
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRANSFORMERS ARE EFFICIENT COMPILERS, PROV-
ABLY

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based large language models (LLMs) have demonstrated surprisingly
robust performance across a wide range of language-related tasks, including pro-
gramming language understanding and generation. In this paper, we take the first
steps towards a formal investigation of using transformers as compilers from an
expressive power perspective. To this end, we introduce a representative pro-
gramming language, Mini-Husky, which encapsulates key features of modern
C-like languages. We show that if the input code sequence has a bounded depth
in both the Abstract Syntax Tree (AST) and type inference (reasonable assump-
tions based on the clean code principle), then the number of parameters required
by transformers depends only on the logarithm of the input sequence length to
handle compilation tasks, such as AST construction, symbol resolution, and type
analysis. A significant technical challenge stems from the fact that transform-
ers operate at a low level, where each layer processes the input sequence as raw
vectors without explicitly associating them with predefined structure or meaning.
In contrast, high-level compiler tasks necessitate managing intricate relationships
and structured program information. Our primary technical contribution is the
development of a domain-specific language, Cybertron, which generates formal
proofs of the transformer’s expressive power, scaling to address compiler tasks.
We further establish that recurrent neural networks (RNNs) require at least a lin-
ear number of parameters relative to the input sequence, leading to an exponential
separation between transformers and RNNs. Finally, we empirically validate our
theoretical results by comparing transformers and RNNs on compiler tasks within
Mini-Husky.

1 INTRODUCTION

Transformers (Vaswani, 2017) have demonstrated remarkable proficiency across various do-
mains, achieving near-expert performance in solving International Mathematical Olympiad prob-
lems (Google Deepmind, 2024) and excelling in complex reasoning tasks in science, coding, and
mathematics (OpenAI, 2024a). They also handle routine coding tasks with high precision and have
been integrated into code editors to significantly boost programmers’ productivity (cur, 2024; Taelin,
2023a). Despite these advancements, the full extent of their underlying capabilities remains only
partially understood.

In this paper, we aim to deepen our understanding of transformers’ abilities to perform compilation
tasks. Empirically, transformer-based LLMs have shown rapid progress in code generation and com-
pilation. For example, MetaLL (Cummins et al., 2024) enables LLMs to optimize code by interpret-
ing compiler intermediate representations (IRs), assembly language, and optimization techniques.
Gu (2023) highlights the ability of LLMs to generate high-quality test cases for Golang compil-
ers. Surprisingly, Taelin (2023b) demonstrates that models like Sonnet-3.5 can compile legacy code
into modern languages like TypeScript, outperforming the now obsolete AgdaJS compiler (Agda
Development Team, 2024).

To formally study this problem in a controlled setup, we designed a C-like programming language
called mini-husky, which encapsulates key features of modern C-like languages such as (Flanagan,
2011) and Rust (Klabnik & Nichols, 2023). We focus on three representative compilation tasks: ab-
stract syntax tree (AST) construction, symbol resolution, and type analysis. The AST is a recursive

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

structure that represents the input as a tree. From the perspective of programming language design,
the AST is considered the true representation of the input, with the textual code serving merely as
a convenient interface for human users (Alfred et al., 2007). All syntactic and semantic processing
can then be interpreted as specific operations on these trees. Symbol resolution involves verifying
the validity of references to entities and flagging errors for undefined symbols. Type analysis en-
compasses both type inference, which assigns types to variables without explicit annotations, and
type checking, which identifies mismatches between actual and expected types.

We demonstrate that under the clean code principle (Martin, 2008), transformers can efficiently
perform AST construction, symbol resolution, and type analysis, where efficiency means that these
tasks can be conducted by transformers with a number of parameters that scale logarithmically with
the input code length. To the best of our knowledge, this is the first theoretical demonstration that
transformers can function as compilers in a parameter-efficient manner.

We further compare transformers and recurrent neural networks (RNNs). By connecting the type
analysis task with the associative recall, we show even under the clean code principle (Martin,
2008), RNNs require a memory size that scales linearly with the input sequence length to success-
fully perform type analysis. Consequently, for type analysis in compilation, transformers can be
exponentially more efficient than RNNs. We also empirically validate our theoretical findings by
demonstrating the superiority of transformers in the type analysis task.

Technical Challenges and Our Technique.

Proving that transformers can perform compilation tasks presents several challenges:

• Transformers operate at too low a level. Transformers process sequences of floating-point vec-
tors, akin to raw bits in computers, and proving their ability to perform specific tasks is similar
to writing specialized parallel machine code. Previous work (Yao et al., 2021) often resorts to
graphical illustrations for readability, even for basic tasks.

• Compilers are exceedingly high-level. Compilers are among the most complex programming
endeavors of our time. Compilation involves numerous sophisticated procedures, some of which
are undecidable or computationally expensive, such as code optimization (Alfred et al., 2007))
and type analysis (Pierce, 2002). For example, type analysis in complex type systems poses
significant challenges, often requiring the development of advanced logical frameworks (Dunfield
& Krishnaswami, 2019).

To overcome these challenges, we design a domain-specific language (DSL) called Cybertron to
serve as the proof vehicle, i.e., a major part of our proof consists of reasoning about type-correct
code in Cybertron that represents a transformer. Without using Cybertron, writing an equivalent
natural language proof would be too complex and intractable. Using code to prove propositions is
not new to computer science; it is, in fact, the norm in interactive theorem proving (ITP) (Har-
rison et al., 2014). ITP focuses on generating computer-verifiable proofs through a combination
of human-guided instructions and software automation. For instance, the correctness of the Ke-
pler conjecture (Hales et al., 2017) is verified by the combination of the ITP theorem provers HOL
Light (Harrison, 2009) and Isabelle (Paulson, 1994). To the best of our knowledge, we are the first
to apply this approach to understanding neural networks.

Contributions. We summarize our contributions below:

• A testbed for compilation tasks: We introduce Mini-Husky, a simple yet representative C-like
programming language, designed to formally assess transformers’ capabilities in programming
language processing. We anticipate that Mini-Husky will become a standard testbed for this
purpose.

• Expressive power theory of transformers for several compilation tasks: We provide a formal
proof that, when the input code sequence has bounded AST depth and inference depth, the number
of parameters in transformers only needs to scale logarithmically with the input sequence length
to handle compilation tasks such as AST construction, symbol resolution, and type analysis. To
the best of our knowledge, this is the first study exploring the power of transformers for these
compilation tasks.

• Transformers vs. RNNs: Theoretically, we demonstrate a negative result, showing that the num-
ber of parameters in RNNs must scale linearly with the input sequence length to perform type

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

analysis correctly. This result establishes an exponential separation between transformers and
RNNs. We further empirically confirm the advantage of transformers for the type analysis task.

• A Domain-Specific Language for Proofs: Given the challenges in formal proofs, we design a
domain-specific language, Cybertron, to serve as a proof vehicle. We believe that Cybertron, and
the general approach of using DSLs for analysis, can have broader applications in understanding
transformers and other architectures.

2 RELATED WORK

Expressive Power of Transformers. A line of work studies the expressive power of attention-based
models. One direction focuses on the universal approximation power (Yun et al., 2019; Bhattamishra
et al., 2020b;c; Dehghani et al., 2018; Pérez et al., 2021). More recent works present fine-grained
characterizations of the expressive power for certain functions in different settings, sometimes with
statistical analyses (Edelman et al., 2022; Elhage et al., 2021; Likhosherstov et al., 2021; Akyürek
et al., 2022; Zhao et al., 2023; Yao et al., 2021; Anil et al., 2022; Barak et al., 2022; Garg et al., 2022;
Von Oswald et al., 2022; Bai et al., 2023; Olsson et al., 2022; Akyürek et al., 2022; Li et al., 2023;
Hao et al., 2022; Pérez et al., 2019; Strobl, 2023; Chiang et al., 2023; Wei et al., 2022; Wang et al.,
2022; Feng et al., 2023; Li et al., 2024; Reddit User, 2013). There are also characterizations of trans-
formers to be as powerful as universal computers if put in a looped context (Giannou et al., 2023).
The most related one is Yao et al. (2021) where the authors prove constructively that bounded depth
Dyck language can be recognized by encoder-only hard attention transformers, which has similari-
ties to our settings of bounded depth programming language recognized encoder-only hard attention
transformers. The major difference is that we introduce concepts and tasks from programming lan-
guage theory Pierce (2002) to study the semantic powers of transformers.

Transformers vs. RNN. It is important to understand the comparative advantages and disadvantages
of transformers against RNNs. Empirically, synthetic experiments have shown an advantage of
transformers against RNNs for long range tasks (Bhattamishra et al., 2023; Arora et al., 2023).
Theoretically, there has been a rich line of work focusing on comparing transformers and RNNs in
terms of recognizing formal languages (Bhattamishra et al., 2020a; Hahn, 2019; Merrill et al., 2021),
which show that the lack of recursive structure of transformers prevent them from recognizing some
formal languages that RNNs can recognize. However, the gap can be mitigated when we consider
the bounded length of input or bounded grammar depth (Liu et al., 2022; Yao et al., 2021), which
is quite reasonable in practice and is used in this paper. On the other side, prior work (Jelassi et al.,
2024; Wen et al., 2024) proves a representation gap between RNNs and Transformers in repeating
a long sequence. In summary, it is somehow intuitive that recursive structures with limited memory
perform badly at tasks which requires information retrieval. Our paper shows that semantic analysis
for programming languages is such a task.

DSLs for Transformers. We note that we are not exactly the first one to employ a domain-specific
language to understand the expressive powers of transformers. Previously, DSLs with simple typings
like RASP (Weiss et al., 2021) were proposed to prove constructively that transformers can do
various basic sequence-to-sequence operations. Lindner et al. (2023) writes a compiler that compiles
RASP into actual transformers, Friedman et al. (2023) shows that RASP can be learned, and Zhou
et al. (2023) uses RASP to prove that simple transformers can perform certain algorithms. The major
difference between RASP and our DSL Cybertron is that Cybertron has a powerful algebraic type
system that helps prove complicated operations beyond simple algorithms.

3 PRELIMINARIES

The major innovation in the transformer architecture is that it uses self-attention solely without a
conjunction with a recurrent network (Vaswani, 2017), which processes input tokens in a distributed
manner. This capability enables the model to handle long-range dependencies, a crucial feature for
language tasks. We use hard attention and simplified position encoding to simplify our theoretical
reasoning.

Attention. In practice, attention heads use soft attention. Given model dimension dmodel, num-
ber of heads H , and a finite set of token positions Pos, an attention layer with simplified position

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

encoding is defined as a function fattn : RPos×dmodel → RPos×dmodel given by

∀p ∈ Pos, fattn(X)p :=WO Concat
(

Attn(1)(X)p, . . . ,Attn(H)(X)p

)
, (1)

where the hth attention head is defined using soft attention as: Attn(h)(X)p :=
∑

p′∈Pos α
(h)
p,p′V

(h)
p′ .

The attention weights α(h)
p,p′ given by: α(h)

p,p′ =
exp

(
Q(h)

p

⊤
K

(h)

p′ +λ(h)⊤Ψp′−p

)
∑

p′′∈Pos exp
(
Q

(h)
p

⊤
K

(h)

p′′ +λ(h)⊤Ψp′′−p

) , where WO ∈

Rdmodel×dmodel are trainable parameters, Q(h)
p ,K

(h)
p , V

(h)
p ∈ Rdmodel/H are linear transformations of

Xp, λ(h) ∈ R2 depends on the head, and Ψq =

(
q

1q>0

)
∈ R2 accounts for relative position.

For theoretical convenience, we use hard attention, commonly used in theoretical analysis of trans-
former (Yao et al., 2021; Hahn, 2019). Hard attention can be viewed as the limit of soft attention
when the attention logits become infinitely large. The hard attention head is defined as:

Attn(h)(X)p :=
1

|Sp|
∑
p′∈Sp

V
(h)
p′ , where Sp = arg max

p′∈Pos

(
Q(h)

p

⊤
K

(h)
p′ + λ(h)⊤Ψp′−p

)
(2)

In other words, hard attention selects the positions p′ that maximize the attention score for each
position p, and averages the corresponding value vectors V (h)

p′ .

Feed-Forward Layer. Given model dimension dmodel, and a finite set of token positions Pos, a
feed-forward layer is a fully connected layer applied independently to each position, defined as a
function fffn : RPos×dmodel → RPos×dmodel given by

∀p ∈ Pos, fffn(X)p =W2σReLU (W1Xp + b1) + b2, (3)

where W1 ∈ Rdffn×dmodel and W2 ∈ Rdmodel×dffn are trainable weight matrices, b1 ∈ Rdffn and b2 ∈
Rdmodel are trainable bias vectors, dffn is the hidden dimension of the feed-forward layer, chosen to be
2dmodel, as commonly used in practice, σReLU is the ReLU activation function.

Encoder-Only Transformer. Encoder-only transformers consist solely of the encoder stack, mak-
ing them ideal for tasks like classification, regression, and sequence labeling that do not require
sequence generation. Each encoder layer includes a multi-head self-attention mechanism and a
feed-forward network, allowing the model to capture complex dependencies and contextual infor-
mation.

One can define it using the following recurrence,

• The input is given by: X(0) = X .
• For each layer l = 1, 2, . . . , L:

– Compute attention output: X̂(l) = X(l−1) + f
(l)
attn
(
X(l−1)

)
,

– Compute feed-forward output: X(l) = X̂(l) + f
(l)
ffn

(
X̂(l)

)
.

In the above, f (l)attn are the attention layers, and f (l)ffn are the feed-forward layers, with the same model
dimension dmodel, number of heads H , and set of token positions Pos. For simplicity, layer normal-
ization is ignored. See Appendix C for full details of transformers and other architectures.

4 PROGRAMMING LANGUAGE PROCESSING AND THE TARGET C-LIKE
LANGUAGE: MINI-HUSKY

Recently, transformers have expanded to support code analysis and generation (Nijkamp et al., 2023;
Chen et al., 2021; Anysphere, 2023). Programming languages offer a cleaner foundation for study-
ing language understanding, as their syntactic and semantic tasks are precisely defined. To formally
study the language processing capabilities of transformers, we design Mini-Husky, a representa-
tive mix of modern C-like languages with strong typing and typical syntactic features. It supports

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Raw Text Token Stream AST Semantic Information · · ·

Compiler

Tokenizer Transformer

Figure 1: Programming language processing pipeline

user-defined types (e.g., structs, enums) and enforces strict type equality, disallowing implicit con-
versions. Lexical scoping, including shadowing, ensures proper variable accessibility based on block
structures, type inference, and type checking. These features make compiling Mini-Husky a rep-
resentative task to evaluate transformers’ capabilities in syntactic and semantic tasks like symbol
resolution and type checking. See Appendix E for the full details of Mini-Husky.

The standard pipeline of processing programming languages is shown in Figure 1 (Alfred et al.,
2007). The raw text is firstly segmented into parts like literals, identifiers, punctuations, keywords,
etc, called token stream, then parsed into a tree-like structure representation generated from the in-
put, finally syntactic and semantic analysis is performed on the tree. Afterward, an intermediate
language program is generated based on the syntactic and semantic analysis, which is further opti-
mized and finally transformed into targeted machine code. In this paper, to simplify the presentation,
we assume the tokenizer has been provided a priori. Below we describe the programming language
processing tasks investigated in the paper.

Abstract Syntax Tree Construction. Abstract Syntax Tree (AST) is a hierarchical, tree-like rep-
resentation of the syntactic structure of source code in a programming language. Unlike the raw
text of the code, the AST abstracts away surface syntax details, capturing the essential elements and
their relationships in a structured form. Each node in the AST corresponds to a construct occurring
in the source code, such as expressions, statements, or declarations. This representation is central
to various stages of language processing, enabling efficient syntax checking, semantic analysis, and
code generation. The formal definition of ASTs is standard in the programming language literature
but is lengthy, so we defer it to Appendix A.

The AST construction task’s final output is the collection of all AST nodes. We will show trans-
formers can construct AST efficiently.

Symbol Resolution. In programming languages, symbols are functions, types, generics, variables,
macros, etc. They are defined somewhere and can be used by referring to the corresponding identifier
or path in a certain scope. The scope can be within a certain tree of modules, or within a certain
curly braced scope within one module. For simplicity, we only consider curly braced scope.

In Mini-Husky, the following showcases symbol resolution.

1 pub fn f() {
2 fn f1() {}
3
4 let a = 1;
5 let x = a;
6 let a = 2;
7 {
8 let a = 3;
9 { let a = 4; }

10 let y = a;
11 }
12 let z = a;
13 }
14
15 fn g() { f() }

The outer function f is accessible everywhere in the body of function g. However, the inner function
f1 can only be used inside the body of f as it is defined within the body. For variables with the same
identifier a , the first is accessible from line 5, the second is accessible from line 12, the third is
accessible from line 10, and the fourth is not accessible from anywhere. Thus x = 1, y = 3, z = 2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The output of the symbol resolution task is the collection of symbol resolution results on all appli-
cable tokens. More concretely, the output is a sequence of values of type Option<SymbolResolution>

where Option<SymbolResolution> is the type SymbolResolution with a null value added for non-
applicability and SymbolResolution is the type storing the result of the symbol resolution, be-
ing either a success with a resolved symbol of type Symbol or a failure with an error of type
SymbolResolutionError . We shall prove that transformers can do symbol resolution and that atten-

tion is crucial.

Type Analysis. In general, types are essential for conveying the intended usage of the written
functions and specifying constraints. As a first exploration of this topic, we try to make the type
analysis in Mini-Husky as simple as possible yet able to bring out the essential difficulty. The type
system consists of four sequential components: (1) Type definition, (2) Type specification, (3) Type
inference, and (4) Type checking. Due to the page limit, here we only introduce (4) Type checking
because it is the final step and this is a crucial step which separates transformers and RNNs. See
Appendix E.1 for details of (1) Type definition, (2) Type specification, and (3) Type inference.

Type checking ensures that the typed expressions agree with its expectations. For simplicity, we do
not allow implicit type conversion, so the agreement means exact equality of types. The arguments
of function calls are expected to have types according to the definition of the function. The operand
type of field access must be a struct type with a field of the same name. The type of the last
expression of the function body or the expr in the return statement must be equal to the return type
of the function. For variables defined in the let statement, If the types are annotated, the types of
the left-hand side and right-hand side should be in agreement.

1 // Type Error: the return type is ‘i32‘, yet the last expression is of type ‘f32‘
2 fn f(a: i32) -> i32 { 1.1 }
3
4 struct A { x: i32 }
5
6 fn g() {
7 // Type Error: ‘x‘ is of type f32 but it’s assigned by a value of type ‘i32‘
8 // Type Error: the first argument of ‘f‘ is expected to be of type ‘i32‘ but gets a

float literal instead
9 let x: f32 = f(1.1);

10 // Type Error: no field named ‘y‘
11 let y = A { x: 1 }.y;
12 }

The above incorporates typical examples of type disagreements that count as type errors. A compiler
should be able to report these errors.

The type analysis task’s final output is the collection of all type errors. More concretely, the output
is a sequence of Option<TypeError> , where Option<TypeError> denoted the type TypeError will a
null value added and TypeError is the type storing the information of a type error. The position of
type errors agrees with the source tokens leading to these errors.

5 EXPRESSIVE POWER OF TRANSFORMERS AS EFFICIENT COMPILERS

In this section we discuss main theoretical results about the expressive power of transformers to
perform compilation tasks: AST construction, symbol resolution, and type analysis. In Section 5.4,
we discuss Cybertron, a DSL specifically designed for our proof.

5.1 ABSTRACT SYNTAX TREE CONSTRUCTION

We start with a definition that characterizes low-complexity code.
Definition 1 (code with Bounded AST-Depth). Let MiniHuskyD be the set of token sequences that
can be parsed into valid ASTs in Mini-Husky with a depth less than D.

D in the above definition is small in practice, and a linear dependency on D is acceptable, but the
linear dependency on the length of the token sequence L is not. The fundamental reason is that
the clean code principle (Martin, 2008) requires one to write code with as little nested layer as

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

possible for greater readility. Readability is of the utmost importance because “Programs are meant
to be read by humans and only incidentally for computers to execute” (Abelson et al., 1996). This
assumption of bounded hierarchical depth is not limited to just programming languages, but is often
seen as applicable to natural languages (Frank et al., 2012; Brennan & Hale, 2019; Ding et al., 2017),
motivating Yao et al. (2021) to have a similar boundedness assumption. Below is the main result for
AST construction using transformers.

Theorem 1. There exists a transformer encoder of model dimension and number of layers being
O(logL + D) and number of heads being O(1) that represents a function that maps any token
sequence of length L in MiniHuskyD to its abstract syntax tree represented as a sequence.

We note logL is small because 64-bit computers can only process context length at most 264 and
D is small by assumption. Therefore, there exists a transformer with an almost constant number of
parameters that is able to process comparatively much longer context length.

Proof Sketch. The idea is to construct ASTs in a bottom-up manner with full parallelism. We shall
recursively produce the final ASTs in at mostD steps. We shall maintain two values, called pre_asts

and asts . asts represents ASTs that have already been allocated, although they might not have been
fully initialized. pre_asts represents tokens that have yet to form ASTs and new ASTs that have not
been fully initialized. For each round, we try to create new ASTs from pre_asts and update asts

and pre_asts . For the n-th round, we provably allocated all ASTs with a depth no more than n. Then
for the D-th round, all ASTs are properly constructed and allocated. Each round can be represented
by a transformer of O(1) number of heads, model dimension O(logL + D), and O(1) number of
layers. Therefore, the end-to-end process is then representable by a transformer of O(1) number
of heads, model dimension O(logL +D), and O(logL +D) number of layers. See full details in
Appendix F.

5.2 SYMBOL RESOLUTION

Next, we show that transformers can effectively perform symbolic resolution as logL and D are
almost constant as compared with context length L.

Theorem 2. There exists a transformer encoder of model dimension and number of layers being
O(logL + D) and number of heads being O(1) that represents a function that maps any token
sequence of length L in MiniHuskyD to its symbol resolution represented as a sequence of values
of type Option<SymbolResolution> .

Proof Sketch. First, we need to define the type for scopes. It is represented by a tiny sequence of
indices of curly brace block AST that enclose the type/function/variable. We assign the scope by
walking through the ASTs in a top-down manner. We not only assign scopes to item definitions,
we also: (1) assign scopes to ASTs representing curly brace blocks, with these scopes equal to the
scope of block itself, and (2) assign scopes to identifiers waiting to be resolved, with these scopes
equal to the maximum possible scope of its resolved definition. The computation process is easily
represented in Cybertron, indicating attention is expressive enough for this calculation and it only
takes O(D) number of layers.

After obtaining all the scopes for all items, it takes only one additional layer to obtain the symbolic
resolution through attention. As attention is expressed through the dot product of two linear projec-
tions Q and K, we have to choose the representation of the scope type properly to finish the proof.
The full details are in Appendix G.

5.3 TYPE ANALYSIS

We need an additional definition to characterize the complexity of code for type analysis.

Definition 2 (code with Bounded AST-Depth and Type-Inference-Depth). We use
MiniHuskyAnnotatedD,H to denote the subset of MiniHuskyD with the depth of type in-
ference no more than H . The depth of type inference is the number of rounds of computation needed
to infer all the types using the type-inference algorithm (described in Appendix E.1).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In practice, H is significantly smaller than the context length L for reasonably written code because
it is upper bounded by the number of statements in a function body which is required to be small
according to the clean code principle (Martin, 2008). Below, we present the main result of using
transformers for type analysis. See full details in Appendix H.

Theorem 3. For L,D,H ∈ N, there exists a transformer encoder of model dimension, and number
of layers being O(logL+D +H) and number of heads being O(1) that represents a function that
maps any token sequence of length L in MiniHuskyAnnotatedD,H to its type errors represented as
a sequence of values of type Option<TypeError> .

5.4 PROOF VEHICLE: CYBERTRON, A DOMAIN-SPECIFIC LANGUAGE

Here we highlight our main proof technique. Proving that transformers can express complex algo-
rithms and software like compilers is a significant challenge due to the inherent differences between
how transformers operate and the nature of high-level tasks they are expected to perform. Trans-
formers process input at a low level, where each layer manipulates raw token sequences as vectors
without predefined structure or meaning. However, high-level tasks—such as constructing ASTs
and performing type and symbol analysis—require handling complex, structured information that
depends on long-range relationships and interactions across the input. Bridging the gap between
this raw, unstructured processing and the structured, multi-step logic required for these tasks in-
troduces significant difficulty. Compilers, for instance, typically rely on rule-based, step-by-step
operations that are abstract and sequential, which transformers must simulate through their attention
mechanisms and feedforward layers. The challenge is further compounded by the need to formally
prove that transformers can handle such tasks efficiently and accurately, despite operating in a fun-
damentally different manner. To address these challenges, we propose a domain-specific language
(DSL) called Cybertron, which allows us to systematically prove that transformers are capable of
expressing complex algorithms while maintaining sufficient readability.

A key feature of Cybertron is its expressive type system, which provides strong correctness guar-
antees. The type system ensures that every value is strongly typed, making it easier to reason about
function composition and ensuring the validity of our proofs. This type system is crucial for man-
aging how transformers represent and manipulate both local and global types—where local types
correspond to individual tokens and global types refer to sequences of tokens, encapsulating broader
program information.

What transformers output (possibly in the intermediate layers) is a representation in sequences of
vector of sequences of values in these types. As types are mathematically interpreted in this paper
as a discrete subset of a vector space, Cybertron allows us to construct transformers with automatic
value validity guarantees if the Cybertron code is type-correct.

In Cybertron, complex functions are broken down into “atomic” operations through propositions
on function compositions and computation graphs (Propositions 11,13,14,2). It is straightforward to
prove that these “atomic” operations are representable by transformers, either by feedforward layers
or attention layers. For example:

• Feedforward layers: boolean operations like AND (Proposition 6), OR (Proposition 7), or NOT
(Proposition 5), or operations over option types like Option::or (Proposition 9) being applied to
each token in a sequence.

• Attention layers: operations that require information transmission between tokens such as
nearest_left and nearest_right that collect for each token the nearest left/right non-nil informa-

tion (Proposition 15).

This approach allows us to break down complex operations into primitive tasks that transformers
can simulate. Feedforward layers handle local operations on individual tokens, while attention lay-
ers manage long-range dependencies and interactions between tokens, simulating the multi-step
reasoning required for higher-level tasks.

Cybertron’s expressive type system and function composition framework help bridge the gap be-
tween the low-level processing transformers perform and the high-level reasoning necessary for
complex tasks like compilation. For full details, including the mathematical foundations of Cy-
bertron’s type system and function composition, see Appendix D.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6 COMPARISONS BETWEEN TRANSFORMERS AND RNN

Now we compare transformers and RNNs from both theoretical and empirical perspectives.

6.1 A LOWER BOUND FOR RNNS FOR TYPE CHECKING

Previously, it has shown that RNN is provably less parameter efficient than transformers for associa-
tive recall (Wen et al., 2024). Intuitively speaking, the type checking step covers associative recall.
Based on this observation, we obtain the following lower bound for RNNs.

Theorem 4. ForL,D,H ∈ N, for any RNN that represents a function that maps any token sequence
of length L in MiniHuskyAnnotatedD,H with D,H = O(1) to its type errors represented as a
sequence of values of type Option<TypeError> , then its state space size is at least Ω(L).

Theorem 3 and Theorem 4 give a clear separation between transformers and RNNs in terms of the
compilation capability. Specifically, if the input codes satisfyD,H ≪ L, which is typically the case
under the clean code principle (Martin, 2008), then transformers at most needO ((logL+D +H))
number of parameters, which is significantly smaller what RNNs requires, Ω(L).

6.2 EMPIRICAL COMPARISON BETWEEN TRANSFORMERS AND RNNS

We validate our theoretical results by conducting experiments on synthetic data.

Dataset construction. The synthetic dataset is parameterized by n (the number of data pieces), f
(the number of functions in a data piece), a (the maximum number of arguments of any function),
c (the maximum number of function calls involved in any function), d (the minimum distance be-
tween the declaration and the first call of a function, as well as the minimum distance between its
consecutive calls), v (the probability of using a variable in a function call), and e (the error rate of
using an incorrect type in a function call).

The names of the functions are drawn randomly and uniquely from a list of English words. For
each of the arguments of any function, its symbol is randomly drawn from another list of English
words and its type is randomly drawn from {Int, Float, Bool}. All the called functions must be
declared and not called by at least d functions ahead of the current one. For each argument of any
function call, with probability v, the argument variable of the enclosing function is used regardless
of its type, with probability (1− v)(1− e), a literal of the correct type is used, and with probability
(1− v)e an incorrect type literal is used. For integers, the literals are from {0, 1, . . . , 99}; for floats,
the literals are from {0.1, 1.1, . . . , 99.1}; for booleans, the literals are from {true, false}. The
training dataset and evaluation dataset use disjoint lists for function names and argument symbols.

Below is a data piece with f = 10, a = 5, c = 5, d = 3, v = 0.2, e = 0.5:

1 fn rename_file (i : Float , sum : Float) { }
2 fn parse_data (list : Int , value : Bool , stack : Float , k : Float , msg : Float) { }
3 fn parse_json (position : Bool) { }
4 fn find_by_id (error : Float) { rename_file (60.1 , 94.1) ; }
5 fn merge (group : Int , table : Float , error : Bool , count : Int) { parse_data (7 ,

false , 49.1 , 33.1 , 4.1) ; }
6 fn log_info (val : Bool , m : Bool , xml : Float , path : Float) { parse_json (true) ;

}
7 fn process (function : Int , value : Float , keys : Bool) { find_by_id (88.1) ;

rename_file (value , 40.1) ; }
8 fn validate_response (end : Int , z : Float , max : Bool) { merge (1 , true , 27.1 , 72

) ; parse_data (11 , 85 , 35.1 , 14.1 , true) ; }
9 fn print_message (algorithm : Float) { parse_json (92) ; log_info (true , algorithm ,

false , 26.1) ; }
10 fn print_help (max : Bool , tree : Int , method : Int , item : Bool) { process (25 , 28

, false) ; rename_file (48 , 80.1) ; }

Model and training. We use customized BERT models (Devlin et al., 2019) and bidirectional RNN
models (Schuster & Paliwal, 1997) in our experiments. To control the model size (i.e., the number of
trainable parameters), we adjust only the hidden sizes while keeping other hyperparameters constant.
Detailed model specifications can be found in Table 1. For both transformers and RNNs, we use the
hyperparameters listed in Table 2 in Appendix J during the training process.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

tra
in

_e
xp

ec
te

d_
ty

pe
_a

cc

n100000-f10-a5-c5-d3-v0.20-e0.50

rnn
transformer

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

tra
in

_e
xp

ec
te

d_
ty

pe
_a

cc

n200000-f20-a5-c5-d3-v0.20-e0.50

rnn
transformer

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

tra
in

_e
xp

ec
te

d_
ty

pe
_a

cc

n300000-f40-a5-c5-d5-v0.20-e0.50

rnn
transformer

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

tra
in

_e
xp

ec
te

d_
ty

pe
_a

cc

n400000-f80-a5-c5-d10-v0.20-e0.50

rnn
transformer

Figure 2: Figures depicting the accuracy of the expected type (see Section 5.3) across different mod-
els, measured by their number of trainable parameters, when trained on various datasets. Training
accuracies are better indicators of the expressive power of the models (instead of generalizability)
than evaluation accuracies. We also report evaluation accuracies in Appendix J.

Results. We experimented with multiple combinations of models (Table 1) and datasets (Table 2).
For each combination, we conducted independent runs using a fixed set of k = 5 random seeds.
When plotting the figures, we took the top t = 5 training/evaluation losses/accuracies from each run
and averaged over all the k× t values. We plotted separate figures for each dataset and separate sub-
figures for each metric. In each sub-figure, the x-axis represents the number of trainable parameters,
and the y-axis represents the averaged values. Results are shown in Figure 2. They demonstrate
that customized BERT models are able to perform better at type checking than bidirectional RNN
models when both scale up, corroborating our theories. Other results are in Appendix J.

7 CONCLUSION

We demonstrated that transformers can efficiently handle a number of syntactic and semantic analy-
sis tasks in C-like languages, using Cybertron to prove their capacity for tasks like AST generation,
symbol resolution, and type analysis. We show a theoretical advantage of transformers over RNNs,
particularly in their ability to manage long-range dependencies with logarithmic parameter scaling.
In a sense, transformers have the right inductive bias for language tasks. Our experiments confirmed
these theoretical insights, showing strong performance on synthetic and real datasets, underscoring
the expressiveness and efficiency of transformers in sequence-based learning.

8 ACKNOWLEDGEMENT

Xiyu Zhai acknowledges the support of NSF through awards DMS-2031883 and PHY-2019786.
Liao Zhang acknowledges the ERC PoC project FormalWeb3 no. 101156734 and the University of
Innsbruck doctoral scholarship promotion of young talent.

REFERENCES

Cursor: Ai-powered code editor, 2024. URL https://www.cursor.com/. Accessed: Septem-
ber 29, 2024.

Harold Abelson, Gerald Jay Sussman, and with Julie Sussman. Structure and Interpretation of
Computer Programs. MIT Press/McGraw-Hill, Cambridge, 2nd editon edition, 1996. ISBN
0-262-01153-0.

Agda Development Team. Agda compilers manual v2.6.4.2, 2024. URL https:
//agda.readthedocs.io/en/v2.6.4.2/tools/compilers.html#
javascript-backend.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

10

https://www.cursor.com/
https://agda.readthedocs.io/en/v2.6.4.2/tools/compilers.html#javascript-backend
https://agda.readthedocs.io/en/v2.6.4.2/tools/compilers.html#javascript-backend
https://agda.readthedocs.io/en/v2.6.4.2/tools/compilers.html#javascript-backend

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers principles, techniques & tools.
pearson Education, 2007.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. arXiv preprint arXiv:2207.04901, 2022.

Anysphere. Cursor, 2023. URL https://www.cursor.com/features.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
Rudra, and Christopher R’e. Zoology: Measuring and improving recall in efficient language
models. ArXiv, abs/2312.04927, 2023. URL https://api.semanticscholar.org/
CorpusID:266149332.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Prov-
able in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hid-
den progress in deep learning: Sgd learns parities near the computational limit. Advances in
Neural Information Processing Systems, 35:21750–21764, 2022.

S. Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers to
recognize formal languages. In Conference on Empirical Methods in Natural Language Process-
ing, 2020a. URL https://api.semanticscholar.org/CorpusID:222225236.

S. Bhattamishra, Arkil Patel, Phil Blunsom, and Varun Kanade. Understanding in-context learning
in transformers and llms by learning to learn discrete functions. ArXiv, abs/2310.03016, 2023.
URL https://api.semanticscholar.org/CorpusID:263620583.

S. Bhattamishra, Michael Hahn, Phil Blunsom, and Varun Kanade. Separations in the represen-
tational capabilities of transformers and recurrent architectures. ArXiv, abs/2406.09347, 2024.
URL https://api.semanticscholar.org/CorpusID:270440803.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages. arXiv preprint arXiv:2009.11264, 2020b.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers
and its implications in sequence modeling. arXiv preprint arXiv:2006.09286, 2020c.

Jonathan Brennan and John Tracy Hale. Hierarchical structure guides rapid linguistic pre-
dictions during naturalistic listening. PLoS ONE, 14, 2019. URL https://api.
semanticscholar.org/CorpusID:260538292.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

David Chiang, Peter A. Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer
encoders. In International Conference on Machine Learning, 2023. URL https://api.
semanticscholar.org/CorpusID:256231094.

Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Rozière, Jonas Gehring, Gabriele Syn-
naeve, and Hugh Leather. Meta large language model compiler: Foundation models of com-
piler optimization. ArXiv, abs/2407.02524, 2024. URL https://api.semanticscholar.
org/CorpusID:270924331.

Valentin David. Language Constructs for C++-like languages. PhD thesis, University of Bergen,
2009.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

11

https://www.cursor.com/features
https://api.semanticscholar.org/CorpusID:266149332
https://api.semanticscholar.org/CorpusID:266149332
https://api.semanticscholar.org/CorpusID:222225236
https://api.semanticscholar.org/CorpusID:263620583
https://api.semanticscholar.org/CorpusID:270440803
https://api.semanticscholar.org/CorpusID:260538292
https://api.semanticscholar.org/CorpusID:260538292
https://api.semanticscholar.org/CorpusID:256231094
https://api.semanticscholar.org/CorpusID:256231094
https://api.semanticscholar.org/CorpusID:270924331
https://api.semanticscholar.org/CorpusID:270924331

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Nai Ding, Lucia Melloni, Xing Tian, and David Poeppel. Rule-based and word-level statistics-based
processing of language: insights from neuroscience. Language, Cognition and Neuroscience, 32:
570 – 575, 2017. URL https://api.semanticscholar.org/CorpusID:46747073.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Jana Dunfield and Neelakantan R Krishnaswami. Sound and complete bidirectional typechecking
for higher-rank polymorphism with existentials and indexed types. Proceedings of the ACM on
Programming Languages, 3(POPL):1–28, 2019.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning, pp.
5793–5831. PMLR, 2022.

N Elhage, N Nanda, C Olsson, T Henighan, N Joseph, B Mann, A Askell, Y Bai, A Chen, T Conerly,
et al. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.

Husna Farooqui. The curry-howard correspondence. 2021. URL https://api.
semanticscholar.org/CorpusID:244268761.

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. ArXiv, abs/2305.15408, 2023.
URL https://api.semanticscholar.org/CorpusID:258865989.

David Flanagan. JavaScript: The definitive guide: Activate your web pages. " O’Reilly Media,
Inc.", 2011.

Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundation. In Proceedings
of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp.
111–122, 2004.

S. Frank, Rens Bod, and Morten H. Christiansen. How hierarchical is language use? Proceedings
of the Royal Society B: Biological Sciences, 279:4522 – 4531, 2012. URL https://api.
semanticscholar.org/CorpusID:11969171.

Dan Friedman, Alexander Wettig, and Danqi Chen. Learning transformer programs. ArXiv,
abs/2306.01128, 2023. URL https://api.semanticscholar.org/CorpusID:
259064324.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Angeliki Giannou, Shashank Rajput, Jy yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. ArXiv, abs/2301.13196, 2023.
URL https://api.semanticscholar.org/CorpusID:256389656.

Google Deepmind. Ai achieves silver-medal standard solving international mathematical
olympiad problems, July 2024. URL https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/.

Qiuhan Gu. Llm-based code generation method for golang compiler testing. Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2023. URL https://api.semanticscholar.org/CorpusID:
265509921.

12

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://api.semanticscholar.org/CorpusID:46747073
https://api.semanticscholar.org/CorpusID:244268761
https://api.semanticscholar.org/CorpusID:244268761
https://api.semanticscholar.org/CorpusID:258865989
https://api.semanticscholar.org/CorpusID:11969171
https://api.semanticscholar.org/CorpusID:11969171
https://api.semanticscholar.org/CorpusID:259064324
https://api.semanticscholar.org/CorpusID:259064324
https://api.semanticscholar.org/CorpusID:256389656
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://api.semanticscholar.org/CorpusID:265509921
https://api.semanticscholar.org/CorpusID:265509921

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions
of the Association for Computational Linguistics, 8:156–171, 2019. URL https://api.
semanticscholar.org/CorpusID:189928186.

Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoang Le Truong,
Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Tat Thang Nguyen, et al. A formal proof
of the kepler conjecture. In Forum of mathematics, Pi, volume 5, pp. e2. Cambridge University
Press, 2017.

Sophie Hao, Dana Angluin, and Roberta Frank. Formal language recognition by hard attention
transformers: Perspectives from circuit complexity. Transactions of the Association for Com-
putational Linguistics, 10:800–810, 2022. URL https://api.semanticscholar.org/
CorpusID:248177889.

John Harrison. Hol light: An overview. In International Conference on Theorem Proving in Higher
Order Logics, pp. 60–66. Springer, 2009.

John Harrison, Josef Urban, and Freek Wiedijk. History of interactive theorem proving. In Hand-
book of the History of Logic, volume 9, pp. 135–214. Elsevier, 2014.

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. ArXiv, abs/2402.01032, 2024. URL
https://api.semanticscholar.org/CorpusID:267406617.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer.
Iris from the ground up: A modular foundation for higher-order concurrent separation logic.
Journal of Functional Programming, 28, 2018. URL https://api.semanticscholar.
org/CorpusID:2023423.

Steve Klabnik and Carol Nichols. The Rust programming language. No Starch Press, 2023.

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning and
weight shifting for softmax regression. arXiv preprint arXiv:2304.13276, 2023.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. In The Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

Valerii Likhosherstov, Krzysztof Choromanski, and Adrian Weller. On the expressive power of
self-attention matrices. arXiv preprint arXiv:2106.03764, 2021.

David Lindner, J’anos Kram’ar, Matthew Rahtz, Tom McGrath, and Vladimir Mikulik. Tracr:
Compiled transformers as a laboratory for interpretability. ArXiv, abs/2301.05062, 2023. URL
https://api.semanticscholar.org/CorpusID:255749093.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Trans-
formers learn shortcuts to automata. ArXiv, abs/2210.10749, 2022. URL https://api.
semanticscholar.org/CorpusID:252992725.

Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall PTR,
USA, 1 edition, 2008. ISBN 0132350882.

Patrick Massot. Teaching mathematics using lean and controlled natural language. In In-
ternational Conference on Interactive Theorem Proving, 2024. URL https://api.
semanticscholar.org/CorpusID:272330159.

The mathlib Community. The lean mathematical library. Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, 2019. URL https://api.
semanticscholar.org/CorpusID:204801213.

William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2021. URL https://api.semanticscholar.org/CorpusID:248085924.

13

https://api.semanticscholar.org/CorpusID:189928186
https://api.semanticscholar.org/CorpusID:189928186
https://api.semanticscholar.org/CorpusID:248177889
https://api.semanticscholar.org/CorpusID:248177889
https://api.semanticscholar.org/CorpusID:267406617
https://api.semanticscholar.org/CorpusID:2023423
https://api.semanticscholar.org/CorpusID:2023423
https://openreview.net/forum?id=3EWTEy9MTM
https://api.semanticscholar.org/CorpusID:255749093
https://api.semanticscholar.org/CorpusID:252992725
https://api.semanticscholar.org/CorpusID:252992725
https://api.semanticscholar.org/CorpusID:272330159
https://api.semanticscholar.org/CorpusID:272330159
https://api.semanticscholar.org/CorpusID:204801213
https://api.semanticscholar.org/CorpusID:204801213
https://api.semanticscholar.org/CorpusID:248085924

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Codegen2:
Lessons for training llms on programming and natural languages. ICLR, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

OpenAI. Openai o1 system card, September 2024a. URL https://openai.com/index/
openai-o1-system-card/.

OpenAI. Sora: Creating video from text, February 2024b. URL https://openai.com/
index/sora/.

Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

Jorge Pérez, Javier Marinkovic, and Pablo Barceló. On the turing completeness of mod-
ern neural network architectures. ArXiv, abs/1901.03429, 2019. URL https://api.
semanticscholar.org/CorpusID:57825721.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing complete. The Journal of
Machine Learning Research, 22(1):3463–3497, 2021.

Benjamin C Pierce. Types and programming languages. MIT press, 2002.

The Univalent Foundations Program. Homotopy type theory: Univalent foundations of mathematics.
arXiv preprint arXiv:1308.0729, 2013.

Reddit User. I think the main secret sauce of o1 is the data. https://www.reddit.com/
r/singularity/comments/1fi6yy9/i_think_the_main_secret_sauce_of_
o1_is_the_data/, 2013. Accessed: 2024-09-28.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE transactions
on Signal Processing, 45(11):2673–2681, 1997.

Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold cir-
cuits. ArXiv, abs/2308.03212, 2023. URL https://api.semanticscholar.org/
CorpusID:260680416.

Victor Taelin. Ai and the future of coding. https://medium.com/jonathans-musings/
ai-and-the-future-of-coding-43caad31c3d3, 2023a. Accessed: 2024-10-01.

Victor Taelin. Agda to typescript compilation with sonnet-3.5, 2023b. URL https://x.com/
VictorTaelin/status/1837925011187027994. Accessed: September 29, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. arXiv preprint arXiv:2212.07677, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Huai hsin Chi, and Denny Zhou. Self-
consistency improves chain of thought reasoning in language models. ArXiv, abs/2203.11171,
2022. URL https://api.semanticscholar.org/CorpusID:247595263.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language mod-
els. ArXiv, abs/2201.11903, 2022. URL https://api.semanticscholar.org/
CorpusID:246411621.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. ArXiv, abs/2106.06981,
2021. URL https://api.semanticscholar.org/CorpusID:235421630.

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. Rnns are not transformers (yet): The key
bottleneck on in-context retrieval. ArXiv, abs/2402.18510, 2024. URL https://api.
semanticscholar.org/CorpusID:268041425.

14

https://openai.com/index/openai-o1-system-card/
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/sora/
https://openai.com/index/sora/
https://api.semanticscholar.org/CorpusID:57825721
https://api.semanticscholar.org/CorpusID:57825721
https://www.reddit.com/r/singularity/comments/1fi6yy9/i_think_the_main_secret_sauce_of_o1_is_the_data/
https://www.reddit.com/r/singularity/comments/1fi6yy9/i_think_the_main_secret_sauce_of_o1_is_the_data/
https://www.reddit.com/r/singularity/comments/1fi6yy9/i_think_the_main_secret_sauce_of_o1_is_the_data/
https://api.semanticscholar.org/CorpusID:260680416
https://api.semanticscholar.org/CorpusID:260680416
https://medium.com/jonathans-musings/ai-and-the-future-of-coding-43caad31c3d3
https://medium.com/jonathans-musings/ai-and-the-future-of-coding-43caad31c3d3
https://x.com/VictorTaelin/status/1837925011187027994
https://x.com/VictorTaelin/status/1837925011187027994
https://api.semanticscholar.org/CorpusID:247595263
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:235421630
https://api.semanticscholar.org/CorpusID:268041425
https://api.semanticscholar.org/CorpusID:268041425

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Shangda Wu, Xu Tan, Zili Wang, Rui Wang, Xiaobing Li, and Maosong Sun. Beyond language
models: Byte models are digital world simulators. ArXiv, abs/2402.19155, 2024. URL https:
//api.semanticscholar.org/CorpusID:268063492.

Shunyu Yao, Binghui Peng, Christos H. Papadimitriou, and Karthik Narasimhan. Self-attention
networks can process bounded hierarchical languages. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2021. URL https://api.semanticscholar.org/
CorpusID:235166395.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? arXiv preprint
arXiv:1912.10077, 2019.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while pre-
dicting the masked word? arXiv preprint arXiv:2303.08117, 2023.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Ben-
gio, and Preetum Nakkiran. What algorithms can transformers learn? a study in length gener-
alization. ArXiv, abs/2310.16028, 2023. URL https://api.semanticscholar.org/
CorpusID:264439160.

15

https://api.semanticscholar.org/CorpusID:268063492
https://api.semanticscholar.org/CorpusID:268063492
https://api.semanticscholar.org/CorpusID:235166395
https://api.semanticscholar.org/CorpusID:235166395
https://api.semanticscholar.org/CorpusID:264439160
https://api.semanticscholar.org/CorpusID:264439160

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A TREE

Trees are one of the most fundamental objects to study in computer science. However, its exact
definition differs for different domains. The trees used in “abstract syntax tree” (Section B) is more
restrictive than that in mathematics, which we call “typed tree”, so that one can define recursive
computation more rigorously.

A.1 WHAT ARE TREES

Trees in data structures have slightly additional meaning as compared to trees in mathematics. In
this paper, all trees are trees in data structures. For clarity, we lay down the precise definition of
trees in data structure.

Definition 3 (Tree). A tree T is a set of nodes storing elements such that the nodes have a parent-
child relationship that satisfies the following:

• If T is not empty, it has a special node called the root that has no parent.

• Each node v of T other than the root has a unique parent node w; each node with parent
w is a child of w.

We denote the nodes of T as N(T).

Definition 4 (Recursive Definition of a Tree). A tree T is either empty or consists of a node r (the
root) and a possibly empty set of trees whose roots are the children of r.

However, the above definition is too permissive. We shall define a typed version as follows:

Definition 5 (Typed Tree). A tree type consists of a set of values V and a set of relationships
C ⊆ V × N, and a typed tree under this type is any tree T such that for each node, a value v ∈ V
is assigned such that (v, n) ∈ C where n is the number of the children of the node.

All trees in this paper are typed.

Example 1 (Abstract syntax tree (AST) as Typed Tree). Consider an AST for a simple arithmetic
expression. Let the set of values V be:

V = { num , add , sub , mul , div }

and the set of relationships C ⊆ V × N specify the allowed number of children for each value:

C = {(num , 0), (add , 2), (sub , 2), (mul , 2), (div , 2)}

An example AST for the arithmetic expression (3 + 5)× 2 is the following typed tree:

• The root node is labeled mul (multiplication), and it has two children.

– The left child is labeled add (addition), and it has two children:

* The left child of add is labeled num with the value 3.

* The right child of add is labeled num with the value 5.

– The right child of mul is labeled num with the value 2.

This tree conforms to the typing rules because:

• num has 0 children,

• add has 2 children,

• mul has 2 children,

all of which satisfy the relationships in C.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.2 REPRESENTATIONS OF TREES

It’s also important to talk about tree representations. We are studying transformers, and then it’s
necessary to represent large trees as a sequence, otherwise the model dimension is not large enough
to contain the information locally. Let’s first talk about the classical arena pattern used in sys-
tem programming for representing trees and we shall slightly adapt it to our use case for studying
transformers.

Arena Pattern. To represent trees efficiently in memory, especially when trees are frequently
modified (such as insertions or deletions of nodes), an arena pattern is often used. The arena pattern
provides a way to manage memory allocation for tree structures, allowing for efficient memory usage
and avoiding fragmentation. Here’s how the arena pattern works in the context of tree representation:
Definition 6 (Arena Pattern in Tree Representation). In the arena pattern, a tree is represented by
an array (or vector) of nodes, called an arena. Each node in the arena contains:

• An element or value stored in the node.

• References (often indices or pointers) to the node’s children and possibly to its parent.

The key characteristics of the arena pattern are:

• Memory Contiguity: All nodes are stored contiguously in memory within the arena, which
allows for efficient traversal and modification operations.

• Fixed Capacity: The arena has a fixed or dynamically resizable capacity, and nodes are
added sequentially. This avoids the overhead of allocating individual nodes on the heap.

• Index-based References: Instead of using pointers, the nodes reference each other using
indices within the array, which simplifies memory management and can lead to cache-
friendly operations.

• Efficient Allocation and Deallocation: Nodes can be efficiently allocated and deallocated
within the arena without requiring complex memory management techniques like garbage
collection or reference counting.

The arena pattern is particularly useful in scenarios where the structure of the tree is highly dynamic
or when performance is critical. It allows for a simple and efficient way to manage and traverse trees
without the typical overhead associated with more traditional pointer-based tree representations.

Adaptations for Transformers For transformers, inputs, intermediate values and outputs are all
sequences. So the trees are represented as sequences of nodes with node reference representable by
token position encoding. Based on the representation, transformers will be able to perform various
kinds of recursive tree operations, as we shall see.

B CONTEXT FREE GRAMMAR

In this section, we lay down the well-known definitions of context free grammar, derivations, and
parse trees. To define an abstract syntax tree (AST), one commonly resorts to generation rules, such
as context-free grammars (CFG) (Alfred et al., 2007) and parsing expression grammars (PEG) (Ford,
2004). In most cases, just generation rules themselves are not sufficient to define properly a lan-
guage. Many practical languages like C and C++ cannot be solely described by these rules (David,
2009) so that they can reuse the limited set of special characters on the keyboard. Furthermore, se-
mantic constraints like type correctness are intrinsically contextual and cannot be expressed through
CFG or similar rules. However, CFG or other rules provide a valuable construct, the AST. With
an AST, one can refine the language definition by putting restrictions on the syntax tree through
tree operations. Effectively, a language can be seen as a subset of trees, not as a subset of strings.
Semantic analysis like symbol resolution and type checking can be described effectively based on
trees. In short, CFG standalone is hardly practical but it provides a useful and clear foundation to
build definitions upon.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A context-free grammar (CFG) is defined as a 4-tuple G = (V,Σ, R, S), where:

• V is a finite set of variables (non-terminal symbols).
• Σ is a finite set of terminal symbols, disjoint from V . Sequences of Σ, i.e., elements of Σ∗

are called (literal) strings.
• R ⊂ V ×(V ∪Σ)∗ is a finite set of production rules, where each rule is of the formA→ α,

with A ∈ V and α ∈ (V ∪ Σ)∗.
• S ∈ V is the start symbol.

Given a context-free grammar G = (V,Σ, R, S), we define derivation as follows:

• A derivation is a sequence of steps where, starting from the start symbol S, each step
replaces a non-terminal with the right-hand side of a production rule.

• Formally, we write u ⇒ v if u = αAβ and v = αγβ for some production A → γ in R,
where α, β ∈ (V ∪ Σ)∗ and A ∈ V .

• A leftmost derivation is a derivation in which, at each step, the leftmost non-terminal is
replaced.

• A rightmost derivation is a derivation in which, at each step, the rightmost non-terminal
is replaced.

• We denote a derivation sequence as S ⇒∗ w, where w ∈ Σ∗ is a string derived from S in
zero or more steps.

A parse tree (or syntax tree) for a context-free grammar G = (V,Σ, R, S) is a tree that satisfies
the following conditions:

• The root of the tree is labeled with the start symbol S.
• Each leaf of the tree is labeled with a terminal symbol from Σ or the empty string ϵ.
• Each internal node of the tree is labeled with a non-terminal symbol from V .
• If an internal node is labeled with a non-terminal A and has children labeled with
X1, X2, . . . , Xn, then there is a production rule A→ X1X2 . . . Xn in R.

• The yield of the parse tree, which is the concatenation of the labels of the leaves (in left-to-
right order), forms a string in Σ∗ that is derived from the start symbol S.

C NEURAL ARCHITECTURES

In this section, we lay down the precise mathematical definitions of neural architectures we are going
to use in our proof.
Definition 7 (Single-Layer Fully Connected Network with 4× Intermediate Space).

Given model dimension dmodel, a single-layer feed-forward network with an intermediate space ex-
panded to 4 times the input dimension is a function from Rdmodel to Rdmodel , denoted by ffcn and defined
as follows:

given X ∈ Rdmodel , weights W1 ∈ R4dmodel×dmodel , W2 ∈ Rdmodel×4dmodel , and biases B1 ∈ R4dmodel ,
B2 ∈ Rdmodel , the output ffcn(X) is computed as:

ffcn(X) =W2σReLU(W1X +B1) +B2,

where σReLU : R4dmodel → R4dmodel is the Rectified Linear Unit activation function applied element-
wise, defined by:

σReLU(z) = (max(z1, 0),max(z2, 0), . . . ,max(z4dmodel , 0))
⊤
,

for z = (z1, z2, . . . , z4dmodel)
⊤ ∈ R4dmodel .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The choice of a 4× intermediate space is common in practice, often used in Transformer architec-
tures. Interestingly, this empirical choice turns out to have a useful theoretical property: it allows
the network to express any affine transformation, as we’ll see in the following proposition.

Proposition 1. A single-layer fully connected network with a 4× intermediate space, as defined
previously, can express any affine map from Rdmodel to Rdmodel .

Proof. Let f : Rdmodel → Rdmodel be any affine map given by f(X) = AX+b, whereA ∈ Rdmodel×dmodel

and b ∈ Rdmodel . We will construct weights W1 ∈ R4dmodel×dmodel , W2 ∈ Rdmodel×4dmodel and biases
B1 ∈ R4dmodel , B2 ∈ Rdmodel such that ffcn(X) = f(X) for all X ∈ Rdmodel .

Define:

W1 =

 Idmodel

−Idmodel

0
0

 , B1 = 0 ∈ R4dmodel ,

where Idmodel is the dmodel × dmodel identity matrix, and 0 represents zero matrices of appropriate
dimensions. Set:

W2 = (A −A 0 0) , B2 = b.

For any X ∈ Rdmodel , compute:

ffcn(X) =W2 σReLU(W1X +B1) +B2

= (A −A 0 0) σReLU

 X
−X
0
0

+ b

= (A −A 0 0)

 σReLU (X)
σReLU (−X)

0
0

+ b

= AσReLU (X)−AσReLU (−X) + b.

Note that σReLU (X)− σReLU (−X) = X , we have:

ffcn(X) = AX + b = f(X).

Therefore, the network can represent any affine map from Rdmodel to Rdmodel .

Definition 8 (Single-Layer Feed Forward Network with 4× Intermediate Space). Given model
dimension dmodel and position set Pos, the Transformer Feed Forward Network is a function
fffn : RPos×dmodel → RPos×dmodel defined as follows:

For an input X ∈ RPos×dmodel , the output fffn(X) is computed by applying the single-layer feed-
forward network ffcn (as defined previously) independently to each position:

fffn(X)p = ffcn(Xp) ∀p ∈ Pos

where Xp ∈ Rdmodel is the p-th row of X , corresponding to the p-th position in the input sequence.

Next, we define the attention mechanism, which is a key component of the Transformer architecture.
This definition presents a hard attention layer with a simplified position encoding. We use hard
attention here for theoretical simplicity, as it represents a discrete limit of the more commonly used
soft attention mechanism. Hard attention forces the model to make a clear choice about which inputs
to focus on, which can simplify analysis and provide clearer insights into the model’s behavior. It
can be viewed as the limiting case of soft attention as the temperature approaches zero, where the
softmax operation becomes increasingly peaked and eventually converges to a one-hot vector.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Definition 9 (Hard Attention Layer with Simplified Position Encoding). Given model dimension
dmodel, number of heads H , and number of layers L, a transformer with simplified position encoding
and hard attention is defined to be a function fattn : RPos×dmodel → RPos×dmodel defined by

∀p ∈ Pos, fattn(X)p :=WOConcat
(

Attn(1)(X)p, . . . ,Attn(H)(X)p

)
, (4)

where the hth attention head uses hard attention, defined as:

Attn(h)(X)p :=
1

|Sp|
∑
p′∈Sp

V
(h)
p′ , (5)

where

• WO ∈ Rdmodel×dmodel are trainable parameters;

• Sp = argmaxp′∈Pos

(
Q

(h)
p

⊤
K

(h)
p′ + λ(h)⊤Ψp′−p

)
with Q

(h)
p ,K

(h)
p , V

(h)
p , λ(h),Ψq de-

fined by

– Q
(h)
p =W

(h)
Q Xp,K

(h)
p =W

(h)
K Xp are vectors of dimension dmodel/H , with trainable

parameters W (h)
Q ,W

(h)
K ∈ R(dmodel/H)×dmodel ;

– V
(h)
p = W

(h)
V Xp are vectors of dimension dmodel/H , linear transformations of Xp

with trainable parameters W (h)
V ∈ R(dmodel/H)×dmodel ;

– λ(h) ∈ R2 are constants depending only on head count h;
– Ψq ∈ R2 are 2-dimensional vectors depending on relative position q but not on head

count h. It is explicitly defined as

Ψq =

(
q

1q>0

)
. (6)

This formulation allows for both past and future masking.

Having defined the basic components, we can now proceed to describe the full Transformer archi-
tecture. This definition builds upon the previously introduced concepts, incorporating them into a
complete model structure.

Definition 10 (Transformer). A Transformer is a function ftf : RPos×dmodel → RPos×dmodel that maps
an input sequence to an output sequence through a series of layers, each consisting of a multi-head
attention mechanism and a position-wise feed-forward network (MLP).

Given:

• Input sequence X ∈ RPos×dmodel , where Pos is the set of positions and dmodel is the model
dimension.

• Number of layers L.

• Number of attention heads H .

The Transformer computes the output Y = X(L) through recursive application of attention and
feed-forward layers:

• Initialization is given by:
X(0) = X.

• For each layer l = 1, 2, . . . , L:

– Compute attention output:

X̂(l) = X(l−1) + f
(l)
attn

(
X(l−1)

)
20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

– Compute feed-forward output:

X(l) = X̂(l) + f
(l)
ffn

(
X̂(l)

)
Here:

• f (l)attn are hard attention layers with simplified position encoding as previously defined. It
operates on X(l−1) and produces an output in RPos×dmodel .

• f (l)ffn are feed-forward networks with 4× intermediate space as previously defined. It oper-
ates position-wise on X̂(l) and produces an output in RPos×dmodel .

Remark 1. For simplicity, we have omitted the Layer Normalization component typically present
in Transformer architectures. This simplification allows us to focus on the core attention and feed-
forward mechanisms while maintaining the essential structure of the Transformer.

We use Tfdmodel
H,L to denote the set of transformers of model size dmodel, number of headsH and number

of layers L as functions from Rdmodel∗ to Rdmodel∗.

For purpose of proof, we shall also need residual multi-layer perceptron. Functions over local types
are first represented by multi-layer perception, then by Proposition 2 applications of these func-
tions over sequences can be representable by transformers. Residual multi-layer perceptron can be
assembled through composition or computer graph, as we shall see.

Here’s the definition of a residual MLP Network.

Definition 11 (Residual Multi-Layer Perceptron). A Residual Multi-Layer Perceptron (ResMLP) is
a function fresmlp : Rdmodel → Rdmodel defined recursively by

X(0) = X, X(l) = X(l−1) + ffcn

(
X(l−1)

)
, l = 1, 2, . . . , L, fresmlp(X) = X(L)

where X ∈ Rdmodel is the input vector, L is the total number of layers, and ffcn : Rdmodel → Rdmodel

is the Single-Layer Fully Connected Network with 4× Intermediate Space as previously defined in
Definition 7.

We use ResMlpdmodel
L ⊂ Rdmodel

Rdmodel
to represent the set of residual MLPs with dimension dmodel and

L layers, as defined in Definition 11.

The following proposition is quite basic. It demonstrates that any function representable by a
ResMLP can be applied position-wise by a Transformer.

Proposition 2 (Position-wise ResMLP Application is Representable by Transformers). Let f :
Rdmodel → Rdmodel be a function representable by a Residual Multi-Layer Perceptron (ResMLP) as
defined in Definition 11. Then the function F : RPos×dmodel → RPos×dmodel , defined by applying f
position-wise,

F (X)p = f(Xp), ∀p ∈ Pos,

is representable by a Transformer as defined in Definition 10.

Proof. Since f is representable by a ResMLP with L layers, it is defined recursively by

X(0) = X, X(l) = X(l−1) + ffcn

(
X(l−1)

)
for l = 1, . . . , L,

and
f(X) = X(L),

where ffcn : Rdmodel → Rdmodel is the Single-Layer Fully Connected Network with 4× intermediate
space (Definition 7).

We construct a Transformer with L layers such that, for any input sequence X ∈ RPos×dmodel , the
output Y = ftf(X) satisfies Yp = f(Xp) for all p ∈ Pos.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

To achieve this, we configure the Transformer so that the attention mechanism outputs zero at each
layer. This can be done by setting the attention weights to zero, ensuring fattn(X

(l−1)) = 0. Conse-
quently, the update equations simplify to

X̂(l) = X(l−1).

We then set the feed-forward network fffn in the Transformer to have the same weights and biases
as ffcn in the ResMLP. The Transformer layer update becomes

X(l) = X̂(l) + fffn

(
X̂(l)

)
= X(l−1) +

(
ffcn

(
X(l−1)

p

))
p∈Pos

.

This recursion matches that of the ResMLP applied position-wise to X . Therefore, after L layers,
the Transformer output satisfies ftf(X)p = f(Xp) for all p ∈ Pos.

D CYBERTRON

D.1 INTRODUCTION

It’s often difficult to directly prove that transformers or in general other low level forms of computa-
tion can express complicated algorithms and even complex software. There are way too many details
as compared with typical mathematical proofs in machine learning theory. Hence, we propose the
domain specific language Cybertron, where we can systematically prove transformers can express
complicated algorithms and complex software with sufficient readability.

(Note: Cybertron is fundamentally different from Mini-Husky! Mini-Husky is the target language
that we want transformers to analyze yet Cybertron is the domain specific language we use to prove
that transformers can do that.)

RASP (Weiss et al., 2021) is quite close to Cybertron in terms of its design purpose. However,
Cybertron is more powerful with advanced algebraic type system, global and local function con-
structions, etc. These additional mechanisms replace a significant part of the chore in proofs with
automatic type checking. Thus, using Cybertron one can argue operations more complicated than
simple algorithms can be simulated by transformers.

In the broader perspective of computer science, it’s common to use code to prove things. In fact, in
the formal verification community, mathematical proofs are viewed as a special case of a much larger
universe of possible proof systems (mathlib Community, 2019; Massot, 2024) and constructive proof
using code (Harrison et al., 2014; Farooqui, 2021; Jung et al., 2018) is far more applicable with great
soundness to the most general settings. In our case, our code doesn’t serve as the whole proof but
as an important part that contains most of the chores. However, it’s totally possible to build a full-
fledged formalized proof, despite it might be too costly for a single paper to do.

Essentially, Cybertron works as follows:

1. one builds complicated functions from the composition of smaller functions. We have
lemmas that prove that the composed functions are representable by certain architectures
given that smaller functions are representable.

2. there is an algebraic type system and every value is strongly typed and immutable, making
it highly readable and easy to reason about;

3. there is a distinction between global and local types/functions. Local types are those infor-
mation hovered over a single token, and global types are sequences of local types, i.e., the
collection of information over the whole token stream. One can define a global function by
mapping a local function.

4. there are many functions that is defined externally, requiring external explanation that they
can be represented by transformers.

It’s implemented as a subset of the Rust programming language that can be understood as computa-
tion graphs over sequences. It can be executed for testing purposes and we’ve tested our implemen-
tation for a range of inputs and validated its correctness.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D.2 PHILOSOPHY: SEQUENTIAL REPRESENTATION OF EVERYTHING

Before going through the full details, let’s first talk about the fundamental philosophy behind trans-
former and Cybertron.

One of the fundamental reasons transformers can be easily adapted across multiple modalities, in-
cluding NLP and CV, is their sequence-to-sequence operation. Everything can be represented as an
arbitrary-length sequence. Texts are sequences of words, images are sequences of image patches,
videos are sequences of spacetime patches (OpenAI, 2024b), and even graphs with sparse spatial
structures can be represented as sequences of indexed nodes with additional information like parent
node indices. Since inputs of various modalities can be cast into vector sequences, transformers can
be applied to different domains without modifications to their architecture (Dosovitskiy et al., 2020).

Interestingly, this sequence-based thinking is not new. We’ve actually been representing every-
thing as sequences since the very early days of computer science. This has been the foundation
of how data is stored and processed in computers. However, sequence representations were tradi-
tionally viewed as low-level and sometimes inefficient for practical use, prompting the development
of higher-level abstractions for programming. The rise of transformers, with their scalable learning
capabilities, encourages us to reconsider the significance of sequence-based representations.

From a systems perspective, viewing everything as a sequence is the foundational approach in com-
puter science. Data in a computer is stored as a continuous stream of bits. Whether it’s text, images,
videos, or graphs, this data is represented in computer memory as an ordered sequence of bits. This
aligns with how transformers handle different types of input by transforming them into sequences
of vectors. Thus, the sequence-based operation of transformers mirrors the sequence-based repre-
sentation of data in computer memory.

In essence, if a data structure can be represented in computer memory using N bits, it can
be processed as a sequence of bits of length N . This natural sequence representation in memory
is consistent with how transformers process data, which makes them particularly flexible across
different modalities. For example, recent state-of-the-art approaches Wu et al. (2024) show that
transformers can even be trained directly on raw bits of data, further emphasizing this connection.

Moreover, this sequence-based viewpoint offers fresh insights when applied to the domain of pro-
gramming, particularly in areas such as code generation and analysis. With tools like ChatGPT and
Copilot being widely used by developers, the impact of transformers on programming workflows
is growing. Understanding the complexity of algorithms and programs expressed in sequence form
becomes an interesting area of study, as it reveals new possibilities for how we approach computa-
tion.

In comparison to traditional systems like CPUs and human cognition, transformers are highly paral-
lel but shallow in their operation. A transformer processes data in a fixed number of layers, while a
CPU executes 109 cycles per second, and humans may take days to process information like reading
a book. Transformers, therefore, represent a fundamentally different computational model that is
worth studying further in the context of sequence-based operations.
Example 2. Image to Sequence: In computer memory, an image is typically stored as a continuous
block of pixel values, often in row-major order, where each pixel’s value is encoded as bits in a
sequence. When a transformer processes an image, it divides the image into patches (e.g., 16 ×
16 pixels), and each patch is flattened into a vector of pixel values. This creates a sequence of
patches, where each patch corresponds to a vector. The way transformers represent these patches
as a sequence closely aligns with how the image data is sequentially stored in computer memory.

Example 3. Video to Sequence: A video is stored in computer memory as a sequence of frames,
where each frame is essentially an image. In a similar manner to images, these frames are stored as
continuous pixel values. Transformers process videos by dividing the frames into spacetime patches,
where each patch captures a small region of space over a short segment of time. These spacetime
patches are flattened and arranged into a sequence for the transformer to process. The sequential
ordering of these patches matches how video frames and pixel data are stored in computer memory.

Example 4. Graph to Sequence: In computer memory, a graph is typically stored using an adja-
cency list or adjacency matrix, where nodes and their connections (edges) are stored sequentially
in a data structure. Transformers process graphs by representing each node and its features as a
vector, and then creating a sequence of these vectors. The sequence may also encode additional

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

information, such as the parent-child relationships between nodes. This sequence-based represen-
tation of graphs is consistent with how graph data is stored in memory, where nodes and edges are
arranged in a structured order.
Example 5. Text to Sequence: Text is naturally stored in computer memory as a sequence of char-
acters or words, where each character is encoded as a sequence of bits (such as ASCII or Unicode
values). When transformers process text, they convert each word into a word embedding, which is a
vector of real numbers. The sequence of word embeddings corresponds to the sequence of charac-
ters or words stored in memory. This natural sequential representation of text in both memory and
transformers ensures efficient handling of linguistic data.
Example 6. AST (Abstract Syntax Tree) to Sequence: In computer memory, an abstract syntax
tree (AST) is typically stored as a tree-like structure, where each node represents a component of
the program (e.g., operators, variables, or statements). However, this tree can be linearized into a
sequence by traversing it in a specific order (e.g., pre-order traversal). When transformers process
an AST, they convert it into a sequence of tokens, where each token corresponds to a node in the tree.
This sequential representation of the tree in transformers mirrors how the tree is stored as nodes and
edges in memory, and how it can be flattened into a linear sequence.

In conclusion, the sequence-based representation in transformers is not just a novel approach for
deep learning but is deeply rooted in how data has been stored and processed in computer memory
since the early days of computing. This consistency between how data is stored in memory and how
transformers process data as sequences is a key factor in their adaptability across different domains.

D.3 LOCAL AND GLOBAL TYPES

Now we define the type foundation of Cybertron.

Types are fundamental objects for programming language theory. Here we use types to faciliate our
proofs. Type signatures contain rich information that help guarantee correctness of the program.
Here, we choose a mathematical definition of types that is most convenient for the discussion in
this paper. We introduce the notion of “local type”. Roughly speaking, they are types without heap
allocation and intended to be represented with Rdmodel over a single token. For more complicated
heap-allocated data structures like trees, graphs, etc., we shall represent them by sequences of these
“local type”s, which translate directly to vector sequences for transformers.
Definition 12 (Local Type). Given a base space B with at least two elements and a countably
infinite identification space Ψ, a local type T over B is a finite set S together with an embedding ϕ
from S to Bd and some fixed d ∈ N and an identification ψ ∈ Ψ.

For convenience, define Set (T) = S, dT = d and ϕT = ϕ and ψT = ψ. And let 0B , and 1B be two
different elements of B. And B0 := {0B} so that

∣∣Bi
∣∣ = |B|i holds for all i ∈ N.

Remark 2. We need B to be at least size 2, so that Bd can be as large as we want for d large
enough.For typical computer representation, we can take B to be 2 = {0, 1}. For transformers
or neural networks in general, we can take B to be R if we ignore precision. If we don’t ignore
precision, B should be some finite set of floating point numbers. Thus, we shall keep the generality
of B throughout our discussion as all of these settings are important.
Remark 3. The role of identification ψT ∈ Ψ is to make two types mathematically different even if
they have the same underlying set, encoding dimension, and encoding. Basically we are establishing
a specialized type of theory tailored towards the expressive power of transformers upon a foundation
of intuitive set theory.
Example 7 (Finite Set). In mathematics, we have the finite set denoted by [n] = {0, 1, . . . , n− 1}.
Here we use a slightly different notation for a type with underlying set JnK and some encoding.
Example 8 (Position Encoding). Position encoding can be viewed as the encoding of a type denoted
by Pos (n) with the underlying set being [n] where n is the context length. Although it has the same
underlying set as type JnK, it is a different type for a different purpose and might have different
encoding.

If B is R, then the position encoding can be understood as the encoding of type JLK where L is the
context length. More explicitly, we have

ϕ(x) = (eiL
−i/dx)i∈[d/2], (7)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

viewed as a d dimensional R-vector through the natural conversion of C to R2, since d is even.

It’s too cumbersome to manually give the underlying set and the encoding. Here we introduce a
classical concept from programming language theory Program (2013) that makes it super easy to
construct new types and make things fairly readable.
Definition 13 (Finite Algebraic Data Type, Mathematical Forms). We define two ways of creating
new types by combining existing types:

1. Sum type. Given types Ti = (Si, ϕi, di) over base space B for i = 1, . . . , n, we define the
sum type of Ti, denoted by

∑n
i=1 Ti, as follows,

• let S = ({1} × S1) ⊔ . . . ⊔ ({n} × Sn);
• let d = dJnK +maxni=1 di;

• let ϕ : S → Bd be such that

∀i ∈ JnK, s ∈ Si, ϕ((i, s)) = ϕJnK(i)⊕ ϕi(s) ∈ BdJnK+di ⊆ Bd. (8)

Note that |S| =
∑n

i=1 |Si|, thus the name sum type.

2. Product type. Given Local Types Ti = (Si, ϕi, di) over base space B for i = 1, . . . , n, we
define the product type of Ti, denoted by

∏n
i=1 Ti, as follows,

• let S = S1 × . . .× Sn;
• let d =

∑n
i=1 di;

• let ϕ : S → Bd be such that

∀s = (s1, . . . , sn) ∈ S, ϕ(s) = ϕ1(s1)⊕ . . . ϕn(sn) ∈ Bd. (9)

Note that |S| =
∏n

i=1 |Si|, thus the name product type.

Although we can define things and refer to things in terms of mathematical equations, it’s sometimes
cumbersome to do so. So we shall frequently refer to types using a programming language form,
like CybertronForm or more complicated things like Option<T> a builtin generic type.

Definition 14 (Unit Type). The unit type is a type with S = {0} and ϕ : S → B0, 0 7→ 0B . In
Cybertron, it’s denoted as () .

Definition 15 (Array Type). Given a type T , the array type of T with length ℓ ∈ N is the type with
S = S(T)ℓ, d = ℓdT and ϕ : S → BℓdT , (s1, . . . , sℓ) 7→ ϕT (s1) ⊕ . . . ⊕ ϕT (sℓ). It’s denoted by
T ℓ. In Cybertron, it’s denoted as [T;N] .

Definition 16 (Vector Type of Finite Capacity). Given a type T , the vector type of finite capacity of
T with maximal length ℓ ∈ N is the type with S =

⊔ℓ
i=1 Set (T)

i, d = dJℓK + ℓdT and ϕ : S →
BdJℓK+ℓdT , (s1, . . . , si) 7→ ϕJℓK(i) ⊕ ϕT (s1) ⊕ . . . ⊕ ϕT (si) ⊕ 0B ⊕ . . . ⊕ 0B with just enough
number of copies of 0B such that the dimensionality matches. It’s denoted by T ≤ℓ.In cybertron, it’s
denoted as BoundedVec<T,N> .

However, it’s cumbersome and obtuse to define and operate in mathematical forms only. So we shall
give a definition closer to actual programming that is more convenient and easy to read.
Definition 17 (Finite Algebraic Data Type, the Code Forms). We define two ways to create new
types:

1. Enum type. An enum type is the sum type of a finite set of variant types. Each variant type
is associated with a different identifier and can be

• unit like, a unit type;
• struct like, a product of several types, each called a field of the variant, and associated

with an identifier;
• tuple like, a product of several types, each called a field of the variant, but not associ-

ated with an identifier.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Syntactically, an enum type is specified as follows,
1 enum <type-name> {
2 <identifier> { // 1st variant, struct like
3 <identifier>: <type>, // 1st named field of 1st variant
4 <identifier>: <type>, // 2nd named field of 1st variant
5 ...
6 },
7 <identifier> { // 2nd variant, struct like
8 <identifier>: <type>, // 1st field of 2nd variant
9 ...

10 },
11 <identifier> (// 3rd variant, tuple like
12 <type>, // 1st tuple field of 3rd variant
13 <type>, // 2nd tuple field of 3rd variant
14 ...
15),
16 <identifier>, // 4th variant, unit like
17 ...
18 }

For example,
1 enum Expr {
2 Variable(IdentToken), // 1st variant, tuple like
3 Binary { // 2nd variant, struct like
4 lopd: ExprId,
5 opr: BinaryOprToken,
6 ropd: ExprId,
7 },
8 Prefix { // 3rd variant, struct like
9 opr: PrefixOprToken,

10 opd: ExprId,
11 },
12 Suffix { // 4th variant, struct like
13 opd: ExprId,
14 opr: SuffixOprToken,
15 },
16 Panic, // 5th variant, unit like
17 }

2. Struct type. A struct type is just the product type of
1 struct <type-name> {
2 <identifier>: <type>,
3 <identifier>: <type>,
4 ...
5 }

1 struct A {
2 a: i32
3 }

To show how convenient this is, we can define the very useful option type as follows,

Definition 18 (Option type). For a local type T , we can define an option type as

1 enum Option<T> {
2 Some(T),
3 None
4 }

Definition 19 (Global Types). Global types are defined to be sequences of local types.

Example 9 (Representation of Graphs). Graphs can be represented as sequences of its nodes. We
can use position index to use as node references.

D.4 COMPUTATION GRAPH

For convenience, we shall use computation graph as a vehicle to describe complicated computa-
tion processes. Computation graph is close to actual computation process and one can derive an
understanding of the computation difficulty from the graph’s mathematic properties (width, depth,
etc.)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Definition 20 (Directed Simple Graph). A directed simple graph G is a pair (V,E) where V is a
finite set, and E ⊆ V × V is called edges.

In the following, we shall simplify the "directed simple graph" to just graph.
Definition 21 (Computation Graph). A computation graph is an acyclic directed graph G = (V,E)
with additional structures:

1. for each vertex v ∈ V , there is an associated type, denoted by Tv;

2. for each vertex v ∈ V with a positive number of incoming edges, let v1, . . . , vn be the other
vertices for the incoming edges, then there is an associated function fv from Tv1×· · ·×Tvn
to Tv .

A computation graph naturally generates a function from source vertices to sink vertices. Let
vin1 , . . . , v

in
n be the set of vertices with no incoming edges, and let vout1 , . . . , voutm be the set of vertices

with no outgoing edges. Then we can construct a function from Tvin
1
×· · ·×Tvin

n
to Tvout

1
×· · ·×Tvout

m

in the following obvious manner:

1. let (x1, . . . , xn) ∈ Tvin
1
× · · · × Tvin

n
be an input;

2. for each vini , assign it with value xi;
3. for each vertex v ∈ V with all its incoming vertices v1, . . . , vl assigned with a value, assign

it with the value fv(xv1 , . . . , xvl) where xvi denotes the value assigned to vi;
4. repeat the process until all vertices are assigned a value, then take (xvout

1
, . . . , xvout

m
) as the

output.

Our goal is to make a hypothesis class using the above graph. To control the statistical and compu-
tational complexity, we put restrictions on the choice of Tv and fv , as follows:
Definition 22 (Restricted Computation Graph). Let U be a set of types, and for any A,B ∈ U , there
is a set of functions Mor(A,B) from A to B. We require that Tv, T in

v ∈ U and fv ∈ Mor(T in
v , Tv)

where T in
v :=

∏
v′v∈E

Tv′ . We also require that the underlying graph G satisfies certain conditions

(width, depth, etc.)
Definition 23 (Restricted Computation Graph Of Sequences). Let U be a universe such that for a set
of types U0 all types in U are of the form A∗ for some type A ∈ U0, and Mor(A∗, B∗) are functions
that preserve sequence lengths.

Given a restriction, the class of functions generated by restricted computation graphs is the central
object to study in this paper. We shall use an even more restricted computation graph of sequences.
We shall argue about the class of functions formed that

1. it’s rich enough to contain many interesting operations including SQL, compiler (type in-
ference, static analysis)

2. it’s computationally reasonable, and can be represented by transformers with pragmatic
bounds

3. it has a reasonable statistical complexity

As a corollary, our theories suggest that transformers can possibly learn to do many interesting things
with reasonable computational and statistical complexity.

To our knowledge, this is the first theoretical paper that gives pragmatic optimistic bounds for the
power of transformers in a wide range of meaningful language tasks.

Now we introduce graph-theoretical measures that will play key roles in our new complexity theory.

The most basic one is the following:
Definition 24 (Depth of Graph). The depth of a computation graph is defined to the length of the
longest path, denoted by dG.

For convenience, we define the following vertex-wise depth.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Definition 25 (Depth of Graph Vertex). The depth of a vertex v of a computation graph is defined
as the length of the longest path with end v, denoted by dv .

The smaller dG is, the more parallel the computation is.

However, we shall discuss a more nuanced measure, containment, as follows:

D.5 FUNCTIONS OVER LOCAL TYPES

Definition 26 (Functions over Local Types). Given Local Types T ,R, the functions from T to R
are defined to be just the functions from Set (T) to Set (R).
Remark 4. The domains and codomains are all finite sets, so there aren’t many constraints we want
to enforce here. Basically, these are “discrete” functions.
Definition 27 (Functions over Algebraic Data Types). Let T ,S1, . . . ,Sm,R be Local Types, and
suppose that T is an algebraic data type, then we can construct functions from T × S1 × . . .× Sm

to R as follows,

1. suppose that T is the sum type of T1, . . . , Tn. Then given functions fi : Ti×S1×· · ·×Sm

for i = 1, . . . , n, we can construct a function f , by letting
f((i, t), s1, . . . , sm) = fi(t, s1, . . . , sm), (10)

for each t ∈ Set (Ti), s1 ∈ Set (S1), . . . , sm ∈ Set (Sm).

(Note that we use the pair (i, t) because the underlying set of T is
⊔n

i=1 {i} × Set (Ti).)

2. suppose that T is the product type of T1, . . . , Tn. Then given a function f∗ : T1 × · · · ×
Tn × S1 × · · · × Sm for i = 1, . . . , n, we can construct a function f , by letting

f((t1, . . . , tn), s1, . . . , sm) = f∗(t1, . . . , tn, s1, . . . , sm), (11)
for each t ∈ Set (Ti), s1 ∈ Set (S1), . . . , sm ∈ Set (Sm).

It is not enough to just mathematically construct. We should also discuss how neural networks can
represent these functions. We define the representation of functions over Local Types formally as
follows:
Definition 28 (Representation of Functions over Local Types Using Multi-Layer Perceptions). Let
T ,R be Local Types. Given a function f from T to R, we say it is representable by MLP of
dimension d ≥ max {dT , dR} and number of layers L, if there exists f̃ ∈ ResMlpdL such that

ι1 ◦ ϕR ◦ f = f̃ ◦ ι2 ◦ ϕT , (12)
where ι1 : RdR → Rd and ι2 : RdT → Rd are the canonical embeddings by putting zeros to fit the
dimensionalities.

Here are some trivially true facts:
Proposition 3. [Identities are Representable] For any Local Type T , the identity map IdT is repre-
sentable in ResMlpdT

1 .

Proof. Just take W (1)
0 = Id,W

(1)
1 =W

(2)
2 = 0, B

(1)
1 = B

(2)
2 = 0.

Proposition 4. [Equality is Representable] The equality function for any local type T is repre-
sentable in ResMlp2d2 , where d is the encoding dimension of T .

Proof. Let x, y ∈ T be the inputs. We encode them as ϕT (x), ϕT (y) ∈ Rd. The equality function
can be represented as:

feq(x, y) = min

(
1, A

d∑
i=1

|ϕT (x)i − ϕT (y)i|

)
,

where A is a large enough positive constant such that the RHS is either 1 or 0.

This can be implemented in two-layer ResMLP with dimension 2d.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Proposition 5. [Boolean NOT is Representable] The Boolean NOT function is representable in
ResMlp11.

Proof. It’s affine.

Proposition 6. [Boolean AND is Representable] The Boolean AND function is representable in
ResMlp21.

Proof. Represent each Boolean value as a binary flag within a 1-dimensional vector. Then AND is
just taking the minimum. By min(a, b) = b− σReLU (b− a), we’re done.

Proposition 7. [Boolean OR is Representable] The Boolean OR function is representable in
ResMlp21.

Proof. Represent each Boolean value as a binary flag within a 1-dimensional vector. Then OR is
just taking the maximum. By max(a, b) = a+ σReLU (b− a), we’re done.

Proposition 8. [THEN_SOME is Representable] The function Bool::then_some : Bool × T →
Option T returns Some t if the boolean is true and None otherwise. This function is representable

in ResMlpd+1
1 .

Proof. Encode the boolean as a binary flag in a (d+ 1)-dimensional vector, where the first compo-
nent indicates the boolean value and the remaining d components hold the value of type T . The
residual MLP fresmlp constructs the output Option T by assembling the flag and the value split into
positive and negative parts influenced by the flag:

fresmlp(X) =

(
x1

σReLU (x2:d+1 −Ax1)− σReLU (−x2:d+1 −Ax1)

)
.

Here, A is a vector of dimension d with all entries positive and large enough to ensure proper
thresholding. Specifically, each entry of A should be larger than the maximum absolute value that
can be represented in the corresponding dimension of type T . This ensures that when x1 = 1, the
subtraction x2:d+1 −A will always be negative, and when x1 = 0, it will not affect the value.

When the flag is true (x1 = 1), σReLU (x2:d+1 −A) = 0 and σReLU (−x2:d+1 −A) retains the
negated value, resulting in Some t . When the flag is false (x1 = 0), both ReLU terms preserve the
value, yielding None . Thus, fresmlp effectively implements Bool::then_some within a single layer
of the MLP.

Proposition 9. [Option Or is Representable] Let T be a local type, let Option::or be the function

that maps two values a,b of type Option T to a value c of type Option T such that c is equal to a

when a is not none, and equal to b otherwise. Then Option::or is representable in ResMlp
2(d+1)
1 .

Proof. Each Option T is represented as a (d+ 1)-dimensional vector, where the first component is
a binary flag indicating the presence (1 for Some , 0 for None), and the remaining d components
encode the value. Given inputs a, b ∈ Option T , the residual MLP fresmlp processes the concatenated
vector

X =

aflag
aval
bflag
bval

 .

The MLP is designed to separate bval into positive and negative parts (b+, b− respectively) influenced
by aflag. Specifically, it computes:

fresmlp(X) = aval + σReLU (b+ −Aaflag)− σReLU (b− −Aaflag)

= aval + σReLU (bval −Aaflag)− σReLU (−bval −Aaflag),
(13)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

ϕT (x)
L1 layers

MLP
ϕS(f(x))

L2 layers
MLP

ϕR(g(f(x)))

Figure 3: Transformation from ϕT (x) to ϕS(f(x)) to ϕR(g(f(x))) with MLP layers.

where A is a vector with large positive entries that ensures the ReLU activation zeroes out the non-
selected parts based on the flag. When aflag = 1, the terms involving b are suppressed, resulting in
c = a. Conversely, when aflag = 0, the positive part of b remains, effectively selecting b. Thus,
fresmlp accurately implements the Option::or function, demonstrating that it is representable within

ResMlp
2(d+1)
1 .

Proposition 10 (Field Access Is Representable in ResMlp). For algebraic data type, either struct
field access, enum discriminator, and variant field access can be represented in ResMlpd1 where d is
the encoding dimension.

Proof. Obvious because these operations are linear.

Proposition 11. [Composition of Functions Representable in ResMlp] For local types T ,S,R, with
maps f : T → S and map g : S → R representable in ResMlpd1

L1
and ResMlpd2

L2
respectively.

Then g ◦ f is representable in ResMlp
max{d1,d2}
L1+L2

.

Proof. Obvious by using the first L1 layers to map from T to S and using the rest L2 layers to map
from S to R. The process can be visualized as in Figure 3.

Proposition 12. [Computation Graph of Functions Representable in ResMlp] Let G be a com-
putation graph, with each vertex v being of some local type Tv , and the construction functions are
representable in ResMlpdv

Lv
. For convenience, if v is a source vertex, dv is defined to be the encoding

dimension of Tv and Lv = 0. Then the function induced by the computation graph is representable
in ResMlp

∑
v∈G dv

Depth(G)(maxv∈G Lv+1)+1.

Proof. We construct a global residual multi-layer perceptron (ResMLP) that simulates the com-
putation graph G by aggregating and updating the states of all vertices simultaneously. Let
D =

∑
v∈G dv be the total dimension, where dv is the dimension associated with vertex v. The

global ResMLP will have a depth of Depth(G)(maxv Lv + 1).

Consider the concatenated state vector X(t) ∈ RD, which is a concatenation of the states of all
vertices:

X(t) =
(
X(t)

v

)
v∈G

,

where X(t)
v ∈ Rdv is the state of vertex v at layer t.

Initialization occurs at depth zero, corresponding to the source vertices of the computation graph.
The state vector X(0) is set by assigning the input vectors to the source vertices and initializing all
other vertices to zero. Formally, if V0 denotes the set of source vertices, then:

X(0)
v =

{
xv if v ∈ V0,

0 otherwise,

where xv ∈ Rdv is the input to source vertex v. Because X(0)
v is of dimensionality dv equal to the

encoding dimension, this agrees with our convention for representing functions over local types.

We proceed inductively over the depth levels of the computation graph. For each depth level k =
1, 2, . . . ,Depth(G), we perform the following steps in the global ResMLP.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

1. Input Aggregation Layer. We apply a linear transformation to gather the outputs from the
predecessor vertices of each vertex at depth k and feed them as inputs to these vertices.
Specifically, we define a linear mapping W (k)

agg ∈ RD×D such that:

X̃(tk) =W (k)
agg X

(tk−1),

where tk−1 is the layer after processing depth k − 1, and X̃(tk) is the aggregated input
for the vertices at depth k. The matrix W (k)

agg rearranges and combines the outputs from
predecessor vertices to provide the correct inputs to each vertex at depth k. Specifically,
for each vertex v at depth k, and for each predecessor u of v in the computation graph, the
matrix W (k)

agg contains entries that copy the output of u into the input positions of v. All
other entries in W (k)

agg are set to zero or identity as appropriate.

2. Local Computation Layers. For each vertex v at depth k, we simulate its local ResMLP of
depth Lv . Since the depths Lv may vary, we pad the local ResMLPs to have a uniform
depth L = maxv Lv by adding identity mappings where necessary. The updates for vertex
v are computed as:

X(tk+1)
v = X̃(tk)

v + ffcnv

(
X̃(tk)

v

)
,

X(tk+k′)
v = X(tk+k′−1)

v + ffcnv

(
X(tk+k′−1)

v

)
, for k′ = 2, . . . , Lv,

X(tk+k′)
v = X(tk+k′−1)

v , for k′ = Lv + 1, . . . , L.

Here, ffcnv denotes the single-layer fully connected network (as per Definition 7) for vertex
v.

3. State Update. After completing the local computations for depth k, we update the global
state vector X(tk+L) by concatenating the updated states of all vertices:

X(tk+L) =
(
X(tk+L)

v

)
v∈G

.

The total number of layers added for depth k is L + 1, accounting for the input aggregation layer
and the L layers simulating the local ResMLPs.

By repeating this process for each depth level k = 1, 2, . . . ,Depth(G), we simulate the entire
computation graph within a global ResMLP of depth Depth(G)(maxv Lv + 1).

Lastly, we use the final layer to perform a linear mapping so that the output is in the correct linear
representation, clearing out the intermediate values.

Therefore, the function computed by the global ResMLP is equivalent to the function induced by
the computation graph G, and it is representable in ResMlpDDepth(G)(maxv Lv+1).

Remark 5. We only prove things around MLPs here. Later, we shall show that this will imply that
the induced map operation over sequences can be represented by transformers.

D.6 FUNCTIONS OVER GLOBAL TYPES

The task we want transformers to express is too complicated to be cleanly described in one shot. So
we introduce the following lemma to significantly simplify things. The lemma shall be useful for
our future papers on this topic.

Proposition 13. [Composition of Functions Representable in Transformers] For local types T , S,
R, with maps f : T ∗ → S∗ and g : S∗ → R∗ representable in Tfd1

H1,L1
and Tfd2

H2,L2
respectively.

Then the composition g ◦ f is representable in Tf
max{d1,d2}
max{H1,H2},L1+L2

.

Proof. This is basically the same as the proof of Proposition 11.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Proposition 14. [Computation Graphs of Functions Representable in Transformers] Suppose we
have a computation graph G = (V,E) with types Tv = T ∗

v together with encoding map ψv : Tv →
Rdv and decoding map ϕv : Rdv → Tv , satisfying ϕv ◦ ψv ≡ idTv

, and there exists some positive
integer d0 such that for each v ∈ V , fv can be represented in

TfdHv,Lv

Let f be the function generated by the computation graph. Then f can be represented in TfdH,L if

d ≥
∑

v dv +Hd0, L ≥ |G|
H + dG where dG is the depth of the graph.

Remark 6. This doesn’t really cover the above. The bound in Proposition 14 isn’t always tight for
model dimension when the computation graph is deep and Proposition 13 complements it.

Proof. WLOG, assume that d =
∑

v∈V dv +Hd0. Then

Rd =

(⊕
v∈V

Rdv

)
︸ ︷︷ ︸

C

⊕

⊕
h∈[H]

Rd0

︸ ︷︷ ︸

A

. (14)

Here C stands for "cache" used for storing computed values, and A stands for "active" used for
storing intermediate computation results.

Make an order of all the nodes in the graph, say V =
{
v1, . . . , v|G|

}
such that Depth(vi) ≤

Depth(vj) if i ≤ j.

We now imagine the transformer computation process as gradually evaluating the value of each
vertex, starting from v1 to v|G|. Every maxv Lv layers form a layer group, and after each layer
group, at mostH vertices are assigned values. The equation 14 implies that we have enough memory
to cache the computed values and intermediate values in small transformers.

Now let this process continue until we compute all the values. It must be finite because after each
layer group, at least one of the vertices is computed. But this bound is too loose. We claim the
following:

Claim: the number of layer groups where less than H vertices are assigned values is smaller than
Depth(G).

Sketch of Proof of Claim: for any layer group where less than H vertices are assigned, all the
vertices that aren’t assigned after this layer group must have larger depth than any vertices that are
assigned values before this layer group, otherwise such a vertice can be evaluated in this layer group.
Define the depth of any layer group to be the smallest depth of vertices evaluated in this layer group.
Then for any unsatiated layer group, it must have a larger depth than the previous layer group. But
depth can only increase Depth(G) times, thus there are at most Depth(G) unsatiated layer groups.

Proof of Claim: let V1, . . . , Vl be the vertices evaluated at each layer group. Note that l is a different
symbol than L and means that the number of layer groups rather than the number of layers.

For convenience, let Di be the minimum of the depths of vertices in Vi.

Suppose that the ith layer group is unsatiated, then i < l. We want to show that Di < Di+1.
Suppose otherwise, i.e., Di = Di+1. Because the ith layer group is unsatiated, for any v ∈ Vi+1,
v must have dependencies that haven’t been evaluated before the ith layer group. Choose v0 ∈
Vi, v1 ∈ Vi+1 such that Depth(v0) = Depth(v1) = Di = Di+1. Note that any dependency of v1
must have smaller depths than v0, then must have already be evaluated before the ith layer group.
Contradiction!

Now given the claim, we have that for all but at most Depth(G) choices of i = 1, . . . , l, we have
|Vi| = H , then we have

|G| =
l∑

i=1

|Vi| ≥ (l −Depth(G))H (15)

Then l ≤ |G|
H +Depth(G).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Then L ≤ l ·maxv∈G Lv =
(

|G|
H +Depth(G)

)
maxv∈G.

Proposition 15. [Nearest Left/Right] For any local type T , consider the function that maps a
sequence of type Option<T> to nearest left/right neighbors that are not none. It’s representable in

Tfd+1
1,1

Proof. There is only one layer and one head needed, so we can omit the layer and head index.

WLOG, we consider the nearest left case.

We just need to make the attention exponential look like this:

Q⊤
p Kp′ + λΨp′−p = aflag,p′ − 1p′−p>0, (16)

where aflag,p′ ∈ {0, 1} indicates whether the value at position p′ is some or none.

We set Vp′ to represent the value of type Option<T> .

For the starter token p0, we make it such that

Q⊤
p Kp0

+ λΨp0−p = 1, (17)

and
Vp0

= 0, (18)

so that when there are no some to the left, it will give us none.

Proposition 16. [Nearest Two Left/Right] For any local type T , consider the function that maps a
sequence of type Option<T> to nearest two left/right neighbors that are not none. It’s representable

in Tf
O(d)
O(1),O(1) where d is the encoding dimension of T .

Proof. We can utilize Proposition 15 and 14.

The nearest two left or right is equivalent to first computing the nearest left/right, and then packing
them together into one and compute its nearest left/right. The process is represented by a small
constant computation graph, then we’re done.

D.7 SYNTAX AND SEMANTICS OF CYBERTRON

Having laid the necessary mathematical foundation behind Cybertron, we now turn to explaining
its surface—its syntax and semantics. Cybertron serves as a syntax sugar for expressing local
and global computation graphs, which are the vehicles used to demonstrate the expressive power of
transformers. In Cybertron, computations are divided into two layers: the local world and the global
world. These layers play distinct but complementary roles in constructing computation graphs.

D.7.1 LOCAL WORLD

The local world in Cybertron corresponds to the feed-forward layers of a transformer, focusing on
computations over local types. Local types represent individual tokens or data points, and compu-
tations in this world handle operations on tokens independently of their surrounding context.

Data Types. Local types in Cybertron include basic types such as Bool , Idx , Pos , Fin<n> ,
BoundedVec<T, N> , etc. These types are essential for building local computation graphs that operate

over individual tokens. Compound types, like structs and enums, can also be defined for more
complex token representations. These types serve as the building blocks for the local computation
graphs that transform data at the token level.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

1 struct Node {
2 id: Idx,
3 position: Pos,
4 }
5
6 enum Operation {
7 Add {
8 lhs: Pos,
9 rhs: Pos,

10 },
11 Multiply {
12 factor: Pos,
13 },
14 }

Functions. Functions in the local world define operations upon information over individual tokens.
These operations form nodes in the local computation graphs. For instance, operations like binary
or unary expressions, conditionals, and matches on token types are transformed into computation
graphs by handling each individual token’s data.

1 fn process_ast(ast: AstData) -> Option<Role> {
2 match ast {
3 AstData::LetInit { pattern, initial_value, .. } => {
4 Some(Role::LetStmt { pattern, initial_value })
5 }
6 AstData::Defn { keyword, ident, .. } => {
7 Some(match keyword {
8 DefnKeyword::Struct => Role::StructDefn(ident),
9 DefnKeyword::Enum => Role::EnumDefn(ident),

10 DefnKeyword::Fn => Role::FnDefn(ident),
11 })
12 }
13 _ => None,
14 }
15 }

Control Flow. In the local world, control flow structures such as if and match are transformed
into computation graphs by treating each branch or arm as an expression that returns an Option

based on conditions. These Option values are then combined using the Option::or function. Ac-
cording to Proposition 9, Option::or maps two Option<T> values and returns the first non- None
value, or the second one otherwise. This allows conditional branches to be represented in com-
putation graphs as sequential option evaluations, where the first matching condition provides the
result.

D.7.2 GLOBAL WORLD

The global world extends beyond individual tokens to sequences of tokens, represented as global
types. These global types are denoted as Seq<T> , where T is a local type. The global world
represents the full transformer, focusing on operations involving sequences of tokens, including
variable definitions, expressions involving variable references, and function calls.

Variable Definitions. Variables in the global world are defined using global types, which represent
sequences of local tokens. These definitions correspond to nodes in the global computation graph.

Expressions. Expressions in the global world consist of references to variables or function calls.
Since the global world operates over sequences of tokens, these expressions are translated into
sequence-level operations in the computation graph.

Function Calls. Function calls are key elements of the global world. They are represented by
applying global functions to sequences of tokens. Cybertron provides map functions to elevate
local functions to global functions by mapping them across sequences. Additionally, attention
methods like nearest_left and nearest_right handle dependencies between tokens in the sequence
by identifying relationships based on their positions.

1 let result = seq_of_values.nearest_left();

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

In the global world, computation graphs are built by composing map functions and attention meth-
ods. These graphs, unlike those in the local world, do not include control flow mechanisms.

D.8 DYCK LANGUAGE

This section demonstrates how the local world in Cybertron operates over token-level computations
and how the global world handles sequence-level operations. We use a Dyck language example to
explain the interactions between these two worlds. The example processes a sequence of delimiters
(like parentheses) and checks for matching pairs.

Local World. In Cybertron, the local world operates on individual tokens. Here, the local types
are simple, such as Delimiter and PreAst , which represent information associated with individual
tokens. These types allow for token-level operations like comparisons and transformations.

We define a struct to represent a delimiter and an enum to classify delimiters as either left or right.
These definitions reflect local types, as they hold information over a single token.

1 // Define a struct ‘Delimiter‘ that wraps a ‘u8‘ value.
2 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
3 pub struct Delimiter(u8);
4
5 // Define an enum ‘PreAst‘ which represents a left or right delimiter.
6 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
7 pub enum PreAst {
8 LeftDelimiter(Delimiter),
9 RightDelimiter(Delimiter),

10 }

Here, the local types Delimiter and PreAst define operations upon individual tokens, representing
fundamental units of the computation graph at the local level. The local world is responsible for
handling these small, token-level computations independently of the global sequence.

Global World. In the global world, Cybertron operates on sequences of tokens, treating the col-
lection of local types as a single unit of computation. The global world introduces global types such
as Seq<Option<PreAst>> , which represents a sequence of optional delimiters. The global world han-
dles sequence-level operations by applying functions like nearest_left and nearest_right to capture
the relationships between tokens in the sequence.

The following function operates on a sequence of PreAst , reducing matched pre-asts. The recursive
application of step gives us the classifier for Dyck language.

1 fn step(pre_asts: Seq<Option<PreAst>>) -> Seq<Option<PreAst>> {
2 let pre_asts_nearest_left = pre_asts.nearest_left();
3 let pre_asts_nearest_right = pre_asts.nearest_right();
4 step_aux.apply(pre_asts_nearest_left, pre_asts, pre_asts_nearest_right)
5 }

Local Worlds. The step_aux function matches tokens based on their nearest neighbors within the
sequence, eliminating pre-asts if a match is found.

1 fn step_aux(
2 pre_ast_nearest_left: Option<(Idx, PreAst)>,
3 pre_ast: Option<PreAst>,
4 pre_ast_nearest_right: Option<(Idx, PreAst)>
5) -> Option<PreAst> {
6 match pre_ast? {
7 PreAst::LeftDelimiter(delimiter) => match pre_ast_nearest_right {
8 Some((_, PreAst::RightDelimiter(delimiter1))) if delimiter1 == delimiter =>

None,
9 _ => pre_ast,

10 },
11 PreAst::RightDelimiter(delimiter) => match pre_ast_nearest_left {
12 Some((_, PreAst::LeftDelimiter(delimiter1))) if delimiter1 == delimiter =>

None,
13 _ => pre_ast,
14 },
15 }
16 }

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

In this example, the global function step uses nearest_left and nearest_right to capture sequence-
level dependencies, while the local function step_aux uses conditional logic to check for matching
pairs of delimiters. The local world handles token-level logic, while the global world coordinates
operations across the entire sequence. This separation reflects how Cybertron handles computations
at different levels of granularity.

Thus, this example illustrates how Cybertron leverages both the local and global worlds to build
comprehensive computation graphs in a convenient, comprehensive yet rigorous manner. The local
world performs individual tokenwise operations, and the global world captures relationships be-
tween tokens in a sequence, demonstrating how Cybertron enables transformers to express complex
computations.

E MINI-HUSKY DETAILS

Here’s the BNF grammar of the Mini-Husky language:

⟨ast⟩ ::= ⟨literal⟩
| ⟨ident⟩
| ⟨prefix⟩
| ⟨binary⟩
| ⟨suffix⟩
| ⟨delimited⟩
| ⟨separated_item⟩
| ⟨call⟩
| ⟨let_init⟩
| ⟨if_stmt⟩
| ⟨else_stmt⟩
| ⟨defn⟩

⟨literal⟩ ::= ...

⟨ident⟩ ::= ...

⟨prefix⟩ ::= ⟨prefix_opr⟩ ⟨ast⟩
⟨binary⟩ ::= ⟨ast⟩ ⟨binary_opr⟩ ⟨ast⟩
⟨suffix⟩ ::= ⟨ast⟩ ⟨suffix_opr⟩
⟨delimited⟩ ::= ⟨left_delimiter⟩ ⟨separated_item⟩* ⟨right_delimiter⟩
⟨separated_item⟩ ::= [⟨ast⟩] ⟨separator⟩
⟨call⟩ ::= ⟨ast⟩ ⟨left_delimiter⟩ ⟨ast⟩* ⟨right_delimiter⟩
⟨let_init⟩ ::= let ⟨ast⟩
⟨if_stmt⟩ ::= if ⟨ast⟩ ⟨delimited⟩
⟨else_stmt⟩ ::= ⟨if_stmt⟩ else (⟨delimited⟩ | ⟨else_stmt⟩)
⟨defn⟩ ::= ⟨defn_keyword⟩ ⟨ident⟩ ⟨ast⟩
⟨prefix_opr⟩ ::= + | - | ! | ...

⟨binary_opr⟩ ::= + | - | * | / | ...

⟨suffix_opr⟩ ::= ++ | -- | ...

⟨left_delimiter⟩ ::= ‘(’ | [| {

⟨right_delimiter⟩ ::= ‘)’ |] | }

⟨separator⟩ ::= , | ;

⟨defn_keyword⟩ ::= def | fn | ...

Below is a sample piece of codes:
1 struct Dog { weight: f32, .. }
2
3 fn see_vet(dog: Dog) -> f32 {
4 assert dog.weight < 100;
5 let mut fee = dog.weight * 10.0;

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

6 fee +=100.0;
7 return fee
8 }

It should be noted that the above is not the full story. There are additional constraints put on the
ASTs. However, these can be easily implemented as tree functions that are easy for transformers to
express. As we are focusing on higher level language processing capabilities, we ignore the details
here.

Additionally, we need to require that for semantic correctness, we must have proper symbol resolu-
tion and type correctness.

E.1 ADDITIONAL DETAILS ABOUT COMPILER TASKS.

The outputs of the tasks are defined using Cybertron as follows:

• The construction of AST task’s final output is the collection all AST nodes. More concretely,
the output is a sequence of Option<Ast> with length equal to the input token sequence’s length,
where Option<Ast> denoted the type Ast will a null value added and Ast is the type storing the
information of a node, including its parent, and its data of type AstData . In Cybertron, we define
Ast and AstData explicitly as follows:

1 /// Represents a node in an Abstract Syntax Tree (AST).
2 ///
3 /// Each ‘Ast‘ node has a reference to its parent node (if any) and holds
4 /// the associated syntax data (such as expressions, statements, or other
5 /// constructs defined in the ‘AstData‘ enum).
6 pub struct Ast {
7 /// The index of the parent node in the AST, if it exists.
8 ///
9 /// - ‘Some(Idx)‘: The node has a parent, and ‘Idx‘ represents its position.

10 /// - ‘None‘: The node is the root or does not have a parent.
11 pub parent: Option<Idx>,
12 /// The data associated with this AST node.
13 pub data: AstData,
14 }
15
16 /// Enumeration representing different types of Abstract Syntax Tree (AST) nodes
17 pub enum AstData {
18 /// Represents a literal value (e.g., integer, string)
19 Literal(Literal),
20 /// Represents an identifier (e.g., variable name)
21 Ident(Ident),
22 /// Represents a binary expression (e.g., ‘x + y‘, ‘a * b‘)
23 Binary {
24 /// Index of the left operand
25 lopd: Idx,
26 /// Operator in the binary expression (e.g., ‘+‘, ‘*‘)
27 opr: BinaryOpr,
28 /// Index of the right operand
29 ropd: Idx,
30 },
31 ... // other variants
32 }

• The output of the symbol resolution task is the collection of symbol resolution results
on all applicable tokens. More concretely, the output is a sequence of values of type
Option<SymbolResolution> where Option<SymbolResolution> is the type SymbolResolution with

a null value added for non-applicability and SymbolResolution is the type storing the result of the
symbol resolution, being either a success with a resolved symbol of type Symbol or a failure with
an error of type SymbolResolutionError . In Cybertron, we define SymbolResolution explicitly as
follows:

1 // an enum type definition, basically a tagged union type
2 pub enum SymbolResolution {
3 Ok(Symbol), // enum type variant for success with a resolved symbol
4 Err(SymbolResolutionError), // enum type variant for failure with an error
5 }

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

• The type analysis task’s final output is the collection of all type errors. More concretely, the output
is a sequence of Option<TypeError> , where Option<TypeError> denoted the type TypeError will
a null value added and TypeError is the type storing the information of a type error. The position
of type errors agrees with the source tokens leading to these errors. In Cybertron, we define
TypeError explicitly as follows:

1 // This enum represents various kinds of type errors
2 pub enum TypeError {
3 // This variant indicates a type mismatch
4 // ‘expected‘ is the type that was anticipated
5 // ‘actual‘ is the type that was encountered
6 TypeMismatch { expected: Type, actual: Type },
7 }

One can expand the definition to include other kinds of type errors.

(1) Type definition. Types are either identified uniquely by a single identifier like <identifier> , or
builtin generic types Option<<identifier>> or Vec<<identifier>> . Users can define custom types
without generics like the following (f32 means float32 and i32 means int32 below):

1 struct Dog { weight: f32 }
2
3 enum Animal {
4 Dog,
5 Cat,
6 }

This part is actually a part of the AST task and type definition is a variant of the AstData type:

1 /// Enumeration representing different types of Abstract Syntax Tree (AST) nodes
2 pub enum AstData {
3 ...
4 /// Represents a function or variable definition
5 ///
6 /// # defn
7 ///
8 Defn {
9 /// The keyword in the definition (e.g., ‘fn‘, ‘enum‘)

10 keyword: DefnKeyword,
11 /// Index of the identifier in the definition
12 ident_idx: Idx,
13 /// The identifier being defined (e.g., function name, variable name)
14 ident: Ident,
15 /// Index of the content or body of the definition
16 content: Idx,
17 },
18 }

(2) Type specification. Each appeared variable has a unique type, either by specification or specu-
lation. All parameters of a function must be specified explicitly by users. Variables defined by let
statements might or might not be specified, as follows:

1 fn f(a: i32) { // type of ‘a‘ must be specified
2 let x: i32 = a; // type of ‘x‘ specified
3 let y = a; // type of ‘y‘ unspecified
4 }

The return type of functions must be specified. The field type of structs and enum variants must be
specified. the type of expressions of function calls and field access will be determined correspond-
ingly.

The output of the task is the collection of all type signatures, represented as a sequence of values of
type Option<TypeSignature> where TypeSignature is the type holding the essential information of
type specifications. In Cybertron, TypeSignature is defined as,

1 pub struct TypeSignature {
2 pub key: TypeSignatureKey,
3 pub ty: Type,
4 }
5
6 pub enum TypeSignatureKey {

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

7 FnParameter { fn_ident: Ident, rank: Rank },
8 FnOutput { fn_ident: Ident },
9 StructField { ty_ident: Ident, field_ident: Ident },

10 }

(3) Type inference. As discussed above, not all variables have their types specified.
1 fn f() {
2 let x: i32 = 1;
3 let y = x;
4 let z = y;
5 }

In the above code, 1 is an ambiguous literal that can be of type i32 , i64 , u32 , u64 , etc, and
the types of y and z is not specified. However, one easily sees that there exists one and only one
choice of the types of 1 , y , and z such that the whole code is type correct. Utilizing this property,
the user can opt out of a significant portion of type specification, achieving static guarantees.

A Type Inference Algorithm: For simplicity, we shall prove transformers can implement a simple
type inference algorithm: we maintain a table of type assignments for variables. We update the
entries of the table by means of reduction, i.e., assuming the whole code is correctly typed and infer
more and more unspecified types until we encounter errors or all types are inferred. The process is
largely parallel, and we call the number of rounds needed the depth of type inference.

In the above code, the first round, we determine that the type of both 1 and the type of y are equal
to the type of x which is i32 . But we have no way to determine the type of z because the type
of y is unknown at the first round. In the second round, z can be determined to be of type i32
because the type of y is already inferred.

The output of the task is the collection all types inferred, represented as a sequence of values of type
Option<TypeInference> where TypeInference is the type holding the inferred type. In Cybertron,
TypeSignature is defined as,

1 pub struct TypeInference {
2 pub ty: Type,
3 }

F TRANSFORMER AST PROOF

F.1 HIGH LEVEL OVERVIEW

Here we give the full details of the proof of transformers being able to parse ASTs.

On a high level, we are going to see the parsing of ASTs as an assembly process. First, we im-
mediately get the atomic ones, like identifiers, literals, etc. Then we assembly all composite ASTs
with enough precedence util all tokens are consumed. We can prove that at the nth round, all ASTs
with depth no more than n are already constructed. In the process, we must keep track of the un-
consumed tokens and newly constructed ASTs (to be consumed as children for new ASTs in the
next round, as we are going bottom up). We use pre_asts to denote all the unconsumed tokens and
newly constructed ASTs and use asts to denote all the constructed(allocated) ASTs. For correctness
guarantees, we give detailed type specifications for tokens, ASTs, and PreASTs as follows.

We define the Token type as follows:
1 /// The ‘Token‘ enum represents the various types of tokens that can be
2 /// identified during the lexical analysis phase of a compiler. Each variant
3 /// corresponds to a specific category of token that can be encountered
4 /// in the source code.
5 pub enum Token {
6 /// A literal value, which can be a number, string, or other primitive type.
7 Literal(Literal),
8 /// A reserved keyword in the language, such as ‘if‘, ‘else‘, ‘while‘, etc.
9 Keyword(Keyword),

10 /// An identifier, typically representing variable names, function names,

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

11 /// or other user-defined symbols.
12 Ident(Ident),
13 /// An operator, such as ‘+‘, ‘-‘, ‘*‘, ‘==‘, etc., representing mathematical
14 /// or logical operations.
15 Opr(Opr),
16 /// A left delimiter, such as ‘(‘, ‘{‘, ‘[‘, used to denote the beginning of
17 /// a block, list, or expression.
18 LeftDelimiter(LeftDelimiter),
19 /// A right delimiter, such as ‘)‘, ‘}‘, ‘]‘, used to denote the end of a
20 /// block, list, or expression.
21 RightDelimiter(RightDelimiter),
22 /// A separator, such as ‘,‘ or ‘;‘, used to separate elements in a list or
23 /// statements in a block.
24 Separator(Separator),
25 }

The type has an encoding dimenion dToken = Θ(logL), which is large enough to faithfully represent
its information.

More specifically, the types Literal , Keyword , Ident , Opr , LeftDelimiter , RightDelimiter ,
Separator are local types assumed to have encoding dimension less than dToken. Keyword , Opr ,
LeftDelimiter , RightDelimiter , Separator are small, so they can be encoded in a straight-forward

manner entirely using dToken. However, Literal and Ident are larger than representable by a lim-
ited number of bits because potentially a Literal can be a string literal of arbitrary length and an
Ident can also be of arbitrary length. This can be solved through methods like interning, which

gives all literals and identifiers that actually appear in the input distinct encodings. As the context
length is L, the number of different literals/identifiers are bounded by context length and interning
needs O(dToken) = O(logL) to work. As far as our theories are concerned, it’s totally reasonable to
assume that all these types are assumed to have encoding dimension less than dToken = O(logL).

We define AST type as follows:
1 /// Represents a node in an Abstract Syntax Tree (AST).
2 ///
3 /// Each ‘Ast‘ node has a reference to its parent node (if any) and holds
4 /// the associated syntax data (such as expressions, statements, or other
5 /// constructs defined in the ‘AstData‘ enum).
6 pub struct Ast {
7 /// The index of the parent node in the AST, if it exists.
8 ///
9 /// - ‘Some(Idx)‘: The node has a parent, and ‘Idx‘ represents its position.

10 /// - ‘None‘: The node is the root or does not have a parent.
11 pub parent: Option<Idx>,
12 /// The data associated with this AST node.
13 ///
14 /// This field holds the actual syntax information, which is typically
15 /// defined by the ‘AstData‘ enum. This could represent literals, expressions,
16 /// statements, and other constructs in the source language.
17 pub data: AstData,
18 }

Note that we intentionally structure the tree by always storing the parent but not necessarily storing
all children information. In our assumptions, we only control the depth of ASTs but don’t control
the number of children. More specifically, a function can have as many statements as possible. To
avoid overflowing, we don’t store all children information. As we shall see, parent information alone
is enough for transformers to perform tree operations.

The AstData is the most complicated we define in this paper, as follows:

1 /// Enumeration representing different types of Abstract Syntax Tree (AST) nodes
2 pub enum AstData {
3 /// Represents a literal value (e.g., integer, string)
4 Literal(Literal),
5 /// Represents an identifier (e.g., variable name)
6 Ident(Ident),
7 /// Represents a prefix expression (e.g., ‘!x‘, ‘-x‘)
8 ///
9 /// # exprs

10 ///
11 Prefix {
12 /// Operator in the prefix expression (e.g., ‘!‘, ‘-‘)
13 opr: PrefixOpr,

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

14 /// Operand index of the expression
15 opd: Idx,
16 },
17 /// Represents a binary expression (e.g., ‘x + y‘, ‘a * b‘)
18 Binary {
19 /// Index of the left operand
20 lopd: Idx,
21 /// Operator in the binary expression (e.g., ‘+‘, ‘*‘)
22 opr: BinaryOpr,
23 /// Index of the right operand
24 ropd: Idx,
25 },
26 /// Represents a suffix expression (e.g., ‘x++‘, ‘y--‘)
27 Suffix {
28 /// Index of the operand
29 opd: Idx,
30 /// Operator in the suffix expression (e.g., ‘++‘, ‘--‘)
31 opr: SuffixOpr,
32 },
33 /// Represents a delimited expression (e.g., ‘(x + y)‘, ‘{a, b, c}‘)
34 Delimited {
35 /// Index of the left delimiter in the expression
36 left_delimiter_idx: Idx,
37 /// The left delimiter (e.g., ‘(‘, ‘{‘)
38 left_delimiter: LeftDelimiter,
39 /// The right delimiter (e.g., ‘)‘, ‘}‘)
40 right_delimiter: RightDelimiter,
41 },
42 /// Represents an item separated by a separator (e.g., elements in an array or list)
43 SeparatedItem {
44 /// Index of the content, if any
45 content: Option<Idx>,
46 /// The separator (e.g., ‘,‘, ‘;‘)
47 separator: Separator,
48 },
49 /// Represents a function call or array access (e.g., ‘f(...)‘, ‘a[...]‘)
50 ///
51 /// things like ‘f(...)‘ or ‘a[...]‘
52 Call {
53 /// Index of the caller (e.g., function or array)
54 caller: Idx,
55 /// The left delimiter of the call (e.g., ‘(‘, ‘[‘)
56 left_delimiter: LeftDelimiter,
57 /// The right delimiter of the call (e.g., ‘)‘, ‘]‘)
58 right_delimiter: RightDelimiter,
59 /// Index of the delimited arguments in the call
60 delimited_arguments: Idx,
61 },
62 /// Represents a ‘let‘ statement with an initialization (e.g., ‘let x = 5;‘)
63 ///
64 /// # stmts
65 ///
66 LetInit {
67 /// Index of the expression in the initialization
68 expr: Idx,
69 /// Index of the pattern being initialized
70 pattern: Idx,
71 /// Optional index of the initial value
72 initial_value: Option<Idx>,
73 },
74 /// Represents an ‘if‘ statement
75 If {
76 /// Index of the condition in the ‘if‘ statement
77 condition: Idx,
78 /// Index of the body of the ‘if‘ statement
79 body: Idx,
80 },
81 /// Represents an ‘else‘ statement
82 Else {
83 /// Index of the associated ‘if‘ statement
84 if_stmt: Idx,
85 /// Index of the body of the ‘else‘ statement
86 body: Idx,
87 },
88 /// Represents a function or variable definition
89 ///
90 /// # defn
91 ///
92 Defn {
93 /// The keyword in the definition (e.g., ‘fn‘, ‘enum‘)
94 keyword: DefnKeyword,

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

95 /// Index of the identifier in the definition
96 ident_idx: Idx,
97 /// The identifier being defined (e.g., function name, variable name)
98 ident: Ident,
99 /// Index of the content or body of the definition

100 content: Idx,
101 },
102 }

1 /// The ‘PreAst‘ enum represents the intermediate forms of tokens and ASTs that are
2 /// encountered during the parsing phase, before the final AST is constructed.
3 /// Each variant corresponds to a specific type of token or partial
4 /// AST node that contributes to the construction of the final AST.
5 #[derive(Clone, Copy, PartialEq, Eq)]
6 pub enum PreAst {
7 /// A reserved keyword in the language, such as ‘if‘, ‘else‘, ‘while‘, etc.
8 Keyword(Keyword),
9 /// An operator, such as ‘+‘, ‘-‘, ‘*‘, ‘==‘, etc., representing mathematical

10 /// or logical operations.
11 Opr(Opr),
12 /// A left delimiter, such as ‘(‘, ‘{‘, ‘[‘, used to denote the beginning of
13 /// a block, list, or expression.
14 LeftDelimiter(LeftDelimiter),
15 /// A right delimiter, such as ‘)‘, ‘}‘, ‘]‘, used to denote the end of a
16 /// block, list, or expression.
17 RightDelimiter(RightDelimiter),
18 /// A partially constructed AST node, representing a more complex structure
19 /// that will be further processed to build the final AST.
20 Ast(AstData),
21 /// A separator, such as ‘,‘ or ‘;‘, used to separate elements in a list or
22 /// statements in a block.
23 Separator(Separator),
24 }

1 /// this is beyond the scope of Cybertron
2 ///
3 /// rather a general Rust function to integrate for testing
4 pub fn calc_asts_from_input(input: &str, n: usize) -> (Seq<Option<PreAst>>,

Seq<Option<Ast>>) {
5 let tokens = tokenize(input);
6 let pre_asts = calc_pre_ast_initial_seq(tokens);
7 let allocated_asts: Seq<Option<Ast>> = tokens.map(|token| token.into());
8 reduce_n_times(pre_asts, allocated_asts, n)
9 }

The reduce function in Cybertron is designed to progressively refine sequences of pre-abstract
syntax trees (pre-ASTs) and allocated abstract syntax trees (ASTs). The function takes two input
sequences: pre_asts , which is a sequence of optional pre-ASTs, and allocated_asts , which is a
sequence of optional ASTs. It returns a tuple containing the reduced sequences of pre-ASTs and
allocated ASTs.

The reduction process is carried out in multiple stages, each focusing on different syntactic con-
structs:

1. reduce_by_opr : This step handles reduction by dealing with operators and their precedence.
It simplifies expressions involving operations to form more compact ASTs.

2. reduce_by_delimited : This step reduces constructs that are delimited, such as those involv-
ing parentheses, braces, or other grouping symbols. It ensures that delimited blocks are
properly nested and combined in the AST.

3. reduce_by_call : In this stage, function or method calls are reduced. This involves iden-
tifying and structuring calls within the AST, ensuring correct representation of function
invocations.

4. reduce_by_stmt : This reduction step addresses statements, ensuring that individual state-
ments are correctly parsed and represented within the AST, such as assignment statements,
loops, and conditionals.

5. reduce_by_defn : Finally, reduction by definition handles the parsing of definitions, such
as variable or function declarations. This step ensures that all definitions are correctly
represented within the AST.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

By sequentially applying these reduction steps, the reduce function progressively transforms the
initial sequences into their most refined forms, ready for further syntactic or semantic analysis.

1 pub fn reduce(
2 pre_asts: Seq<Option<PreAst>>,
3 allocated_asts: Seq<Option<Ast>>,
4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {
5 // Reduce ASTs by handling operators and precedence
6 let (pre_asts, allocated_asts) = reduce_by_opr(pre_asts, allocated_asts);
7
8 // Reduce ASTs by handling delimited constructs like parentheses or braces
9 let (pre_asts, allocated_asts) = reduce_by_delimited(pre_asts, allocated_asts);

10
11 // Reduce ASTs by handling function or method calls
12 let (pre_asts, allocated_asts) = reduce_by_call(pre_asts, allocated_asts);
13
14 // Reduce ASTs by handling statements, ensuring proper syntax structure
15 let (pre_asts, allocated_asts) = reduce_by_stmt(pre_asts, allocated_asts);
16
17 // Reduce ASTs by handling definitions, like variables or functions
18 let (pre_asts, allocated_asts) = reduce_by_defn(pre_asts, allocated_asts);
19
20 // Return the final reduced sequences of pre-ASTs and allocated ASTs
21 (pre_asts, allocated_asts)
22 }

1 pub fn reduce_n_times(
2 mut pre_asts: Seq<Option<PreAst>>,
3 mut allocated_asts: Seq<Option<Ast>>,
4 n: usize,
5) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {
6 for _ in 0..n {
7 let (pre_asts1, allocated_asts1) = reduce(pre_asts, allocated_asts);
8 pre_asts = pre_asts1;
9 allocated_asts = allocated_asts1;

10 }
11 (pre_asts, allocated_asts)
12 }

In the above definition, we actually used Rust’s mutable variable semantics. However, it’s straight-
forward to see that it translates to a computation graph that is a sequential composition of subgraphs
with sequential length n. Because the AST’s depth is bounded by D, we can just take n to be D.
Each subgraph is generated from the reduce function, then they are all constant graphs constructed
by global and local functions, then by Proposition 13,11 and 2 they translate to transformers with
O(logL+D) depth, model dimension, and number of heads, where logL comes from the encoding
of types like Token .

Below we give full details of the various reduction functions.

As these are implemented as Rust functions, they have been tested against a number of inputs. We
don’t guarantee an industry level of correctness, but the key point is well illustrated.

F.2 OPERATORS

In this section, we lay down the definition of reduce_by_opr .

1 pub(super) fn reduce_by_opr(
2 pre_asts: Seq<Option<PreAst>>,
3 allocated_asts: Seq<Option<Ast>>,
4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {
5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();
6 let pre_asts_nearest_right2 = pre_asts.nearest_right2();
7 let new_opr_asts = new_opr_ast.apply(pre_asts_nearest_left2, pre_asts,

pre_asts_nearest_right2);
8 let (pre_asts_reduced, new_parents) = reduce_pre_asts_by_opr(pre_asts, new_opr_asts);
9 let pre_asts = update_pre_asts_by_new_asts(pre_asts_reduced, new_opr_asts);

10 let allocated_asts =
11 allocate_asts_and_update_parents(allocated_asts, new_opr_asts, new_parents);
12 (pre_asts, allocated_asts)
13 }

1 /// a finite function
2 pub(crate) fn new_opr_ast(
3 nearest_left2: Option2<(Idx, PreAst)>,

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

4 current: Option<PreAst>,
5 nearest_right2: Option2<(Idx, PreAst)>,
6) -> Option<AstData> {
7 let Some(PreAst::Opr(opr)) = current else {
8 return None;
9 };

10 match opr {
11 Opr::Prefix(opr) => {
12 let Some((opd, PreAst::Ast(_))) = nearest_right2.first() else {
13 return None;
14 };
15 if let Some((_, ast)) = nearest_right2.second() {
16 match ast {
17 PreAst::Keyword(_) => (),
18 PreAst::Opr(right_opr) => match right_opr {
19 Opr::Prefix(_) => (),
20 Opr::Binary(right_opr) => {
21 // every binary opr in our small language is left associative,

so ‘<‘ instead of ‘<=‘
22 if right_opr.precedence() > opr.precedence() {
23 return None;
24 }
25 }
26 Opr::Suffix(right_opr) => {
27 if right_opr.precedence() > opr.precedence() {
28 return None;
29 }
30 }
31 },
32 PreAst::Ast(_) => (),
33 // function call or index takes higher precedence
34 PreAst::LeftDelimiter(_) => return None,
35 PreAst::RightDelimiter(_) => (),
36 PreAst::Separator(_) => (),
37 }
38 };
39 Some(AstData::Prefix { opr, opd })
40 }
41 Opr::Binary(opr) => {
42 let Some((lopd, PreAst::Ast(_))) = nearest_left2.first() else {
43 return None;
44 };
45 let Some((ropd, PreAst::Ast(_))) = nearest_right2.first() else {
46 return None;
47 };
48 if let Some((_, ast)) = nearest_left2.second() {
49 match ast {
50 PreAst::Keyword(kw) => (),
51 PreAst::Opr(left_opr) => match left_opr {
52 Opr::Prefix(left_opr) => {
53 if left_opr.precedence() >= opr.precedence() {
54 return None;
55 }
56 }
57 Opr::Binary(left_opr) => {
58 /// every binary opr in our small language is left

associative, so ‘>=‘ instead of ‘>‘
59 if left_opr.precedence() >= opr.precedence() {
60 return None;
61 }
62 }
63 Opr::Suffix(_) => (), // actually this will be a syntax error
64 },
65 PreAst::Ast(_) => {
66 if opr != BinaryOpr::LightArrow {
67 return None;
68 }
69 }
70 PreAst::LeftDelimiter(_) => (),
71 PreAst::RightDelimiter(_) => return None,
72 PreAst::Separator(_) => (),
73 }
74 };
75 if let Some((_, ast)) = nearest_right2.second() {
76 match ast {
77 PreAst::Keyword(kw) => match kw {
78 Keyword::ELSE => return None,
79 _ => (),
80 },
81 PreAst::Opr(right_opr) => match right_opr {
82 Opr::Prefix(_) => (), // actually this will be a syntax error

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

83 Opr::Binary(right_opr) => {
84 /// every binary opr in our small language is left

associative, so ‘<‘ instead of ‘<=‘
85 if right_opr.precedence() > opr.precedence() {
86 return None;
87 }
88 }
89 Opr::Suffix(right_opr) => {
90 if right_opr.precedence() >= opr.precedence() {
91 return None;
92 }
93 }
94 },
95 // function call or index takes higher precedence
96 PreAst::LeftDelimiter(_) => return None,
97 PreAst::RightDelimiter(_) => (),
98 PreAst::Ast(_) => (),
99 PreAst::Separator(_) => (),

100 }
101 };
102 Some(AstData::Binary { lopd, opr, ropd })
103 }
104 Opr::Suffix(opr) => {
105 let Some((opd, PreAst::Ast(_))) = nearest_left2.first() else {
106 return None;
107 };
108 if let Some((_, ast)) = nearest_left2.second() {
109 match ast {
110 PreAst::Keyword(_) => (),
111 PreAst::Opr(right_opr) => match right_opr {
112 Opr::Prefix(right_opr) => {
113 if right_opr.precedence() > opr.precedence() {
114 return None;
115 }
116 }
117 Opr::Binary(right_opr) => {
118 /// every binary opr in our small language is left

associative, so ‘<‘ instead of ‘<=‘
119 if right_opr.precedence() > opr.precedence() {
120 return None;
121 }
122 }
123 Opr::Suffix(_) => (),
124 },
125 PreAst::LeftDelimiter(_) => (),
126 PreAst::RightDelimiter(_) => return None,
127 PreAst::Ast(_) => return None,
128 PreAst::Separator(_) => (),
129 }
130 };
131 Some(AstData::Suffix { opr, opd })
132 }
133 }
134 }

1 /// returns sequence of remaining PreAsts and new parent idxs
2 pub(crate) fn reduce_pre_asts_by_opr(
3 pre_asts: Seq<Option<PreAst>>,
4 new_asts: Seq<Option<AstData>>,
5) -> (Seq<Option<PreAst>>, Seq<Option<Idx>>) {
6 let new_asts_nearest_left = new_asts.nearest_left();
7 let pre_asts = reduce_pre_ast_by_new_ast.apply(pre_asts, new_asts);
8 let (pre_asts, new_parents) = reduce_pre_ast_by_opr_left
9 .apply_enumerated(new_asts_nearest_left, pre_asts)

10 .decouple();
11 let new_asts_nearest_right = new_asts.nearest_right();
12 reduce_pre_ast_by_opr_right
13 .apply_enumerated(new_asts_nearest_right, pre_asts, new_parents)
14 .decouple()
15 }

1 fn reduce_pre_ast_by_new_ast(pre_ast: Option<PreAst>, new_ast: Option<AstData>) ->
Option<PreAst> {

2 if new_ast.is_some() {
3 None
4 } else {
5 pre_ast
6 }
7 }

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

1 fn reduce_pre_ast_by_opr_left(
2 idx: Idx,
3 new_ast_nearest_left: Option<(Idx, AstData)>,
4 pre_ast: Option<PreAst>,
5) -> (Option<PreAst>, Option<Idx>) {
6 let Some(pre_ast) = pre_ast else {
7 return (None, None);
8 };
9 let Some((new_ast_idx, new_ast_data)) = new_ast_nearest_left else {

10 return (Some(pre_ast), None);
11 };
12 match new_ast_data {
13 AstData::Binary { ropd: opd, .. } | AstData::Prefix { opd, .. } if opd == idx => {
14 (None, Some(new_ast_idx))
15 }
16 _ => (Some(pre_ast), None),
17 }
18 }

1 fn reduce_pre_ast_by_opr_right(
2 idx: Idx,
3 new_ast_nearest_right: Option<(Idx, AstData)>,
4 pre_ast: Option<PreAst>,
5 new_parent: Option<Idx>,
6) -> (Option<PreAst>, Option<Idx>) {
7 let Some(pre_ast) = pre_ast else {
8 return (None, new_parent);
9 };

10 if let Some(new_parent) = new_parent {
11 return (None, Some(new_parent));
12 }
13 let Some((new_ast_idx, new_ast_data)) = new_ast_nearest_right else {
14 return (Some(pre_ast), None);
15 };
16 match new_ast_data {
17 AstData::Binary { lopd: opd, .. } | AstData::Suffix { opd, .. } if opd == idx => {
18 (None, Some(new_ast_idx))
19 }
20 _ => (Some(pre_ast), None),
21 }
22 }

F.3 STATEMENTS

In this section, we lay down the definition of reduce_by_stmt .

1 pub(super) fn reduce_by_stmt(
2 pre_asts: Seq<Option<PreAst>>,
3 allocated_asts: Seq<Option<Ast>>,
4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {
5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();
6 let pre_asts_nearest_right2 = pre_asts.nearest_right2();
7 let new_stmt_asts =
8 new_stmt_ast.apply(pre_asts_nearest_left2, pre_asts, pre_asts_nearest_right2);
9 let (pre_asts, new_parents) = reduce_pre_asts_by_stmt(pre_asts, new_stmt_asts);

10 let allocated_asts =
11 allocate_asts_and_update_parents(allocated_asts, new_stmt_asts, new_parents);
12 let pre_asts = update_pre_asts_by_new_asts(pre_asts, new_stmt_asts);
13 (pre_asts, allocated_asts)
14 }

1 fn new_stmt_ast(
2 pre_ast_nearest_left2: Option2<(Idx, PreAst)>,
3 pre_ast: Option<PreAst>,
4 pre_ast_nearest_right2: Option2<(Idx, PreAst)>,
5) -> Option<AstData> {
6 let PreAst::Keyword(Keyword::Stmt(kw)) = pre_ast? else {
7 return None;
8 };
9 match kw {

10 StmtKeyword::Let => {
11 let Some((idx1, PreAst::Ast(ast))) = pre_ast_nearest_right2.first() else {
12 return None;
13 };
14 if let Some((_, pre_ast)) = pre_ast_nearest_right2.second() {
15 match pre_ast {
16 PreAst::Keyword(_) => (),

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

17 PreAst::Opr(_) | PreAst::LeftDelimiter(_) => return None,
18 PreAst::RightDelimiter(_) => (),
19 PreAst::Ast(_) => return None,
20 PreAst::Separator(separator) => match separator {
21 Separator::Comma => return None,
22 Separator::Semicolon => (),
23 },
24 }
25 }
26 let (pattern, initial_value) = match ast {
27 AstData::Binary {
28 lopd,
29 opr: BinaryOpr::Assign,
30 ropd,
31 } => (lopd, Some(ropd)),
32 AstData::Ident(_)
33 | AstData::Prefix { .. }
34 | AstData::Binary { .. }
35 | AstData::Delimited { .. }
36 | AstData::Call { .. } => (idx1, None),
37 _ => return None,
38 };
39 Some(AstData::LetInit {
40 expr: idx1,
41 pattern,
42 initial_value,
43 })
44 }
45 StmtKeyword::If => {
46 let Some((condition, PreAst::Ast(ast1))) = pre_ast_nearest_right2.first() else

{
47 return None;
48 };
49 let Some((
50 body,
51 PreAst::Ast(AstData::Delimited {
52 left_delimiter: LCURL,
53 right_delimiter: RCURL,
54 ..
55 }),
56)) = pre_ast_nearest_right2.second()
57 else {
58 return None;
59 };
60 Some(AstData::If { condition, body })
61 }
62 StmtKeyword::Else => {
63 let Some((if_stmt, PreAst::Ast(AstData::If { .. }))) =

pre_ast_nearest_left2.first()
64 else {
65 return None;
66 };
67 let Some((
68 body,
69 PreAst::Ast(
70 AstData::Delimited {
71 left_delimiter: LCURL,
72 right_delimiter: RCURL,
73 ..
74 }
75 | AstData::If { .. }
76 | AstData::Else { .. },
77),
78)) = pre_ast_nearest_right2.first()
79 else {
80 return None;
81 };
82 if let Some((_, PreAst::Keyword(Keyword::ELSE))) =

pre_ast_nearest_right2.second() {
83 return None;
84 }
85 Some(AstData::Else { if_stmt, body })
86 }
87 }
88 }

1 fn reduce_pre_asts_by_stmt(
2 pre_asts: Seq<Option<PreAst>>,
3 new_asts: Seq<Option<AstData>>,
4) -> (Seq<Option<PreAst>>, Seq<Option<Idx>>) {
5 let new_asts_nearest_left = new_asts.nearest_left();

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

6 let new_asts_nearest_right = new_asts.nearest_right();
7 reduce_pre_ast_by_stmt
8 .apply_enumerated(new_asts_nearest_left, new_asts_nearest_right, pre_asts)
9 .decouple()

10 }

1 fn reduce_pre_ast_by_stmt(
2 idx: Idx,
3 new_ast_nearest_left: Option<(Idx, AstData)>,
4 new_ast_nearest_right: Option<(Idx, AstData)>,
5 pre_ast: Option<PreAst>,
6) -> (Option<PreAst>, Option<Idx>) {
7 if let Some((idx1, ast)) = new_ast_nearest_left {
8 match ast {
9 AstData::LetInit { expr, .. } if expr == idx => (None, Some(idx1)),

10 AstData::If {
11 condition, body, ..
12 } if condition == idx || body == idx => (None, Some(idx1)),
13 AstData::Else { body, .. } if body == idx => (None, Some(idx1)),
14 _ => (pre_ast, None),
15 }
16 } else if let Some((idx1, AstData::Else { if_stmt, .. })) = new_ast_nearest_right
17 && if_stmt == idx
18 {
19 (None, Some(idx1))
20 } else {
21 (pre_ast, None)
22 }
23 }

F.4 GENERALIZED CALL FORMS

In this section, we lay down the definition of reduce_by_call .

1 pub(super) fn reduce_by_call(
2 pre_asts: Seq<Option<PreAst>>,
3 allocated_asts: Seq<Option<Ast>>,
4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {
5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();
6 let pre_asts_nearest_right = pre_asts.nearest_right();
7 let new_call_asts =
8 new_call_ast.apply_enumerated(pre_asts_nearest_left2, pre_asts_nearest_right);
9 let (pre_asts, new_parents) = reduce_pre_asts_by_call(pre_asts, new_call_asts);

10 let allocated_asts =
11 allocate_asts_and_update_parents(allocated_asts, new_call_asts, new_parents);
12 let pre_asts = update_pre_asts_by_new_asts(pre_asts, new_call_asts);
13 (pre_asts, allocated_asts)
14 }

1 fn new_call_ast(
2 idx: Idx,
3 pre_ast_nearest_left2: Option2<(Idx, PreAst)>,
4 pre_ast_nearest_right: Option<(Idx, PreAst)>,
5) -> Option<AstData> {
6 let (caller, PreAst::Ast(caller_ast)) = pre_ast_nearest_left2.first()? else {
7 return None;
8 };
9 let (

10 delimited_arguments,
11 PreAst::Ast(AstData::Delimited {
12 left_delimiter_idx,
13 left_delimiter,
14 right_delimiter,
15 }),
16) = pre_ast_nearest_right?
17 else {
18 return None;
19 };
20 if let Some((_, snd)) = pre_ast_nearest_left2.second() {
21 match snd {
22 PreAst::Keyword(kw) => match kw {
23 Keyword::Defn(kw) => match kw {
24 DefnKeyword::Struct | DefnKeyword::Enum => return None,
25 DefnKeyword::Fn => match left_delimiter.delimiter() {
26 Delimiter::Parenthesis | Delimiter::Box => return None,
27 Delimiter::Curly => (),
28 },

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

29 },
30 Keyword::Stmt(kw) => match kw {
31 StmtKeyword::Let => (),
32 StmtKeyword::If => match left_delimiter.delimiter() {
33 Delimiter::Parenthesis | Delimiter::Box => (),
34 Delimiter::Curly => return None,
35 },
36 StmtKeyword::Else => return None,
37 },
38 },
39 PreAst::Opr(opr) => match opr {
40 Opr::Prefix(_) | Opr::Binary(_) => match left_delimiter.delimiter() {
41 Delimiter::Parenthesis | Delimiter::Box => (),
42 Delimiter::Curly => return None,
43 },
44 Opr::Suffix(_) => return None,
45 },
46 PreAst::LeftDelimiter(_) => (),
47 PreAst::RightDelimiter(_) => return None,
48 PreAst::Ast(snd_ast) => {
49 if let AstData::Ident(_) = snd_ast
50 && left_delimiter == LCURL
51 {
52 match caller_ast {
53 AstData::Binary {
54 opr: BinaryOpr::LightArrow,
55 ..
56 }
57 | AstData::Delimited {
58 left_delimiter: LPAR,
59 right_delimiter: RPAR,
60 ..
61 } => (),
62 _ => return None,
63 }
64 } else {
65 return None;
66 }
67 }
68 PreAst::Separator(_) => (),
69 }
70 }
71 if left_delimiter_idx != idx {
72 return None;
73 }
74 Some(AstData::Call {
75 caller,
76 delimited_arguments,
77 left_delimiter,
78 right_delimiter,
79 })
80 }

1 fn reduce_pre_asts_by_call(
2 pre_asts: Seq<Option<PreAst>>,
3 new_asts: Seq<Option<AstData>>,
4) -> (Seq<Option<PreAst>>, Seq<Option<Idx>>) {
5 let new_asts_nearest_left = new_asts.nearest_left();
6 let new_asts_nearest_right = new_asts.nearest_right();
7 reduce_pre_ast_by_call
8 .apply_enumerated(new_asts_nearest_left, new_asts_nearest_right, pre_asts)
9 .decouple()

10 }

1 fn reduce_pre_ast_by_call(
2 idx: Idx,
3 new_ast_nearest_left: Option<(Idx, AstData)>,
4 new_ast_nearest_right: Option<(Idx, AstData)>,
5 pre_ast: Option<PreAst>,
6) -> (Option<PreAst>, Option<Idx>) {
7 if let Some((
8 idx1,
9 AstData::Call {

10 delimited_arguments,
11 ..
12 },
13)) = new_ast_nearest_left
14 && delimited_arguments == idx
15 {
16 (None, Some(idx1))

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

17 } else if let Some((idx1, AstData::Call { caller, .. })) = new_ast_nearest_right
18 && caller == idx
19 {
20 (None, Some(idx1))
21 } else {
22 (pre_ast, None)
23 }
24 }

F.5 DEFINITIONS

In this section, we lay down the definition of reduce_by_defn .

1 pub(super) fn reduce_by_defn(
2 pre_asts: Seq<Option<PreAst>>,
3 allocated_asts: Seq<Option<Ast>>,
4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {
5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();
6 let pre_asts_nearest_right2 = pre_asts.nearest_right2();
7 let new_defn_asts =
8 new_defn_ast.apply(pre_asts_nearest_left2, pre_asts, pre_asts_nearest_right2);
9 let (pre_asts, new_parents) = reduce_pre_asts_by_defn(pre_asts, new_defn_asts);

10 let allocated_asts =
11 allocate_asts_and_update_parents(allocated_asts, new_defn_asts, new_parents);
12 let pre_asts = update_pre_asts_by_new_asts(pre_asts, new_defn_asts);
13 (pre_asts, allocated_asts)
14 }

1 fn new_defn_ast(
2 pre_ast_nearest_left2: Option2<(Idx, PreAst)>,
3 pre_ast: Option<PreAst>,
4 pre_ast_nearest_right2: Option2<(Idx, PreAst)>,
5) -> Option<AstData> {
6 let PreAst::Keyword(Keyword::Defn(keyword)) = pre_ast? else {
7 return None;
8 };
9 {

10 let Some((ident_idx, PreAst::Ast(AstData::Ident(ident)))) =
pre_ast_nearest_right2.first()

11 else {
12 return None;
13 };
14 let Some((content, PreAst::Ast(content_ast))) = pre_ast_nearest_right2.second()

else {
15 return None;
16 };
17 match keyword {
18 DefnKeyword::Struct => match content_ast {
19 AstData::Delimited { .. } => (),
20 _ => return None,
21 },
22 DefnKeyword::Enum => match content_ast {
23 AstData::Delimited { .. } => (),
24 _ => return None,
25 },
26 DefnKeyword::Fn => match content_ast {
27 AstData::Call { .. } => (),
28 _ => return None,
29 },
30 }
31 Some(AstData::Defn {
32 keyword,
33 ident,
34 ident_idx,
35 content,
36 })
37 }
38 }

1 fn reduce_pre_asts_by_defn(
2 pre_asts: Seq<Option<PreAst>>,
3 new_asts: Seq<Option<AstData>>,
4) -> (Seq<Option<PreAst>>, Seq<Option<Idx>>) {
5 let new_asts_nearest_left = new_asts.nearest_left();
6 let new_asts_nearest_right = new_asts.nearest_right();
7 reduce_pre_ast_by_defn
8 .apply_enumerated(new_asts_nearest_left, new_asts_nearest_right, pre_asts)

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

9 .decouple()
10 }

1 fn reduce_pre_ast_by_defn(
2 idx: Idx,
3 new_ast_nearest_left: Option<(Idx, AstData)>,
4 new_ast_nearest_right: Option<(Idx, AstData)>,
5 pre_ast: Option<PreAst>,
6) -> (Option<PreAst>, Option<Idx>) {
7 if let Some((idx1, ast)) = new_ast_nearest_left {
8 match ast {
9 AstData::Defn {

10 keyword,
11 ident_idx,
12 ident,
13 content,
14 ..
15 } if ident_idx == idx || content == idx => (None, Some(idx1)),
16 _ => (pre_ast, None),
17 }
18 } else if let Some((idx1, AstData::Defn { .. })) = new_ast_nearest_right
19 && false
20 {
21 (None, Some(idx1))
22 } else {
23 (pre_ast, None)
24 }
25 }

G TRANSFORMER SYMBOL RESOLUTION PROOF

Here we lay down the code for symbol resolution. The actual process involves many details such as
computing ranks (the exact position of an AST node among its siblings), scopes, and roles (a more
precise version of AST, computed from its parent recursively), definitions and resolutions.

G.1 RANKS

1 #[derive(Debug, Default, PartialEq, Eq, Clone, Copy)]
2 pub struct Rank(u8);
3
4 impl Rank {
5 fn next(self) -> Self {
6 Self(self.0 + 1)
7 }
8 }
9

10 pub fn calc_ranks(asts: Seq<Option<Ast>>) -> Seq<Option<Rank>> {
11 let counts = asts.count_past_by_attention(asts, |ast, ast1| {
12 let Some(ast) = ast else { return false };
13 let Some(ast1) = ast1 else { return false };
14 ast.parent == ast1.parent
15 });
16 (|c: usize, ast| {
17 ast?;
18 Some(Rank(c.try_into().unwrap()))
19 })
20 .apply(counts, asts)
21 }
22
23 pub fn calc_ranks1(asts: Seq<Option<Ast>>, n: usize) -> Seq<Option<Rank>> {
24 let mut ranks: Seq<Option<Rank>> = asts.map(|_| None);
25 for _ in 0..n {
26 ranks = calc_sibling_indicies_step(asts, ranks);
27 }
28 ranks
29 }
30
31 fn calc_sibling_indicies_step(
32 asts: Seq<Option<Ast>>,
33 ranks: Seq<Option<Rank>>,
34) -> Seq<Option<Rank>> {
35 let previous_ranks = ranks.nearest_left_filtered_by_attention(asts, asts, |ast, ast1| {
36 let Some(ast) = ast else { return false };
37 let Some(ast1) = ast1 else { return false };
38 ast.parent == ast1.parent

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

39 });
40 let ranks = (|ast, rank, previous_rank: Option<Option<Rank>>| {
41 let _ = ast?;
42 if let Some(rank) = rank {
43 return Some(rank);
44 }
45 let Some(previous_rank) = previous_rank else {
46 return Some(Default::default());
47 };
48 Some(previous_rank?.next())
49 })
50 .apply(asts, ranks, previous_ranks);
51 ranks
52 }

In the above, count_past_by_attention that count is representable by transformers by utilizing directly
hard attention and the starter token. If the count is c, we shall get c/(c+1) from the attention directly.

G.2 SCOPES

1 const D: usize = 8usize;
2
3 pub struct Scope {
4 enclosing_blocks: BoundedVec<Idx, D>,
5 }
6
7 impl Scope {
8 pub fn from_ast(idx: Idx, ast: AstData, parent_scope: Scope) -> Self {
9 match ast {

10 AstData::Delimited {
11 left_delimiter_idx,
12 left_delimiter: LCURL,
13 right_delimiter: RCURL,
14 } => Self {
15 enclosing_blocks: parent_scope.enclosing_blocks.append(idx),
16 },
17 _ => parent_scope,
18 }
19 }
20
21 pub fn new(idx: Idx) -> Self {
22 Self {
23 enclosing_blocks: todo!(),
24 }
25 }
26
27 pub fn append(self, idx: Idx) -> Self {
28 Self {
29 enclosing_blocks: self.enclosing_blocks.append(idx),
30 }
31 }
32 }
33
34 impl Scope {
35 pub fn contains(self, other: Self) -> bool {
36 let len = self.enclosing_blocks.len();
37 if len > other.enclosing_blocks.len() {
38 return false;
39 }
40 for i in 0..len {
41 if self.enclosing_blocks[i] != other.enclosing_blocks[i] {
42 return false;
43 }
44 }
45 true
46 }
47 }
48
49 pub fn infer_scopes(asts: Seq<Option<Ast>>, n: usize) -> Seq<Option<Scope>> {
50 let mut scopes = initial_scope.apply_enumerated(asts);
51 for _ in 0..n {
52 let parent_scopes = parent_queries(asts, scopes);
53 scopes = infer_scopes_step(asts, parent_scopes, scopes);
54 }
55 scopes
56 }
57
58 fn initial_scope(idx: Idx, ast: Option<Ast>) -> Option<Scope> {

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

59 let ast = ast?;
60 if ast.parent.is_some() {
61 return None;
62 }
63 let scope = Scope::default();
64 Some(Scope::from_ast(idx, ast.data, scope))
65 }
66
67 fn infer_scopes_step(
68 asts: Seq<Option<Ast>>,
69 parent_scopes: Seq<Option<Scope>>,
70 scopes: Seq<Option<Scope>>,
71) -> Seq<Option<Scope>> {
72 infer_scope_step.apply_enumerated(asts, parent_scopes, scopes)
73 }
74
75 fn infer_scope_step(
76 idx: Idx,
77 ast: Option<Ast>,
78 parent_scope: Option<Scope>,
79 scope: Option<Scope>,
80) -> Option<Scope> {
81 if let Some(scope) = scope {
82 return Some(scope);
83 }
84 Some(Scope::from_ast(idx, ast?.data, parent_scope?))
85 }

G.3 ROLES

1 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
2 pub enum Role {
3 LetStmt {
4 pattern: Idx,
5 initial_value: Option<Idx>,
6 },
7 LetStmtInner {
8 pattern: Idx,
9 initial_value: Idx,

10 },
11 LetStmtIdent,
12 LetStmtTypedVariables {
13 variables: Idx,
14 ty: Idx,
15 },
16 StructDefn(Ident),
17 EnumDefn(Ident),
18 FnDefn(Ident),
19 FnDefnCallForm {
20 fn_ident: Ident,
21 scope: Scope,
22 },
23 FnParameters {
24 fn_ident: Ident,
25 has_return_ty: bool,
26 scope: Scope,
27 },
28 FnParametersAndReturnType {
29 fn_ident: Ident,
30 parameters: Idx,
31 scope: Scope,
32 return_ty: Idx,
33 },
34 FnBody(Ident),
35 StructFields(Ident),
36 FnParameter {
37 fn_ident: Ident,
38 rank: Rank,
39 ty: Idx,
40 fn_ident_idx: Idx,
41 scope: Scope,
42 },
43 FnParameterIdent {
44 scope: Scope,
45 },
46 FnParameterSeparated {
47 fn_ident: Ident,
48 rank: Rank,
49 scope: Scope,

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

50 },
51 FnParameterType {
52 fn_ident: Ident,
53 rank: Rank,
54 },
55 FnOutputType {
56 fn_ident: Ident,
57 },
58 StructField {
59 ty_ident: Ident,
60 field_ident: Ident,
61 ty_idx: Idx,
62 },
63 StructFieldType {
64 ty_ident: Ident,
65 field_ident: Ident,
66 },
67 TypeArgument,
68 TypeArguments,
69 StructFieldSeparated(Ident),
70 LetStmtVariablesType,
71 LetStmtVariables,
72 }

1 impl Ast {
2 fn role(self) -> Option<Role> {
3 match self.data {
4 AstData::LetInit {
5 expr,
6 pattern,
7 initial_value,
8 } => Some(Role::LetStmt {
9 pattern,

10 initial_value,
11 }),
12 AstData::Defn {
13 keyword,
14 ident_idx,
15 ident,
16 content,
17 } => Some(match keyword {
18 DefnKeyword::Struct => Role::StructDefn(ident),
19 DefnKeyword::Enum => Role::EnumDefn(ident),
20 DefnKeyword::Fn => Role::FnDefn(ident),
21 }),
22 _ => None,
23 }
24 }
25 }

1 pub fn calc_roles(
2 asts: Seq<Option<Ast>>,
3 scopes: Seq<Option<Scope>>,
4 n: usize,
5) -> Seq<Option<Role>> {
6 let mut roles: Seq<Option<Role>> = asts.map(|ast| ast?.role());
7 let ranks = calc_ranks(asts);
8 for _ in 0..n {
9 let parent_roles = parent_queries(asts, roles);

10 roles = calc_roles_step(asts, parent_roles, roles, ranks, scopes);
11 }
12 roles
13 }

1 fn calc_roles_step(
2 asts: Seq<Option<Ast>>,
3 parent_roles: Seq<Option<Role>>,
4 roles: Seq<Option<Role>>,
5 ranks: Seq<Option<Rank>>,
6 scopes: Seq<Option<Scope>>,
7) -> Seq<Option<Role>> {
8 calc_role_step.apply_enumerated(asts, parent_roles, roles, ranks, scopes)
9 }

1 fn calc_role_step(
2 idx: Idx,
3 ast: Option<Ast>,
4 parent_role: Option<Role>,
5 role: Option<Role>,

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

6 rank: Option<Rank>,
7 scope: Option<Scope>,
8) -> Option<Role> {
9 if let Some(role) = role {

10 return Some(role);
11 }
12 let ast = ast?;
13 if let Some(role) = ast.role() {
14 return Some(role);
15 }
16 match parent_role? {
17 Role::LetStmt {
18 pattern,
19 initial_value,
20 } => match ast.data {
21 AstData::Ident(ident) if idx == pattern => Some(Role::LetStmtIdent),
22 AstData::Binary {
23 lopd,
24 opr: BinaryOpr::Assign,
25 ropd,
26 lopd_ident,
27 } if lopd == pattern => Some(Role::LetStmtInner {
28 pattern,
29 initial_value: ropd,
30 }),
31 _ => None,
32 },
33 Role::LetStmtInner {
34 pattern,
35 initial_value,
36 } => {
37 if idx == pattern {
38 match ast.data {
39 AstData::Ident(ident) => Some(Role::LetStmtIdent),
40 AstData::Binary {
41 lopd,
42 lopd_ident,
43 opr,
44 ropd,
45 } => Some(Role::LetStmtTypedVariables {
46 variables: lopd,
47 ty: ropd,
48 }),
49 _ => todo!(),
50 }
51 } else {
52 None
53 }
54 }
55 Role::LetStmtIdent => todo!(),
56 Role::FnParameterIdent { scope } => todo!(),
57 Role::StructDefn(ident) => match ast.data {
58 AstData::Literal(_) => todo!(),
59 AstData::Ident(_) => None,
60 AstData::Prefix { opr, opd } => todo!(),
61 AstData::Binary {
62 lopd,
63 opr,
64 ropd,
65 lopd_ident,
66 } => todo!(),
67 AstData::Suffix { opd, opr } => todo!(),
68 AstData::Delimited {
69 left_delimiter_idx,
70 left_delimiter,
71 right_delimiter,
72 } => Some(Role::StructFields(ident)),
73 AstData::SeparatedItem { content, separator } => todo!(),
74 AstData::Call { .. } => todo!(),
75 AstData::LetInit {
76 expr,
77 pattern,
78 initial_value,
79 } => todo!(),
80 AstData::Return { result } => todo!(),
81 AstData::Assert { condition } => todo!(),
82 AstData::If { condition, body } => todo!(),
83 AstData::Else { if_stmt, body } => todo!(),
84 AstData::Defn {
85 keyword,
86 ident_idx,

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

87 ident,
88 content,
89 } => todo!(),
90 },
91 Role::EnumDefn(_) => None, // ad hoc
92 Role::FnDefn(fn_ident) => match ast.data {
93 AstData::Literal(_) => todo!(),
94 AstData::Ident(_) => None,
95 AstData::Prefix { opr, opd } => todo!(),
96 AstData::Binary {
97 lopd,
98 opr,
99 ropd,

100 lopd_ident,
101 } => todo!(),
102 AstData::Suffix { opd, opr } => todo!(),
103 AstData::Delimited {
104 left_delimiter_idx,
105 left_delimiter,
106 right_delimiter,
107 } => todo!(),
108 AstData::SeparatedItem { content, separator } => todo!(),
109 AstData::Call {
110 delimited_arguments,
111 ..
112 } => Some(Role::FnDefnCallForm {
113 fn_ident,
114 scope: match scope {
115 Some(scope) => scope.append(delimited_arguments),
116 None => Scope::new(delimited_arguments),
117 },
118 }),
119 AstData::LetInit {
120 expr,
121 pattern,
122 initial_value,
123 } => todo!(),
124 AstData::Return { result } => todo!(),
125 AstData::Assert { condition } => todo!(),
126 AstData::If { condition, body } => todo!(),
127 AstData::Else { if_stmt, body } => todo!(),
128 AstData::Defn {
129 keyword,
130 ident_idx,
131 ident,
132 content,
133 } => todo!(),
134 },
135 Role::FnDefnCallForm { fn_ident, scope } => match ast.data {
136 AstData::Literal(_) => todo!(),
137 AstData::Ident(_) => todo!(),
138 AstData::Prefix { opr, opd } => todo!(),
139 AstData::Binary {
140 lopd,
141 opr,
142 ropd,
143 lopd_ident,
144 } => {
145 if opr == BinaryOpr::LightArrow {
146 Some(Role::FnParametersAndReturnType {
147 fn_ident,
148 parameters: lopd,
149 return_ty: ropd,
150 scope,
151 })
152 } else {
153 unreachable!()
154 }
155 }
156 AstData::Suffix { opd, opr } => todo!(),
157 AstData::Delimited {
158 left_delimiter_idx,
159 left_delimiter,
160 right_delimiter,
161 } => match left_delimiter.delimiter() {
162 Delimiter::Parenthesis => Some(Role::FnParameters {
163 fn_ident,
164 has_return_ty: false,
165 scope,
166 }),
167 Delimiter::Box => todo!(),

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

168 Delimiter::Curly => Some(Role::FnBody(fn_ident)),
169 },
170 AstData::SeparatedItem { content, separator } => todo!(),
171 AstData::Call { .. } => todo!(),
172 AstData::LetInit {
173 expr,
174 pattern,
175 initial_value,
176 } => todo!(),
177 AstData::Return { result } => todo!(),
178 AstData::Assert { condition } => todo!(),
179 AstData::If { condition, body } => todo!(),
180 AstData::Else { if_stmt, body } => todo!(),
181 AstData::Defn {
182 keyword,
183 ident_idx,
184 ident,
185 content,
186 } => todo!(),
187 },
188 Role::FnParameters {
189 fn_ident, scope, ..
190 } => match ast.data {
191 AstData::Binary {
192 lopd,
193 opr,
194 ropd,
195 lopd_ident,
196 } => {
197 if opr == BinaryOpr::TypeIs {
198 Some(Role::FnParameter {
199 fn_ident,
200 fn_ident_idx: lopd,
201 rank: rank.unwrap(),
202 ty: ropd,
203 scope,
204 })
205 } else {
206 unreachable!()
207 }
208 }
209 AstData::SeparatedItem { .. } => Some(Role::FnParameterSeparated {
210 fn_ident,
211 rank: rank.unwrap(),
212 scope,
213 }),
214 _ => unreachable!(),
215 },
216 Role::FnBody(_) => None,
217 Role::StructFields(ty_ident) => match ast.data {
218 AstData::Binary {
219 lopd,
220 opr,
221 ropd,
222 lopd_ident,
223 } => {
224 assert_eq!(opr, BinaryOpr::TypeIs);
225 Some(Role::StructField {
226 ty_ident,
227 field_ident: lopd_ident.unwrap(),
228 ty_idx: ropd,
229 })
230 }
231 AstData::SeparatedItem { content, separator } => {
232 Some(Role::StructFieldSeparated(ty_ident))
233 }
234 _ => None,
235 },
236 Role::FnParameter {
237 fn_ident,
238 fn_ident_idx,
239 rank,
240 ty,
241 scope,
242 ..
243 } => {
244 if idx == ty {
245 Some(Role::FnParameterType { fn_ident, rank })
246 } else if idx == fn_ident_idx {
247 Some(Role::FnParameterIdent { scope })
248 } else {

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

249 None
250 }
251 }
252 Role::FnParameterSeparated {
253 fn_ident,
254 rank,
255 scope,
256 } => match ast.data {
257 AstData::Binary {
258 lopd,
259 opr,
260 ropd,
261 lopd_ident,
262 } => {
263 if opr == BinaryOpr::TypeIs {
264 Some(Role::FnParameter {
265 fn_ident,
266 fn_ident_idx: lopd,
267 rank,
268 ty: ropd,
269 scope,
270 })
271 } else {
272 unreachable!()
273 }
274 }
275 _ => unreachable!(),
276 },
277 Role::StructField {
278 ty_ident,
279 field_ident,
280 ty_idx,
281 } => {
282 if idx == ty_idx {
283 Some(Role::StructFieldType {
284 ty_ident,
285 field_ident,
286 })
287 } else {
288 None
289 }
290 }
291 Role::StructFieldSeparated(ty_ident) => match ast.data {
292 AstData::Binary {
293 lopd,
294 opr,
295 ropd,
296 lopd_ident,
297 } => {
298 assert_eq!(opr, BinaryOpr::TypeIs);
299 Some(Role::StructField {
300 ty_ident,
301 field_ident: lopd_ident.unwrap(),
302 ty_idx: ropd,
303 })
304 }
305 _ => unreachable!(),
306 },
307 Role::FnParameterType { .. } | Role::StructFieldType { .. } | Role::TypeArgument

=> {
308 match ast.data {
309 AstData::Delimited {
310 left_delimiter_idx,
311 left_delimiter,
312 right_delimiter,
313 } => Some(Role::TypeArguments),
314 _ => None,
315 }
316 }
317 Role::TypeArguments => match ast.data {
318 AstData::Ident(_) => Some(Role::TypeArgument),
319 AstData::Delimited {
320 left_delimiter_idx,
321 left_delimiter,
322 right_delimiter,
323 } => todo!(),
324 AstData::SeparatedItem { content, separator } => todo!(),
325 AstData::Call {
326 caller,
327 caller_ident,
328 left_delimiter,

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

329 right_delimiter,
330 delimited_arguments,
331 } => todo!(),
332 _ => None,
333 },
334 Role::FnParametersAndReturnType {
335 fn_ident,
336 parameters,
337 return_ty,
338 scope,
339 } => {
340 if idx == parameters {
341 Some(Role::FnParameters {
342 fn_ident,
343 has_return_ty: true,
344 scope,
345 })
346 } else if idx == return_ty {
347 Some(Role::FnOutputType { fn_ident })
348 } else {
349 unreachable!()
350 }
351 }
352 Role::FnOutputType { fn_ident } => todo!(),
353 Role::LetStmtTypedVariables { variables, ty } => {
354 if idx == variables {
355 Some(Role::LetStmtVariables)
356 } else if idx == ty {
357 Some(Role::LetStmtVariablesType)
358 } else {
359 unreachable!()
360 }
361 }
362 Role::LetStmtVariablesType => todo!(),
363 Role::LetStmtVariables => todo!(),
364 }
365 }

G.4 DEFNS

1 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
2 pub struct SymbolDefn {
3 pub symbol: Symbol,
4 pub scope: Option<Scope>,
5 }

1 pub fn calc_symbol_defns(
2 asts: Seq<Option<Ast>>,
3 scopes: Seq<Option<Scope>>,
4 n: usize,
5) -> Seq<Option<SymbolDefn>> {
6 let roles = calc_roles(asts, scopes, n);
7 calc_symbol_defn.apply_enumerated(asts, roles, scopes)
8 }

1 fn calc_symbol_defn(
2 idx: Idx,
3 ast: Option<Ast>,
4 role: Option<Role>,
5 scope: Option<Scope>,
6) -> Option<SymbolDefn> {
7 match ast?.data {
8 AstData::Ident(ident) => match role? {
9 Role::LetStmt { .. } => unreachable!(),

10 Role::LetStmtVariables | Role::LetStmtIdent => Some(SymbolDefn {
11 symbol: Symbol {
12 ident,
13 source: idx,
14 data: SymbolData::Variable,
15 },
16 scope,
17 }),
18 Role::FnParameterIdent { scope } => Some(SymbolDefn {
19 symbol: Symbol {
20 ident,
21 source: idx,
22 data: SymbolData::Variable,
23 },

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

24 scope: Some(scope),
25 }),
26 _ => None,
27 },
28 AstData::Defn {
29 keyword,
30 ident_idx,
31 ident,
32 content,
33 } => Some(SymbolDefn {
34 symbol: Symbol {
35 ident,
36 source: idx,
37 data: SymbolData::Item {
38 kind: keyword.into(),
39 },
40 },
41 scope,
42 }),
43 _ => None,
44 }
45 }

G.5 RESOLUTIONS

1 pub enum SymbolResolution {
2 Ok(Symbol),
3 Err(SymbolResolutionError),
4 }

1 pub enum SymbolResolutionError {
2 NotResolved,
3 NotYetDeclared(Symbol),
4 }

1 pub fn calc_symbol_resolutions(asts: Seq<Option<Ast>>, n: usize) ->
Seq<Option<SymbolResolution>> {

2 let scopes = infer_scopes(asts, n);
3 let symbol_defns = calc_symbol_defns(asts, scopes, n);
4 let idents = asts.map(|ast| match ast?.data {
5 AstData::Ident(ident) => Some(ident),
6 _ => None,
7 });
8 let symbols = symbol_defns
9 .map(|symbol_defn| Some(symbol_defn?.symbol))

10 .first_filtered_by_attention(
11 (|ident, scope| (ident, scope)).apply(idents, scopes),
12 symbol_defns,
13 |(ident, scope), symbol_defn| {
14 let Some(ident) = ident else { return false };
15 let Some(symbol_defn) = symbol_defn else {
16 return false;
17 };
18 if let Some(symbol_defn_scope) = symbol_defn.scope {
19 if !symbol_defn_scope.contains(scope.unwrap()) {
20 return false;
21 }
22 }
23 symbol_defn.symbol.ident == ident
24 },
25)
26 .map(|s| s.flatten());
27 finalize.apply_enumerated(idents, symbols)
28 }

In the above code, we use a somehow complicated attention which we should illustrate why it’s
representable by transformers. The essence is to prove symbol_defn_scope.contains(scope.unwrap())

can be represented as part of the inner product in Q⊤K. This can be done by looking closer to
what contains does. Consider two scopes, scope1 and scope2 , which are sequences of bracket ast
indices (can be null). The function returns true if the sequence of scope1 contains the sequence of
scope2 as prefix, which can be achieved by

∑
i x

⊤
i yi where xi, yi are the encoding of ith ast indices

of scope1 and scope2 after some transformations (different transformations because the function

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

is asymmetric) so that x⊤i yi = 0 if and only if either xi is a None or xi represents the same thing
as yi, and x⊤i yi < 0 otherwise. More concretely, if xi is a None, xi = 0 by choice, and equal to
(1, ui) otherwise where ui corresponds to the encoding of the ith ast index of scope1 ; if yi is a
None, yi = 0 by choice, and equal to (−1, vi) otherwise where A > 0 and vi corresponds to the
encoding of the ith ast index of scope2 . We should choose the encoding ui, vi such that u⊤i vi = 1

if and only if they encode the same index, which is obviously easy enough.
1 fn finalize(idx: Idx, ident: Option<Ident>, symbol: Option<Symbol>) ->

Option<SymbolResolution> {
2 let _ = ident?;
3 let Some(symbol) = symbol else {
4 return Some(SymbolResolution::Err(SymbolResolutionError::NotResolved));
5 };
6 match symbol.data {
7 SymbolData::Item { .. } => (),
8 SymbolData::Variable => {
9 if idx < symbol.source {

10 return Some(SymbolResolution::Err(
11 SymbolResolutionError::NotYetDeclared(symbol),
12));
13 }
14 }
15 }
16 Some(SymbolResolution::Ok(symbol))
17 }

H TRANSFORMER TYPE CHECKING PROOF

Here we lay down the code for type analysis. It should be noted that we didn’t completely implement
all the details. Things like struct fields, enum variant fields are left out. However, we already cover
the essential mechanism of type analysis, making it sufficient for proof purposes.

H.1 TYPE SIGNATURES

1 #[deri
2 ve(Debug, PartialEq, Eq, Clone, Copy)]
3 pub struct TypeSignature {
4 pub key: TypeSignatureKey,
5 pub ty: Type,
6 }

1 #[derive(Debug, PartialEq, Eq, Clone, Copy)]
2 pub enum TypeSignatureKey {
3 FnParameter { fn_ident: Ident, rank: Rank },
4 FnOutput { fn_ident: Ident },
5 StructField { ty_ident: Ident, field_ident: Ident },
6 }

1 pub(super) fn calc_ty_signatures(
2 asts: Seq<Option<Ast>>,
3 roles: Seq<Option<Role>>,
4 ty_terms: Seq<Option<Type>>,
5) -> Seq<Option<TypeSignature>> {
6 calc_ty_signature.apply(roles, ty_terms)
7 }

1 fn calc_ty_signature(role: Option<Role>, ty_term: Option<Type>) -> Option<TypeSignature> {
2 let key = match role? {
3 Role::FnParameterType { fn_ident, rank } => {
4 TypeSignatureKey::FnParameter { fn_ident, rank }
5 }
6 Role::StructFieldType {
7 ty_ident,
8 field_ident,
9 } => TypeSignatureKey::StructField {

10 ty_ident,
11 field_ident,
12 },
13 Role::FnOutputType { fn_ident } => TypeSignatureKey::FnOutput { fn_ident },
14 Role::FnParameters {
15 fn_ident,

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

16 has_return_ty: false,
17 scope,
18 } => {
19 let key = TypeSignatureKey::FnOutput { fn_ident };
20 let ty = Type::new_ident(Ident::new("unit"));
21 return Some(TypeSignature { key, ty });
22 }
23 _ => return None,
24 };
25 // put it here!
26 let ty = ty_term?;
27 Some(TypeSignature { key, ty })
28 }

H.2 TYPE INFERENCE

1 pub struct TypeInference {
2 pub ty: Type,
3 }

1 pub fn calc_ty_inferences(
2 asts: Seq<Option<Ast>>,
3 symbol_resolutions: Seq<Option<SymbolResolution>>,
4 roles: Seq<Option<Role>>,
5 ty_terms: Seq<Option<Type>>,
6 ty_signatures: Seq<Option<TypeSignature>>,
7 n: usize,
8) -> Seq<Option<TypeInference>> {
9 let mut ty_inferences = infer_tys_initial(asts, ty_signatures);

10 let mut ty_designations =
11 calc_initial_ty_designations(asts, roles, symbol_resolutions, ty_inferences,

ty_terms);
12 for _ in 0..n {
13 ty_inferences |= infer_tys_step(asts, symbol_resolutions, ty_inferences,

ty_designations);
14 ty_designations |= calc_ty_designations_step(roles, symbol_resolutions,

ty_inferences);
15 }
16 ty_inferences
17 }

1 fn infer_tys_initial(
2 asts: Seq<Option<Ast>>,
3 ty_signatures: Seq<Option<TypeSignature>>,
4) -> Seq<Option<TypeInference>> {
5 inference_literal_tys(asts).or(infer_fn_call_tys(asts, ty_signatures))
6 }

1 fn inference_literal_tys(asts: Seq<Option<Ast>>) -> Seq<Option<TypeInference>> {
2 asts.map(|ast| match ast?.data {
3 AstData::Literal(lit) => match lit {
4 Literal::Int(_) => Some(TypeInference {
5 ty: Type::new_ident(Ident::new("Int")),
6 }),
7 Literal::Float(_) => Some(TypeInference {
8 ty: Type::new_ident(Ident::new("Float")),
9 }),

10 },
11 _ => None,
12 })
13 }

1 fn infer_fn_call_tys(
2 asts: Seq<Option<Ast>>,
3 ty_signatures: Seq<Option<TypeSignature>>,
4) -> Seq<Option<TypeInference>> {
5 ty_signatures
6 .first_filtered_by_attention(asts, ty_signatures, |ast, ty_signature| {
7 let Some(ast) = ast else { return false };
8 let Some(TypeSignature {
9 key: TypeSignatureKey::FnOutput { fn_ident },

10 ..
11 }) = ty_signature
12 else {
13 return false;
14 };
15 match ast.data {

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

16 AstData::Call {
17 caller,
18 caller_ident,
19 left_delimiter,
20 right_delimiter,
21 delimited_arguments,
22 } if caller_ident == Some(fn_ident) => true,
23 _ => false,
24 }
25 })
26 .map(|ty_inference| {
27 Some(TypeInference {
28 ty: ty_inference??.ty,
29 })
30 })
31 }

H.3 TYPE EXPECTATIONS

1 pub struct TypeExpectation {
2 pub ty: Type,
3 pub source: TypeExpectationSource,
4 }

1 pub enum TypeExpectationSource {
2 CallArgument { caller_ident: Ident, rank: Rank },
3 }

1 pub fn calc_ty_expectations(
2 asts: Seq<Option<Ast>>,
3 ranks: Seq<Option<Rank>>,
4 ty_signatures: Seq<Option<TypeSignature>>,
5) -> Seq<Option<TypeExpectation>> {
6 let parent_asts = asts.index(asts.map(|ast| ast?.parent)).map(Option::flatten);
7 let grandparent_asts = asts
8 .index(parent_asts.map(|parent_ast| parent_ast?.parent))
9 .map(Option::flatten);

10 let ty_expectation_sources = calc_ty_expectation_source.apply(grandparent_asts, ranks);
11 let retrieved_ty_signatures = ty_signatures
12 .first_filtered_by_attention(
13 ty_expectation_sources,
14 ty_signatures,
15 |ty_expection_source, ty_signature| {
16 let Some(type_expectation_source) = ty_expection_source else {
17 return false;
18 };
19 let Some(type_signature) = ty_signature else {
20 return false;
21 };
22 match (type_expectation_source, type_signature.key()) {
23 (
24 TypeExpectationSource::CallArgument {
25 caller_ident,
26 rank: rank0,
27 },
28 TypeSignatureKey::FnParameter {
29 fn_ident,
30 rank: rank1,
31 },
32) if caller_ident == fn_ident && rank0 == rank1 => true,
33 _ => false,
34 }
35 },
36)
37 .map(Option::flatten);
38 (|ty_expectation_source: Option<TypeExpectationSource>,
39 retrieved_ty_signature: Option<TypeSignature>| {
40 Some(TypeExpectation {
41 ty: retrieved_ty_signature?.ty(),
42 source: ty_expectation_source?,
43 })
44 })
45 .apply(ty_expectation_sources, retrieved_ty_signatures)
46 }

1 fn calc_ty_expectation_source(
2 grandparent_ast: Option<Ast>,

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

3 rank: Option<Rank>,
4) -> Option<TypeExpectationSource> {
5 let grandparent_ast = grandparent_ast?;
6 let rank = rank?;
7 match grandparent_ast.data {
8 AstData::Call {
9 caller,

10 caller_ident: Some(caller_ident),
11 left_delimiter,
12 right_delimiter,
13 delimited_arguments,
14 } => Some(TypeExpectationSource::CallArgument { caller_ident, rank }),
15 _ => None,
16 }
17 }

H.4 TYPE ERRORS

1 pub enum TypeError {
2 TypeMismatch { expected: Type, actual: Type },
3 }

1 pub fn calc_ty_errors(
2 ty_inferences: Seq<Option<TypeInference>>,
3 ty_expectations: Seq<Option<TypeExpectation>>,
4) -> Seq<Option<TypeError>> {
5 calc_ty_error.apply(ty_inferences, ty_expectations)
6 }

1 fn calc_ty_error(
2 ty_inference: Option<TypeInference>,
3 ty_expectation: Option<TypeExpectation>,
4) -> Option<TypeError> {
5 let ty_inference = ty_inference?;
6 let ty_expectation = ty_expectation?;
7 if ty_inference.ty == ty_expectation.ty {
8 None
9 } else {

10 Some(TypeError::TypeMismatch {
11 expected: ty_expectation.ty,
12 actual: ty_inference.ty,
13 })
14 }
15 }

I LOWER BOUNDS

1 struct <ty-ident-1> {}
2 struct <ty-ident-2> {}
3 struct <ty-ident-3> {}
4 struct <ty-ident-4> {}
5
6 fn <f-ident-1>(a: <arg-ty-ident-1>) {}
7 fn <f-ident-2>(a: <arg-ty-ident-2>) {}
8 fn <f-ident-3>(a: <arg-ty-ident-3>) {}
9 fn <f-ident-4>(a: <arg-ty-ident-4>) {}

10
11 fn g() {
12 let x: <ty-ident> = ...;
13 <f-ident>(x);
14 }

I.1 LOWER BOUNDS FOR RNN: EASY BOUNDS DUE TO MEMORY

Proof of Theorem 4. Our proof resonates with the proof of Theorem 4.6 in Wen et al. (2024)
and Theorem 8 in Bhattamishra et al. (2024). For L,D,H ∈ N, suppose that D makes
MiniHuskyAnnotatedD,H to be nontrivial, i.e., one can define functions with one parameter and
use function calls. Simple calculations shows we can choose D = 7 and H = 1. If a RNN rep-
resents a function maps any token sequence of length L in MiniHuskyAnnotatedD,H to its type

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

errors represented as a sequence of values of type Option<TypeError> , then the memory right be-
fore type checking must store all previous type signatures, the number of which can be as many as
Ω(L) in the worst case. Assuming proper numerical discretization, the memorization of these type
signatures would require the memory size to be Ω(L) in the worst case.

J ADDITIONAL EXPERIMENT DETAILS

J.1 SETUPS

Model details are shown in Table 1, and other hyperparameters are shown in Table 2.

Table 1: Model specification
Specification Value
Transformer
- Hidden size (dh) {8k | 1 ≤ k ≤ 8} ∪ {240}
- Num attention heads 1
- Num hidden layers 8
- Intermediate size 2dh
- Max position embeddings ≤ 2048
RNN
- Hidden size {8k | 1 ≤ k ≤ 8} ∪ {256}
- Num layers 8

Table 2: Hyperparameters of experiments
Hyperparameter Value
Dataset
- (n, f, d) {(100000, 10, 3), (200000, 20, 5), (300000, 40, 10), (400000, 80, 20)}
- (a, c, v, e) (5, 5, 0.2, 0.5)
Number of epochs 80
Train batch size 512
Optimizer Adam
LR scheduler Linear warmup-decay
- Warmup min lr 1× 10−5

- Warmup max lr 1× 10−3

- Warmup steps 990

J.2 ADDITIONAL RESULTS

Figures 4,5,6,7 include other metrics (train loss, accuracies for expected type in validation set, and
validation loss) in the experiments. Note that for the expressive power of the models, training
accuracies are better indicators.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2025

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

tra
in

_lo
ss

n100000-f10-a5-c5-d3-v0.20-e0.50
rnn
transformer

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

va
l_e

xp
ec

te
d_

ty
pe

_a
cc

n100000-f10-a5-c5-d3-v0.20-e0.50

rnn
transformer

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

va
l_l

os
s

n100000-f10-a5-c5-d3-v0.20-e0.50
rnn
transformer

Figure 4: Figures for the dataset with (f, a, c, d, v, e) = (10, 5, 5, 3, 0.2, 0.5).

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

tra
in

_lo
ss

n200000-f20-a5-c5-d3-v0.20-e0.50
rnn
transformer

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

va
l_e

xp
ec

te
d_

ty
pe

_a
cc

n200000-f20-a5-c5-d3-v0.20-e0.50

rnn
transformer

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

va
l_l

os
s

n200000-f20-a5-c5-d3-v0.20-e0.50
rnn
transformer

Figure 5: Figures for the dataset with (f, a, c, d, v, e) = (20, 5, 5, 3, 0.2, 0.5).

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

tra
in

_lo
ss

n300000-f40-a5-c5-d5-v0.20-e0.50
rnn
transformer

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

va
l_e

xp
ec

te
d_

ty
pe

_a
cc

n300000-f40-a5-c5-d5-v0.20-e0.50

rnn
transformer

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

va
l_l

os
s

n300000-f40-a5-c5-d5-v0.20-e0.50
rnn
transformer

Figure 6: Figures for the dataset with (f, a, c, d, v, e) = (40, 5, 5, 5, 0.2, 0.5).

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

tra
in

_lo
ss

n400000-f80-a5-c5-d10-v0.20-e0.50
rnn
transformer

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400
0.0

150016001700
1e4#Params

va
l_e

xp
ec

te
d_

ty
pe

_a
cc

n400000-f80-a5-c5-d10-v0.20-e0.50

rnn
transformer

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

150016001700
1e4#Params

va
l_l

os
s

n400000-f80-a5-c5-d10-v0.20-e0.50
rnn
transformer

Figure 7: Figures for the dataset with (f, a, c, d, v, e) = (80, 5, 5, 10, 0.2, 0.5).

66

	Introduction
	Related Work
	Preliminaries
	Programming Language Processing and The Target C-Like Language: Mini-Husky
	Expressive Power of Transformers as Efficient Compilers
	Abstract Syntax Tree Construction
	Symbol Resolution
	Type Analysis
	Proof Vehicle: Cybertron, a Domain-Specific Language

	Comparisons between Transformers and RNN
	A Lower Bound for RNNs for Type Checking
	Empirical Comparison between Transformers and RNNs

	Conclusion
	Acknowledgement
	Tree
	What are Trees
	Representations of Trees

	Context Free Grammar
	Neural Architectures
	Cybertron
	Introduction
	Philosophy: Sequential Representation of Everything
	Local and Global Types
	Computation Graph
	Functions over Local Types
	Functions over Global Types
	Syntax and Semantics of Cybertron
	Local World
	Global World

	Dyck Language

	Mini-Husky Details
	Additional Details about Compiler Tasks.

	Transformer AST Proof
	High Level Overview
	Operators
	Statements
	Generalized Call Forms
	Definitions

	Transformer Symbol Resolution Proof
	Ranks
	Scopes
	Roles
	Defns
	Resolutions

	Transformer Type Checking Proof
	Type Signatures
	Type Inference
	Type Expectations
	Type Errors

	Lower Bounds
	Lower bounds for RNN: Easy Bounds due to Memory

	Additional Experiment Details
	Setups
	Additional Results

