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Abstract

Depthwise-separable convolution has emerged as a significant milestone in the
lightweight development of Convolutional Neural Networks (CNNs) over the past
decade. This technique consists of two key components: depthwise convolution,
which captures spatial information, and pointwise convolution, which enhances
channel interactions. In this paper, we propose a novel method to lightweight CNNs
through the discretization of Ordinary Differential Equations (ODEs). Specifi-
cally, we optimize depthwise-separable convolution by replacing the pointwise
convolution with a discrete ODE module, termed the Channelwise ODE Solver
(COS). The COS module is constructed by a simple yet efficient direct differen-
tiation Euler algorithm, using learnable increment parameters. This replacement
reduces parameters by over 98.36% compared to conventional pointwise convo-
lution. By integrating COS into MobileNet, we develop a new extra lightweight
network called MobileODE. With carefully designed basic and inverse residual
blocks, the resulting MobileODEV1 and MobileODEV2 reduce channel interac-
tion parameters by 71.0% and 69.2%, respectively, compared to MobileNetV1,
while achieving higher accuracy across various tasks, including image classifi-
cation, object detection, and semantic segmentation. The code is available at
https://github.com/cashily/MobileODE.

1 Introduction

The design of lightweight networks has become a central focus in computer vision, aiming to balance
high performance with low computational costs. This is especially crucial for resource-constrained
devices like mobile devices, embedded systems, and edge computing platforms, which have limited
computational power and storage capacity. As these devices face growing demands for efficient
model deployment, recent advancements in lightweight Convolutional Neural Networks (CNNs) have
led to the development of efficient architectures that provide practical solutions to these challenges.
Currently, the development of lightweight networks has largely focused on optimizing the MobileNet
series and integrating self-attention mechanisms. MobileNetV1 [Howard, 2017] was the first to
introduce a lightweight network by employing depthwise-separable convolutions, marking a milestone
in the lightweight evolution of CNNs over the past decade. MobileNetV2-V4 [Sandler et al., 2018,
Howard et al., 2019, Qin et al., 2025] enhanced MobileNetV1 by incorporating inverted residuals
and linear bottlenecks, network architecture search, and universal inverted bottlenecks, respectively.
GhostNet [Han et al., 2020], ShuffleNet [Zhang et al., 2018], and MobileOne [Vasu et al., 2023b]
optimized depthwise-separable convolutions while maintaining the core design of separating spatial
and channel computations. More recently, self-attention mechanisms have been introduced to further
improve MobileNet variants by enhancing global context. Models like FastViT [Vasu et al., 2023a],
MobileViT [Mehta and Rastegari, 2021], EfficientFormerV2 [Li et al., 2023], and RepViT [Wang et al.,
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Figure 1: Detailed Structure of the COS Module. We propose the Direct Differentiation Euler
(DDE) algorithm as a highly efficient method for approximating solutions in high-dimensional spaces.
Building on DDE, we develop the Channelwise ODE Solver (COS) module, which enhances inter-
channel interactions by mapping the input to its global attractor.

2024a] have transformed MobileNet-like architectures into Vision Transformers (ViTs), significantly
boosting their performance. However, their parameter counts still remain comparable to, or even
exceed, the original designs.

The primary mechanism behind depthwise-separable convolution lies in the separation of spatial and
channel computations, where depthwise convolution is responsible for extracting spatial information
and pointwise convolution enhances channel interaction. However, this separable design reduces
the receptive field of channelwise computations due to the reduction in the number of parameters.
Specifically, the 1×1 convolution only performs a linear mapping on features in the form of 1×1×C,
where C represents the number of channels. Moreover, the computational cost of spatial operations is
lower than that of channelwise computations. To address this, we aim to enhance the global receptive
field of channel computations by adopting a non-linear mapping approach, thereby introducing an
extra lightweight network with parameters comparable to those used in spatial computations.

Recently, Neural Memory Ordinary Differential Equations (nmODEs) [Yi, 2023] have shown sig-
nificant advancements in efficiently modeling non-linear mappings. This is primarily due to their
unique characteristic of having a single global attractor, which implies that all trajectories within
the dynamical system defined by nmODEs will ultimately converge to this attractor [Wills et al.,
2005]. This property enables nmODEs to establish a robust connection between the input space and
the memory space [Poucet and Save, 2005]. These advancements have been particularly impactful
in fields of computer vision, such as medical image segmentation [He et al., 2024, 2023], video
captioning [Artham and Shaikh, 2024], and image recognition [Niu et al., 2024, Luo et al., 2024].
The discrete nmODEs have been employed to design lightweight network architectures. [He et al.,
2024] introduced various techniques, including Euler’s method, Heun’s method, and linear multi-step
method, to reduce the complexity of the decoder in U-like networks. These methods have been
demonstrated effective when integrated into state space models [Wang et al., 2024b]. While discrete
nmODEs have streamlined network architectures for semantic segmentation tasks, there remains a
need for research focused on developing generalized network structures applicable to diverse tasks.

To the best of our knowledge, this paper is the first work to develop the discrete nmODEs to construct
an extra lightweight MobileNet-like network. The main contributions of this paper are as follows:

• We propose a discrete nmODEs module, named Channelwise ODE Solver (COS), illustrated
in Fig. 1, which is structured by a novel Direct Differentiation Euler (DDE) algorithm. The
DDE enables the time increments learnable during network training, verifying the gradient
descent stability of the COS module.

• We build a novel extra lightweight network, named MobileODE, which incorporates the
COS modules. Both the basic block (COS-base) and the inverse residual block (COS-inv)
perform efficiently. The resulting MobileODEV1 and MobileODEV2 reduce the parameters
for channel interaction by 71.0% and 69.2%, respectively, compared to MobileNetV1, as
shown in Tab. 1.
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• Extensive experiments across various tasks, including image classification, object detection,
and semantic segmentation, demonstrate the effectiveness of the proposed MobileODEV1
and MobileODEV2 architectures.

2 Related work

MobileNet Series MobileNet [Howard, 2017] introduced the classic depthwise-separable convolu-
tion, significantly reducing the model’s parameter count and computational complexity. Since then,
numerous improvements based on this module have emerged. MobileNetV2 [Sandler et al., 2018]
enhanced feature dimensions by adding a pointwise convolution before the depthwise-separable convo-
lution and introduced the linear bottleneck to stabilize network performance. MobileNetV3 [Howard
et al., 2019] updated the inverted bottleneck block from MobileNetV2 by incorporating the Squeeze-
and-Excitation (SE) module [Hu et al., 2018] and the Hard-Swish activation function, as well as
introducing Neural Architecture Search (NAS) to automatically discover optimal network architec-
tures. MobileNext [Zhou et al., 2020] introduced the SandGlass module, which establishes shortcuts
based on high-dimensional features. MobileNetV4 [Qin et al., 2025] advanced the series further
by introducing the Universal Inverted Bottleneck (UIB) block, which incorporates depthwise con-
volution before the inverted bottleneck module. MobileOne [Vasu et al., 2023b] returned to the
original separable convolution, introducing reparameterization to merge multiple branches into a
single-branch structure. Despite these several iterations of improvement, the fundamental nature of
depthwise-separable convolution remains unchanged: it uses depthwise convolution to extract spatial
information and pointwise convolution to enhance channel interaction. This paper optimizes the
channel interaction of depthwise-separable convolution through a discrete nmODEs method.

MobileNets with Self-Attentions The integration of Transformer architectures with depthwise-
separable convolutional blocks to better learn global representations has become a major research
focus. FastViT [Vasu et al., 2023a], a hybrid vision transformer architecture, placed the computation-
ally expensive self-attention mechanism in the later stages of the network, where the resolution is
lower. It also used structural reparameterization to reduce memory access costs and improve network
accuracy. MobileViT [Mehta and Rastegari, 2021] seamlessly combined the ViT structure with
convolutions by introducing the MobileViT block, which replaced some of the inverted bottleneck
blocks in the MobileNetV2 model, achieving global receptive fields at a lower computational cost.
EfficientFormerV2 [Li et al., 2023] proposed a fine-grained joint search strategy that simultaneously
optimized latency and parameter count to find efficient architectures, enabling high-speed execution
of ViT. RepViT [Wang et al., 2024a] improved upon the MobileNetV3 block by separating token
mixers and channel mixers, employing structural reparameterization techniques to enhance learning.
These models achieved a balance between speed and accuracy by lightweighting the ViT architecture
to avoid the expensive computational cost.

Lightweight Discrete ODE Models Ordinary Differential Equations (ODEs) provides a conceptual
framework for neural networks and has been widely applied in mathematics and physics [Chen et al.,
2018, Shou et al., 2024]. Neural memory Ordinary Differential Equations (nmODEs) [Yi, 2023] was
designed to fully utilize the memory capacity provided by dynamic systems. nmODEs enhanced
the non-linear representation of neural networks through implicit mapping and non-linear activation
functions. Discrete nmODEs has demonstrated its versatility and effectiveness in treamlining network
structures. For instance, He et al. [2024] employed explicit Euler’s method, Heun’s method, and
linear multi-step method for discretization and further introduced three plug-and-play decoders
that reduce the number of parameters and FLOPs while maintaining performance when embedded
into various U-shaped networks. Similarly, He et al. [2023] followed the explicit Euler’s method
and applied it to liver tumor segmentation. Wang et al. [2024b] leveraged the powerful non-linear
representation capability of nmODEs combined with state space models, incorporating residual
connections to build a medical image segmentation network, called nmSSM-UNet. Additionally, Niu
et al. [2024] utilized the discrete nmODEs as the inverse path in a bi-directional network structure,
and evaluated the possibility of the bi-directional feedforward network architecture. These methods
demonstrate that nmODEs possess strong learning capabilities across various tasks while facilitating
lightweight networks, leveraging their inherent advantages in non-linear mappings.
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3 Method

3.1 Direct Differentiation Euler Algorithm

The basic method of discretizing nmODEs is to split the time step t into smaller intervals. The Euler
method [Euler, 1845] is one of the simplest and most widely used techniques for solving ODEs
numerically. Given an initial state y(t0) and the basic nmODEs:

ẏ(t) = −y(t) + f(y(t) + g(x(t), θt)), (1)

where, y(t) denotes the internal state, x(t) is the external input, g(·) denotes a linear mapping of x,
and the f(·) is the non-linear activation function. The discretization of the nmODEs is as follows:

y(t+∆t) = y(t) + ∆t · ẏ(t), (2)

where, ∆t represents the time increment, and y(t+∆t) is an approximate solution at time t+∆t.
In previous related work [He et al., 2023, Wang et al., 2024b, Niu et al., 2024, He et al., 2024],
the explicit Euler method is employed for discrete nmODEs to integrate information with minimal
parameters, where ∆t is typically initialized as a fixed constant. Combine Eq. (1) and (2), for each
layer l < L, we can derive that

yl+1 = (1−∆t) · yl +∆t · f(yl + g(xl, θl)). (3)

He et al. [2024] and Niu et al. [2024] initialized ∆t as 1
L , where L is the number of discretization

layers. However, every ODE solver’s discretization introduces approximation errors, which increase
with larger time increments. Thus, using a constant to initialize ∆t can harm the dynamics of
nmODEs. This approach not only limits accuracy but also risks making the system uncontrollable.

To address this limitation, we propose the Direct Differentiation Euler (DDE) algorithm, which
introduces learnable time increments ∆t to guide the model’s computation, where ∆t =
{∆t1,∆t2, . . . ,∆tL}, initialized using a Normal distribution. These increments are then passed
through a ReLU6 activation function to ensure they remain non-negative and to limit their output
range. For each layer l < L, we obtain:{

ẏl(t) = −yl + f(yl + g(xl, θl)),

yl+1 = yl +∆tl · ẏl(t). (4)

Instead of relying on a fixed ∆t, the DDE method dynamically adjusts ∆t during training through
gradient descent. This allows the model to refine its temporal resolution adaptively, enabling the
effects of time increments to accumulate across multiple layers.
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Figure 2: The distinction between the explicit Euler
algorithm (a) and the proposed DDE algorithm (b).

The DDE method differs from previous ap-
proaches, as shown in Fig. 2. First, prior meth-
ods use Eq. (3) as a gating operation that reg-
ulates contributions from previous and current
layers. In contrast, DDE computes specific par-
tial derivatives layer by layer, solving them di-
rectly as intermediate variables to reduce errors.
Second, DDE employs sequenced time incre-
ments for layer-wise adjustments at each step.
In steeper gradient regions, ∆tl learns smaller
values, while in smoother areas, it can learn
larger increments, as shown in Appendix 6.3.
Previous gating methods are fixed and lack this
flexibility. In Sec. 4.4, we investigate how ∆t
affects the learning process. We find that as L increases, a fixed ∆t can impair accuracy, whereas
DDE consistently enhances it. Additionally, with deeper layers, the accuracy of features from each
layer’s outputs progressively improves, demonstrating strong learning capability.

3.2 Channelwise ODE Solver

Inspired by the unique global attractor of nmODEs, which allows every input to converge to a unified
memory representation, we leverage this characteristic to introduce the COS module. Based on the
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DDE algorithm, COS is a lightweight inter-channel computation technique that integrates features
with minimal computational cost. It decomposes inter-channel computation into two key steps:
inter-channel linear transformation and unified channelwise mapping using DDE.

Inter-channel linear transformation. We define a feature tensor x ∈ RC×H×W , where C
represents the number of channels, and H and W denote the height and width of the input feature
map, respectively. As illustrated in Fig. 1, we perform an inter-channel linear transformation to
facilitate channel interaction at each pixel of the feature map, which is formulated as follows:

g(x⟨i,j⟩) = x⟨i,j⟩ ·Φ, (5)

where, Φ ∈ R
√
C×

√
C is a learnable matrix, 1 ≤ i ≤ H, 1 ≤ j ≤ W , and x⟨i,j⟩ ∈ R

√
C×

√
C×1×1.

Traditional convolutions exhibit quadratic complexity, while our method utilizes a compact Φ matrix
to work in tandem with the learnable time increments. This is the direct reason for the significant
reduction in computational cost, transforming a quadratic complexity into linear complexity.

Algorithm 1 Channelwise ODE Solver (COS) with DDE

1: Input: The feature tensor x, learnable weight matrices Φ ∈ R
√
C×

√
C×L, learnable time

increments ∆t ∈ RL, initial internal state y0 ∈ RC×H×W .
2: Output: Final output o.
3: for layer l = 0 to L− 1 do
4: for i = 1, j = 1 to H,W do
5: Calculate the linear transformation g(x⟨i,j⟩) as described in Eq. (5).
6: Update the internal state yl+1

⟨i,j⟩, as shown in Eq. (4).
7: end for
8: Combine these internal states along the feature map to obtain yl+1.
9: end for

10: Reture: o = yL + x.

Unified channelwise mapping using DDE. After obtaining the linear transformation g(xl) of the
nmODEs, we employ the DDE algorithm to build the COS internal structure. For an L-layer DDE,
we first compute the partial derivatives directly and then use the learnable ∆tl to calculate the final
output of the channelwise mapping, as shown in Eq. (4). The DDE harnesses the advantages of
nmODEs by mapping the input to its global attractor, linking input space with memory space. The
DDE operator transforms each x⟨i,j⟩, refining feature representation to converge towards the global
attractor. This process, governed by learnable time increments, captures both local variations and
global patterns. As a result, the model transcends local information and approximates solutions in
high-dimensional space. Specific details of the COS module are provided in Algorithm 1.

Linear Transformation DDE 

× 𝑳

(a) The COS-base block.

× 𝑳

Upsampling Linear Transformation DDE Downsampling Linear Transformation DDE 

× 𝑳

(b) The COS-inv block.

Figure 3: The illustrations of the COS-base block (a) and the COS-inv block (b). L represents the
pre-defined discrete layers for the implementation of nmODEs.

The basic and inverse residual blocks. As shown in Fig. 3 (a), we retain the depthwise convolution
and replace the pointwise convolution with our COS for inter-channel computation using DDE.
Inspired by the inverted bottleneck block in MobileNetV2 [Sandler et al., 2018], we further design
the COS-inv block in Fig. 3 (b). The main difference is that COS-inv places the COS module before
the depthwise convolution for channel expansion, enhancing high-dimensional spatial computation
and non-linear transformations by nmODEs. It then employs another COS to restore the channels,
introducing an upsampling or downsampling process before the linear transformation. Specifically,
bilinear interpolation is applied to each x⟨i,j⟩, facilitating channel expansion or compression by
considering surrounding pixels and maintaining image smoothness and detail.
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MobileNetV1 / Stride Channels Channelwise Param. MobileODEV1 / Stride Channels Channelwise Param. MobileODEV2 / Stride Channels Channelwise Param.

Conv2d / s2 3 3×32 Conv2d / s2 3 3×32 Conv2d / s2 3 3×32
SeparableV1 / s1 32 32×64 SeparableV1 / s1 32 32×64 SeparableV1 / s1 32 32×64

SeparableV1 / s2 64 64×128 SeparableV1 / s2 64 64×144 SeparableV1 / s2 64 64×144
SeparableV1 / s1 128 128×128 COS-base 144 10×144+10 COS-inv 144 10×144×5+20 (e = 4)

SeparableV1 / s2 128 128×256 SeparableV1 / s2 144 144×256 SeparableV1 / s1 144 144×256
SeparableV1 / s1 256 256×256 COS-base 256 10×256+10 COS-inv 256 10×144×5+20 (e = 4)

SeparableV1 / s2 256 256×512 SeparableV1 / s2 256 256×529 SeparableV1 / s2 256 256×529
5× SeparableV1 / s1 512 5×512×512 5× COS-base 529 5×(10×529+10) 5× COS-inv 529 5×(10×144×5+20) (e = 4)

SeparableV1 / s2 512 512×1024 SeparableV1 / s2 529 529×1024 SeparableV1 / s2 529 529×1024
SeparableV1 / s2 1024 1024×1024 COS-base 1024 10×1024+10 COS-inv 1024 10×1024×5+20 (e = 4)

Avg Pool 1024 - Avg Pool 1024 - Avg Pool 1024 -
FC 1024 1024×200 FC 1024 1024×200 FC 1024 1024×200

Softmax 200 - Softmax 200 - Softmax 200 -

Total Param. - 3.34M - - 0.97M(↓ 71.0%) - - 1.03M(↓ 69.2%)

Table 1: Comparison of architectures and parameters for MobileNetV1, MobileODEV1, and Mo-
bileODEV2 is presented. The red-highlighted numbers indicate the repeated use of the block.

Detailed structures. We have constructed MobileODEV1 and MobileODEV2, as shown in Tab. 1.
SeparableV1 refers to the depthwise-separable convolution from MobileNetV1, where we retained
certain pointwise convolutions for downsampling while maintaining linear computational capabilities.
Both the COS-base and COS-inv blocks are followed by BatchNorm [Ioffe, 2015] and ReLU6
non-linearity. We made slight modifications to the input channels of the these blocks to enable square
root calculations. An ablation study on discrete layer numbers is detailed in Sec. 4.4, leading us to
set L = 10 for a balance between performance and speed. In MobileODEV1 and MobileODEV2, 8
depthwise-separable convolutions are replaced with the proposed COS-base and COS-inv blocks,
respectively. The number of parameters for channelwise computation is shown in Tab. 1. COS in
MobileODEV1 has only 0.04M parameters (↓ 98.36%) compared to the 2.44M of the replaced point-
wise convolutions, and COS-inv has 0.10M (↓ 95.90%). Compared to MobileNetV1, MobileODEV1
reduces channelwise computational cost by 71.0%, while MobileODEV2 reduces it by 69.2%.

Block Formula #Param.(eg. C = 512, e = 4)
Pointwise Conv C2 × e 5122 × 4 = 1, 048, 576

COS-inv C × e× L+ L 512× 4× 10 + 10 = 20, 490

Table 2: Comparison of computational over-
head between pointwise convolution and COS-
inv with a channel expansion factor e = 4.

In COS-inv block, e denotes the channel expan-
sion factor. For pointwise convolution, increasing e
raises the computational cost by a factor of e on top
of the quadratic complexity (Tab. 2). In contrast,
COS-inv has a linear increase in computational cost
with respect to e. This feature enables COS-inv
to scale to larger channel numbers without signifi-
cantly increasing computational costs.

4 Experimental Results

Model #Param. CIFAR-10 CIFAR-100 IN-R IN-tiny
GhostNet 4.16M 83.32 52.32 42.45 52.71

FastViT-T8 3.41M 86.48 56.57 42.92 43.03
ShuffleNetV2 1.0× 1.46M 92.31 71.54 46.72 59.97
ShuffleNetV2 1.5× 2.69M 92.80 72.39 47.24 60.63
ShuffleNetV1 1.0× 1.10M 92.29 70.55 45.49 59.21
ShuffleNetV1 1.5× 2.29M 93.11 72.16 45.59 61.39

MobileNetV3-Large 4.41M 93.55 73.72 44.72 60.93
MobileNetV4 2.75M 92.43 74.14 44.39 61.10
MobileOne-s0 4.47M 93.92 75.58 45.45 61.33

MobileNetV1 3.41M 93.17 74.77 42.23 60.78
MobileODEV1 1.14M 93.56 74.98 44.55 61.92

MobileNetV2 2.48M 93.77 74.73 43.01 63.53
MobileODEV2 1.52M 94.01 75.43 46.59 63.46

MobileViT 5.58M 89.97 65.23 45.00 57.92
MobileODEV1+ViT 2.82M 94.13 75.56 47.35 62.98

MobileViTV2 18.45M 89.33 65.78 46.72 60.82
MobileODEV2+ViT 3.65M 94.26 75.89 48.08 63.56

Table 3: Comparison of classification performance across
various methods and datasets, with values indicating top-1
accuracy (%). Bold entries highlight superior performance.
The parameters of the presented models are evaluated on
the IN-R dataset.

In this section, we evaluate Mo-
bileODEV1 and MobileODEV2
incorporating self-attention mecha-
nisms. We replace the final COS and
COS-inv components with MobileViT
blocks [Mehta and Rastegari, 2021],
resulting in MobileODEV1+ViT and
MobileODEV2+ViT. The MobileViT
block integrates convolutional and
transformer operations at low resolution,
providing lightweight local and global
perspective integration. our models
achieving significant reductions in back-
bone size while improving performance.
All simulations use fixed seeds for repro-
ducibility, and models are implemented
in PyTorch on a single NVIDIA 4090
GPU. For a fair comparison, we train all
lightweight models from scratch without
using pretrained parameters.
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4.1 Image Classification

Dataset and experiment settings. We
validate our proposed methods on four
different datasets, namely CIFAR-10/CIFAR-100 [Krizhevsky et al., 2009], ImageNet-R (IN-
R) [Hendrycks et al., 2021a] and Tiny Imagenet (IN-tiny) [Le and Yang, 2015]. For CIFAR-10/100,
which are well-known for classification tasks, we use a resolution of 32 × 32. IN-tiny has 200
classes, and each class contains 500 training images, 50 validation images at a resolution of 64× 64.
Additionally, we assess the robustness of our methods on IN-R dataset, which consists of 30K images
from 200 ImageNet classes, rendered in diverse textures and styles (e.g., paintings, embroidery, etc.).
We divide IN-R into training and testing sets at a 4 : 1 ratio, using a resolution of 256× 256.

In our experiments, all networks are using identical training recipes to ensure fair comparisons.
The batch size is set to 32 images for CIFAR-10/CIFAR-100, while for IN-tiny and IN-R, it is set
to 16 images. For CIFAR-10/CIFAR-100, as suggested in Haase and Amthor [2020], we remove
the first and second pooling operations of MobileNets to obtain a final feature map of size 4 × 4.
Our experimental setup is consistent with Mehta and Rastegari [2021]. Basic data augmentation
techniques, including random resized cropping and horizontal flipping, are applied during training.

For the comparative experiments, MobileODEV1 and MobileODEV2 are evaluated against their
baselines, MobileNetV1 [Howard, 2017] and MobileNetV2 [Sandler et al., 2018]. Additionally, they
are compared with other classic lightweight networks that have been improved based on MobileNet,
including GhostNet [Han et al., 2020], ShuffleNetV1 [Zhang et al., 2018], ShuffleNetV2 [Ma et al.,
2018], MobileNetV3 [Howard et al., 2019], MobileNetV4 [Qin et al., 2025], and MobileOne [Vasu
et al., 2023b]. Furthermore, with the integration of MobileViT blocks [Mehta and Rastegari, 2021],
MobileNetV1+ViT and MobileNetV2+ViT are compared with MobileViT [Mehta and Rastegari,
2021], MobileViTV2 [Mehta and Rastegari, 2021], and FastViT-T8 [Vasu et al., 2023a].

Results. As shown in Tab. 3, MobileODEV1 and MobileODEV2 show significant accuracy im-
provements while keeping parameter counts low. MobileODEV1 has 1.14M parameters, which is
66.57% fewer than MobileNetV1 (3.41M), and MobileODEV2 has 1.52M parameters, 38.7% fewer
than MobileNetV2 (2.48M). On CIFAR-10, MobileODEV1 outperforms MobileNetV1 by 0.39%,
and MobileODEV2 surpasses MobileNetV2 by 0.24%. For CIFAR-100, MobileODEV1 improves
over MobileNetV1 by 0.21%, while MobileODEV2 achieves a 0.7% gain over MobileNetV2. On
IN-tiny and IN-R datasets, MobileODEV2+ViT exceeds the best results by 0.03% compared to
MobileNetV2 and by 0.84% compared to ShuffleNetV2 1.5×. Overall, MobileODEV2 consistently
outperforms MobileODEV1 across all datasets, particularly in complex IN-R scenarios. This con-
firms the practical applicability of our methods and the superior learning capability of COS-inv over
COS. Integrating MobileViT blocks [Mehta and Rastegari, 2021] enhances performance across all
datasets. MobileODEV2+ViT consistently achieves the best results, highlighting the effectiveness of
combining MobileODE with self-attention while minimizing computational overhead.

Model #Param. PASCAL VOC2012 ADE20K

MobileNetV3-Large 6.69M 52.11 26.82

MobileNetV4 17.08M 50.85 26.64

MobileOne-s0 24.55M 53.27 27.21

MobileNetV1 20.33M 49.39 25.96

MobileODEV1 6.40M 51.73 26.88

MobileNetV2 8.09M 50.10 24.69

MobileODEV2 6.39M 51.82 27.12

MobileViT 8.69M 50.86 24.73

MobileODEV1+ViT 7.04M 52.13 26.98

MobileViTV2 35.38M 47.31 24.25

MobileODEV2+ViT 7.48M 53.35 27.32

Table 4: Comparison of semantic segmenta-
tion performance of DeepLabV3 with differ-
ent backbones across various datasets, evalu-
ated using mIOU (%). Model parameters are
assessed on the ADE20K dataset.

Model #Param.
BUSI FFE

mAP AP50 AP75 mAP AP50 AP75

MobileNetV3-Large 3.07M 35.61 67.80 30.84 62.82 95.44 73.50

MobileNetV4 1.99M 35.80 75.81 33.70 61.98 95.21 70.51

MobileOne-s0 5.09M 36.02 73.10 32.22 59.97 94.42 67.72

MobileNetV1 3.90M 30.71 61.13 30.02 61.85 94.02 71.82

MobileODEV1 1.99M 32.50 64.73 28.94 61.88 91.35 73.13

MobileNetV2 2.19M 31.72 58.51 33.62 62.84 95.82 72.11

MobileODEV2 1.41M 34.42 64.56 36.93 63.15 94.33 74.76

MobileViT 5.14M 22.91 49.02 19.85 60.93 94.43 69.90

MobileODEV1+ViT 3.14M 34.82 67.36 30.33 63.91 95.66 73.54

MobileViTV2 18.55M 35.91 62.64 37.72 66.10 94.41 78.93
MobileODEV2+ViT 6.15M 37.71 66.40 37.82 66.52 95.74 77.52

Table 5: Comparison of object detection perfor-
mance of SSDLite with different backbones on
BUSI and FFE datasets. The parameters of the
presented models are evaluated on the FFE dataset.
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4.2 Semantic Segmentation

Dataset and experiment settings. We integrate MobileODE with DeepLabV3 [Chen, 2017],
training MobileODE on PASCAL VOC 2012 [Everingham et al., 2015] dataset and ADE20K
dataset [Zhou et al., 2019] from scratch, in accordance with standard training practices [Mehta and
Rastegari, 2021]. All networks are trained for 200 epochs with a batch size of 16 images using
a standard sampler. For the PASCAL VOC 2012 dataset, additional annotations from [Hariharan
et al., 2011] are utilized. To substantially reduce the complexity of the segmentation head, we
adjust the final output channels of MobileODEV1 and MobileODEV2 to 576 and 256, respectively,
and eliminate the classification layer. This modification facilitates a more accurate evaluation of
MobileODE’s performance as a lightweight backbone network.

Results. As shown in Tab. 4, MobileODEs significantly improve performance with a much lower
parameter count than other MobileNet variants. On PASCAL VOC 2012, MobileODEV1 improves
over MobileNetV1 by 2.34%. MobileODEV2 surpasses MobileNetV2, achieving a 1.72% higher ac-
curacy. When integrated with the MobileViT block [Mehta and Rastegari, 2021], MobileODEV1+ViT
improves MobileViT by 1.27%, while MobileODEV2+ViT exceeds MobileViTV2 by 6.04%. On
the ADE20K dataset, MobileODEV1 improves upon MobileNetV1 by 0.92%, using just 6.40M
parameters versus MobileNetV1’s 20.33M. MobileODEV2 surpasses MobileNetV2 by 2.43%. Mo-
bileODEV2+ViT achieves the highest accuracy just below MobileOne, recording 0.08% higher on
PASCAL VOC 2012 and 0.11% higher on ADE20K, all while having 69.53% fewer parameters.

4.3 Object Detection

Dataset and experiment settings. We integrate MobileODE with the single-shot object detection
(SSD) backbone [Liu et al., 2016] to develop an efficient object detection framework. We replace
standard convolutions in the SSD head with separable convolutions, resulting in a lightweight model
referred to as SSDLite [Mehta and Rastegari, 2021]. We train and validate our model’s detection
performance on the publicly available BUSI dataset [Al-Dhabyani et al., 2020] and Facial Feature
Extraction (FFE) dataset [kag, 2025]. The BUSI dataset contains 437 images with benign lesions,
210 images with malignant lesions, and 133 normal images without lesions. The FFE dataset is a
labeled dataset designed for the detection of various facial features, including eyebrows, eyes, nose,
lips, and mustache-beard regions, with 457 images allocated for training and 126 images designated
for validation. Model performance is evaluated using the mAP metric across IoU thresholds ranging
from 0.50 to 0.95 (mAP@IoU 0.50 : 0.05 : 0.95). Additionally, we report performance at specific
IoU thresholds, including AP50 and AP75, to provide a more detailed evaluation.

Results. As shown in Tab. 5, on the BUSI dataset, MobileODEV1 outperforms MobileNetV1,
achieving a 1.79% increase in AP and a 3.6% increase in AP50. MobileODEV2 surpasses Mo-
bileNetV2 across all evaluation metrics, particularly in AP50 (↑ 6.05%). The performance of
MobileODEV1+ViT and MobileODEV2+ViT significantly exceeds that of the original MobileViT
model. For instance, MobileODEV1+ViT improves by 11.91% in AP and 18.3% in AP50, while Mo-
bileODEV2+ViT surpasses MobileViTV2 by 1.8% in AP. For the FFE dataset, MobileODEV2+ViT
outperforms MobileViTV2 with fewer parameters (6.15M vs. 18.55M). Overall, MobileODEV1 and
MobileODEV2 perform exceptionally well as lightweight backbones for detection tasks, with the
introduction of self-attention mechanisms providing a further boost in detection performance.

4.4 Ablation Study

Impact of L. We apply both learnable time increments ∆t and fixed time increments ∆t (∆t = 1
L )

to MobileODEV1 and MobileODEV2. As shown in Fig. 4 (a) and (b), it is evident that as the number
of discrete layers increases, a fixed ∆t leads to unstable accuracy improvements, and even a decline
in performance. This aligns with our expectation in a non-linear environment. In contrast, for the
learnable ∆t, the model accuracy exhibits an increasing trend. However, when L is set to 10, the rate
of improvement slowed. Additionally, by leveraging COS-inv blocks, MobileODEV2 demonstrates a
more pronounced improvement in accuracy, following a similar trend.

Impact of learnable ∆t. We explore the learning process of the learnable ∆t settings in Mo-
bileODEV2. In Fig. 4 (c), we present scatter plots of accuracy across all 200 categories of IN-R for
each discrete layer in the final COS-inv module, with the initial setting of L = 30. The black points
indicate the accuracy of the first discrete layer’s output for each class, while the red points represent
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Figure 4: Study of the L setting in MobileODEV1(a) and MobileODEV2(b), with learnable ∆t
versus fixed ∆t on the CIFAR-10 dataset. (c) Accuracy across each category at each discrete layer.
(d) Accuracy with respect to learnable time increments for 30-layer DDE.

the accuracy of the last discrete layer’s output. A clear upward trend in accuracy is observed for each
category with the increase in discrete layers, indicating that the COS design exhibits fine-grained
perception. In Fig. 4 (d), we plot the values of the learnable ∆t, with the spacing between the triangle
markers proportional to the time increment. It is evident that the trend of accuracy improvement
becomes more pronounced, highlighting the impact of the time increments accumulating across
multiple layers effectively.

e #Param. ACC

1 0.61M 93.57

4 1.27M 94.01

9 1.77M 91.04

16 2.46M 89.57

25 3.35M 88.02

Table 6: Study
of e settings.

Model FLOPs(M) Latency(ms)

MobileNetV1 4.06 43.70
MobileODEV1 7.09 24.54
MobileODEV1 w/Runge-Kutta 18.49 50.12

MobileViT 7.10 46.22
MobileODEV1+ViT 7.32 30.64
MobileODEV1+ViT w/Runge-Kutta 18.27 43.16

Table 7: Comparison of MobileODEV1 and Mo-
bileODEV1+ViT in terms of latency and FLOPs.

Impact of e. Tab. 6 presents the number of parameters and Top-1 accuracy (%) for models under
different expansion factor e settings, all evaluated on the CIFAR-10 dataset. Overall, the analysis
reveals notable fluctuations in model performance as e increases. Specifically, model performance
significantly declines, highlighting the limitations of using bilinear interpolation for parameter-free
channel expansion and contraction concerning the value of e.

Computing efficiency. In Tab. 7, MobileODEV1 exhibits a significantly lower latency of 24.54 ms
(batch size = 16) compared to the baseline models, despite a moderate increase in FLOPs to 7.09
million. This reduction in latency indicates enhanced efficiency in processing. Although the increase
in FLOPs is a common characteristic of ODE methods, such as those using the Runge-Kutta approach,
our proposed methods have effectively addressed this challenge. Moreover, MobileODEV1+ViT
maintains a competitive FLOP count of 7.32 million while achieving a latency of 30.64 ms, further
demonstrating the effectiveness of our approach.

5 Conclusion

In this paper, we introduce MobileODE, an ultra-lightweight network based on the discrete nmODEs
method, designed for various tasks. Our findings indicate a clear trend of improved performance as
the number of discrete layers increases, emphasizing the potential for achieving state-of-the-art results.
However, COS’s sequential computation limits parallel processing, making indiscriminate increases
in L detrimental to inference speed. Therefore, a more balanced approach between performance
and speed is essential. In future work, we plan to integrate Neural Architecture Search (NAS) from
MobileNetV3-V4 into MobileODE to create a more efficient structure and further explore L settings.
We hope this research inspires advancements in lightweight network models.
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6 Appendix

6.1 Training details for classification task

The loss function used cross-entropy with label smoothing (smoothing = 0.1), and optimization was
performed with AdamW [Loshchilov, 2017], and a weight decay of 0.01. The learning rate started
at 0.0002, increased to 0.002 for the first 2k iterations, and then decayed to 0.0002 using a cosine
schedule [Loshchilov and Hutter, 2016]. The model was trained for a maximum of 200 epochs.

6.2 Training details for SSDLite and deeplabv3

Our experimental setup is consistent with Mehta and Rastegari [2021]. The hyperparameter settings
for semantic segmentation task on PASCAL VOC 2012 dataset and object detection task are consistent.
The AdamW optimizer with a weight decay of 0.01 is employed. The learning rate is first increased
from 0.00009 to 0.0009 over the first 500 iterations, then annealed to 1e− 6 using a cosine scheduler.
For the ADE20K dataset, training uses the SGD optimizer with a momentum of 0.9 and a weight
decay of 0.0001. A cosine annealing schedule is applied, reducing the learning rate from 0.02 to
0.0001.

6.3 How DDE adaptively modify each ∆tl.

Let the objective function be L(θ), where θ represents the model parameters. The learnable step size
∆tl in DDE is optimized through backpropagation, and its gradient can be expressed as:

∂L

∂∆tl
=

∂L

∂yl+1
· ∂y

l+1

∂∆tl
(6)

where yl+1 = yl +∆tl · ẏl. Expanding this gives:
∂L

∂∆tl
=

∂L

∂yl+1
· ẏl (7)

Steep Regions: When ∥ẏl∥ is large (high curvature), the absolute value of the gradient ∂L
∂∆tl

is large,
forcing ∆tl to decrease to reduce loss. Flat Regions: When ∥ẏl∥ is small (low curvature), the absolute
value of the gradient ∂L

∂∆tl
is small, allowing ∆tl to increase to accelerate convergence.

6.4 Accuracy vs parameters on classification task

Tab. 8 complements Tab. 3 by providing additional details on parameter counts for CIFAR-10 and
CIFAR-100, along with two sets of comparative experiments conducted using ResNet-110 and
ResNet-353. Moreover, we add another challenging dataset ImageNet-A (IN-A) [Hendrycks et al.,
2021b], which contains 7.5K images across 200, featuring natural adversarial examples designed to
challenge existing models.
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Figure 5: Visualization of accuracy results on the CIFAR-10 (a) and IN-R (b) datasets. The x-axis
represents the number of parameters (lower is better), while the y-axis indicates accuracy (higher is
better).
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Fig. 5 visualizes the accuracy results on the CIFAR-10 and IN-R datasets. Our proposed models,
MobileODEV1 and MobileODEV2, achieve impressive performance with a minimal number of
parameters. Moreover, integrating self-attention mechanisms further enhances the results, leading to
the best overall performance.

6.5 Licenses and copyrights across assets

1. CIFAR-10/100
• Citation: Krizhevsky et al. [2009]
• Asset Link: [https://www.cs.toronto.edu/~kriz/cifar.html]

2. Tiny ImageNet (IN-tiny)
• Citation: Le and Yang [2015]
• Asset Link: [https://huggingface.co/datasets/zh-plus/tiny-imagenet]

3. ImageNet-R (IN-R)
• Citation: Hendrycks et al. [2021a]
• Asset Link: [https://github.com/hendrycks/imagenet-r]
• License:[https://github.com/hendrycks/imagenet-r?tab=
MIT-1-ov-file]

4. PASCAL VOC2012
• Citation: Everingham et al. [2015]
• Asset Link: [http://host.robots.ox.ac.uk/pascal/VOC/voc2012/]

5. ADE20K
• Citation: Zhou et al. [2019]
• Asset Link: [https://ade20k.csail.mit.edu/index.html#Download]
• License: [https://opensource.org/license/BSD-3-Clause]

6. BUSI
• Citation: Al-Dhabyani et al. [2020]
• Asset Link:[https://www.kaggle.com/datasets/sabahesaraki/
breast-ultrasound-images-dataset]

7. FFE
• Citation: kag [2025]
• Asset Link:[https://www.kaggle.com/datasets/osmankagankurnaz/
facial-feature-extraction-dataset]

• License: [https://www.mit.edu/~amini/LICENSE.md]

6.6 Demo in edge computing platform

We have developed a breast screening demo to effectively apply the proposed lightweight MobileODE
models. This framework consists of three stages. In the first stage, a binary classification distinguishes
nodules from non-nodules (e.g., vessels, fat, muscle, etc.). Data identified as nodules are then passed
to the second stage for detection. Images containing detected nodules, along with mask images
generated from the detection boxes, are subsequently processed in the third stage to perform BIRADS
grading at the nodule level (as opposed to the image level). This framework has been successfully
deployed on an edge computing platform, as illustrated in Fig. 6. Since MobileODE is part of the
components for BIRADS classification, we did not elaborate on this demo in the main text. To date,
we have conducted screening trials across 11 hospitals (names withheld for anonymity policies),
totaling 12,643 cases. With the assistance of six ultrasound physicians for secondary verification, we
calculated a consistency accuracy of 94.4%.

For hardware,We use the Lenovo Legion R9000P laptop, equipped with an NVIDIA GeForce RTX
4060 GPU (8 GB VRAM), AMD Ryzen 9 7945HX CPU, 15.3 GiB DDR5 memory. It runs Ubuntu
20.04.4 LTS (Linux 5.15 kernel). During the running, GPU memory usage was 1708/8188 MiB, with
a utilization of 19%, indicating steady but low resource usage.
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Model #Param. CIFAR-10 #Param. CIFAR-100 IN-A
GhostNet 3.91M 83.32 4.03M 52.32 7.02

FastViT-T8 3.27M 86.48 3.33M 56.57 9.13
ShuffleNetV2 1.0× 1.27M 92.31 1.36M 71.54 9.48
ShuffleNetV2 1.5× 2.49M 92.80 2.59M 72.39 9.56
ShuffleNetV1 1.0× 0.93M 92.29 1.01M 70.55 9.41
ShuffleNetV1 1.5× 2.03M 93.11 2.06M 72.16 8.84

MobileNetV3-Large 4.17M 93.55 4.29M 73.72 10.07
MobileNetV4 2.51M 92.43 2.62M 74.14 8.33
MobileOne-s0 3.56M 93.92 3.67M 75.58 9.86

ResNet-110 1.15M 93.78 1.17M 73.83 -
ResNet-353 3.65M 93.85 3.67M 72.11 -

MobileNetV1 3.20M 93.17 3.29M 74.77 8.42
MobileODEV1 0.94M 93.56 1.00M 74.98 10.12

MobileNetV2 2.24M 93.77 2.35M 74.73 8.90
MobileODEV2 1.27M 94.01 1.36M 75.43 10.72

MobileViT 4.94M 89.97 5.00M 65.23 9.46
MobileODEV1 +ViT 2.65M 94.13 2.75M 75.56 10.94

MobileViTV2 17.44M 89.33 17.53M 65.78 9.11
MobileODEV2 +ViT 3.28M 94.26 3.40M 75.89 10.95

Table 8: As a complement to Tab. 3, we provide the parameter counts for various models on the
CIFAR-10 and CIFAR-100 datasets, respectively. We also present a new challenging benchmark
IN-A to prove the generalizability of our method

Breast Nodule Screening 

End Screening

Fill in the Quadrant

Generate Report

Figure 6: The applications in edge computing platform.

6.7 The difference between SeparableV1 and SeparableV2

We incorporated the depthwise-separable convolution and inverted residual structure proposed in
MobileNetV1 and MobileNetV2, naming them SeparableV1 and SeparableV2, respectively. Sep-
arableV1 consists of two separate layers: a lightweight depthwise convolution for spatial filtering
and heavier 1× 1 pointwise convolutions for feature generation. MobileNetV2 [Sandler et al., 2018]
introduced the linear bottleneck and inverted residual structure, creating more efficient layer designs
by leveraging the low-rank nature of the problem. SeparableV2 is defined by a 1 × 1 expansion
convolution, followed by depthwise convolutions and a 1× 1 projection layer. A residual connec-
tion is applied only when the input and output have the same number of channels. This structure
maintains a compact representation at both the input and output while expanding internally to a
higher-dimensional feature space, thereby enhancing the expressiveness of nonlinear per-channel
transformations.
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Figure 7: (a) SeparableV1: MobileNetV1 layer (depthwise-separable convolution). (b) SeparableV2:
MobileNetV2 layer (Inverted Residual and Linear Bottleneck). Each block consists of a narrow input
and output (bottleneck) without nonlinearity, followed by an expansion to a much higher-dimensional
space and a projection to the output. The residual connection links the bottleneck rather than the
expanded representation.

6.8 Broader Impacts

This work advances the development of lightweight convolutional neural networks (CNNs) through
the discretization Ordinary Differential Equations (ODEs), showcasing significant potential for
positive societal impact. The proposed MobileODEs enable the execution of complex visual tasks on
resource-limited devices, such as smartphones and edge computing platforms (described in Sec. 6.6).
Despite the improved accuracy of the model in various tasks, lightweight networks may generate
inaccurate results in some cases, which, if not rigorously validated, could lead to the spread of
misinformation. In critical areas like healthcare and law, such misinformation could have serious
consequences. Therefore, while the technology shows great promise, responsible deployment and
further research into alignment and safety remain crucial.

6.9 Qualitative results on the task of object detection

Fig.8 and Fig.9 showcase the performance of SSDLite equipped with MobileODEV1 and Mo-
bileODEV2, demonstrating successful detection of a diverse range of objects, including facial
features and breast tumors. These results underscore the strong generalization capabilities of our
proposed models across various mobile network variants. Furthermore, the integration of MobileODE
enhances the model’s ability to adapt to complex tasks, making it suitable for real-world applications
that demand both accuracy and efficiency.

6.10 Qualitative results on the task of semantic segmentation

Fig.10 and Fig.11 present the visualizations of semantic segmentation results obtained using
DeepLabv3-MobileODEV2+ViT on the PASCAL VOC 2012 and ADE20K datasets, respectively.
The left column displays the input RGB images, the middle column shows the predicted segmentation
masks, and the right column overlays the segmentation masks onto the RGB images. The qualitative
results demonstrate a strong understanding of scene semantics, highlighting the effectiveness and
robustness of our proposed method across different datasets and complex scenarios.
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Figure 8: The object detection results of SSDLite-MobileODEV1 (first row) and SSDLite-
MobileODEV2 (second row) on the Facial Feature Extraction Dataset validation set.

Figure 9: The object detection results of SSDLite-MobileODEV1 on benign tumors (first row) and
malignant tumors (second row) demonstrate the performance on the BUSI dataset.
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Figure 10: The semantic segmentation results of SSDLite-MobileODEV2+ViT on PASCAL VOC
2012 dataset.
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Figure 11: The semantic segmentation results of SSDLite-MobileODEV2+ViT on ADE20K dataset.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer:[Yes]
Justification: In the abstract and introduction, we clearly expounded on the innovative
contributions of the paper in lightweight network. For example, the advantages of our ODE-
based method in optimizing depthwise-separable convolution,etc.,are highly consistent with
the content of the main body of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: In Sec. 5, we discussed the limitations of the work in this paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For each theoretical result, this paper clearly lists the complete set of assump-
tions and elaborates in detail on the preconditions for the theory to hold.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We described the experimental setup in detail in the Appendix 6.1 and 6.2, we
also present anonymous code in Abstract.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: This paper uses only publicly available datasets, and the code is publicly
disclosed in the abstract to ensure that the experiment can be replicated.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the Appendix 6.1 and 6.2, we elaborate in detail on the experimental settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: In our experiments, all simulations use fixed seeds for reproducibility ensuring
that the results are reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided an explanation in Section ?? and 4.4, e.g., using 4 RTX
4090 GPUs to train.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have followed NeurIPS guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, the paper discusses both potential positive societal impacts and negative
societal impacts of the work performed in Appendix 6.8.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: We have not released the dataset and models that may lead to abuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, the creators or original owners of the assets (e.g., code, data, models) used
in the paper are properly credited, and the licenses and terms of use are explicitly mentioned
and respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provided an anonymous link to the relevant code in the abstract.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer:[NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not pose any risks to participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We don’t use LLMs in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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