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Abstract

Domain-specific languages (DSLs) are integral to various software workflows.
Such languages offer domain-specific optimizations and abstractions that improve
code readability and maintainability. However, leveraging these languages requires
developers to rewrite existing code using the specific DSL’s API. While large
language models (LLMs) have shown some success in automatic code transpilation,
none of them provide any functional correctness guarantees on the transpiled
code. Another approach for automating this task is verified lifting, which relies
on program synthesis to find programs in the target language that are functionally
equivalent to the source language program. While several verified lifting tools have
been developed for various application domains, they are specialized for specific
source-target languages or require significant expertise in domain knowledge to
make the search efficient. In this paper, leveraging recent advances in LLMs, we
propose an LLM-based approach (LLMLIFT) to building verified lifting tools. We
use the LLM’s capabilities to reason about programs to translate a given program
into its corresponding equivalent in the target language. Additionally, we use LLMs
to generate proofs for functional equivalence. We develop lifting-based compilers
for four different DSLs targeting different application domains. Our approach not
only outperforms previous symbolic-based tools in both the number of benchmarks
transpiled and transpilation time, but also requires significantly less effort to build.

1 Introduction

Domain-specific languages (DSLs) have gained popularity due to their ability to provide optimizations
and abstractions that improve code readability and performance in specific domains. Examples of
recent DSLs include Spark (distributed computing), NumPy (array processing), TACO (tensor
processing), and P4 (network packet processing). With new DSLs emerging for diverse application
domains and programming languages, developers often face the task of manually rewriting existing
code to incorporate these languages into their existing workflows. This manual rewriting process can
be tedious, may introduce bugs into the code, and may fail to preserve the semantics of the starting
code. This problem of transforming and compiling code from one programming language to another
is called transpilation. The question we address in this paper is: can large language models (LLMs)
correctly and automatically perform code transpilation?

A particularly useful form of code transpilation, termed lifting, involves translating code in a somewhat
lower-level, general-purpose language to equivalent code in a DSL. Lifting allows developers to port
code to DSLs from which efficient code can be generated for special-purpose hardware, such as
GPUs, machine learning accelerators, or network processors. Therefore, significant effort has been
dedicated to developing tools aimed at automating the task of lifting. Rule-based approaches rely
on traditional pattern-matching techniques [1]; however, describing these rules can be a complex,
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human-intensive task. An alternative are search-based techniques that leverage advances in program
synthesis (e.g., see [2, 3, 4]) and formal verification over the last two decades. The use of verified
program synthesis for lifting, termed verified lifting, involves searching for a program in the DSL
and subsequently formally verifying its semantic equivalence to the source program. Verified
lifting has been successfully applied in building compilers [5, 6, 7, 8] for DSLs like Spark, SQL,
Halide, and TACO. Contemporary program synthesis approaches can be broadly classified into two
categories: symbolic and neural. Traditionally, symbolic techniques such as enumerative, deductive,
and constraint-based synthesis strategies have been used for implementing the search. More recently,
neural networks [9] have been trained and leveraged to accelerate the search process. Despite their
successes, both symbolic and neural approaches have common drawbacks: 1) The synthesizer is
customized for each DSL, making them challenging to adapt for new DSLs, and 2) Significant effort is
required to design the synthesizer, including domain-specific heuristics for symbolic approaches and
the generation of parallel corpora ⟨source, target⟩ for ML-based approaches, to enable generalization
and scalability for the target DSL.

Large Language Models (LLMs) [10, 11] have emerged as a promising approach for tackling complex
programming tasks, including code generation, repair, and testing. However, generating reliable code
with formal correctness guarantees with LLMs remains challenging. Most work on LLMs either
focuses on generating code without correctness guarantees [12, 13, 14] or separately on producing
proof annotations (such as invariants) for given code [15, 16]. Additionally, formal verification tools
often have their own specialized languages (e.g., SMT-LIB, Dafny) for encoding verification problems
and specifications. These languages are typically low-resource in the training datasets of LLMs,
making it challenging for the models to generate code in these formal verification languages directly.
To leverage LLMs for building verified lifting compilers, we must address two key constraints:
generalization to new DSLs and providing correctness guarantees for the generated code.

In this work, we investigate the use of LLMs for verified lifting (VL). Our approach, called LLMLIFT,
takes inspiration from the core technique of VL, which involves translating the source program to
a higher-level intermediate representation (IR) that describes the semantics of the DSL operators.
Once the synthesized code is verified, it is then translated to the concrete syntax of the DSL using
rewrite rules. We leverage the reasoning capabilities of LLMs to translate code from context to an IR.
We instruct the model via a prompt to generate code using the operators of the DSL, with Python
serving as the IR to encode the semantics of these operators. Python’s significant representation in
the training datasets of LLMs makes it a suitable choice for this purpose. In addition to generating
the DSL program, we also prompt the model to generate a proof of correctness for the program. To
the best of our knowledge, our approach is the first to leverage LLMs to generate both code and
proof annotations together. To verify the functional equivalence of the generated program to the
given source program for all program states, we translate both the generated program and the proof
to the syntax of an automated theorem prover. This step ensures that the synthesized code is formally
verified and can be trusted to be correct. Our evaluation (section Sec. 3) shows that LLMLIFT
has significant advantages over traditional search-based symbolic VL-based tools. It solves 7 more
benchmarks, requires substantially less effort in terms of LoC (1000×), and is faster in generating
verified code and proofs (6× on average) .

In summary, this paper makes the following novel contributions

1. We introduce the first technique for formally-verified code transpilation using LLMs.
2. Our approach uses Python as an IR for code generation, thus eliminating the need for specialized

DSL-specific training data or fine-tuning of LLMs.
3. Our method eliminates the need for manual encoding of domain-specific heuristics, thus simplify-

ing the process of verified lifting by reducing the human effort required in traditional techniques.
4. We propose an approach to generate not only the lifted code but also a proof of correctness for the

generated code. This integration of LLMs with verification oracles guarantees the correctness of
the generated code, a crucial aspect that sets our approach apart from other work on LLM-based
code generation.

5. We show the effectiveness of our approach (Sec. 4) by constructing compilers for four DSLs
spanning various application domains. In terms of accuracy, our LLM-based compilers achieve
comparable performance to existing tools and, in some domains, outperforms the prior approaches.

2 Background
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1 vector<vector<int>> test(
2 vector<vector<int>> b,
3 vector<vector<int>> a) {
4 vector<vector<int>> out;
5 for (int row = 0; row < b.size(); row++) {
6 vector<int> row_vec;
7 for (int col = 0; col < b[0].size(); col++) {
8 int pixel = b[row][col] + a[row][col] - 255;
9 row_vec.push_back(pixel);}

10 out.push_back(row_vec);}
11 return out;}

(a) Source Code (S).

1 def matrix_add(a: List[List[int]], b: List[List[int]])
2 -> List[List[int]]:
3 return (
4 []
5 if len(a) < 1
6 or not len(a) == len(b)
7 or vec_add(a[0], b[0]) ==[]
8 else [
9 vec_add(a[0], b[0]),

10 *matrix_add(a[1:],b[1:]),
11 ])
12 def matrix_scalar_sub(a: int, b: List[List[int]])
13 -> List[List[int]]:
14 return (
15 []
16 if len(b) < 1
17 else [
18 vec_scalar_sub(a, b[0]),
19 *matrix_scalar_sub(a, b[1:])
20 ])

(b) Target Language (Tlang).

Figure 1: Sequential source code in C++ and semantics of DSL in IR.

We now give an overview and an end-to-end example of verified lifting (VL) where we use program
synthesis to build a compiler. Given a program (S) in the source language (Slang), VL uses a search
procedure to find a program (T) in the target language (Tlang) that can be proved to be functionally
equivalent to the given source program. VL comprises of three phases: 1) Search, 2) Verification,
and 3) Code generation. The key behind VL is to first transpile S to an user-defined intermediate
representation (IR) of the operators in the target language before generating executable code. The IR
serves as a functional description of Tlang and ignores any implementation details. Hence, during
search phase, S is lifted to a sequence of operators expressed using the IR. This expression serves as
the program summary (PS) which summarizes S using the IR. Subsequently, PS is verified using
a theorem prover to check for semantic equivalence with S for all program inputs. If verification
succeeds, PS is then translated into the concrete syntax of the target language using simple pattern-
matching rules provided by the user to generate executable code. These rules are notably simpler to
write compared to a rule-based translator that directly compiles from Slang to Tlang, as the PS is
already expressed using the operators in the target language.

We demonstrate an example of transpiling a sequential C++ to tensor-processing frameworks (such as
PyTorch, Tensorflow, NumPy) using VL. Tensor-processing frameworks provide high-level API for
performing, large-scale numerical computation on multi-dimensional arrays. Some of the basic tensor
operators supported by all the frameworks are elementwise operators (tensor-tensor, tensor-scalar).

Fig. 1a shows a sequential source program (S) performing the linear burn blending operation in
image editing. The given source program takes as input two images (represented as 2D vectors) and
processes each pixel from both the images by first adding them and then subtracting by integer 255.

In Fig. 1b, we define the semantics of the tensor operators such as matrix_add and
matrix_scalar_sub. These functions abstract the implementation details of the operators in the
tensor-processing frameworks while only capturing the high-level semantics of the operators. Our
goal is to find an IR expression sequence of these operators such that it is semantically equivalent
to S. Traditional approaches to solving this search problem in VL involve framing it as SyGuS [17]
problem. SyGuS is an approach for solving program synthesis problems by specifying constraints
and searching for solutions within a defined space. Specifically, a SyGuS problem involves defining a
search space that syntactically restricts the space of possible solutions, thereby making the search
tractable. Formally, this objective can be stated as ∃ T ∈ Tlang | ∀ σ. S(σ) = T(σ), where T is a
program in the target language. For our program in Fig. 1a, the synthesis phase would return the
following PS (i.e., T):

matrix_scalar_sub(255, matrix_add(b, a))

This expression performs element-wise addition of two matrices a and b, followed by a scalar
subtraction of 128 from each element of the resulting matrix. Since S contains a loop, proving
equivalence with the generated program requires another predicate called the “loop invariant.” A loop
invariant is a logical statement that must hold before and after each iteration of a loop. Intuitively, it
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Figure 2: A high-level overview of our LLMLIFT framework for building verified lifting-based tools.

captures the essential properties that are preserved while the loop executes. During VL’s synthesis
phase, we generate both the program summary and any required loop invariant for verification.
Verification is done by sending the program summary and loop invariant(s) to a theorem prover.
Verifier checks the semantic equivalence between S and the generated program summaries. VL
currently uses cvc5 and z3 for this purpose. Once verified, we translate the generated program
summary to the concrete syntax of the DSL (NumPy) using simple pattern-matching rules, resulting
in the following executable code:

def linear_burn_8_np(b: np.ndarray, a: np.ndarray) -> np.ndarray:
return a + b - 255

We next describe how our LLM-based approach can improve VL synthesis problem.

3 LLM-Based Verified Lifting

We now describe our LLM-based approach for verified lifting. We begin by formalizing the VL
problem. Then we give details of how we use LLMs to improve over the traditional VL approach.

3.1 Problem Formulation

The VL problem is characterized by three inputs:

1. Specification (ϕ): The specification (ϕ) defines the property that the target program (T) should
satisfy. For VL considered in this paper, the source and target programs are side-effect free
functions of their inputs. Thus, ϕ encodes the semantic equivalence of T and the source program
(S) for each program input state σ. The overall correctness condition is:

∀σ ϕ(σ, T, S)
.
= ∀ σ. S(σ) = T(σ) (1)

2. Program Space (G): The program space outlines the set of potential solutions, typically expressed
as a context-free grammar G. The language of G includes all sequences of operators ops ∈ Tlang

applied recursively to terms starting with input variables σ. A target program T is a program
summary PS that is a composition of operators ops. An example involving the tensor operators
is provided in the previous section. In other words, for each input σ, S (σ) must be expressed
using a combination of operators (ops) from Tlang.

3. Certificate Space: (GI ) A key part of the VL problem is to generate a certificate of correctness,
typically in the form of invariants that a verifier can use to prove that ϕ holds for the generated
PS. Synthesis tools typically use a grammar GI to constrain the space of possible invariants to
search over; we refer to this as the certificate space.

VL Problem: Given the inputs S, ϕ, G, GI , and Tlang described above, the VL problem is to generate
a correct target program T in Tlang represented as the combination (PS, Inv). This is formally
expressed in logic as follows:

∃ PS ∈ G ∃Inv ∈ GI ∀σ . ϕ(σ, (PS, Inv), S) (2)

This states that we aim to find a program summary (PS) and invariants (Inv) from the defined search
space G,GI such that the given specification (functional equivalence with S) holds for all possible
program states σ.

Traditionally, the VL problem has been solved by symbolic program synthesis solvers utilizing
methods such as enumerative search, deductive search, and constraint-based approaches [17, 4]. These
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Figure 3: End-to-End Lifting Example.

Figure 4: Prompt Structure.

rely heavily on manually-designed heuristics to make the search over the program and certificate
space effective. Unfortunately doing so is resource-intensive and requires domain-specific knowledge.
To address these limitations, we take a new approach that leverages LLMs.

3.2 LLM-based Verified Lifting

A naive approach to building a VL-based compiler using LLMs would be to prompt LLMs to translate
Slang programs directly into Tlang . However, this approach has the following shortcomings:

1. VL-based compilers require that the Tlang candidates generated during the search phase be
functionally equivalent to the input Slang program. This is a strong requirement that current LLMs
are unable to satisfy on their own.

2. Unlike widely-used general-purpose languages such as Python, domain-specific languages (DSLs)
are used only in their niche applications. Unsurprisingly, we find that LLMs struggle to generate
code in languages that are insufficiently represented in their training data.

In Fig. 3, we show an example of LLMs struggling to generate code reliably in new DSLs. We instruct
GPT-4o to translate the program in Fig. 1a to MLX (Apple’s latest tensor processing DSL), and the
model fails to generate the expected python MLX code. Instead, the model outputs a completely
incorrect solution by hallucinating non-existent MLCompute header file. This problem is even more
prominent for new DSLs that the model might have never seen in the training dataset.

Our Approach: To address these challenges, we propose an approach that adapt two key ideas from
traditional synthesis to the LLM setting:

1. Python as an Intermediate Representation (IR): We adopt VL’s key idea of transpiling to an
IR rather than directly to the concrete syntax of Tlang. Specifically, since Python is highly
represented in the training dataset of popular LLMs [12], these LLMs are effective at generating
syntactically-correct Python code. We exploit these observations by leveraging Python as the IR
to define semantics of DSL operators. An example is shown in Fig. 1b.

2. Oracle-Guided Inductive Synthesis (OGIS) with LLM oracles: Traditional verified lifting follows
the paradigm of counterexample-guided inductive synthesis (CEGIS) [2], where a Learner that
synthesizes from examples interacts with a verifier that checks the Learner’s output programs for
correctness with respect to a specification. OGIS [18, 19] is a generalization of CEGIS with a
richer oracle interface that allows for more expressive oracles and interactions. Our LLM Lifting
approach instantiates OGIS with LLM oracles that synthesize PS and Inv before invoking a
verifier to check correctness. Our queries to the LLM oracles (prompts) follow a few-shot learning
approach. Our current verifier provides Boolean feedback to the LLM oracles.

In Fig. 2, we show our LLM-based OGIS approach, where LLMs are applied to generate program
summaries and invariants in the IR, using a few-shot learning framework that we describe next.

3.3 Few-Shot Learning Approach

LLMs have demonstrated few-shot reasoning capabilities [11]. Few-shot reasoning allows LLMs to
generalize their understanding to new tasks by leveraging a small set of similar examples. Enabling
them to extend their reasoning capabilities to tasks without requiring explicit training or fine-tuning
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for those specific tasks. We propose leveraging the few-shot reasoning capabilities of LLMs for
verified lifting as fine-tuning existing LLMs for each new DSL is often infeasible due to the lack of
extensive training data and the rapid pace at which new DSLs are developed. The effort required to
collect, annotate, and preprocess DSL-specific training data for fine-tuning can be substantial, making
it impractical to adapt LLMs to each new DSL.

As described in Sec. 2, in VL, we generate candidates in an IR that abstracts away low-level
implementation details of the operators in Tlang. The objective, as defined in Eq. (2), is to find
PS and Inv expressed using operators from Tlang such that ϕ holds. We leverage the few-shot
reasoning capability by providing the models with the semantics of operators from the target language
(Tlang) using an IR. By exposing the LLMs to these semantics, we enable them to use their reasoning
capabilities over code to generate both the PS and invariants in the IR.

In Fig. 4, we illustrate the high-level prompt structure we use to generate the PS and Inv. The
prompt consists of the following components:

1. Task Instruction. We instruct the model using a natural language to translate S using only the
specified DSL operators.

2. DSL Operators. We specify the semantics of all operators from Tlang using Python and include
it in the prompt. Python is chosen as our IR due to (a) its widespread use across domains, (b) its
concise and expressive nature, making the representation readable and straightforward and, (c) its
significant representation in code datasets used for training LLMs [12].

3. Specification. While symbolic techniques often rely on approaches like test cases, bounded
model checking, and Hoare logic [20] for defining specifications, the natural language interface
of LLMs offers flexibility in using various specifications and combining different forms. Given
that LLMs are primarily trained on raw source code and may not have encountered other forms of
specification during training, we directly use the source program (S) as the specification in our
prompt.

We next describe the end-to-end workflow for our LLM-based verified lifting.

PS Guessing. We split the generation of PS and Inv into a two-phase process by first asking the
LLM to generate the PS and then inferring invariants corresponding to it. For generating PS, we
prompt the model in zero-shot setting. Due to space constraints, we show an instantiation of the
prompt structure shown in Fig. 4 in Appendix B. When prompted, the model generates the following
PS for our example code shown in Fig. 1a, representing the S as a combination of DSL operators:

matrix_scalar_sub(255, matrix_add(b, a))

To ensure that the generated candidates follow the DSL operators defined in the prompt, we use
a rule-based parser to reject any candidates that do not satisfy this constraint, i.e., those that use
constructs outside the DSL operators (see Appendix D for examples).

Inv Guessing. Next, if S contains loops, establishing the functional equivalence of the generated
PS for all program states with S requires loop invariants. In VL, loop invariants typically follow a
templated structure:

Inv ≜ f(i) ∧ e(Tlang) (3)
where f(i) denotes an expression over loop indexes and e(Tlang) represents an inductive expression
constructed using operators from Tlang. This structured nature simplifies the invariant generation
process compared to solving general loop invariant synthesis problems. To facilitate the generation of
loop invariants, we use one-shot learning (unlike the zero-shot approach for program summaries).
This is needed: 1. to familiarize the model with the concept and structure of invariants in the VL
context and, 2. generating program summaries is relatively easier than loop invariants, as the model’s
primary instruction is simply to combine operators from the given DSL without introducing external
ones—a constraint that is easily expressed in natural language (due to space constraints we illustrate
the prompt in Appendix B)2. The prompt for invariant generation closely resembles that used for
generating program summaries, including S with an additional assertion stating the equality of the
return variable with the previously generated PS. This instruction guides the model to produce an
invariant corresponding to the generated PS. The invariants are generated as Boolean expressions in
Python rather than SMT-LIB, as we found that LLMs encounter difficulties in generating SMT-LIB
(standard format for SMT solvers) code due to its limited representation in training datasets. When
prompted, model generates the following invariant for the code shown in Fig. 1a:

2We evaluate LLMLIFT with a zero-shot invariant prompt in Appendix K.
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def invariant_outer(row, col, b, a, out):
return row >= 0 and row <= len(b) and
out == matrix_scalar_sub(255, matrix_add(b[:i], a[:i]))

The loop invariant states that the loop index row remains within the bounds of the array b (i.e.,
0 ≤ i ≤ len(b)). Additionally, the invariant expresses out as a tensor DSL expression over the first i
elements of the inputs b and a, which helps verify that the invariant holds in each iteration of the loop.
Similar to PS generation, the generated loop invariants are also checked using our rule-based parser
to ensure they conform to the DSL.

Verification. Both the generated PS and Inv are expressed in Python. We use simple pattern-
matching rewrite rules to translate these expressions into syntax compatible with the verification
oracle, which checks for functional equivalence. The objective is to verify that the given S and
generated T are equivalent for all possible inputs to the S program. In Appendix E, we provide a
proof demonstrating how we establish this functional equivalence using an SMT solver. If the verifier
cannot establish validity, we start the process again to generate new candidates.

Code Generation. Once verified, the PS is translated into the concrete syntax of Tlang using
straightforward rewrite rules that recursively parse the generated PS and translate it into the concrete
operators of the DSL, leveraging the syntactic nature of Python. The translation process is simplified
due to Python’s highly structured syntax. For instance, the generated PS for our running example
can be translated into tensor processing frameworks like NumPy, generating the following code:

def linear_burn_8_np(b, a):
return a + b - 255

See Appendix F for more details on rule-based code generator. We present our complete algorithm
for generating PS and Inv in Appendix A.

4 Experiments

To evaluate the effectiveness of LLMLIFT, we evaluate across four distinct DSLs3, each targeting a
different application domain:

1. Distributed Computing: We transpile sequential Java programs into MapReduce implemen-
tations written using the Apache Spark [21] API. Spark, an open-source distributed computing
framework, provides an interface for programming multiple clusters for data parallelism which
helps in large-scale data processing.

2. Network Packet Processing: We transpile sequential network processing algorithms in C to the
operators of programmable switch devices [22] with its own ISA. This translation enables the
exploration of novel algorithms, such as congestion control and load balancing, on programmable
switch devices.

3. TACO: We transpile sequential C++ programs into TACO [23]’s API. TACO is a tensor processing
compiler for generating highly optimized GPU code for performing tensor computations.

4. Tensor Processing. We transpile sequential C++ programs to a recently introduced tensor
processing IR called TensIR [24]. TensIR consists of common tensor operations such as element-
wise arithmetic operators, reduction operators and transpose, among others. TensIR is designed to
enable translation of unoptimized sequential code to tensor operations which can be then executed
on 6 different software and hardware backends.

Implementation Details: In all experiments, we use GPT-4 via their APIs to generate candidates.
We set the temperature to 0.7 for all the experiments. For program summary and invariant generation
across all domains, we use the same zero-shot PS prompt in Fig. 6 and one-shot prompt in Fig. 7,
respectively. We keep a budget of 50 queries for the PS and a budget of 10 queries for each PS. The
parser and logic for invoking the LLMs are implemented in Python with ≈700 LoC.

Note. LLMLift currently only supports a subset of the C/C++ and Python language in the source
programs. In particular, it does not support any code that uses pointers or objects as verifying
programs with these constructs is challenging. That said, we did not encounter the use of these
constructs in any of the benchmarks in all the four domains that we evaluated on.

3All the benchmarks used for evaluation can be found at:
https://github.com/metalift/metalift/tree/llmlift/llmlift/benchmarks
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We present the results in the sections below and defer the error analysis to Appendix D. We also
provide an analysis on the performance of the generated code in Appendix G.

4.1 Distributed Computing

MapReduce, a programming model for parallel processing of large datasets across distributed clusters,
simplifies parallel computation by abstracting away distributed system complexities. A MapReduce
program comprises two phases: 1. Map: Input data is partitioned into smaller chunks, each processed
by a mapper function to generate key-value pairs. 2. Reduce: Intermediate key-value pairs are
shuffled, sorted based on keys, and then processed by reducer functions to aggregate associated
values.

LLMLIFT implementation. We compare the performance of LLMLIFT against MetaLift [25]4.
MetaLift uses a symbolic solver (Rosette [26]) to perform the search. We evaluate on the same 45
benchmarks as MetaLift. All the benchmarks have loops and require loop invariants to prove the
functional equivalence of the source and the generated program. MetaLift solves 40 out of 45 with a
timeout of 1 hour. LLMLIFT is able to solve 44, i.e., generate the correct translation as well as the
required invariants to prove the correctness. LLMLIFT solves 4 additional benchmarks on which
MetaLift times out. In addition to solving more benchmarks, LLMLIFT solves them much faster. It
takes less than 1 minute on average to solve each benchmark when MetaLift has to take an average of
3 minutes to solve. The amount of effort required to build LLMLIFT is also significantly less than
MetaLift as it does not require the developers to provide any search-space description for PS and
invariants. As MetaLift requires over 1000 LoC for the description of these search-space, LLMLIFT
requires only ≈100 lines of prompt.

4.2 Network Packet Processing

Network packet processing hardware, such as routers and switches, lacks flexibility post-development,
preventing experimentation with new data-plane algorithms. Recently, a verified lifting approach [22]
was introduced to simplify this process. This compiler offers the developers with two constructs: 1. a
packet transaction language (subset of the C language) to express the semantics of these data-plane
algorithms 2. a compiler [22] that translates the packet processing algorithms to the instruction set
of programmable switch devices. Atoms are introduced as an instruction set of the hardware to
represent the atomic operations supported by the hardware. Compiler translates the packet transaction
algorithm to a sequence of atoms resulting in a different programmable switch configuration.

LLMLIFT implementation. We implement the Domino compiler using LLMLIFT by defining the
semantics of the atoms in the prompt. We compare the performance of our implementation against
MetaLift’s implementation. All benchmarks in Domino are imperative C programs without any loop
constructs, so no loop invariants are required for these benchmarks. The generated PS are verified
using a SMT solver. MetaLift solves all the 10 benchmarks with an average time of 6 seconds.
LLMLIFT is also able to transpile all the 10 benchmarks but with an average time of only 2 seconds.
Similar to the Spark case study, we do not require developers to specify the search-space for PS.
While MetaLift requires over ≈1100 LoC to describe this search-space, LLMLIFT only uses ≈70
lines of prompt. In summary, LLMLIFT shows similar performance to the existing compiler but can
be built using much less effort.

4.3 TACO

Tensors form the key construct in machine learning and tensor compilers play an important role in
optimizing these operations. TACO [23] is one such compiler which can automatically generate
highly optimized code tailored to CPUs and GPUs. TACO’s language represents the operations in
a concise einsum like notation. Recently, C2TACO [6] a search-based lifting tool was proposed to
automate the translation of C++ code to TACO.

LLMLIFT implementation. In Tab. 1, we compare the performance of C2TACO and LLMLIFT
for all the benchmarks. We use the same 90 mins timeout for each benchmark that was used in
the original C2TACO evaluation [6]. C2TACO solves 57 out of the total 60 benchmarks, while
LLMLIFT successfully solves all 60 benchmarks. The 3 benchmarks that C2TACO fails to solve

4Casper [5] is not functional and Mold [1] is not open-sourced.
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Tool BLAS DSP DSPStone makespeare mathfu simpl_array UTDSP darknet
C2TACO 100% 100% 100% 100% 91.6% 90% 100% 92.8%
LLMLIFT 100% 100% 100% 100% 100% 100% 100% 100%

Table 1: Accuracy on various benchmarks for TACO.

require expressions of depth greater than 4. Due to its enumerative approach, C2TACO struggles to
find solutions for these cases. We attempted to run these 3 challenging benchmarks with an extended
timeout of 1 day, but the C2TACO was still unable to find a solution. C2TACO uses over 1000 LoC
for implementing the heuristics to scale the symbolic search. In contrast, LLMLIFT relies on a simple
100 lines of prompt (task instruction + DSL semantics) to achieve better performance than C2TACO.
C2TACO takes an average of 41 seconds while LLMLIFT average solving time is 2 seconds. We also
perform an experiment to test the scalability of C2TACO enumerate apporach with more complex
benchmarks than the ones used in the original evaluation. We include the results in Appendix C.

4.4 Tensor Processing

Many domains, such as image processing, signal processing, and deep learning, have legacy code
written in high-level languages that operate on individual values of the input and perform specific
operations. To leverage the optimizations provided by deep learning frameworks or hardware
backends like GPUs, this code needs to be lifted to the operators supported by these languages. Prior
work [24] introduced a tensor IR that can translate sequential programs to six different hardware and
software backends automatically using a verified lifting approach.

LLMLIFT implementation. We evaluate LLMLIFT against Tenspiler [24] on the 23 benchmarks
from the image processing and ML kernel domain.5 Tenspiler is able to solve all 23 benchmarks.
LLMLIFT also successfully solves all 23 benchmarks, including generation of the correct proofs.6
However, it is important to note that Tenspiler’s synthesis algorithm relies on three domain-specific
optimizations to achieve scalability. These optimizations require significant effort to implement, with
over ≈1200 LoC written by a domain expert. In contrast, LLMLIFT uses ≈320 lines of prompt
to solve these benchmarks. It does not rely on any user-defined heuristics, which showcases its
ability to generate correct solutions without the need for domain-specific optimizations. To check the
scalability of Tenspiler’s symblioc approach, we remove all the optimizations. Tenspiler, without
the optimizations, can only solve 5 out of the 23 benchmarks with a timeout of 1 hour, highlighting
the importance of the domain-specific optimizations for its performance. These results highlight the
ability of LLMLIFT to solve complex benchmarks without relying on domain-specific heuristics.
Moreover, LLMLIFT solves these benchmarks faster than Tenspiler with all its optimizations enabled.
LLMLIFT takes an average time of 95.89 seconds to solve each benchmark, whereas Tenspiler takes
115.14 seconds.

4.5 Two-phase Approach for LLMLIFT

In this section, we evaluate an alternative approach to the two-phase method described in Sec. 3,
where we generate the Inv(s) and the PS together in a single step. To test this, we prompt the model
in a one-shot setting, providing an example that demonstrates generating the PS and the Inv(s)
simultaneously. We merge the prompts described in Fig. 6 and Fig. 7 to create a unified prompt for
this experiment.

Due to budget constraints, we limit this experiment to the tensor processing domain, which represents
our most complex DSL with 37 operators. We use the same query budget as the two-phase approach.
When prompted to generate the invariant and PS together, LLMLIFT successfully solves 20 out
of the total 23 benchmarks. In contrast, the two-phase approach described in Sec. 3 solves all 23
benchmarks. We hypothesize that the reduced performance of the single-phase approach may be
attributed to the increased complexity of generating both the PS and the Inv(s) simultaneously.
Moreover, the two-phase approach enables the model to leverage the generated PS when constructing
the invariant. By having access to the PS, the model can more effectively reason about the necessary
conditions and constraints required for the invariant to hold.

5We refer the readers to the paper [24] for more details on these benchmarks.
6We also evaluate LLMLIFT on these benchmarks using other LLMs and present the results in Appendix I.
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5 Related Work

Code Transpilation for DSLs. Several approaches have been proposed for automating the task of
translating legacy or unoptimized code to DSLs. These range from symbolic rule-based approaches [1]
to search-based verified lifting approaches [7, 5, 27, 8, 25, 6] and neural approaches [9, 28]. Most of
these tools are either optimized for a specific domain or require domain expertise to scale. In contrast,
LLMLIFT simplifies the process of building lifting tools by leveraging LLMs. Closely related to our
work is [29], where an IR is designed for low-resource languages and then combination of LLM and
compiler techniques is used to reliably generate code for these languages.

Code Translation for Mainstream-to-Mainstream Languages. The closest work to ours is by
Roziere et al. [28] on a sequence-to-sequence model to translate code between C++, Java, and Python.
Our work differs in two key respects: we target lifting to DSLs, and our LLM based approach
produces formally verified code. The objective of verified lifting is to map functional programs to the
operators of a DSL in a semantics-preserving manner. Translating between mainstream languages has
its own set of challenges: 1. Different languages support various constructs, making direct mapping
challenging; 2. Disparities in type systems across languages must be handled, and, 3. Generating
accurate verification conditions and formal proofs for equivalence checking across diverse language
constructs is complex. Due to these challenges, prior work in mainstream-to-mainstream translation,
such as [28], often relies on test-case-based approaches to demonstrate semantic equivalence, rather
than formal verification. Such approaches do not provide any correctness guarantee in the generated
code, and hence are risky to deploy in practice.

LLMs for Code. LLMs are trained on massive amounts of code from various sources, leading to
impressive performance on programming tasks such as code generation [12, 13], repair, testing, and
transpilation. While the use of learning to synthesize proof artifacts, specifications, and models
in formal methods is not new [18], recently LLMs have been successfully employed in such tasks
(e.g., [15, 16, 29]). However, generating reliable code from LLMs remains challenging due to the
stochastic nature of these models and the difficulty in creating a verification oracle for complex
specifications. With LLMLIFT, we demonstrate the first approach to verified code generation with
LLMs, albeit in the limited setting of transpilation for side-effect-free code.

6 Conclusion

We presented a principled approach to leverage LLMs for code transpilation. Unlike prior LLM-based
transpilers, our transpiled code is provably equivalent to the input, while also takes significantly less
time to generate as compared to prior non LLM-based approaches with correctness guarantees, as
demonstrated in transpiling to 4 DSLs used across a range of application domains.

7 Limitations

While LLMLIFT demonstrates impressive performance across four DSLs, there are few opportunities
for future improvements. Currently, our approach generates a program summary and checks only for
syntactic correctness, ensuring that the generated expressions are compatible with the SMT solver.
We then generate invariants corresponding to the program summary, which are formally verified
for correctness. However, incorporating a semantic filtering step using test cases could potentially
eliminate some spurious program summaries. Another limitation of our current approach is that we
use Boolean feedback to check the correctness of a solution. Providing more granular feedback, such
as counter-examples from the theorem prover or compiler error messages, can possibly help guide
the LLM towards generating correct solutions more efficiently.
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Appendix

A Algorithm

The transpile_code algorithm shown in Fig. 5 translates the source code of a program into a
target language using LLM. The source_code parameter represents the code to be transpiled, and
num_iters and n specify the number of rounds to generate PS and Invs and the number of PS and
Invs to generate in each round, respectively.

The seen_ps_sols set keeps track of all PS that have been processed by the algorithm. The
algorithm operates in a loop that runs for num_iters iterations (line 4). In each iteration, the
algorithm calls get_ps_sols (line 8) to generate n different PS solutions for the given source_code
from LLM, and tells LLM to not generate any PS in the seen_ps_sols set. This is because PS
solutions are processed in previous iterations and did not yield verifiable translations, so we deem
them incorrect. For each generated PS, the algorithm first checks if it has been seen before by
looking it up in the seen_ps_sols set (line 11). If the PS has been encountered previously, the
algorithm skips it to avoid redundant processing. If it is new, the algorithm parses it to check for
syntactic validity using the parse function (line 19). If the summary has invalid syntax, it is discarded,
and the algorithm moves on to the next summary. If the PS is syntactically correct, the algorithm
proceeds to generate Inv(s) for it. It maintains a set called seen_inv_sols_for_ps that keeps track
of invariants that have been processed for the current PS to avoid redundant processing. It also
checks each generated Inv(s) syntactic validity and discards it if it is not.

If both the PS and the Inv(s) pass the syntactic validation, the algorithm proceeds to verify their
correctness using the verify function (line 44). If the verification succeeds, the algorithm returns the
PS (ps_sol) as the final transpiled code (line 45).

The algorithm continues this process of generating PS and Invs and verifying their correctness until
a valid solution is found or the maximum number of tries is reached. If no valid solution is found
within the given number of tries, the algorithm returns None (line 48), indicating that the transpilation
was unsuccessful.

B Prompts

In this section, we present an instantiation of the prompt structure shown in Fig. 4. The prompt
shown in Fig. 6 consists of several components designed to guide the language model in generating
semantically equivalent code using a restricted set of functions and constants. The prompt begins
with a clear task description that instructs the model that its goal is to rewrite the given C++ function
using only the provided functions and constants while maintaining semantic equivalence. Next, the
prompt includes a set of instructions. These constraints are designed to make the generated code
easier to parse and translate into a format suitable for theorem provers. The prompt then provides a
set of defined functions in Python. These functions define all DSL operators that the model can use
to rewrite the given C++ function. Finally, the prompt includes the test function in C++ which the
model should rewrite using the provided functions and constants.

In Fig. 7, we present a one-shot prompt designed to guide the language model in generating loop
invariants for the given test function. This prompt is similar in structure to the program summary
guessing prompt: it provides a clear task description, a set of instructions, and examples to guide the
model in generating the desired output. The prompt instructs the model to prove the assertion in the
test function by finding a loop invariant using the defined functions. It includes specific constraints
on the generated loop invariant, such as using only the defined functions, avoiding loops, using a
single return statement, inlining expressions, and generating separate invariants for each loop in the
test function. These constraints are intended to simplify the parsing of the generated invariants into
SMT formulas, making it easier to integrate them into automated theorem provers. Additionally, the
prompt provides a template for the invariant structure, guiding the model in constructing the loop
invariant as a Python function that takes the loop variables and relevant data structures as input and
returns a boolean expression. The invariant should involve comparisons of the loop variables using
operators and expressions, and an equality check for the loop-dependent variable using the defined
functions. The prompt also includes an example to demonstrate the expected format and structure of
the loop invariant. Example 1 shows a test function that performs element-wise subtraction of two
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1 def transpile_code(source_code: str, num_iters: int, n: int) -> str:
2 seen_ps_sols: set[str] = set()
3
4 for _ in range(num_iters):
5 # Gets `n` PS solutions from LLM for the given `source_code`.
6 # Assuming all solutions in `seen_ps_sols` are incorrect, `get_ps_sols`
7 # tells the LLM to not generate any solution in this set.
8 ps_sols: list[str] = get_ps_sols(n, source_code, seen_ps_sols)
9

10 for ps_sol in ps_sols:
11 if ps_sol in seen_ps_sols:
12 # We have processed this PS before.
13 continue
14 else:
15 # Otherwise, we add it to the set of seen PS solutions.
16 seen_ps_sols.add(ps_sol)
17
18 # If this PS has invalid syntax
19 if not parse(ps_sol):
20 continue
21
22 # Generate invariants for this PS
23 seen_inv_sols_for_ps: set[str] = set()
24 # Gets `n` Inv solutions from LLM for the given PS solution `ps_sol`.
25 inv_sols: list[str] = get_inv_sols_for_ps(n, ps_sol)
26 for inv_sol in inv_sols:
27 if inv_sol in seen_inv_sols_for_ps:
28 # We have processed this Inv solution for this PS before.
29 continue
30 else:
31 # Otherwise, we add it to the set of seen Inv solutions for this PS.
32 seen_inv_sols_for_ps.add(inv_sol)
33
34 # If this Inv has invalid syntax.
35 if not parse(inv_sol):
36 continue
37
38 # Verify Inv and PS. In this call, we convert all PS and Inv solutions
39 # to the syntax of an SMT solver. The SMT solver then checks for semantic
40 # equivalence between the PS solution and the source program, using the
41 # generated invariants as proofs.
42 # `verify` returns True if and only if the
43 # PS solution is equivalent to the source program.
44 if verify(inv_sol, ps_sol):
45 return ps_sol
46
47 # No solution has been found.
48 return None

Figure 5: LLMLIFT’s algorithm for generating PS and Invs.

matrices and provides two loop invariants. Example 2 shows the test function for which we need to
generate the loop invariants.

To avoid regenerating the same incorrect solutions, the prompt also includes all the syntactically
correct solutions that have been generated so far, along with a message saying These generated
programs are incorrect. Do not generate the same. Please generate another program.

PS Guessing Prompt

Your task is to rewrite the given test C++ Function. You need to use only the set of provided functions and constants to achieve this. The
rewritten program should be semantically equivalent to the test function. Please do not generate any explanations.
#Instructions
# 1. Do not use for/while loops for rewriting the function.
# 2. The rewritten program should just be a single return statement of the form return_var = provided_function(...)
# 3. Inline all the expressions. Do not use intermediate variables.

#defined functions
from typing import Any, Callable, List

def ite(cond: bool, if_then: Any, if_else: Any) -> Any:
return if_then if cond else if_else

def reduce_sum(x: List[int]) -> int:
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return 0 if len(x) < 1 else x[0] + reduce_sum(x[1:])

def vec_elemwise_mul(x: List[int], y: List[int]) -> List[int]:
return (

[]
if len(x) < 1 or not len(x) == len(y)
else [x[0] * y[0], *vec_elemwise_mul(x[1:], y[1:])]

)

def reduce_max(x: List[int]) -> int:
return (

x[0]
if len(x) <= 1
else (x[0] if x[0] > reduce_max(x[1:]) else reduce_max(x[1:]))

)

def vec_elemwise_add(x: List[int], y: List[int]) -> List[int]:
return (

[]
if len(x) < 1 or not len(x) == len(y)
else [x[0] + y[0], *vec_elemwise_add(x[1:], y[1:])]

)

def vec_elemwise_sub(x: List[int], y: List[int]) -> List[int]:
return (

[]
if len(x) < 1 or not len(x) == len(y)
else [x[0] - y[0], *vec_elemwise_sub(x[1:], y[1:])]

)

def vec_elemwise_div(x: List[int], y: List[int]) -> List[int]:
return (

[]
if len(x) < 1 or not len(x) == len(y)
else [x[0] // y[0], *vec_elemwise_div(x[1:], y[1:])]

)

...

//test function
#include <vector>
using namespace std;

int test(vector<int> input, int max_pos) {
int max_val = input[0];
for (int i = 1; i < max_pos; i++)
if (input[i] > max_val)
max_val = input[i];

return max_val;
}

Figure 6: Prompt for guessing the PS.
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Invariant Guessing Prompt

Your task is to prove that ‘assertion‘ is true in the ‘test‘ function. The assertion can be proved by finding a loop invariant using the defined
functions. Write the loop invariant as a python boolean formula.
#Instructions:
1. You need to use only the defined functions to write the loop invariant.
2. Do not use for/while loops for rewriting the function.
3. The rewritten program should just be a single return statement of the form return_var = provided_function(...)
4. Inline all the expressions. Do not use intermediate variables.
5. Generate separate loop invariants for each loop in the test function.
6. invariant structure
def invariant(i: int, input: List[int], ss: int, weight: List[int]) -> bool: return i op expr() and i op expr() and ss == operation over defined
functions
Example1:
#defined functions
def vec_elemwise_sub(x: list[int], y: list[int]) -> list[int]:
return (

[]
if len(x) < 1 or not len(x) == len(y)
else [x[0] - y[0], *vec_elemwise_sub(x[1:], y[1:])]

)
def matrix_elemwise_sub(matrix_x,: list[list[int]], matrix_y: list[list[int]]) -> list[list[int]]:
return (

[]
if len(matrix_x) < 1 or not len(matrix_x) == len(matrix_y)
else [
vec_elemwise_sub(matrix_x[0], matrix_y[0]),
*matrix_elemwise_sub(matrix_x[1:], matrix_y[1:]),

]
)

//test function
vector<vector<uint8_t>> test(vector<vector<uint8_t>> base, vector<vector<uint8_t>> active) {
vector<vector<uint8_t>> out;
uint8_t m = base.size();
uint8_t n = base[0].size();
for (uint8_t row = 0; row < m; row++) {
vector<uint8_t> row_vec;
for (uint8_t col = 0; col < n; col++) {
uint8_t pixel = base[row][col] - active[row][col] ;
row_vec.push_back(pixel);

}
out.push_back(row_vec);

}
assert out == matrix_elemwise_sub(base, active);

}
def invariant1(row, col, base, active, out):
return row >= 0 and row <= base.size() and out == matrix_elemwise_sub(base[:row], active[:row])

def invariant2(row, col, base, active, row_vec, out):
return row >= 0 and row < base.size() and col >= 0 and col <= base[0].size() and
row_vec == vec_elemwise_sub(base[row][:col], active[row][:col]) and
out == matrix_elemwise_sub(base[:row], active[:row])

Example2:
#defined functions
from typing import Callable, List
def matrix_scalar_sub(a: int, matrix_x: List[List[int]]) -> List[List[int]]:
return (

[]
if len(matrix_x) < 1
else [vec_scalar_sub(a, matrix_x[0]), *matrix_scalar_sub(a, matrix_x[1:])]

)

def matrix_scalar_mul(a: int, matrix_x: List[List[int]]) -> List[List[int]]:
return (

[]
if len(matrix_x) < 1
else [vec_scalar_mul(a, matrix_x[0]), *matrix_scalar_mul(a, matrix_x[1:])]

)

def matrix_scalar_div(a: int, matrix_x: List[List[int]]) -> List[List[int]]:
return (

[]
if len(matrix_x) < 1
else [vec_scalar_div(a, matrix_x[0]), *matrix_scalar_div(a, matrix_x[1:])]

)
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def scalar_matrix_sub(a: int, matrix_x: List[List[int]]) -> List[List[int]]:
return (

[]
if len(matrix_x) < 1
else [scalar_vec_sub(a, matrix_x[0]), *scalar_matrix_sub(a, matrix_x[1:])]

)

...

//test function
#include <vector>
using namespace std;

int rmsnorm_part1(vector<int> input, vector<int> weight) {
int ss = 0;
for (int i = 0; i < input.size(); i++)
ss += input[i] * input[i];

assert ss == reduce_sum(vec_elemwise_mul(input, input))
}

Figure 7: Prompt for guessing the loop invariant(s).

C Scalability

1 void fourth_in_place(int* arr, int n) {
2 for (int i = 0; i < n; ++i) {
3 arr[i] = arr[i] * arr[i];
4 arr[i] = arr[i] * arr[i];
5 }
6 }
7 //TACO expression
8 out[i] = arr[i] * arr[i] * arr[i] * arr[i]
9

10 //Incorrect TACO expressions
11 out(i) = arr(i) * arr(i)
12 out(i) = Cons1 + arr(j,i)
13 out(k) = Cons1 * arr(l,k,j)

(a) Benchmark on which C2TACO fails.

1 void test1(int* arr, int n) {
2 for (int i = 0; i < n; ++i) {
3 arr[i] = arr[i] + arr[i] + arr[i] + arr[i] + arr[i];
4 }
5 }
6 //TACO expression
7 out[i] = arr[i] + arr[i] + arr[i] + arr[i] + arr[i]

(b) Example of synthetic benchmark with expression
length = 5.

Figure 8: Scalability evaluation of symbolic solvers using synthetic benchmarks.

In this section, we evaluate the scalability of symbolic solvers in the context of verified lifting-based
tools. The benchmarks used in the evaluation of these tools are often carefully selected and limited in
scope, allowing the tools to perform well within their intended domain. However, in this experiment,
we aim to demonstrate that symbolic tools relying on domain-specific heuristics can be brittle and
fail to scale when the complexity of the benchmarks increases beyond a certain threshold.

We begin by evaluating C2TACO. Upon careful analysis of the benchmarks on which C2TACO
struggles, we observed that the tool often times out when tasked with generating expressions of
length greater than 4 One such example is illustrated in Fig. 8a where the source performs an in-place
operation on an array arr of length n and raises each element of the array to the power of 4. C2TACO
enumerates candidate expressions using tensor operators and index variables in increasing order
of expression length. C2TACO enumerates ≈30k candidates. We illustrate some of the incorrect
expressions in Fig. 8a.

To test the scalability of C2TACO, we randomly generated a set of 10 benchmarks with expressions
of varying lengths, ranging from 5 to 10, incorporating various arithmetic operations (see Fig. 8b for
an example). We used a timeout of 90 minutes for C2TACO, as reported in the original evaluation.
C2TACO was unable to solve any of the 10 benchmarks within the timeout. In contrast, LLMLIFT,
was able to solve all 10 benchmarks correctly in less than 2 seconds. This performance can be
attributed to the ability of language models to identify patterns and learn from the context provided in
the source code. To further test the capabilities of LLMLIFT, we evaluated it on a variation of the
benchmark shown in Fig. 8a, where each element of the array is raised to the power of 20 instead of
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1 vector<vector<int>> screen_blend_8(vector<vector<int>> base, vector<vector<int>> active) {
2 vector<vector<int>> out;
3 int m = base.size();
4 int n = base[0].size();
5 for (int row = 0; row < m; row++) {
6 vector<int> row_vec;
7 for (int col = 0; col < n; col++) {
8 int pixel = base[row][col] + active[row][col] - (base[row][col] * active[row][col]) / 255;
9 row_vec.push_back(pixel);

10 }
11 out.push_back(row_vec);
12 }
13 return out;
14 }

Figure 9: screen_blend benchmark source code.

4. Despite the increased complexity of the expression, LLMLIFT was able to generate the correct
solution efficiently.

D Qualitative Analysis of the Errors

In this section, we provide a qualitative analysis of the mistakes made by LLMs while generating
code and proofs. In LLMLIFT, we use Python as the IR and the PS and Inv(s) are generated in
Python. The errors encountered can be classified into two categories: syntactic and semantic.

Syntactic errors occur when the generated code constructs are not compatible with the theorem prover.
To mitigate this issue, we use a syntactic parser that translates the generated solutions to the language
supported by the theorem prover. The parser ensures that only supported constructs are present in the
solutions and rejects any candidates that do not comply with the theorem prover’s syntax.

One common source of syntactic errors is the use of Python-specific constructs that are not supported
by SMT solvers. Although we prompt the model to generate solutions using only the constructs
provided in the prompt’s scope, controlling the exact code generated by the model can be challenging.
Fig. 10 illustrates examples of program summaries generated by GPT-4 for the screen blend
benchmark that contain unsupported constructs. For instance, the first solution in Fig. 10 uses a for
loop, which is not supported by SMT solvers. Similarly, the second and third solutions utilize Python’s
list comprehension syntax, which is also not directly supported by SMT solvers. List comprehension
are supported in SMT solvers using empty lists and append functions, such as append(1, []).

Semantic errors occur when the generated code is syntactically correct but is semantically not
equivalent to the given S. In the context of the screen blend benchmark (shown in Fig. 9),
Fig. 11 illustrates two examples of semantically incorrect programs generated by GPT-4. The
first program incorrectly subtracts a term from the base matrix instead of subtracting it from
the sum of base and active matrices. The second program suffers from a similar issue. It
subtracts an incorrect term from the active matrix. Specifically, the term being subtracted
is matrix_elemwise_div(matrix_elemwise_mul(base, active), matrix_scalar_mul(32,
matrix_elemwise_mul(base, active))), which is different from the one in the given program.

E Proof of Equivalence

We use Floyd-Hoare Logic (FHL) to establish the validity of generated programs [30]. In FHL,
verification problem is represented as a Hoare triple {A}P{B}, where: 1. A is the pre-condition,
2. P is the program to be executed, and 3. B is the post-condition. An example of a valid Hoare Triple
is {x = 0} x := x+ 1{x > 0}. The Hoare triple states that if x = 0 before executing x := x+ 1,
then after executing the program, x will be greater than 0. To establish the validity of a Hoare triple,
we prove that all executions starting from states satisfying A, after executing program P , result in
states satisfying B. This involves finding a Boolean predicate called the verification condition (V C)
that characterizes the set of pre-conditions from which every execution of P leads to a state satisfying
B. Formally, we need to prove that the V C is true given pre-condition, i.e., A → V C(P,B).
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1 def screen_blend_8(base: List[List[int]], active: List[List[int]]) -> List[List[int]]:
2 return matrix_elemwise_add(
3 matrix_elemwise_sub(
4 base,
5 matrix_elemwise_div(
6 matrix_elemwise_mul(base, active),
7 vec_scalar_mul(32, [1 for _ in range(len(base[0]))])
8 )
9 ),

10 active
11 )

1 def screen_blend_8(base: List[List[int]], active: List[List[int]]) -> List[List[int]]:
2 return matrix_elemwise_add(
3 matrix_elemwise_sub(
4 base,
5 matrix_elemwise_div(
6 matrix_elemwise_mul(base, active),
7 vec_scalar_mul(32, [[1]*len(base[0])]*len(base))
8 )
9 ),

10 active
11 )

1 def screen_blend_8(base: List[List[int]], active: List[List[int]]) -> List[List[int]]:
2 return matrix_elemwise_add(
3 matrix_elemwise_sub(
4 base,
5 matrix_elemwise_div(
6 matrix_elemwise_mul(base, active),
7 vec_scalar_mul(32, [[1]*len(base[0])]*len(base))
8 )
9 ),

10 active
11 )

Figure 10: Programs rejected by LLMLIFT’s syntactic parser.

1 def screen_blend_8(base: List[List[int]], active: List[List[int]]) -> List[List[int]]:
2 return matrix_elemwise_add(
3 matrix_elemwise_sub(
4 base,
5 matrix_elemwise_div(
6 matrix_elemwise_mul(base, active),
7 scalar_matrix_div(32, base)
8 )
9 ),

10 active
11 )

1 def screen_blend_8(base: List[List[int]], active: List[List[int]]) -> List[List[int]]:
2 return matrix_elemwise_add(
3 base,
4 matrix_elemwise_sub(
5 active,
6 matrix_elemwise_div(
7 matrix_elemwise_mul(base, active),
8 matrix_scalar_mul(32, matrix_elemwise_mul(base, active))
9 )

10 )
11 )

Figure 11: Programs rejected by theorem prover for semantic incorrectness.

Standard techniques exist to generate verification conditions from a given source program [31]. For
programs containing loops, an additional predicate called a loop invariant is required. This invariant
helps prove that the post-condition remains valid regardless of the number of loop iterations. The
inference rules provided by FHL can be encoded into a format that can be fed into automated theorem
provers or SMT solvers. This encoding allows for the mechanical checking of any Hoare triple’s
validity. In Fig. 13, we show the V Cs generated for the source program in Fig. 12.

20



1 vector<int> test(vector<int> base, vector<int> active) {
2 vector<int> out;
3 for (int i = 0; i < base.size(); ++i)
4 out.push_back(active[i] + base[i]);
5 return out;
6 }

Figure 12: Source Code (S) for proof.

Initial Condition Inv(i = 0, out = {}, active, base)

Preservation Inv(i, out, active, base) ∧ (i < base.size()) →
Inv((i + 1) , out.push_back(active[i] + base[i]) , active, base)

Termination Inv(i, out, active, base) ∧ ¬ (i < base.size()) → PS(out , active, base)

Figure 13: Verification conditions for the source code in Fig. 12.

def invariant(data, i):
return i >= 0 and i <= base.size() and out = vec_elemwise_add(active[:i], base[:i])

def PS(out,active,base):
return out == vec_elemwise_add(active, base)

Figure 14: PS and Inv for the source code in Fig. 12.

Proof:

1. Initial Condition: Before the loop executes, i = 0 and out = [ ]. The loop invariant expresses
out as the result of a vec_elemewise_add operator over the first i elements of active and base.
Since i = 0, the vec_elemewise_add operation is applied to an empty list, resulting in an empty
list. Therefore, the invariant holds in the initial state.

2. Preservation Condition: The preservation condition ensures that the invariant holds throughout
all iterations of the loop. This can be shown by induction. Assume the invariant holds at the
i-th iteration. In the (i + 1)-th iteration, vec_elemewise_add would compute the element-wise
sum for the first i + 1 elements of base and active, while the source program would push
active[i + 1] + base[i + 1] to out, making out equal to vec_elemewise_add(active[:i+1],
base[:i+1]), i.e., the RHS for this condition is true.

3. Termination Condition: The termination condition requires that the invariant implies the post-
condition. When the loop terminates, i = base.size(), and both the PS and Inv expressions for
out will be identical, i.e., the post-condition is satisfied.

F Code Generation

Once we have the verified program summary in the IR, the code generation phase uses syntax-driven
rules to translate IR programs into the target DSL’s concrete syntax. Given an IR expression, the
code generation function parses its operators and operands and translates each of them recursively.
Below, we show a snippet of a code generation function that translates IR programs to PyTorch. In
this function, each IR expression type is matched against a translation rule: variables are mapped to
their names (lines 2-3), literals are mapped to their values (lines 4-5), and function calls are mapped
to their corresponding PyTorch operators (lines 6-11).

For instance, the elemwise_add operator in IR translates torch.add in PyTorch, and elemwise_sub
translates to torch.subtract. As a result, the IR expression elemwise_add(elemwise_sub(a,
b)) becomes torch.add(torch.subtract(a, b)) in PyTorch.

Similarly, if we want to translate the code to another DSL, such as TensorFlow, we can simply change
the specific operator rules to generate TensorFlow code. For example, the elemwise_add operator
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in IR would be translated to tf.add (line 9), and the elemwise_sub operator would be translated
to tf.subtract (line 11). Thus, the same IR expression elemwise_add(elemwise_sub(a, b))
would become tf.add(tf.subtract(a, b)) in TensorFlow.

1 def codegen(expr: Expr):
2 if isinstance(expr, Var):
3 return expr.name()
4 elif isinstance(expr, Lit):
5 return expr.val()
6 elif isinstance(expr, Call):
7 f_name, args = expr.name(), expr.arguments()
8 if f_name == "elemwise_add":
9 return f"torch.add({codegen(args[0])}, {codegen(args[1])})"

10 elif f_name == "elemwise_sub":
11 return f"torch.subtract({codegen(args[0])}, {codegen(args[1])})"
12 ...

Figure 15: Code for translating IR expression to concrete syntax of DSL (PyTorch).

G Performance of Generated Code

The primary objective of verified lifting is to generate semantically equivalent programs in the target
DSL from the source. DSLs are inherently designed to offer domain-specific optimizations, and
the performance gains observed post-translation are attributable to the implementation of operators
within the DSL rather than the translation process itself.

In LLMLIFT, our aim was to replicate the existing VL-based compilers. We performed a manual
verification of LLMLIFT’s output against the corresponding symbolic tools, confirming output
equivalence of the two tools. Given this equivalence, the performance gains reported by the original
symbolic tools are directly applicable to LLMLIFT’s translations. Performance numbers for some of
the domains are following:

1. Tensor Processing: The objective in this domain is to generate tensor programs executable on
tensor processing backends. Translations to this intermediate representation (IR) yield performance
gains of 2.1× (NumPy) and 167.71× (PyTorch) compared to sequential C++ implementations
when compiled with GCC -O3.

2. Distributed Computing: The generated Spark implementations achieved an average speed-up
of 15.6× compared to the sequential Java implementations. Additionally, when compared to
manually written code by an expert, the generated outputs performed competitively. For more
details on the user study, we refer the reader to the paper

3. TACO: The TACO compiler generates optimized GPU code. Translating programs to the TACO
IR results in a performance gain of 24× compared to sequential C++ programs when compiled
with GCC -O3.

It is important to note that finding a program with optimal performance on the target backend
would require performing the search phase with specific cost (objective) functions. While finding an
equivalent program in the target DSL is already a challenging task, incorporating an optimization
function into the search adds another layer of complexity. In addition, defining these cost functions
is non-trivial in itself, as they must accurately capture the performance characteristics of the target
backend. Currently, even without using cost functions, LLMLIFT is still able to generate performant
code, as described earlier.

H Python as IR

Python is one of the most widely represented programming languages in the training data of these
models. This ensures that the model can generate Python code reliably with minimal prompting,
reducing the likelihood of hallucinations. Python’s highly syntactic nature facilitates easier parsing.
This is beneficial as 1. it allows for the development of syntax-driven parsers that can efficiently
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translate the IR to the language supported by theorem provers and 2. It simplifies the process of
translating the IR to the target DSL’s concrete syntax.

Direct conversion to a DSL is challenging because many DSLs may not be well-represented in the
model’s training data (as illustrated in Fig. 3). In addition, it is also challenging to verify DSL
programs using theorem provers as they do not provide support for these languages and it is not trivial
to translate the DSL directly to the language supported by them. On the other hand, many theorem
provers have existing tools or libraries for handling Python-like syntax, making the verification step
of LLMLIFT more reliable.

I LLMLIFT’s Performance with Other Large Models

To evaluate if our prompts generalize across models, we evaluated LLMLIFT’s performance using
GPT-4o[32], Claude 3.5 Sonnet[33], and Gemini-1.5-Pro[34]. We used the exact same setting as
described in Sec. 4 (zero-shot for PS and one-shot for Inv) for this evaluation. We evaluated on the
23 benchmarks from the tensor processing domain. GPT-4o and Claude 3.5 Sonnet were able to solve
all the benchmarks while Gemini-1.5-Pro solved 21 benchmarks (failed to guess the correct PS for
the 2 unsolved benchmarks). The results show that our prompts are robust and generalize well across
models, even without prompt engineering.

J LLMLIFT’s Performance with Smaller Models

To explore whether LLMLIFT could leverage smaller open-source models or if larger models like
Claude and GPT-4 were necessary, we evaluated LLMLIFT using two recent open-source models,
Llama3 8B[35] and Mistral Nemo 12.2B[36], using Hugging Face’s serverless inference API. We
used the benchmarks from the tensor processing domain, which is the most complex among all the
DSLs we evaluated. We use the same budget of queries and temperature settings.

Neither Llama3 and Mistral solved any of the benchmarks. Their solutions used Python constructs
outside of the defined IR, which caused them to immediately fail our syntactic parser. Our results
suggest that larger models can be more effectively used for the task of VL without requiring fine-
tuning, for the following two reasons:

1. Instruction Following: Larger models are better at following the instructions to generate programs
strictly with the defined DSL operators.

2. Handling Long-Context: With prompts that can grow in size to include all DSL operators and
feedback, larger models manage long-context tasks more effectively.

K LLMLIFT’s Performance With Zero-Shot Prompt

At the time of writing, GPT-4 was the most advanced model, and we used one-shot prompting, as
shown in Fig. 7, to generate loop invariants. Recently, with further improvements in the models, we
experimented with a simplified prompt to test whether zero-shot prompting could effectively infer
invariants. Note that this prompt is zero-shot but includes some natural language instructions to
guide the model on the structure of the loop invariant. We evaluated LLMLIFT’s performance using
GPT-4o[32], Claude 3.5 Sonnet[33], and Gemini-1.5-Pro[34]. We used the exact same prompts for
generating PS, and the prompt described in Fig. 16 for inferring loop invariants. We used the same
temperature settings and query budget for this experiment. We queried these models using their API
endpoints. We evaluated on the 23 benchmarks from the tensor processing domain as this domain has
the most complex DSL. In addition, all of them have loops and require loop invariants for proving
equivalence of the translated programs with the source programs.

As shown in Tab. 2, we observe that GPT-4, the model used for all experiments in Sec. 4, does not
perform well with a zero-shot invariant prompt. A one-shot prompt, shown in Fig. 7, was necessary
for generating accurate guesses of loop invariants. However, more recent models like GPT-4o and
Claude 3.5 Sonnet were able to solve all 23 benchmarks even under the zero-shot setting. We also
observed that Claude used the least number of queries to generate the correct solutions. Gemini did
not solve 3 out of 23 benchmarks (failed to generate correct PS for 2 benchmarks and correct Inv
for 1).
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Model name # of benchmarks solved
GPT-4 11

GPT-4o 23
Claude 3.5 Sonnet 23

Gemini-1.5-Pro 20
Table 2: Zero-shot performance of various proprietary models on tensor benchmarks.

Invariant Guessing Zero-Shot Prompt

Your task is to generate the loop invariant ‘Inv‘ such that it is true at all the locations it is defined at. Generate only a single ‘Inv‘ expression
which holds at all the locations. The invariant needs to be generated using only the functions defined below. Write the loop invariant as a
python boolean formula.
#Instructions:
1. You can use the defined functions to write the loop invariant. Do not use any for loops or any other python construct.
2. Generate separate loop invariants for each loop in the test function. Return the loop invariant as a single boolean expression. Only
return the invariant and no other code in a code block.
def ite(cond: bool, if_then: Any, if_else: Any) -> Any:
return if_then if cond else if_else

def reduce_sum(x: List[int]) -> int:
return 0 if len(x) < 1 else x[0] + reduce_sum(x[1:])

def vec_elemwise_mul(x: List[int], y: List[int]) -> List[int]:
return (

[]
if len(x) < 1 or not len(x) == len(y)
else [x[0] * y[0], *vec_elemwise_mul(x[1:], y[1:])]

)

def reduce_max(x: List[int]) -> int:
return (

x[0]
if len(x) <= 1
else (x[0] if x[0] > reduce_max(x[1:]) else reduce_max(x[1:]))

)

def vec_elemwise_add(x: List[int], y: List[int]) -> List[int]:
return (

[]
if len(x) < 1 or not len(x) == len(y)
else [x[0] + y[0], *vec_elemwise_add(x[1:], y[1:])]

)

def vec_elemwise_sub(x: List[int], y: List[int]) -> List[int]:
return (

[]
if len(x) < 1 or not len(x) == len(y)
else [x[0] - y[0], *vec_elemwise_sub(x[1:], y[1:])]

)

def vec_elemwise_div(x: List[int], y: List[int]) -> List[int]:
return (

[]
if len(x) < 1 or not len(x) == len(y)
else [x[0] // y[0], *vec_elemwise_div(x[1:], y[1:])]

)

...

//test function
#include <vector>
using namespace std;

int rmsnorm_part1(vector<int> input, vector<int> weight) {
int ss = 0;
for (int i = 0; i < input.size(); i++)
ss += input[i] * input[i];

assert ss == reduce_sum(vec_elemwise_mul(input, input));
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}

Use the following template to generate the loop invariant

# A strong loop invariant should have the following properties:
# 1. It should have boolean expressions over the loop index variable `i` to describe the valid range of `i`.
# 2. It should have an inductive expression describing the output variable `ss` using the defined functions.

def invariant(i: int, input: List[int], ss: int, weight: List[int]) -> bool:
return expression over loop index variable i and ss == operation over defined functions

Figure 16: Zero-shot prompt for guessing the loop invariant.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: Yes
Justification: The experiment section (Sec. 4) reflects all the claims made in the introduction.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: Yes
Justification: Limitation section (Sec. 7) is included in the paper.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: NA
Justification: We do not present any theoretical result in the paper.
Guidelines:
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: Yes

Justification: Yes, included all the prompts and experimental details in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: Yes

Justification: We are releasing all the benchmarks used for evalutation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: Yes

Justification: All the hyperparameters (temperature, candidates) are included in the experiment
section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: Yes

Justification: The experimental evaluation is deterministic given a specific version of LLM and
verifier.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: Yes
Justification: We just rely on the API calls to the language model.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: Yes
Justification: Reviewed the ethics and were followed for all the stages for this paper.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: Yes
Justification: The goal of this paper is to improve code transpilation efficiency and we do not
expect any negative societal impact.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: NA
Justification: No misuse anticipated.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: Yes
Justification: Yes, all data sources and tool used for evaluation are cited.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: Yes
Justification: We are releasing datasets as part of this submission.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.
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• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: NA
Justification: No human case study was performed for this paper.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: NA
Justification: No human case study was performed for this paper.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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