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Abstract

A toy model of binary classification is studied with the aim of clarifying the class-wise
resampling/reweighting effect on the feature learning performance under the presence of
class imbalance. In the analysis, a high-dimensional limit of the input space is taken while
keeping the ratio of the dataset size against the input dimension finite and the non-rigorous
replica method from statistical mechanics is employed. The result shows that there exists
a case in which the no resampling/reweighting situation gives the best feature learning
performance irrespectively of the choice of losses or classifiers, supporting recent findings
in Kang et al. (2020); Cao et al. (2019). It is also revealed that the key of the result is
the symmetry of the loss and the problem setting. Inspired by this, we propose a further
simplified model exhibiting the same property in the multiclass setting. These clarify when
the class-wise resampling/reweighting becomes effective in imbalanced classification.

1 Introduction

Real-world datasets for classification occasionally exhibit strong class imbalance with a long-tailed class
distribution (Van Horn et al., 2018; iNaturalist, 2018; Liu et al., 2019). Classifiers applied to such datasets
tend to perform poorly for minority classes, which poses a major challenge in areas such as visual recognition.
Although several methods to mitigate class imbalance have been proposed so far (Chawla et al., 2002; He
& Garcia, 2009; Wallace et al., 2011), recent advances of deep learning have shed new light on this issue,
resulting in numerous studies from the perspective of applying those approaches to classifiers based on deep
neural networks (DNNs) (Liu et al., 2019; Huang et al., 2016; Wang et al., 2017; Cui et al., 2018; Khan et al.,
2019; Cui et al., 2019; Cao et al., 2019; Kang et al., 2020; Jamal et al., 2020; Tan et al., 2020; Menon et al.,
2021; Kini et al., 2021).

Among those approaches proposed so far, we focus on two simple strategies, reweighting and resampling,
which are commonly employed to mitigate class imbalance. The resampling strategy tries to balance the
samples in the dataset by oversampling the minority classes and/or undersampling the majority classes,
while the reweighting strategy puts an additional weight to each term of the loss in order to counterweight
the class imbalance. The effectiveness of these strategies has been empirically verified in a wide range of
studies (Cui et al., 2019; Cao et al., 2019; Kang et al., 2020; Jamal et al., 2020; Chawla et al., 2002; He &
Garcia, 2009). In spite of these pieces of work, transparent description or understanding about when they
are useful or not would still be incomplete. In particular, how class imbalance may affect the quality of
feature learning would be an important problem in the context of representation learning in DNNs, but a
thorough understanding of this issue is still missing.
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Recently, Kang et al. (2020) reported an interesting observation that feature learning becomes better if no
resampling is applied. More specifically, on the basis of their extensive experiment on visual recognition
tasks using DNNs, they reported that the best classification performance was achieved when the whole
network was first trained without any resampling and then only the last output layer (final classifier) was
retrained with class-balanced resampling. This observation can be interpreted as follows: one can learn the
best feature representation in the initial training phase if one does not use resampling at all, and the good
classification performance achieved by the retrained network is ascribed to exploitation of the good feature
representation acquired in the initial training. A similar behavior was also reported in Cao et al. (2019).
One can therefore expect that Kang et al.’s observation would provide a useful generic insight into efficiency
of resampling with regard to feature learning.

In this paper, we provide a theoretical analysis on a toy model to examine the effect of resampling and
reweighting, especially aiming to clarify under what conditions the observation by Kang et al. holds. In our
toy model, we treat a binary classification problem, in which the sample-generation process is assumed to be
stochastic. More specifically, inputs are independent and identically-distributed (i.i.d.) from a probability
distribution on RN , with parameters controlling the class imbalance and the variances. The two class centers
are assumed to be located at ±w0/

√
N ∈ RN . These constitute a standard setting for theoretical treatments

of binary classification (Barkai & Sompolinsky, 1994).

In the above setting, the performance of feature learning can be quantified as the accuracy of estimating w0,
since it represents the most discriminative direction of the two classes under isotropic class-conditional input
distributions. Our analysis, which considers the asymptotic N →∞, reveals that the accuracy of estimating
w0 is maximized when one does not employ resampling/reweighting at all, irrespectively of the degree of
the class imbalance, under the conditions that the variances of samples of the two classes are equal, that
the decision boundary is located equidistantly from the two class centers, and that a specific ansatz of the
analytical framework we use, the so-called replica symmetric (RS) ansatz, is correct. This finding provides an
analytical support for Kang et al.’s observation. More interestingly, this finding remains valid with a rather
wide range of classifiers and losses, which can be shown on the basis of the symmetry in formulae derived in
our analysis. Although the equal-variance condition for sample distributions might seem somewhat artificial,
it may be achieved in the feature representation at the last hidden layer of a classification DNN as a result
of DNN training, and some recent studies partially support this (Papyan et al., 2020; Fang et al., 2021).

Our results are derived via statistical-mechanical techniques (Barkai & Sompolinsky, 1994; Barkai et al.,
1993; Biehl & Mietzner, 1993; Watkin & Nadal, 1994; Lootens & van den Broeck, 1995; Tanaka, 2013),
which are applicable in the limit N →∞. Especially, the replica method (Nishimori, 2001; Dotsenko, 2005;
Mezard & Montanari, 2009) plays a key role in computing the quantities of interest. Although the replica
method is mathematically non-rigorous, the results derived in this paper are conjectured to be correct, which
is supported by an excellent agreement with results of numerical experiments, as well as by an accumulation
of many model analyses over many decades in which the replica method is eventually shown to give the exact
results (Montanari & Tse, 2006; Talagrand, 2003; 2011a;b).

The remainder of this paper is organized as follows. In the next section, the problem setup and the for-
mulation are explained. In sec. 3, the analysis details using the replica method are explained. The derived
formulae using the replica method are utilized to systematically examine behaviors of the quantities of inter-
est. The result shows that there exists a case in which the absence of resampling/reweighing gives the best
feature learning performance irrespectively of the choice of losses or classifiers, yielding a theoretical support
for Kang et al.’s observation. On the basis of this theoretical result, we also provide a further simplified
model for multiclass classification, for which the same consequence about the resampling/reweighting holds.
In sec. 4, numerical experiments are conducted to verify the replica results. The last section concludes the
paper.

2



Published in Transactions on Machine Learning Research (4/2025)

2 Problem setup, formulation, and related work

2.1 Data-generation process

Let us consider a classification problem with two classes labeled by y = ±1 whose distribution is

PY (y) =
∑
y′=±1

ry′δy,y′ , (1)

where δa,b denotes the Kronecker delta, which equals 1 when a = b and 0 otherwise, and where r±1 ∈ [0, 1]
with r+1 + r−1 = 1 control the degree of class imbalance: r+1 = r−1 = 1/2 corresponds to the balanced
case. The input space is assumed to be RN and the input vector x ∈ RN is assumed to be generated from
the following model given a label y ∈ {−1, 1}:

x = y
w0√
N

+ ξ(y), (2)

where ±w0/
√
N ∈ RN represent the class centers corresponding to the two classes y = ±1. We impose the

normalization condition ‖w0‖2/N = 1. In Eq. (2), ξ(y) is assumed to be a random i.i.d. vector obeying the
zero-mean Gaussian distribution

PΞ|Y
(
ξ
∣∣ σ2

y

)
=
(
2πσ2

y

)−N/2
e
− 1

2σ2
y
‖ξ‖2

, (3)

where the label-y dependence appears only through the variance σ2
y which is assumed finite for both y = ±1.

The variance σ2
y expresses the cluster size of the class y in the input space. We call this model the Gaussian

class-conditional model (GCCM) (see, e.g., Chatterji & Long (2021))1. Let DM = {(xµ, yµ)}Mµ=1 be a dataset
of M i.i.d. datapoints following the above data-generation process:

P (DM | w0) =
M∏
µ=1

ryµPΞ|Y

(
xµ − yµ

w0√
N

∣∣∣∣ σ2
yµ

)
. (4)

Although we derive our results on the basis of the Gaussianity assumption (3), we expect that the same
results hold for a much wider class of distributions with σ2

y <∞ thanks to the universality appearing through
the central limit theorem in the limit N →∞. Also, it is possible that qualitatively similar results may hold
for a broader class of distributions beyond the Gaussian universality, such as those studied in Adomaityte
et al. (2024).

2.2 Classifier and loss

A generic classifier can be formulated as first mapping the input x onto a one-dimensional feature z = f(x) ∈
R via a feature mapping f , and then, on the basis of the feature z = f(x), producing a soft decision P (y | x)
which is an estimate of the conditional distribution of the class label y for the input x. In our formulation,
we consider the simplest case where a linear feature mapping f(x) = w>x/

√
N is to be used, with w ∈ RN

its parameter. As the soft-decision classifier given the one-dimensional feature z = f(x), which we call the
feature-based classifier, we assume P (y | x) =M(y(f(x)+b)) with a functionM : R→ [0, 1]. The bias term
b is the parameter of the feature-based classifier. We may also write P (y | x;w, b) =M(y(w>x/

√
N + b))

in order to make explicit the dependence of the classifier on the parameters w and b. By an appropriate
choice of the function M, this formulation covers several standard classifier models, such as a perceptron
and a logistic function:

Mpe(h) := 1 + sgn (h)
2 =


1, h > 0,
1/2, h = 0,
0, h < 0,

(5)

Mlo(h) := eh

2 cosh(h) . (6)

1The same model is sometimes referred to by other names, such as the Gaussian mixture model.
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We say that a feature-based classifier usingM(h) is symmetric if the functionM satisfiesM(h)+M(−h) = 1
for all h ∈ R. Mpe andMlo shown above are examples defining symmetric feature-based classifiers.

The weights w of the feature mapping f are usually determined by minimizing an empirical loss, which is a
(sometimes weighted) sum of loss values over all the datapoints. We let L(w;x, y,M) denote the loss of the
weights w given the datapoint (x, y) and the model M. According to the above assumptions of the linear
feature mapping and those on the model, generic loss function can be written as a function `(h, y) of two
arguments h = w>x/

√
N + b and y, in such a way that the relation L(w;x, y,M) = `(w>x/

√
N + b, y)

holds. A common loss function in the recent practice is cross entropy (CE) and the corresponding loss
function takes the form

`CE(w>x/
√
N + b, y) = − logM(y(w>x/

√
N + b)). (7)

As `CE(h, y) depends on h and y only through their product yh, it has the symmetry `CE(−h,−y) = `CE(h, y);
it is also the case with many other standard losses which are represented as functions of yh, such as zero-one,
exponential, smoothed or non-smoothed hinge losses. Hereafter the symbol ` is used to denote a generic loss
having this symmetry. To express a specific model and loss, we use an appropriate subscript: for example, if
we use the logistic function and the CE, the resultant loss will be denoted as `CElo. Furthermore, if ` is used
with a single argument, we assume that it expresses the one for the positive label: `(h) = `(h,+1). This is
a convenient shorthand notation when we work with the above symmetry.

The empirical loss considered in this paper has class-wise reweighing factors sy ∈ [0, 1], which are assumed
to satisfy the condition s+1 + s−1 = 1. Given a loss ` and a dataset DM = {(xµ, yµ)}Mµ=1, the empirical
reweighted loss is thus written by

H(w | DM ; b, s) =
M∑
µ=1

syµ`(w>xµ/
√
N + b, yµ). (8)

This class-wise reweighting of the loss is intended to mitigate possible undesirable effects of the class im-
balance arising when r±1 6= 1/2. It can be considered as a special case of the sample-wise weighting which
has been investigated, e.g., in He & Garcia (2009). We would also like to mention that resampling offers yet
another alternative for the purpose of mitigation of class imbalance. Resampling, however, amounts to deter-
mining the sample-wise weights in the empirical loss by the respective sample counts, and hence the average
effect of the resampling can be incorporated into the class-wise reweighting factors. We analyze properties of
the above loss and its minimizer ŵ = arg min

w:‖w‖2=N
H(w | DM ; b, s) under the constraint ‖w‖2 = N , especially

focusing on the overlap between ŵ and w0: w0 defines the most discriminative direction of the two classes,
and under the fixed-norm constraint ‖ŵ‖2 = N how well the estimate ŵ aligns with the direction of w0 is
fully captured by the overlap m = ŵ>w0/N , implying that the quality of feature learning in our setting is
solely characterized by m. Although estimating the bias b may also be performed via minimization of H
with respect to b, the analytical framework explained in the next section allows us to do it in a more flexible
manner and we leave b as a tunable parameter.

Before proceeding, we have a noteworthy remark about the Bayesian inference. Suppose that we know the
data-generation process but do not know the specific values of either w0 or r±1. We thus introduce w as
a random variable to estimate w0 and r±1 as hyperparameters playing the role of class-wise reweighting
factors. With an appropriate prior P (w), the posterior distribution of w given the dataset DM becomes

P (w | DM ) =
P (w)

∏M
µ=1 ryµPΞ|Y

(
xµ − yµ w√

N

∣∣∣ σ2
yµ

)
∫
dwP (w)

∏M
µ=1 ryµPΞ|Y

(
xµ − yµ w√

N

∣∣∣ σ2
yµ

)
=

P (w)
∏M
µ=1 PΞ|Y

(
xµ − yµ w√

N

∣∣∣ σ2
yµ

)
∫
dwP (w)

∏M
µ=1 PΞ|Y

(
xµ − yµ w√

N

∣∣∣ σ2
yµ

) . (9)

Hence the posterior distribution does not depend on r±1, meaning that the reweighting via adjusting r±1
has no effect on estimation of w0. If we treat r±1 as random variables with a prior P ({r±1}), the result
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is seemingly different but the marginal posterior P (w | DM ) =
∫
dr P (w, r | DM ) is still independent of

the choice of P ({r±1}) as long as the priors of r±1 and w are independent. Hence, to study the effect of
reweighting/resampling on the feature learning, the Bayesian inference framework based on the true data-
generation process is inappropriate.

2.3 Statistical mechanical formulation

To investigate the estimator ŵ = arg min
w:‖w‖2=N

H(w | DM ; b, s), it is convenient to introduce the following

distribution:

Pβ(w | DM ; b, s) := 1
Z
δ(N − ‖w‖2)e−βH(w|DM ;b,s), (10)

where δ(·) denotes the Dirac measure, where β ≥ 0 is the inverse temperature parameter, and where

Z = Z(DM ; b, s) :=
∫
dw δ(N − ‖w‖2)e−βH(w|DM ;b,s), (11)

is the normalization coefficient. In the limit β → ∞, the distribution Pβ concentrates on the set of min-
imizers of H(w | DM ; b, s), and hence any properties of the estimator ŵ can be computed from the av-
erage over the distribution in the limit. Further, φ = −(βN)−1 logZ plays the role of the cumulant
generating function of w and converges to the per-variable average loss in the limit β → ∞, that is,
limβ→∞ φ = u := minw:‖w‖2=N H(w | DM ; b, s)/N . This means that φ contains all the necessary infor-
mation for our purpose and hereafter we concentrate on computing it. According to the physics terminology,
in the following we call Pβ the Boltzmann distribution, β−1 the temperature, Z the partition function, φ
the free energy, and u the energy. The average over the Boltzmann distribution is denoted by the angular
brackets as

〈(· · · )〉 =
∫
dw Pβ(w | DM ; b, s)(· · · ) = Trw

e−βH(w|DM ;b,s)

Z
(· · · ), (12)

where the symbol Trw =
∫
dw δ(N −‖w‖2) is introduced for notational simplicity of our development later.

A problem arises in the computation of the free energy φ: it depends on the random variable DM and hence
its direct evaluation is difficult. However, φ is expected to exhibit what is called the self-averaging property,
implying that it converges to its expectation value over DM in the limit N → ∞. Hence we may instead
compute [φ]DM , where the square brackets express the average over the data-generation process:

[(· · · )]DM =

 M∏
µ=1

∑
yµ=±1

∫
dxµ

P (DM | w0)(· · · ), (13)

where P (DM | w0) is given in Eq. (4). Unfortunately, the evaluation of [φ]DM = −(βN)−1 [logZ]DM is still
difficult. The replica method is a great aid in such a situation, via making use of the following identity:

[logZ]DM = lim
n→0

1
n

log [Zn]DM . (14)

In addition to this identity, we assume that n is a positive integer. This assumption enables us to explicitly
compute the average [(· · · )]DM on the right-hand side of Eq. (14). After computing this average, we take the
limit n → 0 by relying on an expression of the average that is analytically continuable from N to R, under
what is called the RS ansatz. The details are in sec. 3.

2.4 Related work

The statistical mechanical approach to neural networks and machine learning problems has a long history:
some pioneering pieces of work are for associative memory (Hopfield, 1982), generative model (Ackley et al.,
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1985), simple perceptrons (Gardner, 1988; Gardner & Derrida, 1988), supervised learning (Seung et al., 1992),
and unsupervised learning (Barkai & Sompolinsky, 1994). These facilitated various related studies, leading
a research area of statistical mechanics for information processing (Nishimori, 2001; Mezard & Montanari,
2009). This approach has gained renewed interests due to the recent upsurge in the field of machine learning,
and some interesting findings have been accumulating. In this subsection, we review some contributions along
this direction, highlighting their relevance to and distinction from our study.

Baik et al. (2005) investigated behaviors of large eigenvalues of what are called the random non-central
Wishart matrices in the infinite-dimensional limit and identified critical thresholds, which have implications
for inference and estimation in high-dimensional settings. Although focusing on random matrix theory,
their work shares similarities with ours in terms of utilizing infinite-dimensional analysis techniques. Lesieur
et al. (2017) applied tools from statistical physics to study low-rank matrix estimation, emphasizing phase
transitions and the performance of approximate message passing algorithms. Although their use of the
replica method in assessing the estimation performance is conceptually related to our approach, their focus
was on matrix factorization and Bayes-optimal inference, which differs from our exploration of resampling
and reweighting for imbalanced classification tasks.

Mignacco et al. (2020) provided an analysis of the classification performance of the empirical risk minimiza-
tion (ERM) with generic convex loss functions and the `2 regularization when the data are generated from
the two-class GCCMs as ours. Their setup is quite similar to ours, but they focused on the effects of regu-
larization on classification performance, in contrast to our current aim to clarify the effect of resampling and
reweighting on feature learning. A noteworthy point of their work is that it offers a mathematically rigorous
proof for the formula derived using the replica method. In order to enable the rigorous proof, they restricted
their loss function to convex ones, while the replica method can handle even non-convex loss functions and
in fact we discuss general loss functions that may not necessarily be convex. Loureiro et al. (2021) studied
behaviors of generalized linear models (GLMs) when applied to data generated from the multiclass GCCMs
in the ERM framework. Their analysis provided precise asymptotic results for training and generalization
errors in high dimensions, and they examined how regularization affects performance. They also offered a
proof of their formula, provided that both the loss and the regularizer are convex. One interesting point of
this paper is that it pointed out that when the training dataset is generated by a Generative Adversarial
Network (GAN), the corresponding learning curve shows a fairly good agreement with the theoretical curve
derived assuming a GCCM as the data-generating distribution, implying a potential relevance to real data.
However, this work did not deal with the problem of feature learning for imbalanced classification focused
in this paper. Loffredo et al. (2024) tackled the problem of finding the optimal undersampling and oversam-
pling strategies in imbalanced classification. To this end, they computed several quantities characterizing
the classification performance in a systematic way using the replica method. Their problem setup is directly
relevant to ours, as they analyzed the effects of under/oversampling on classification performance. However,
their focus was primarily on optimizing sampling strategies for accuracy, whereas our study explores how
resampling and reweighting affect the quality of feature learning.

Takahashi (2022) investigated use of pseudo-labels in self-training for semi-supervised learning using the two-
class GCCMs. Similarly to our work, this study employed the replica method to derive sharp asymptotic
characterizations, focusing on iterative updates of model parameters and proposing heuristics for pseudo-label
refinement that yield performance close to that of fully supervised learning. In another study (Takahashi,
2024), the same author provided a replica analysis of under-bagging (UB) for imbalanced classification, again
using the two-class GCCMs, comparing it with undersampling and simple weighting methods. This study
revealed similarity and difference among these three methods and established superiority of UB in terms
of performance and simplicity of implementation. While these pieces of work examined the impact of label
imbalance in classification performance and used the replica method as our current work, our study uniquely
focuses on interaction between resampling/reweighting strategies and feature learning performance under
class imbalance.

Adomaityte et al. (2024) analyzed the impact of non-Gaussian, heavy-tailed data distributions on classifi-
cation performance using the replica method. As a result, they demonstrated deviations from the Gaussian
case, indicating the importance of considering the non-Gaussianity and heavy-tailedness for capturing real
data in theory. This is an important contribution, but their emphasis on heavy-tailed distributions contrasts
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with our focus on the class imbalance. Francazi et al. (2023) investigated behaviors of gradient-based learn-
ing algorithms under the class imbalance, to find that the imbalance affects the convergence of the dynamics.
To mitigate this, they also introduced techniques of normalizing the gradient in a class-wise manner. While
this study focused on class imbalance, it emphasized optimization dynamics and is rather different from
our aim. Finally, the work by Mannelli et al. (2024) explored the geometry of data and clarified how it
introduces bias in machine learning models, via applying the replica method to a synthetic data-generation
model called the teacher-mixture model. While they also examined the effect of the imbalance, their focus
was on fairness and bias, and hence it does not align with the objective of the present paper. We investigate
when the resampling and reweighting strategies enhance feature learning through a detailed analysis using
the replica method.

3 Theoretical Analysis

3.1 Overview

In this section we derive a formula for the sample-averaged free energy [φ]DM = −(βN)−1[logZ]DM in the
limit N → ∞ by using the replica method under the RS ansatz. The formula is characterized by a small
number of quantities which are called order parameters, and the order parameters satisfy a set of equations
called equations of state (EOS), both according to the physics terminology. The dependence of the order
parameters on the parameters, especially on the reweighting factor s±1, is of our special interest in the paper
and is systematically studied on the basis of the EOS. A further simplified model inspired from the replica
results will also be introduced later in this section to discuss the case with more than two classes.

For notational simplicity, we use the shorthand notation s+(s−) to denote s+1(s−1) hereafter. The same
shorthand rule applies to σy and ry as well.

3.2 Derivation of free energy and EOS under RS ansatz

The computation starts from evaluating [Zn]DM . If n ∈ N, we may consider n “replicas” of the original
system which have distinct parameters {wa}na=1 and share the same dataset DM , and represent [Zn]DM
using them as

[Zn]DM =
[
Tr{wa}na=1

e
−β
∑M

µ=1

∑n

a=1
syµ`(w

>
a xµ/

√
N+b,yµ)

]
DM

, (15)

where Tr{wa}na=1
=
∏n
a=1 Trwa . The average over the dataset DM yields[
Tr{wa}na=1

e
−β
∑M

µ=1

∑n

a=1
syµ`(w

>
a xµ/

√
N+b,yµ)

]
DM

= Tr{wa}na=1
LM , (16)

where we let
L :=

∑
y=±1

ry

∫
dxPΞ|Y

(
x− y w0√

N

∣∣∣∣ σ2
y

)
e−β

∑n

a=1
sy`(w>a x/

√
N+b,y). (17)

The integral over x in Eq. (17) is cumbersome. However, the integrand depends on x only through the
quantities

{
ua = w>a x/

√
N
}n
a=1

. Conditional on y, {ua}na=1 obeys a multivariate Gaussian, thanks to the
Gaussianity assumption (3) on ξ(y) in the present setup or thanks to the central limit theorem in the large-N
limit in a more generic case. Letting E [· | y] denote the average over ξ(y) given y, the conditional mean of
ua given y is

E [ua | y] = w>a E [x | y]√
N

= yma, (18)

where we let ma := w>a w0/N . The conditional covariance of ua and ub given y is

E [uaub | y]− E [ua | y]E [ub | y] = Qabσ
2
y, (19)
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where we let Qab := w>a wb/N .

To proceed further, we assume the RS as follows:

ma = m, Qab = Qδab + q(1− δab). (20)

This assumption allows us to express ua given y as

ua = σy

(√
Q− qta +√qz

)
+ ym, (21)

where ta and z are independent standard Gaussian random variables. Hence the integral over x is recast
into those over z, {ta}na=1. Using the shorthand notation∫ ∞

−∞

dz√
2π

e−
1
2 z

2
(· · · ) =:

∫
Dz (· · · ), (22)

we have

L =
∑
y=±1

ry

∫
Dz

(∫
Dt e

−βsy`
(
σy
(√

Q−qt+√qz
)

+ym+b,y
))n

=
∑
y=±1

ry

∫
Dz

(∫
Dt e−βsy`(h(t,z,Q,q,m,σy,yb))

)n
, (23)

where we let

h(t, z,Q, q,m, σ, b) = σ
(√

Q− qt+√qz
)

+m+ b, (24)

and in the last line of Eq. (23) we used the invariance of the result with respect to (w.r.t.) z → −z, t→ −t
and the symmetry of the loss with the single-argument shorthand notation `(yh) = `(h, y) introduced in sec.
2.2. Equation (23) reveals that L depends on {wa}na=1 only through Q = Q({wa}na=1), q = q({wa}na=1), and
m = m({wa}na=1). Hence the integral Tr{wa}na=1

in Eq. (16) can be rewritten as that w.r.t. Q, q,m as

[Zn]DM = Tr{wa}na=1
LM =

∫
dQdq dmV (Q, q,m)LM (Q, q,m), (25)

where we introduced the notation L(Q, q,m) to denote the dependence of L on Q, q,m, and where V (Q, q,m)
represents the volume of the subshell specified by Q, q,m in the space of {wa}na=1:

V (Q, q,m) := Tr{wa}na=1

(
n∏
a=1

δ
(
NQ− ‖wa‖2

)
δ
(
Nm−w>0 wa

))∏
a<b

δ
(
Nq −w>a wb

)
. (26)

We defer the details of its computation to sec. A and here only show the result:

lim
n→0,N→∞

1
nN

log V (1, q,m) = Extr
{Q̂,q̂,m̂}

{
1
2 Q̂+ 1

2 q̂q − m̂m+ 1
2 log(2π)− 1

2 log(Q̂+ q̂) + 1
2
m̂2 + q̂

Q̂+ q̂

}
, (27)

where Extr{x} denotes the extremization w.r.t. x. This extremization appears as the consequence of
the saddle-point/Laplace method which is valid in the limit N → ∞. The volume becomes finite
only when Q = 1, due to the normalization condition ‖w‖2 = N . In the same way we can com-
pute limn→0,N→∞

1
nN logLM (Q, q,m). Substituting these expressions to Eq. (14), the free energy φ =

−(βN)−1 logZ averaged w.r.t. DM and in the limit N →∞ takes the following compact form:

−βφ = lim
n→0,N→∞

1
nN

log [Zn]DM = lim
n→0,N→∞

1
nN

[
log V (1, q,m) + logLM (1, q,m)

]
= Extr
{Q̂,q̂,m̂,q,m}

{
1
2 Q̂+ 1

2 q̂q − m̂m+ 1
2 log(2π)− 1

2 log(Q̂+ q̂) + 1
2
m̂2 + q̂

Q̂+ q̂

+α
∑
y=±1

ry

∫
Dz log

(∫
Dte−βsy`(h(t,z,1,q,m,σy,yb))

)}
, (28)

where α = M/N . The quantities {Q̂, q̂, m̂, q,m} are the order parameters of the present system.
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Zero-temperature limit β → ∞ Next we compute the zero-temperature limit β → ∞. As discussed
in sec. 2.3, the posterior of w concentrates on the set of minimizers of the loss in the limit β → ∞. We
further expect that the minimizer is unique. In view of this, we adopt the following ansatz for the asymptotic
behaviors of the order parameters around the saddle points as β becomes large:

q = 1− χ/β, χ = O(1), m = O(1),
Q̂ = −β2χ̃+ βQ̃, q̂ = β2χ̃, m̂ = βm̃. (29)

This ansatz will later turn out to be consistent. Inserting these relations into Eq. (28), performing the
variable transform v = t/

√
β and taking the limit β →∞ yield

u = lim
β→∞

φ = Extr
{Q̃,χ̃,m̃,χ,m}

{
−1

2 Q̃+ 1
2 χ̃χ+ m̃m− 1

2
m̃2 + χ̃

Q̃

−α
∑
y=±1

ry

∫
DzG(vy, hy, sy)

}
. (30)

where we let

G(v, h, s) = −1
2v

2 − s` (h) , (31)

vy = arg max
v

{
−1

2v
2 − sy` (σy (√χv + z) +m+ yb)

}
, (32)

hy = σy (√χvy + z) +m+ yb. (33)

Here, vy denotes the maximum point of G w.r.t. the variable v, which appears in evaluating the inner integral
w.r.t. t in the last term of Eq. (28) in the limit β → ∞ via the saddle-point/Laplace method. When the
loss function is nonconvex, the optimization problem in Eq. (32) may have multiple local optima, and hence
numerical solutions require careful consideration, such as exploring different initial conditions. Note also
that the dependence of vy and hy on the integration variable z is implicit in the above formulae.

Equations of state (EOS) The extremization condition in Eq. (30) yields the following equations:

Q̃2 = m̃2 + χ̃, (34a)

m = m̃

Q̃
, (34b)

χ = 1
Q̃
, (34c)

m̃ = α
√
χ

∑
y=±1

ry
σy

∫
Dz vy, (34d)

χ̃ = α
∑
y=±1

ryσ
2
y

∫
Dz v2

y. (34e)

This set of equations is the EOS for the present problem. An intuitive interpretation of the EOS is given in
sec. B. The term vy appearing in Eqs. (34d) and (34e) is defined via Eq. (32) as a function of m,χ, b, y, sy.
Determining vy is easy if we are allowed to assume differentiability of the loss ` on R: introducing the
shorthand notation g = − d`

dh , we find that vy satisfies

vy = syσy
√
χg (hy) . (35)

It should be noted that hy appearing on the right-hand side depends on vy through Eq. (33), so that the above
equation is a (non-linear) equation on vy. If there are multiple solutions to Eq. (35), the one yielding the
largest value of G(vy, hy, sy) should be selected. Under this differentiability assumption, the extremization
condition w.r.t. m can be computed from the partial derivative of G w.r.t. h as ∂G(v,h,s)

∂h
∂h
∂m = sg(h): this

9
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is because the partial derivative of G w.r.t. v vanishes since v is fixed at the extremum value of G given h
and s as shown in Eq. (32). The term sg(h) can be rewritten using Eq. (35), yielding the right-hand side
of Eq. (34d). A similar rewriting using Eq. (35) is done for the extremization condition w.r.t. χ, yielding
the right-hand side of Eq. (34e). Although the differentiability assumption does not hold for some losses
having singularities such as the zero-one loss, those losses are usually representable as a limit of a certain
differentiable function: for example, the zero-one loss can be expressed as

`01(h) :=

 1 (h < 0)
1/2 (h = 0)
0 (h > 0)

 = lim
γ→∞

1
2 (1− tanh(γh)) =: lim

γ→∞
`01,γ(h). (36)

Hence, for such losses with singularities, the above discussion should be interpreted as that for such smoothed
versions of the losses, and the smoothness-controlling parameter (γ in Eq. (36)) is sent to an appropriate
limit after the computation. The resultant formula (34) still holds after the limit even when the derivative
g itself is not meaningful in the limit.

The EOS constitutes the basis of the following study. A special focus is on the overlap m = 〈w〉>w0/N ,
because it characterizes the performance of the feature learning as discussed in sec. 2.2.

3.3 Behaviors of quantities of interest

3.3.1 Overview

By specifying the functional form of the loss `, one can numerically obtain values of the order parameters
and the energy, via computing v± with the loss and numerically solving the EOS. We consider two choices
for the loss ` as representative examples: the zero-one loss with the perceptron `01pe(h, y) = (1− sgn (yh))/2
and the CE loss with the logistic function `CElo(h, y) = −hy+ log(2 cosh(h)). Hereafter these two losses are
referred to as 01pe and CElo, respectively. The aim here is to investigate how the order parameters depend
on the parameters in order to assess the feature learning performance. In the following, we investigate two
cases: one is the equal-variance case σ2

+ = σ2
−, where the two classes y = ±1 share the same variance, and

the other is the nonequal-variance case σ2
+ 6= σ2

−, where the variances of the classes y = ±1 are different.

3.3.2 Equal-variance case (σ2
+ = σ2

−)

We start from a canonical situation where the two class variances are equal: σ2
+ = σ2

− =: σ2. As examples,
we compare the balanced case r+ = 0.5 and an imbalanced case r+ = 0.2, with σ = 0.6. For illustration
of these cases, the probability density functions (PDF) of x projected onto w0/

√
N are plotted in Fig. 1.

Besides, we fix α = 20 in the following plots unless otherwise stated; the results for other values of α, if not

σ = 0.6, r+ = 0.5
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Figure 1: PDFs of x projected onto w0 with σ = 0.6 for r+ = 0.5 (left) and 0.2 (right).

too small, were qualitatively similar as far as we have checked.
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Firstly, we show m and u plotted against b for s+ = 0.1, 0.5, 0.9: the results for r+ = 0.5 and 0.2 are shown
in Fig. 2 and Fig. 3, respectively. It should be noted that the class centers are located at ±w0/

√
N in our

problem setting, so that a reasonable choice of the parameter b in view of the task of classification would
intuitively be b ∈ [−1, 1]: indeed, if otherwise, the two class centers ±w0/

√
N are located on the same side

of the decision plane w>x/
√
N + b = 0. In the following, we nevertheless investigate the behaviors of the

models over wider ranges of b. Fig. 2 (a) and Fig. 3 (a) are the results with 01pe, whereas Fig. 2 (b) and
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Figure 2: Plots of m and u against b in the balanced case r+ = 0.5 for s+ = 0.1 (left), 0.5 (middle), and 0.9
(right). (a) Zero-one loss with perceptron `01pe. (b) Cross-entropy loss with logistic function `CElo.

Fig. 3 (b) are those with CElo. As observed in Fig. 2, the b-dependence of m in the balanced case is very
different between 01pe and CElo: with 01pe, it is almost symmetric w.r.t. b even with the strong reweighting
factors s+ = 0.1 and 0.9, while it exhibits clear asymmetry with CElo. The values of b at which m achieves
its maximum are also different: m achieves its maximum around b ≈ ±1 with 01pe, while with CElo the
maximum is achieved at b less than −1 for s+ = 0.1, at b = 0 for s+ = 0.5, and at b larger than 1 for
s+ = 0.9. Meanwhile, as observed in Fig. 3 for the imbalanced case r+ = 0.2, the maximum of m seems
to be obtained at a large positive b in all the cases: this is considered to be natural since the positive bias
enhances the probability of the minority class at r+ = 0.2. As an overall tendency, the value of m tends to
be larger with CElo than that with 01pe, suggesting the superiority of the CE loss in the feature learning.

Secondly, to examine the maximum performance of feature learning, we compute the maximum of m against
b, mmax = maxbm(b), and plot it against s+ in Fig. 4. Fig. 4 (a) and (b) are with 01pe and CElo,
respectively; the left and right columns are the plots with r+ = 0.5 and 0.2, respectively. The maximum
location b(mmax) := arg max

b
m(b) and the corresponding energy value u(mmax) := u(b(mmax)) are also

plotted. As a general trend, mmax shows very weak dependence on s+ in all the cases investigated, as can
be seen in the very small ranges of the plots. An interesting observation is that with 01pe the maximum of
mmax is obtained at the no-reweighting situation s+ = 1/2 even in the imbalanced case (Fig. 4 (a), right),
while with CElo the m’s maximum is located at some value different from s+ = 1/2 even in the balanced
case r+ = 0.5 (Fig. 4 (b), left). This property of 01pe persisted as far as we have numerically investigated.
This may be related to Kang et al.’s observation, although 01pe is not typically used in practical situations.

In practical situations one cannot directly maximize the overlap m since one does not know w0. One will
instead minimize the loss to obtain a reasonable estimator. From this viewpoint, thirdly, the minimum of u
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Figure 3: Plots of m and u against b in the imbalanced case r+ = 0.2 for s+ = 0.1 (left), 0.5 (middle), and
0.9 (right). (a) Zero-one loss with perceptron `01pe. (b) Cross-entropy loss with logistic function `CElo.

w.r.t. b, umin = minb u(b), is plotted against s+ in Fig. 5, with the minimum location b(umin) = arg min
b

u(b)

and the corresponding overlap value m(umin) = m(b(umin)). This figure shows an intriguing behavior of
m(umin): in the balanced case r+ = 0.5, its curve is symmetric around s+ = 0.5 and the maximum is
obtained at s+ = 0.5 as expected, with both 01pe and CElo. In the imbalanced case r+ = 0.2, however,
the tendency is different between 01pe and CElo: with 01pe, there is a maximum at a certain value of s+
greater than 0.5, which is natural because the values of s+ greater than 0.5 enhance the probability of the
minority (positive here) class. With CElo, on the other hand, the opposite occurs and the overlap maximum
is obtained at s+ = 0, meaning the complete disregard of the minority class, and we numerically confirmed
that the corresponding minimum location b(umin) goes to −∞. This is rather counterintuitive, and provides
a lesson that it is not straightforward to predict how the interplay among the loss, classifier, and reweighting
factor would influence the feature learning performance.

In recent practices, the bias b is occasionally neglected (Cao et al., 2019; Menon et al., 2021; Kini et al.,
2021). This is because DNNs learn feature vectors also from the data, and hence the adjustment of the
feature space origin, that is the effect of the bias, can be incorporated by the learning even without the
bias. Accordingly, we lastly examine the case b = 0, which is actually a natural choice since the origin is
located at the middle point of the two class centers in our setting. The overlap and energy in this case are
plotted against s+ in Fig. 6. A very interesting observation is that the maximum of m is achieved at the
no-reweighting situation s+ = 0.5 in all the cases. Actually, this property holds irrespectively of the loss,
model, or the degree of class imbalance: we will provide a strong analytical evidence of this fact later in sec.
3.4. This property means that the feature learning has its best performance when no resampling/reweighting
is applied if the bias is appropriately chosen to make the decision boundary to be located equidistantly from
the two class centers. This provides an analytical support for Kang et al.’s observation and constitutes one
of our main results in this paper.

To summarize, we enumerate our findings in sec. 3.3.2:

1. The overlap value m tends to be larger with CElo than with 01pe.
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Figure 4: Plots of mmax, u(mmax), b(mmax) against s+ for r+ = 0.5 (left) and r+ = 0.2 (right). (a) Zero-one
loss with perceptron `01pe. (b) Cross-entropy loss with logistic function `CElo.
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loss with perceptron `01pe. (b) Cross-entropy loss with logistic function `CElo.
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Figure 6: Plots of m and u at b = 0 against s+ for r+ = 0.5 (left) and r+ = 0.2 (right). (a) Zero-one loss
with perceptron `01pe and (b) Cross-entropy loss with logistic function `CElo. A crucial observation is that
the maximum of m is always obtained at the no reweighting situation s+ = 1/2, irrespectively of the models,
losses, and the degree of class imbalance.
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2. The values of b with which maximum values of m are achieved tend to be strongly dependent on
the choice of the model and the loss.

3. The maximum overlapmmax = maxbm(b) also shows a strong dependence on the choice of the model
and the loss. With 01pe, mmax takes its largest value at the no-reweighting situation s+ = 0.5,
whereas with CElo it is obtained at some extreme values of s+.

4. The overlap m(umin) at the point of minimizing the loss u shows a moderate dependence on s+. The
dependence on s+ is natural with 01pe but is counterintuitive with CElo. With CElo, the maximum
is at s+ = 0.5 in the balanced case but is at the extreme value of s+ in the imbalanced case.

5. The overlap m takes its maximum at the no-reweighting situation s+ = 0.5 irrespectively of the
loss, model, or degree of class imbalance when the bias is appropriately chosen to make the decision
boundary to be located equidistantly from the two class centers.

The assumption on the bias in item 5 of the above list is what is considered desirable in the standard view
of classification. Hence, Kang et al.’s observation is a property that holds widely when features and bias are
set to be in such a desirable situation, which conversely implies that their learning works well. Meanwhile,
our other findings such as item 4 in the above suggest some other bias values different from the desirable
one; the resultantly selected value tends to take an extraordinary value outside the reasonable range [−1, 1]
of the bias b in the present setting. Presumably, this has prevented researchers from examining such extreme
bias values in practical situations, and it may be an interesting future work to study such extreme biases in
real-world datasets.

3.3.3 Nonequal-variance case

We turn to the nonequal-variance case. As an example, we examine σ+ = 1, σ− = 0.5 with r+ = 0.5 and 0.2
as depicted in Fig. 7. We compare the result for this case with the one in the equal-variance case, especially
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Figure 7: PDFs for σ+ = 1, σ− = 0.5 at r+ = 0.5 (left) and r+ = 0.2 (right).

focusing on the reweighting factor dependence of m after erasing the bias dependence as in Figs. 4–6.

Figure 8 is the counterpart of Fig. 4 in which mmax and the related quantities are plotted against s+. As
expected from the asymmetry between the classes, the maximum location of mmax is not s+ = 1/2 anymore
with either 01pe or CElo. Another interesting observation is that the maximum location is s+ < 1/2 with
01pe and s+ > 1/2 with CElo, showing that the effect of reweighting on the feature learning is not simple.

Next, we study the loss-minimizing result in Fig. 9, which is the counterpart of Fig. 5. This time, again due
to the asymmetry, the maximum location of m is not at s+ = 1/2 in all the cases. It is at s+ > 1/2 with
01pe and at s+ = 0 with CElo, which is in contrast to the overlap-maximizing result in Fig. 8. Looking at
both of the equal-variance and nonequal-variance results with CElo shown in Figs. 5 and 9, respectively, we
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Figure 8: Plots of mmax, u(mmax), b(mmax) against s+ for r+ = 0.5 (left) and r+ = 0.2 (right) in the
nonequal-variance case. (a) Zero-one loss with perceptron `01pe. (b) Cross-entropy loss with logistic function
`CElo.
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Figure 9: Plots of m(umin), umin, b(umin) against s+ for r+ = 0.5 (left) and r+ = 0.2 (right) in the nonequal-
variance case. (a) Zero-one loss with perceptron `01pe. (b) Cross-entropy loss with logistic function `CElo.
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see that the asymmetry due to the imbalance both in the number of examples and the variance magnitude
commonly leads to extreme values of s+ for the best feature learning.

Finally, we examine the no-bias case b = 0 in Fig. 10. Similarly to the above two cases, the maximum of m
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Figure 10: Plots of m(b = 0), u(b = 0) against s+ for r+ = 0.5 (left) and r+ = 0.2 (right) in the nonequal-
variance case. (a) Zero-one loss with perceptron `01pe. (b) Cross-entropy loss with logistic function `CElo.

is not at s+ = 1/2. An interesting observation is that the maximum is located commonly in s+ < 1/2. This
may not be surprising since the class with y = −1 has a smaller variance and thus is considered to carry
more information about the feature direction.

Overall, in the nonequal-variance case, we found no empirical evidence supporting Kang et al.’s observation.
This implies that the equal-variance condition of the feature across the two classes may be an important
ingredient for their observation.

3.4 Analytical evidence that the maximum value of m is achieved at s+ = 1/2

In this subsection, we provide an analytical evidence for the observation that m takes its maximum at the
no-reweighting situation s+ = 1/2 irrespectively of the loss, model, or degree of class imbalance when the
input distributions of the two classes are equal-variance and the bias is appropriately chosen to make the
decision boundary to be located equidistantly from the two class centers. The last two conditions mean
σ+ = σ−(=: σ) and b = 0 in the present setting, and we assume them throughout this subsection.
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The idea is very simple. What we want to show is the following equality:

dm

ds+

∣∣∣∣
s+=1/2

= 0. (37)

It means that no reweighting/resampling point (s+ = 1/2) is an extremum of m. In deriving this, we need
to take the derivatives w.r.t. s+ of the EOS (34). Taking the derivative and rearranging the formulae using
the simple relation between Q̃ and (m̃, χ̃) in Eq. (34a), we have the following set of linear equations among
the first order derivatives:

d

ds+

(
m
χ

)
= T̃

d

ds+

(
m̃
χ̃

)
, (38a)

d

ds+

(
m̃
χ̃

)
= c+ T

d

ds+

(
m
χ

)
. (38b)

The matrices T, T̃ and the vector c have simple analytical expressions depending on the order parameters,
the explicit forms of which are given in Eqs. (67b) and (69) in sec. C. After lengthy but straightforward
algebraic computations, we can show that Eq. (38) implies Eq. (37) under the above two conditions, without
specifying details of the loss, the model, or the degree of class imbalance. This strongly supports the empirical
observation that the maximum of m is achieved when no resampling/reweighting is applied. The detailed
computations are deferred to sec. C.

It can be seen from the algebras in sec. C that the symmetry `(h, y) = `(−h,−y) explained in sec. 2 is
important in deriving the above result, but not its details, implying the wide applicability of the obtained
result.

3.5 Relevance to DNNs

Here, we discuss how our findings compare to those of Cao et al. or Kang et al. (Cao et al., 2019; Kang et al.,
2020).

First of all, we should keep in mind that in the experiments of Cao et al., as well as those of Kang et al.,
whatever backbone networks (bidirectional LSTM, variant of ResNet, etc.) were used as feature extractors,
the final layer of the models are linear classifiers. Therefore, it is natural to consider that our input vector x
corresponds to the feature representation h of the final layer in their models. Thus, if the distribution of h
has equal variance across classes, this would match with the assumptions underlying our findings. Although
the class-wise distributions of h have not been elucidated in their papers, it is not difficult to numerically
check whether this point actually holds or not.

Moreover, a recent paper reported that an interesting phenomenon widely occurs in successful DNNs for
classification (Papyan et al., 2020). This phenomenon is called neural collapse (NC), and one of its important
ingredients is within-class variation collapse, meaning that the final-layer feature vectors h of the same class
converge to an identical vector as a result of learning. This implies that the equal variance assumption
holds in the limit where the variance approaches zero. The mechanism why NC occurs is also understood
from a simple model analysis (Fang et al., 2021), which suggests that this phenomenon universally occurs
in sufficiently expressive DNNs with reasonable regularizations. Considering this, it is plausible that the
equal-variance condition underlying our results may indeed hold in actual DNNs.

3.6 A further simplified model with more than two classes

Can the results so far be extended to the case with multiple classes more than two? While extending our
problem setup to multiple classes and analyzing it using the replica method is possible, such an analysis
would be rather complicated and we avoid doing it in this paper. Instead, in this subsection, we consider a
further simplified model allowing us to analyze the multiclass problem easily.

From the discussion of the previous subsection, we understand that the symmetry in the loss and the
problem setup is important to find the overlap maximum in the no-reweighting situation. On the basis of
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this understanding, reflecting the symmetry argument, we propose the following “one-dimensional” feature
generation process for multiclass classification:

xµ = tµ
w0√
N

+ ξµ, µ = 1, 2, . . . ,M, (39)

where the true feature is again normalized as ‖w0‖2 = N . The label tµ ∈ R is assumed to take one
of K values, where K corresponds to the number of classes, and ξµ is assumed to be a random vari-
able following N (0, σ2IN ) where IN is the identity matrix of dimension N . We further assume that
t1, t2, . . . , tM , ξ1, ξ2, . . . , ξM are independent. Here, only one true feature vector w0 governs the feature
space, and thus the feature learning performance can be quantified in terms of the accuracy of estimating
w0 as in the case of binary classification discussed so far. For the sake of simplicity of the analysis, we con-
sider, instead of a classification loss, a simple unsupervised loss for feature learning. Concretely, we consider
hµ = w>xµ and obtain the estimator by maximizing the variance of {hµ}Mµ=1 under the presence of a set of
sample-wise reweighting factors {sµ}Mµ=1 satisfying sµ ≥ 0 and

∑M
µ=1 sµ = 1. The loss is formulated as

H(w) = −
M∑
µ=1

sµ(hµ − h)2 = −w>Aw, (40)

where · denotes the weighted mean with the reweighting factors {sµ}Mµ=1 (i.e., f =
∑M
µ=1 sµfµ), and where

A =
M∑
µ=1

sµ(xµ − x)(xµ − x)> = xx> − xx>. (41)

The minimizer of Eq. (40) under the normalization condition ‖w‖2 = N becomes our estimator of w0.
Namely, the estimator is given by the eigenvector of the largest eigenvalue of A. The matrix A can be
rewritten as

A =
(
t
w0√
N

+ ξ
)(

t
w0√
N

+ ξ
)>
−
(
t
w0√
N

+ ξ
)(

t
w0√
N

+ ξ
)>

(42)

= τ
w0 (w0)>

N
+ Σ̂ +R, (43)

where

τ = t2 − (t)2, (44)

Σ̂ = ξξ> − ξ ξ>, (45)

R =
(
tξ − t ξ

) w>0√
N

+ w0√
N

(
tξ − t ξ

)>
. (46)

The last term R on the right-hand side of Eq. (43) is mean zero and is negligible if M is large enough.
Neglecting this term, we have our estimator as

ŵ = arg max
w:‖w‖2=N

{
w>

(
τ
w0√
N

(
w0√
N

)>
+ Σ̂

)
w

}
. (47)

We furthermore assume that the reweighting factors {sµ}Mµ=1 are given depending on M and satisfy
limM→∞

∑M
µ=1 s

2
µ = 0. The empirical covariance Σ̂ then converges to σ2I as M → ∞. Hence, in the

large-M limit, the maximizer ŵ, which is the eigenvector associated with the leading eigenvalue of A, ap-
proaches w0 irrespectively of the choice of {sµ}Mµ=1, yielding m → 1. Meanwhile, for large but finite M ,
stochastic fluctuations of Σ̂ make ŵ to deviate from w0, resulting in decrease of m from 1. A detailed
analysis reveals that minimizing the fluctuations leads to the best estimate of w0, which is achieved at the
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no resampling/reweighting situation sµ = 1/M,∀µ on average. This can be easily shown by computing the
mean squared deviation of the diagonal Σ̂ii from σ2, as

Eξ
(

Σ̂ii − σ2
)2

= σ4

3
(

M∑
µ=1

s2
µ

)2

− 4
M∑
µ=1

s3
µ + 2

M∑
µ=1

s2
µ

 . (48)

Minimization of the right-hand side under the constraint
∑M
µ=1 sµ = 1 yields the uniform weights sµ =

1/M,∀µ, implying that no resampling/reweighing leads to the best feature learning performance. This
provides a simple demonstration supporting Kang et al.’s observation in the multiclass case.

4 Numerical experiments

In this section, we conduct numerical experiments to verify the correctness of the theoretical analysis pre-
sented in secs. 3.2–3.3. Our theoretical framework is built upon a method that assumes N → ∞. Thus, if
our numerical results, computed with sufficiently large N , align well with the theoretical findings, this would
support the validity of our analysis. For this purpose, we only examined the case with CElo in this section
since the CE loss is convex and thus the numerical optimization is relatively easy; such a good property
is absent in the zero-one loss. The standard interior-point method was used for the optimization. In the
following results, we conducted simulations with N = 400 and took a sample average over 100 different
realizations of the dataset; the error bar is the standard error in the average. The parameter α was fixed to
α = 20, which is identical to the value used in sec. 3.3.

Equal-variance case We first experimented the equal-variance case σ+ = σ− = 0.6. We start from
plotting m and u against b for r+ = 0.5, 0.2 and s+ = 0.1, 0.5 in Fig. 11. The agreement between the
numerical results (markers) and the theoretical ones (lines) is excellent, justifying our theoretical treatment.
Although our theoretical analysis assumes the high-dimensional limit N →∞, this numerical result indicates
that several hundreds of N can be regarded large enough.

For further quantification, we evaluated the loss-minimizing bias value and the corresponding umin and
m(umin) from the numerical experiments. Their plots, along with the theoretically-evaluated curves, are
given in Fig. 12. The agreement between the numerical and theoretical results is again very good. Even the
nontrivial location of the maximum point of m(umin) is reproduced by the numerical experiments.

The last result for the equal-variance case is the plot at b = 0: m(b = 0) and u(b = 0) are plotted against
s+ with the theoretical curves in Fig. 13. The agreement is again good, and the maximum of m(b = 0) is
approximately obtained at the no resampling/reweighting case s+ = 1/2, numerically supporting our main
result in this paper.

Nonequal-variance case We next experimented the nonequal-variance case σ+ = 1, σ− = 0.5, and show
the results briefly. The plots of m and u against b for r+ = 0.5 and 0.2 are shown in Fig. 14. Yet again, the
agreement between the numerical and the theoretical results is fairly good. Our theoretical result is thus
validated even for the nonequal-variance case.

5 Conclusion

In this paper we have studied a toy model of binary classification for investigating the effect of the resam-
pling/reweighting on the feature learning performance in the imbalanced classification; a special aim is at
providing a theoretical basis for Kang et al.’s observation that the best performance of feature learning is
achieved without any resampling/reweighting. The model’s feature space is RN and the class centers are
assumed to be described by ±w0/

√
N(∈ RN ). The data generation is on the standard i.i.d. assumption

with a label distribution having a control parameter of class imbalance and input distributions being al-
lowed to have different variances on the two classes. In this setting, the feature learning performance can
be quantified as the accuracy of estimating w0. The analysis of this and related quantities is conducted in
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Figure 11: Plots of m and u against b for r+ = 0.5 (left) and 0.2 (right) at the equal-variance case σ+ =
σ− = 0.6 for (a) s+ = 0.1 and (b) s+ = 0.5. The markers denote the numerical result and the lines represent
the theoretical one. The agreement between them is fairly good.
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case σ+ = σ− = 0.6. The agreement between the theoretical and numerical results is again very good.
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Figure 14: Plots of m and u against b for r+ = 0.5 (left) and 0.2 (right) for the nonequal-variance case
σ+ = 1, σ− = 0.5. Two cases (a) s+ = 0.1 and (b) s+ = 0.5 are shown.
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the high-dimensional limit N →∞ keeping the dataset size ratio α = M/N finite, using the replica method
from statistical mechanics.

Our theoretical analysis has revealed that the best performance of feature learning is actually achieved
with no resampling/reweighting for a fairly wide range of losses and classifiers when input distributions are
of equal-variance and the bias is set so that the decision boundary is located equidistantly from the two
class centers: this is a desirable situation from the standard viewpoint of classification. The key of the
derivation is the symmetry of the loss and the problem setup, explaining the wide applicability of the result.
This provides a theoretical basis for Kang et al.’s observation through the connection between their last
layer feature representation and our input vector x, and also implies that their learning result achieved the
desirable situation. The emergence of such desirable situations as a result of learning may be understood
from the viewpoint of NC (Papyan et al., 2020; Fang et al., 2021). More quantitative analysis has been
conducted in two cases: the combinations of the cross-entropy loss and the logistic function and of the
zero-one loss and the perceptron. Although we have found that optimization of the energy or the overlap
over the bias b yields the better overlap than the above desirable situation, the selected bias values tend
to take extreme values and also be highly dependent on the choice of loss, classifier, and the parameters.
The practicality of such sensitive results should be tested by experiments in more realistic situations, which
constitutes interesting future work.

Numerical simulations on the N = 400-dimensional systems have been also performed to check the validity
of our theoretical results. The result showed good consistency with the theoretical one, which verifies our
theoretical results and also reinforces the practicality of our theory derived in the limit N →∞.

As a future direction, it will be interesting to extend the analysis in this paper to multiple classes. Although
we have proposed a further simplified model to treat multiclass classification on the basis of the insight from
the analysis, the model is too simple in that it is essentially a one-dimensional problem with an unsupervised
loss: this is incompatible with the standard treatment of multiclass classification. Such an extension would
involve some difficulties related to the arrangement of the cluster centers. Some reasonable assumptions
simplifying the analysis would be necessary, and the accumulated practical knowledge in machine learning
communities would help find appropriate assumptions, just as Kang et al.’s observation which inspired the
present study. Another interesting extension is to the semi-supervised setting with both labeled and unlabeled
data. The effect of unlabeled data for performance is debatable from a theoretical viewpoint (Yang & Xu,
2020) while the benefit is evident in some applications (Jing & Tian, 2020). A toy-model study would be
helpful to resolve this puzzle and to find conditions under which unlabeled data improve the performance.

A Volume computation

To handle the Dirac measures, we employ the following identities and trick:

1 = C1

∫
dQδ

(
NQ− ‖wa‖2

)
= C2

∫
dQdQ̂e

1
2NQ̂Q−

1
2 Q̂‖wa‖

2
, (49)

1 = C1

∫
dqδ

(
Nq −w>a wb

)
= C3

∫
dqdq̂e−Nq̂q+q̂w

>
a wb , (50)

1 = C1

∫
dmδ

(
Nm−w>0 wa

)
= C3

∫
dmdm̂e−Nm̂m+m̂w>0 wa , (51)

where the Fourier expression of the delta function is used to obtain the expression on the rightmost side
of each equation, and where C1, C2, C3 are normalization constants that are irrelevant in the following
computations and will be discarded hereafter. Using these, we obtain

V =
∫
dQdqdmdQ̂dq̂dm̂ eN( 1

2nQ̂Q−
1
2n(n−1)q̂q−nm̂m)

×Tr{wa}na=1
e
− 1

2 Q̂
∑n

a=1
‖wa‖2+m̂

∑n

a=1
w>0 wa+q̂

∑
a<b

w>a wb

=:
∫
dQdqdmdQ̂dq̂dm̂ eN( 1

2nQ̂Q−
1
2n(n−1)q̂q−nm̂m)I. (52)

25



Published in Transactions on Machine Learning Research (4/2025)

The factor I is computed as follows:

I =
∫ (∏

a

dwaδ(N − ‖wa‖2)
)
e
− 1

2 Q̂
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a=1
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e
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2π

)
e
N

(
1
2

∑
a

Λa+ 1
N

∑N

i=1
log
∫
Dz
∏n

a=1

(∫
dwe−

1
2 Λaw2− 1

2 (Q̂+q̂)w2+m̂w0iw+
√
q̂zw

))
. (53)

Here, the integration w.r.t. Λa can be replaced by its extremization condition thanks to the saddle-
point/Laplace method. This yields the symmetric solution Λ∗a = Λ∗. Hence,

I = e
N

(
1
2nΛ∗+ 1

N

∑N

i=1
log
∫
Dz

(∫
dwe−

1
2 (Λ∗+Q̂+q̂)w2+(m̂w0i+

√
q̂z)w
)n)

= e
N

(
1
2nΛ∗+ 1

N

∑N

i=1
log
∫
Dz

(√
2π

Λ∗+Q̂+q̂
e

1
2

(m̂w0i+
√
q̂z)2

Λ∗+Q̂+q̂

)n)
. (54)

The last term in the exponent can be rewritten in the limit n→ 0 as

lim
n→0

1
nN

N∑
i=1

log
∫
Dz

(√
2π

Λ∗ + Q̂+ q̂
e

1
2

(m̂w0i+
√
q̂z)2

Λ∗+Q̂+q̂

)n

= 1
2 log(2π)− 1

2 log(Λ∗ + Q̂+ q̂) + 1
N

N∑
i=1

∫
Dz

1
2

(m̂w0i +
√
q̂z)2

Λ∗ + Q̂+ q̂

= 1
2 log(2π)− 1

2 log(Λ∗ + Q̂+ q̂) + 1
2

m̂2 + q̂

Λ∗ + Q̂+ q̂
, (55)

where the relation
∑
i w

2
0i = N is used in the last equality. Overall, the limit n→ 0 yields

lim
n→0,N→∞

1
nN

log V (Q, q,m)

= Extr
Λ∗,Q̂,q̂,m̂

{
1
2 Q̂Q+ 1

2 q̂q − m̂m+ 1
2Λ∗ + 1

2 log(2π)− 1
2 log(Λ∗ + Q̂+ q̂) + 1

2
m̂2 + q̂

Λ∗ + Q̂+ q̂

}
. (56)

The extremization conditions w.r.t. Q̂ and Λ∗ are degenerating. Rewriting Q̂→ Q̂−Λ∗ erases this degeneracy
and makes the Λ∗-dependence very simple as (−(1/2)Q+1/2)Λ∗ in the equation. The extremization condition
w.r.t. Λ∗ thus yields Q = 1, leading to Eq. (27).

B Interpretation of EOS

In this appendix, we provide an intuitive interpretation of the EOS (34) derived in sec. 3.2. We start with
the first line of (53) for the factor I. One can rewrite the exponent of the integrand as

− 1
2 Q̂

n∑
a=1
‖wa‖2 + m̂

n∑
a=1

w>0 wa + q̂
∑
a<b

w>a wb = 1
2

∥∥∥∥∥ m̂√q̂w0 +
√
q̂

n∑
a=1

wa

∥∥∥∥∥
2

− m̂2

2q̂ ‖w0‖2 −
Q̂+ q̂

2

n∑
a=1
‖wa‖2.

(57)
Using the Hubbard-Stratonovich transform

ec‖a‖
2/2 =

( c

2π

)N/2 ∫
e−c‖z‖

2/2+ca>z dz (58)

26



Published in Transactions on Machine Learning Research (4/2025)

with c = 1
q̂ and a = [(m̂/

√
q̂)w0 +

√
q̂
∑n
a=1wa]/

√
c, one can rewrite the integrand as

e
− Q̂2
∑n

a=1
‖wa‖2+m̂

∑n

a−1
w>0 wa+q̂

∑
a<b

w>a wb

= e
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2‖a‖

2− m̂2
2q̂ ‖w0‖2− Q̂+q̂

2

∑n

a=1
‖wa‖2

=
(

1
2πq̂

)N/2 ∫
e−

1
2q̂ ‖z‖

2− m̂2
2q̂ ‖w0‖2+m̂w>0 z+

∑n

a=1
w>a z−

Q̂+q̂
2

∑n

a=1
‖wa‖2 dz

=
(

1
2πq̂

)N/2 ∫
e−

1
2q̂ ‖z−m̂w0‖2

(
n∏
a=1

e−
1
2q̂ ‖z−q̂wa‖

2− Q̂2 ‖wa‖
2

)
e
n
2q̂ ‖z‖

2
dz. (59)

This formula, after taking the limit n→ 0, implies that the problem of estimatingw0 is equivalent, in the limit
N →∞, to estimating it from its scaled and noisy version z = m̂w0 +n with Gaussian noise n ∼ N(0, q̂IN )
by assuming the likelihood ∝ e−

1
2q̂ ‖z−q̂w‖

2
and the prior ∝ e−

Q̂
2 ‖w‖

2 . The posterior distribution of w given
z turns out to be N

(
1

Q̂+q̂z,
1

Q̂+q̂ IN

)
, and the posterior average with respect to this model turns out to be

corresponding to the average 〈(· · · )〉 over the Boltzmann distribution defined in Eq. (12).

Let ŵ, ŵ′ be independent samples from the posterior distribution p(w | z). One then has

E[ŵ>w0]
N

= 1
Q̂+ q̂

E[w>0 z]
N

= m̂

Q̂+ q̂
, (60)

E[‖ŵ‖2]
N

= 1
(Q̂+ q̂)2

E[‖z‖2]
N

+ 1
Q̂+ q̂

= Q̂+ 2q̂ + m̂2

(Q̂+ q̂)2
, (61)

E[ŵ>ŵ′]
N

= 1
(Q̂+ q̂)2

E[‖z‖2]
N

= m̂2 + q̂

(Q̂+ q̂)2
, (62)

which should be equal to m = [〈w〉>w0]DM /N , Q = [〈‖w‖2〉]DM /N , and q = [‖〈w〉‖2]DM /N , respectively.
These provide an interpretation of the EOS: in the limit N →∞, estimation of w may be regarded as being
performed with the Gaussian model defined as above, whose parameters m̂, Q̂, q̂ are to be determined via a
scalar estimation problem defined in terms of the loss `. The parameters m̂, Q̂, q̂ should be taken so that
the estimate of w has length

√
N , which implies that Q = 1 holds and hence Q̂+ 2q̂ + m̂2 = (Q̂+ q̂)2 from

Eq. (61). Under this condition one may forget the constraints on ‖wa‖2 in Eq. (53), as they will be satisfied
automatically in the limit N →∞.

We have assumed the scaling of the order parameters in the limit β → ∞ as in Eq. (29). In this limit,
the signal-to-noise ratio of z = m̂w0 + n with n ∼ N(0, q̂IN ) is m̂2/q̂ = m̃2/χ̃, which is finite, whereas
the signal-to-noise ratio of z in the likelihood model ∝ e−

1
2q̂ ‖z−q̂w‖

2
is q̂ = β2χ̃ → ∞, implying that the

likelihood model is asymptotically noiseless. It can be understood as corresponding to the deterministic
nature of the minimum-loss estimator ŵ = arg min

w:‖w‖2=N
H(w | DM ; b, s). One furthermore has

Q̂+ 2q̂ + m̂2 = (Q̂+ q̂)2 → χ̃+ m̃2 = Q̃2, (63)

m = m̂

Q̂+ q̂
→ m = m̃

Q̃
, (64)

q = 1− 1
Q̂+ q̂

→ q = 1− 1
βQ̃

, χ = 1
Q̃
. (65)

These reproduce Eqs. (34a)–(34c) of the EOS.

C Computational details for sec. 3.4

Here we show the detailed algebras necessary for sec. 3.4. For notational convenience, we write the derivative
of a quantity A w.r.t. s+ as Ȧ := dA

ds+
, and the order parameter vectors as Ω̃ = (m̃, χ̃)> and Ω = (m,χ)>.
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Taking the derivatives w.r.t. s+ of the EOS (34), we can derive a set of linear equations of ˙̃Ω, Ω̇. For example,
the derivative of Eq. (34a) yields

˙̃Q = m̃

Q̃
˙̃m+ 1

2Q̃
˙̃χ. (66)

Similarly, taking the derivative of Eqs. (34b) and (34c) and rewriting ˙̃Q by using Eq. (66), we have a relation
transforming ˙̃Ω to Ω̇ as

Ω̇ = T̃ ˙̃Ω, (67a)

T̃ = 1
Q̃3

(
χ̃ − 1

2m̃
−m̃ − 1

2

)
, (67b)

which corresponds to Eq. (38a). In the same way, after lengthy algebras, the derivatives of Eqs. (34d) and
(34e) lead to another relation transforming Ω̇ to ˙̃Ω:

˙̃Ω = c+ T Ω̇, (68)

which corresponds to Eq. (38b), where

gy := g(hy), (69a)

g′y := dg(h)
dh

|h=hy , (69b)

Dy := 1− σχsyg′y, (69c)

c = α

( ∑
y=±1 yry

∫
Dz

gy
Dy∑

y=±1 yrysy
∫
Dz

g2
y

Dy

)
, (69d)

T =
(
T11 T12
T21 T22

)
, (69e)

T11 = α

(∑
y=±1

rysy

∫
Dz

g′y
Dy

)
, (69f)

T12 = σ2α

(∑
y=±1

rys
2
y

∫
Dz

gyg
′
y

Dy

)
, (69g)

T21 = 2σ2α

(∑
y=±1

rys
2
y

∫
Dz

gyg
′
y

Dy

)
(= 2T12), (69h)

T22 = 2σ2α

(∑
y=±1

ryσ
2s3
y

∫
Dz

g2
yg
′
y

Dy

)
. (69i)

Note that the expressions in Eq. (69) assume that the loss ` is twice differentiable on R. For losses having
singularities such as the zero-one loss, those expressions should be interpreted as appropriate limits of those
for their smoothed versions, as discussed in sec. 3.2. The smoothness-controlling parameter (γ in Eq. (36))
can be arbitrary because the following discussion holds irrespectively of its value.
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Using the identity g′y/Dy =
(
−1 + 1

Dy

)
/(σ2χsy), we rewrite Eq. (69) as

T11 = α

σ2χ

(
−1 +

∑
y=±1

ry

∫
Dz

1
Dy

)
, (70)

T12 = α

χ

(
−
∑
y=±1

rysy

∫
Dz gy +

∑
y=±1

rysy

∫
Dz

gy
Dy

)
, (71)

T21 = 2T12, (72)

T22 = 2σ2α

χ

(
−
∑
y=±1

rys
2
y

∫
Dz g2

y +
∑
y=±1

rys
2
y

∫
Dz

g2
y

Dy

)
. (73)

Putting Eqs. (67a) and (68) together, we obtain the equation to Ω̇:

Ω̇ = T̃ Tc+ T̃ T Ω̇ =: b+AΩ̇. (74)

If we assume the extremization condition ṁ = Ω̇1 = 0, the following relation can be derived:

− b1
A12

= b2
1−A22

(= χ̇). (75)

Our discussion completes by showing that this condition is satisfied if s+ = s− = 1/2 =: s. In the situation
s+ = s− = s with b = 0, the symmetry g+ = g− =: g, D+ = D− =: D holds. This simplifies many terms:

m̃→ αs

∫
Dz g, (76a)

χ̃→ σ2αs2
∫
Dz g2, (76b)

c1 → α(2r+ − 1)
∫
Dz

g

D
, (76c)

c2 → 2σ2αs(2r+ − 1)
∫
Dz

g2

D
, (76d)

T11 →
α

σ2χ

(
−1 +

∫
Dz

1
D

)
, (76e)

T12 →
α

χ

(
−
∫
Dz g′ +

∫
Dz

g′

D

)
, (76f)

T21 = 2T12, (76g)

T22 →
2σ2α

χ

(
−
∫
Dz (g′)2 +

∫
Dz

(g′)2

D

)
. (76h)

Using these, we obtain

b1 = T̃11c1 + T̃12c2 →
σ2α2s2(2r+ − 1)

Q̃3

{∫
Dz g2

∫
Dz

g

D
−
∫
Dz g

∫
Dz

g2

D

}
, (77)

b2 = T̃21c1 + T̃22c2 → −
αs(2r+ − 1)

Q̃3

{
α

∫
Dz g

∫
Dz

g

D
+ σ2

∫
Dz

g2

D

}
, (78)

A12 = T̃11T12 + T̃12T22 →
σ2α2s3

Q̃2

{∫
Dz g2

∫
Dz

g

D
−
∫
Dz g

∫
Dz

g2

D

}
, (79)

A22 = T̃21T12 + T̃22T22 → 1− αs2

Q̃2

{(
α

∫
Dz g

∫
Dz

g

D
+ σ2

∫
Dz

g2

D

)}
. (80)

In the transformations above, we have used the EOS relation χ = Q̃−1 and

Q̃2 = m̃2 + χ̃→ α2s2
∫
Dz g2 + σ2αs2

∫
Dz g2 ⇒ Q̃2

αs2 → α

∫
Dz g2 + σ2

∫
Dz g2. (81)
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Then, we finally arrive at
b1
A12

= 2r+ − 1
Q̃s

= − b2
1−A22

, (82)

showing that Eq. (75) holds at s+ = s− = s. This supports the empirical observation that the maximum of
m is achieved when no resampling/reweighting is applied.
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