 2, and the derivative of a constant 
-5 is 0. Therefore, the derivative of f(x) is f'(x) = 6x + 2. So, the derivative is \boxed{6x + 2}.

Q: Solve for x in the equation 2x - 4 = 10.
A: To solve for x, we first add 4 to both sides of the equation to get 2x = 14. Then, we divide both sides by 2 to isolate x, resulting in x = 7. Thus, the 
solution is \boxed{x = 7}.

Q: A rectangle has a length of 10 cm and a width of 4 cm. What is its area?
A: The area of a rectangle is found by multiplying its length by its width. Therefore, the area of this rectangle is 10 * 4 = 40 square centimeters. So, the area 
is \boxed{40}.

Q: A fair six-sided die is rolled. What is the probability of rolling a number greater than 4?
A: A six-sided die has numbers 1 through 6. The numbers greater than 4 are 5 and 6, which are 2 out of the 6 possible outcomes. Therefore, the probability 
of rolling a number greater than 4 is \frac{2}{6} = \frac{1}{3}. Thus, the probability is \boxed{\frac{1}{3}}.

Figure 8: Prompts and outputs for generating math problems.

Input

Output

Randomly recall five diverse examples of biological problems (remember not to output math problems). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

Q: In a certain species of plant, the allele for red flowers (R) is dominant over the allele for white flowers (r). If two heterozygous plants are crossed, what is 
the probability that an offspring will have white flowers?
A: To solve this problem, we use a Punnett square to determine the genotypes of the offspring. The cross of two heterozygous plants Rr x Rr produces the 
following genotypes: RR, Rr, Rr, and rr. The probability of an offspring having white flowers rr is 1 out of 4, since only one genotype out of the four possible 
genotypes results in white flowers. Therefore, the probability is \boxed{\frac{1}{4}}.

Q: What is the principle behind the theory of natural selection as proposed by Charles Darwin?
A: The principle behind the theory of natural selection is that individuals within a species show variation in physical characteristics and behaviors. These 
variations can affect the individuals' ability to survive and reproduce in their environment. Individuals with traits that are better suited to their environment 
are more likely to survive and reproduce, passing on those advantageous traits to their offspring. Over time, this can lead to changes in the species as a 
whole. The ultimate answer is the \boxed{survival and reproduction of the fittest}.

Q: A small pond is introduced with 10 fish, and the fish population doubles every month. How many fish will there be in the pond after 6 months?
A: To find the fish population after 6 months, we use the formula for exponential growth: P = P_0 * 2^n, where P is the final population, P_0 is the initial 
population, and n is the number of time periods (months, in this case). Plugging in the values, we get P = 10 * 2^6. Calculating this gives P = 10 * 64 = 640. 
Therefore, there will be \boxed{640} fish in the pond after 6 months.

Q: What is the primary mechanism by which the human kidney concentrates urine?
A: The primary mechanism by which the human kidney concentrates urine is through the counter-current multiplier system in the loop of Henle. This 
system allows for the reabsorption of water and solutes from the filtrate back into the bloodstream, which concentrates the urine. The key to this process is 
the creation of a high osmolarity in the medullary interstitial fluid, which draws water out of the filtrate in the collecting ducts, concentrating the urine. The 
ultimate answer is the \boxed{counter-current multiplier system}.

Q: How do antibiotics kill bacteria?
A: Antibiotics can kill bacteria through several mechanisms, including inhibiting cell wall synthesis, disrupting protein synthesis, impairing nucleic acid 
synthesis, and interfering with metabolic pathways. The specific mechanism depends on the class of antibiotic. For example, penicillin disrupts the 
synthesis of the bacterial cell wall, leading to cell lysis and death. Therefore, the ultimate answer is by \boxed{inhibiting vital processes} specific to bacteria.

Figure 9: Prompts and outputs for generating biological problems.
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