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ABSTRACT

Large deep neural networks, often fine-tuned from foundation models, dominate
modern machine learning, but their high memory requirements limit deployment
on resource-constrained devices. Strong lottery tickets (SLTs) offer a promising
solution by significantly reducing memory usage, as they are fully characterized
by a seed for generating a random source network and a binary mask. Notably,
multiple models can share the same source network without increasing its width
requirement. As we show, this source sharing can lead to memory savings when
experts share specific sparsity patterns. Based on novel insights into optimized
subsetsum approximations, we also show how the masks can be adjusted to fur-
ther reduce memory overhead. To validate these theoretical findings, we provide
explicit SLT constructions in experiments.

1 INTRODUCTION

The rapid advancements in deep learning have led to the widespread development of large neural
network models, particularly those fine-tuned from foundation models (Bommasani et al., 2022).
Such models, which dominate many areas of modern machine learning, are often tasked with solv-
ing highly specialized problems. However, their immense memory requirements pose a significant
challenge, especially when deploying these models on resource-constrained devices. This is particu-
larly relevant in real-world scenarios, where numerous models might need to interact and collaborate
to solve complex tasks. As we move toward an era where multiple AI models must work together
seamlessly, the cumulative memory footprint of these models becomes a critical bottleneck.

While each model might be specialized to a given task, many are derived from the same or similar
foundation models, resulting in structural similarities. Such similarities might also occur by design
when some of the model components solve tasks jointly like mixtures of experts (MoEs) (Jiang
et al., 2024; Lepikhin et al., 2020) or ensembles (Tabik et al., 2020; Kilimci et al., 2018). We argue
that structural overlaps can be leveraged to optimize memory usage across multiple models or their
components and propose concrete strategies to do so in the context of Strong Lottery Tickets (SLTs).

SLTs can naturally reduce memory footprints even of single models (Ramanujan et al., 2020; Otsuka
et al., 2024), as they only need to save a seed for generating a random source network and a binary
mask that selects a subnetwork. An overlooked fact is that this principle (Lueker, 1998) encom-
passes also model families. Multiple models can share the same source network without demand-
ing any increase of the width requirement in state-of-the-art lottery ticket existence constructions
(Pensia et al., 2020; Burkholz, 2022b; Ferbach et al., 2022). Sharing a source network has several
advantages: a) Multiple models can access the same memory of the source network and potentially
reuse computations at (parallel) inference time. b) Saving source model weights instead of a seed
could solve issues with reproducibility on different devices. In that case, storing a single source is
preferable over multiple ones. c) Beyond the overlap of sparsity patterns of target networks, we can
optimize subsetsum approximations to gain more memory-efficient mask representations. Sharing
the same source increases such memory efficiency.

Our analysis is based on novel insights into subsetsum approximation, which forms the basis of
SLT constructions and defines the masks that approximate given target models. Utilizing the fact
that subsetsum approximations have multiple solutions among which we can choose different can-
didates, we discuss alternative selection criteria. The most memory-efficient approach is neither just
maximizing the overlap of the masks nor their individual sparsity. This implies a trade-off between
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the objective to reduce memory and inference speed, which would both be desirable in practice.
Furthermore, perhaps counter-intuitively, larger source models support more memory-efficient rep-
resentations, thus, inducing a trade-off between the size of the source model and the masks and the
joint memory requirements of the masks.

Overall, our contributions can be summarized as follows:

• Up to our knowledge, we are the first to identify the potential of the Strong Lottery Ticket
(SLT) concept to reduce the memory footprint of neural network model families like en-
sembles or mixtures of experts (MoEs).

• We identify multiple advantages of sharing a single source network across multiple models.
In particular, we prove that sharing a source network induces a lower width requirement
(on the source) in lottery ticket existence statements.

• We obtain conceptual and theoretical insights into subsetsum approximations and utilize
them to optimize memory usage across structurally similar models.

• We identify fundamental trade-offs between memory and inference speed in joint SLT con-
structions of multiple models.

2 RELATED WORK

Ensembles and mixture of experts The main application of our theory is representing and saving
families of models, such as ensembles (Ganaie et al., 2021) and mixture of experts (MoEs) (Cai et al.,
2024; Jacobs et al., 1991). Traditional ensemble methods such as bagging (Breiman, 1996), stacking
Wolpert (1992) and boosting (Freund & Schapire, 1996) have been applied to deep ensembles (K.
et al., 2005; Liu et al., 2014; Low et al., 2020). leading to better generalization performance, effi-
ciency, and less need for stronger models. Nevertheless, neural networks incur high training costs.
Proposed alternatives are homogeneous and heterogeneous ensembles, which distribute the data set
over the models or use a diverse set of (smaller) models (Tabik et al., 2020; Kilimci et al., 2018). A
modern approach is a mixture of experts (MoEs) architecture, contributing to the scaling and success
of Large Language Models (LLMs) (Jiang et al., 2024; Lepikhin et al., 2020). However, while MoEs
aim to improve inference efficiency, the increasing size of MoE leads to storage issues, for example,
when the device capacity is constrained (e.g. in the case of edge devices). Recently, hierarchical
storage solutions have been proposed to alleviate this issue (Yu et al., 2024; Hwang et al., 2024; Yi
et al., 2023). For example, off-loading inactive experts with selection forecasting has the goal of
minimizing the overhead from data transfer. Moreover, specific GPU kernels have been designed to
address the issue of memory movement and computational efficiency (Rajbhandari et al., 2022; He
et al., 2021; Nie et al., 2022; Hwang et al., 2023). To add to this, PIT (Zheng et al., 2023) introduces
a sparse tiling mechanism based on permutation equivariance leading to computational savings.

Model compression Besides infrastructural improvements, dense-to-sparse model training (Ko-
matsuzaki et al., 2023), sparse-to-dense model training (Fedus et al., 2022b) and merging experts
(Li et al., 2022) also lead to inference and memory savings by reducing the size of the involved
models. Model families can also be sparsified jointly according to Allingham et al. (2023). Yet, up
to our knowledge, the potential of SLTs to further reduce the memory footprint of such models, has
not been explored. Utilizing SLTs, we show it is possible to save multiple models with one seed and
their respective binary masks. Furthermore, we show that the storage of the masks can be optimized
based on novel insights into subsetsum approximation.

Strong lottery tickets Many neural network compression algorithms are inspired by the lottery
ticket hypothesis (Frankle & Carbin, 2019), which conjectures the existence of subnetworks of ran-
domly initialized neural networks, the source network, which can approximate a target network if
trained in isolation. Ramanujan et al. (2020) found empirical evidence for an even stronger hy-
pothesis, the SLT, that there exist subnetworks that do not require any training but pruning the
source network is sufficient to solve complex tasks. Malach et al. (2020) proved this hypothesis
formally but required a high overparameterization, namely that the source network is wider than
a target network by a polynomial factor in the approximation error, which can yield potentially
optimally sparse lottery tickets Fischer & Burkholz (2022). Two subsequent works brought this fac-
tor down to logarithmic overparameterization (Orseau et al., 2020; Pensia et al., 2020) suggesting
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practical relevance of SLT constructions, which could be exploited for reduced memory represen-
tations, as mentioned by Otsuka et al. (2024). (Pensia et al., 2020) have achieved their practical
bound by utilizing an older theoretical result on subsetsum approximations (Lueker, 1998) in their
SLT construction. Subsequent work has extended this proof strategy to cover modern deep neural
network architectures with nonzero biases (Fischer et al., 2021), convolutional layers (da Cunha
et al., 2022; Burkholz, 2022b) and residual blocks, (Burkholz, 2022b), various activation functions
(Burkholz, 2022c), more general equivariant architectures including graph neural networks (Ferbach
et al., 2022), specific universal architectures (Burkholz et al., 2022), and construct structured SLTs
or more flexible approximations (Xiong et al., 2023). Also, the distribution of source networks has
been generalized to binary (Diffenderfer et al., 2021; Zhou et al., 2019; Sreenivasan et al., 2022) or
randomly sparse (Gadhikar et al., 2023) weights. Our results apply to all of these architectures and
conditions, as we base our insights on the underlying subsetsum approximation.

Subsetsum approximation Subsetsum approximation is a fairly old result that states that any
target variable in a bounded interval can be approximated as the sum of a subset of a sufficiently
large source size (Lueker, 1998), which can be used to prove lottery ticket existence (Pensia et al.,
2020). This statement has been generalized to larger target intervals (Burkholz et al., 2022), multi-
dimensional targets and sources (Becchetti et al., 2022), randomly dropped source elements (Gad-
hikar et al., 2023), epsilon perturbations (Xiong et al., 2023), and partially frozen sources (Otsuka
et al., 2024). In this work, we analyze the properties of the approximating subsets and exploit our
flexibility in choosing candidates that reduce the joint memory requirements of multiple targets.

3 SLT EXISTENCE WITH SHARED VERSUS SEPARATE SOURCES

Our first objective is to prove the existence of strong lottery tickets (SLTs) for a family of target
models such as MoEs and ensembles. A largely overlooked fact is that current lottery ticket con-
structions already support simultaneously all possible target models that are smaller than a specific
upper bound on their size (width and depth) if they share the same random source model, which is
pruned to approximate our target models. As a consequence, we only have to store the corresponding
masks of each target model and the seed of the random source model generation.

Thus, we only have to compare this setting to the alternative, where we use separate source net-
works for each expert model. At first glance, separate sources could have the advantage that the
corresponding models can be developed independently and do not require synchronization of mul-
tiple servers, for instance, if they are trained on different machines (and data potentially). Saving
multiple seeds for different source models incurs only negligible additional memory and the com-
putational overhead of generating multiple source models can be parallelized.

So why do we still propose to share the same source network? As we prove, the first disadvantage
of separate sources is that this increases our bound on the source width. Thus, each of the multiple
source models would need to be larger – to ensure the success of a higher number of subsetsum
approximations in the independent LT constructions. However, the width factor is only logarithmic
in the number m of experts log(m), but this can still be significant if our target experts are large.
More importantly, we show that sharing a source model allows us to find more memory-efficient
lottery tickets. Furthermore, overlapping target sparsity patterns can become more easily exploited.
To back these statements up theoretically, we present an analytically tractable comparison of sub-
setsum representations of multiple targets that highlights the memory benefits of sharing the same
source. Moreover, we show that sparsifying each target mask individually is suboptimal and propose
another criterion to find more memory efficient representations of multiple targets.

SLT existence model family without source width increase In the most efficient SLT construc-
tions, each target parameter z is approximated by solving an independent subsetsum approximation
problem of the following form:

Theorem 3.1 (Subsetsum approximation, Theorem 3 Pensia et al. (2020)) Let the source set ele-
ments X1, X2, . . . , Xn be i.i.d. uniformly distributed over [−1, 1]. Furthermore, set C = log e+1 ≈
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2.442695. Suppose that n ≥ C log 2
min{ϵ,δ} . Then, with probability at least 1− δ, we have

∀z ∈ [−1

2
,
1

2
], ∃S ∈ [n] s.t. |z −

∑
j∈S

Xj | < ϵ.

Originally, this result has been proven by Lueker (1998) and first applied to SLTs by Pensia et al.
(2020). An often overlooked fact, which is critical for us, is that the approximation works for all
target values in [− 1

2 ,
1
2 ]. In consequence, Theorem 3.1 applies also to a family of targets. However,

if we rely on independent source networks for each target separately (as common in the approxima-
tion of the parameters of a single target network), our bound on the source widths increases, as the
next theorem establishes.

Theorem 3.2 Let z1, . . . , zm ∈ [− 1
2 ,

1
2 ]. The probability of successfully approximating each target

zi based on m independent source sets (X(i)
1 , X

(i)
2 , . . . , X

(i)
n ) is at least 1−δ if n ≥ C log 2m

min{ϵ,δ} .

Proof. Denote the failure probability of single source model of the multiple source case with δ′ > 0
and the standard single source case with δ > 0. We want to show that (1− δ′)

m ≥ 1− δ, for some
δ′ > 0. We use that for δ′ ∈ (0, 1) the following inequality holds (1− δ′)

m ≥ 1− δ′m. This can be
shown using induction with m ≥ 1. The inequality implies that δ′ ≤ δ

m . Plugging this into Theorem
3.1 we get

n ≥ C log
2

min{ϵ, δ′}
≥ C log

2m

min{ϵ, δ}
,

which concludes the proof. □

Theorem 3.2 translates directly to SLT constructions of families of full target networks. Any SLT
construction of the modern architectures, which we have discussed in the literature section, can
be transferred to our setting with the updated subsetsum approximation. To give an example, we
transfer the construction by Pensia et al. (2020) to the following family {fk}mk=1 ∈ Fℓ of target
multi-layer perceptrons (MLPs) of depth ℓ, where :

Fℓ := {f : f(x) = Wℓσ (Wℓ−1 . . . σ (W1x)) ,∀iWi ∈ Rdi×di−1and||Wi|| ≤ 1}
Note that these weights can also be partially zero or encode identity mappings of specific layers,
effectively covering also neural networks of smaller width and depth. The next result finally states
how our width requirement increases if we use multiple source networks instead of a single one as
basis for m target models.

Theorem 3.3 Let {fk}mk=1 ∈ Fℓ be a family of target models. Consider m randomly initialized 2ℓ-

layer source MLPs gk(x) := W̃ k
2ℓσ
(
W̃ k

2ℓ−1 . . . σ
(
W̃ k

1 x
))

, where every weight is sampled iid from

U [−1, 1], W̃ k
2i has dimension di × d′i, and W̃ k

2i−1 has dimension d′i × di−1. Then, with probability
at least 1− δ, for every fk ∈ Fℓ

min
Mk

i ∈{0,1}|Mk
i
|
sup

||x||≤1

||fk(x)−Mk
2ℓ ⊙ W̃ 1

2ℓσ
(
Mk

2ℓ−1 ⊙ W̃ 1
2ℓ−1 . . . σ

(
Mk

1 ⊙ W̃ 1
1 x
))
|| < ϵ, (1)

if d′i ≥ Cdi−1 log
di−1diℓ

min{ϵ,δ} for a shared source network. However, the same statement holds for
multiple source networks

min
Mk

i ∈{0,1}|Mk
i
|
sup

||x||≤1

||fk(x)−Mk
2ℓ ⊙ W̃ k

2ℓσ
(
Mk

2ℓ−1 ⊙ W̃ k
2ℓ−1 . . . σ

(
Mk

1 ⊙ W̃ k
1 x
))
|| < ϵ, (2)

if d′i ≥ Cdi−1 log
di−1diℓ

min{ϵ,δ/m} .

Proof. The proof is analogous to the on of Theorem 1 (Pensia et al., 2020) but replaces the subsetsum
approximation width bound by Theorem 3.2. □

We conclude that reusing the same source network (with index 1) can be achieved by an overpa-
rameterization of the form d′ ∼ Cd log(1/δ). In contrast, using m independent sources results
in d′ ∼ Cd log(m/δ). While the logarithmic dependence on m suggests that the approach can
be scaled to many experts, the difference Cd log(m/δ) − Cd log(1/δ) is still non-negligible if the
target dimension d is large. Yet, the following advantages of source sharing are potentially more
considerable.
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Saving memory using one source In addition to decreasing the source width requirement, we can
save memory if the masks M1, . . . ,Mm can be stored efficiently. Next, we show that, if the target
networks have similar entries and can be approximated by the same subset, then their masks are
identical for such entries if we use the same source. But for different sources, even if one is only a
shuffled variant of the other, it is unlikely that the representing masks have such a high overlap. This
overlap is relevant for finding masks that can be stored efficiently. We will later propose a scheme
where we separately save the overlap of masks and their individual differences from such overlaps.
With such an encoding, highly similar targets would have more memory-efficient SLT masks if they
are based on the same source network.

Theorem 3.4 Let z1, z2 ∈ [− 1
2 ,

1
2 ] be similar targets that can be approximated by z with |zi−z| < ϵ

and |z| > ϵ with subsetsum approximation
∑

i∈M Xi = z of size |M | = k. If the same source is
used, we have M1 = M2. Furthermore, if we reshuffle the sources that are used to approximate
individual targets, the probability of perfect overlap between mask entries of M1 and M2 is

P
(
M1 ∩M2

)
=

1(
n
k

) . (3)

Proof. We are utilizing subsetsum approximations as in Theorem 3.1. The first statement follows
from the fact that the targets are identical. Thus, if we use the same source network, both targets have
the same subsetsum representation and it is sufficient to save one representation and their (trivial)
difference.

The second statement follows from the probability of permutations. We have k options for the first
overlap and n total options, next, we have k − 1 options and n − 1 total options until we have 1
option and n− k total options. This results in the probability being equal to Eq. (3).

Note that if the target |z| < ϵ, we could approximate targets by 0 and thus an empty mask. Irrespec-
tive of the source set, such representations would perfectly overlap and have the sparsest possible
mask. □

Theorem 3.4 discusses an edge case, when single-source SLTs could be preferable over multi-source
SLTs. Instead of complete overlap for a shared source, there is a low probability of overlap in the
case of separate sources. Moreover, this effect is stronger when k is relatively small compared to n,
which is common if we optimize for sparse masks.

Remark However, we will see in Section 5, that in general, the similarity of targets does not tend
to be associated with higher mask overlaps if we optimize the masks for memory efficiency. Yet,
memory efficiency is generally still promoted by source sharing. Furthermore, note that if the targets
are highly sparse and overlap in the position of zeros, the above proof suggests that this joint sparsity
could be exploited regardless of the source models. Next, we explore further options to save memory
that go beyond target sparsity.

Optimizing for memory In practice, we can optimize the mask sizes for sparsity. In addition, we
might want to maximize their overlap, as we do not have to save identical entries multiple times.
What should be our optimization objective then? It should depend on the union of masks:(

m⋃
k=1

Mk

)
j

=

{
1 if ∃k s.t. Mk

j = 1,

0 else,

where j is the general index of the mask. The minimization of the union of masks takes into account
the size of all masks and the overlap, making it a natural objective to minimize:

min
M1,...,Mm

∣∣∣∣∣
m⋃

k=1

Mk

∣∣∣∣∣ , s.t. {Mk} satisfies Eq. (2). (4)

With respect to this objective, an approach that sparsifies each mask independently often leads to
suboptimal results, as we discuss next.

Theorem 3.5 Consider the setting of Theorem 3.3. Minimizing the size of each mask Mk for k ∈
[m] is an upper bound for Eq. (4).
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Proof. It follows from the union bound that
∣∣∣∣ m⋃
k=1

Mk

∣∣∣∣ ≤∑m
k=1 |Mk|. This implies that

min
M1,...Mm

∣∣∣∣∣
m⋃

k=1

Mk

∣∣∣∣∣ ≤ min
M1,...Mm

m∑
k=1

|Mk| =
m∑

k=1

min
Mk
|Mk|

where Mk for all k ∈ [m] satisfies the constraint in Eq. (2). □

Theorem 3.5 implies that optimizing each mask individually does not necessarily lead to memory
savings. We can thus improve upon this by considering other objectives such as the union of masks
directly. The next section explores this reasoning in the context of subsetsum approximations.

4 INSIGHTS INTO SUBSET-SUM APPROXIMATION

Let us consider a variant of the subsetsum approximation problem with m target models of length
p. As we saw in Theorem 3.1, we can approximate each target of a model with the same source
set. We will now have p source sets of size n and m target models. This gives us a target matrix
Z ∈ [− 1

2 ,
1
2 ]

p×m, mask M ∈ {0, 1}p×m×n and source networks X ∈ U [−1, 1]p×n. Then we want
to optimize the subsetsum problem for each target, given a source network. We refer to this problem
as the multi-subsetsum approximation problem.

Improving memory savings In the previous section, we have seen how that we only need a single
source set to represent m different targets with no additional width requirements. Since the widely
used random number generators are deterministic with respect to the seed s, we only need s and
the binary subset masks to reconstruct target values to a certain precision ϵ. Since binary matri-
ces require lesser memory compared to floating point parameters of the model, this is an efficient
alternative to compress multiple models of the same architecture during deployment. In addition,
efficient algorithms like bitwise compression, run-length encoding, etc. can be used to efficiently
store sparse binary matrices. Having sparse matrices can improve the memory savings and also
lower the inference time computations.

To save memory, we prefer smaller source set sizes n, sparser masks M , and also care about a low
computational overhead to reconstruct a model. The choice of the source set size n depends on the
permissible target error ϵ and the probabilistic error of finding a satisfying subset δ. A s ϵ, δ decrease,
the necessary source set size that satisfies the errors increases. Together, the errors have an impact
on how identical the performance of the approximated network is to the target network. At the same
time, for a given Xi for i ∈ [p], several subsets Mi,j for j ∈ [m] satisfy the target requirement. As
n increases, so do the choices of Mi,j . Based on how we choose subsets from the choices we can
gain further memory improvements. We will next discuss different storage formulations and then
evaluate approaches that pick optimal subsets according to different metrics and as a result, increase
the sparsity of M and reduce the number of operations to reconstruct the model.

m and m + 1 scheme: We discuss two schemes to store the binary masks (Figure 3). The first
is the general m scheme that represents the binary mask as M with m binary planes. Instead, the
m + 1 scheme decomposes the masks into one overlap plane and m extra planes. In the overlap
plane, the bits common to all m planes are set. And m extra planes contain the remaining set bits.
If M̂ is the mask of (m+ 1) scheme, the relation between M and M̂ is:

M̂m+1 = Πm
j=1[M

j ] (5)

M̂ j = M j − M̂m+1, ∀j ∈ [m], (6)
where Π is the element-wise product or the Hadamard product. Similarly, we can retrieve the overlap
and extra planes by using bitwise operators. Once we transform each n bit binary vector in M into
an integer, simply replacing Π with bitwise and operator(∧) in Eq (5) and subtraction with bitwise
xor operator(⊕) in Eq (5). We can then convert the integers into n − bit binary representations
(binary(·)). Similarly, the mask M can be derived from M̂ by adding it back during inference as
M j = M̂m+1 + M̂ j .

A naive way of saving sparse binary matrices is to store the positions of ones (also called bits) in
the mask. Since, the overlap bits are repeated by all the m masks, an efficient way to improve
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memory savings is to save the overlap location separately, but only ones. Computing the overlap
operations also only once at inference, could also lead to computational speedups. Therefore, the
(m + 1) scheme is a better alternative to (m) scheme for memory efficiency, provided that the
approximating subsets have a sizeable number of overlap bits. Also if the entire model needs to
be loaded into memory (at inference), (m + 1) is preferable. But in situations where the degree of
overlap is not high or when only one individual model out of m needs to be loaded (like on edge
devices with low memory), the advantages of (m+ 1) vanishes as the presence of the overlap layer
is redundant. Which scheme should be preferred thus depends on the most common use cases.

Since mask structure impacts memory and inference efficiency, the natural followup question is to
ask whether it can be optimized. This is possible when multi-subset-sum approximation results in
multiple choices for each of the m targets. While reducing the joint memory footprint, we still want
the sparsity of the individual masks to remain high for fast inference. With these requirements in
mind, we propose the following subset selection approaches.

Sparsity by fixed binning (Partition) In this first approach, we split the range of the target values
[− 1

2 ,
1
2 ] into fixed individual bins of size ϵ and make the center of each bin the representative target.

The idea is to then map any arbitrary target value to its closest bin and pick the sparsest subset that
approximates its representative. We abuse the notation and call this approximating the bin. For a
given ϵ and target z, the representative target zbin can be calculated as:

zbin =

(
⌊
z + 1

2

ϵ
⌋+ 1

2

)
· ϵ− 1

2
(7)

Alg. 1 reports how we solve the associated multi-subset-sum approximation problem and Alg. 2
states the binning approach. Picking the sparsest subset for each target encourages sparsity across
m planes. It is important to note that the subset for each target is still picked independently of other
targets. So, the overlap is not taken into account. This approach is catered towards the m scheme.

Sparsity by local binning (Local − bin) Even though the prior strategy to create fixed bins pro-
vides a practical framework to the problem of picking ideal subsets, it is not necessary and the
mapping is an avoidable overhead, as we will see in Sec (5). For all practical purposes, it could be
sufficient to assume a local bin of width 2 ∗ ϵ centered around the target value. Similar to the prior
approach, sparsity can be independently maximized among approximating subsets. The algorithm
is the same as Alg. 2 but without the target mapping in Alg. 1, thus also catering to the m scheme.

Minimal total length (Local − bin + opt) The earlier two approaches only promote high mask
sparsity but do not focus on giving structure to M . This approach addresses both considerations by
minimizing the total length: overlap bits +

∑
m extra bits. This promotes the selection of subsets

with a higher overlap compared to the earlier approach, which did not take this into account. Note
that the ultimate aim is to minimize total length, which also restrains set overlap bit sizes.

We use local binning strategy for this approach. The algorithm for optimal total length is shown in
Alg. 3. Firstly, We find all possible unique overlap patterns (overlaps) across subsets that satisfy
each of m targets. Then, for each overlap (o ∈ overlaps), we find the candidate subsets (indi),
the ones that possess the overlap pattern, and pick the ones with the smallest number of extra bits
(setBits(o ⊕ indi)). In terms of bit-wise operations, indi has the o pattern if (o ∧ indi) = o. We
then pick the (o, {indi,∀i ∈ {1, 2, ...,m}}). that has the minimum total length= [setBits(o) +∑m

i=1 setBits(o⊕ indi)]. Here the function setBits(·) counts the number of bits that are set in the
equivalent binary representation. Finally, we choose the combination of (overlap,candidate subsets
with minimal length) which has the lowest total size.

5 EXPERIMENTS

To verify the extent to which memory and compute savings are possible, we run 10,000 iterations
of Multi Subset-sum approximation according to Alg. 1] across m different targets where Z and
X are sampled uniformly at random from their respective ranges as in Theorem 3.1. We compare
the total bits required for both the (m) and (m + 1) plane scenarios, the overlap bits and extra bits
across different values of ϵ, source sizes n and in the cases of shared and different source sets for
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Algorithm 1 Multi-subset-sum
Require: Source set X ⊂ (−1, 1), m target values Z ⊂ (− 1

2 ,
1
2 ), allowed error ϵ, optimizing

algorithm OptAlgorithm
if OptAlgorithm = Partition then

Z ← [floor(
Z+ 1

2

ϵ + 1
2 )]ϵ+

1
2

end if
Initialize each element of subsetSums of size 2n to 0
for i ∈ {1, 2, ..., 2n} do

subsetSums[i]← X ⊙ binary(i)
end for
for i ∈ {1, 2, ...,m} do

satIndices[i]← {s | s ∈ {1, 2, ..., 2n} & |subsetSums[s]− Z[i]| < ϵ}
end for
optSubsets = OptAlgorithm(satIndices)
return optSubsets

Algorithm 2 Local-bin
Require: satIndices for Z, the number of targets m

for i ∈ {1, 2, ...,m} do
indi ← argminj∈{1,2,...,|satIndices[i]|} setBits(satIndices[i])

end for
return Optimal subsets {binary(ind1), binary(ind2), ..., binary(indM )}

targets. In addition, we also compare the average number of computations required to reconstruct
the Z. We can use the number of set bits of in M and M̂ as a surrogate for computations of the (m)
and (m + 1) plane scenarios respectively. We refer to the approach of finding sparsest subsets by
mapping targets to bin representatives as Partition, the approach of finding sparse in a localized
bin around the targets directly as Local− bin, and the approach of optimizing the overlap and extra
bits in the (m+ 1) plane scenario as Local − bin+ opt in the plots.

The statistics for n = 17 (where δ ∼ 0.01, ϵ = 0.001,m = 4) for shared and different sources
are shown in Figure (1). It is important to note that both Partition & Local-bin behave similarly
across different metrics. Local-bin is the better option, since it removes the need to map targets to
bin centers according to Eq (7).

(m) vs (m+ 1) plane scenario: As intended, approaches like Partition & Local-bin have better
total bits and average computations than Local-bin+opt in the m plane scenario. Since the number of
overlap bits for the subsets found by the former approach are close to zero, having an additional extra
plane only adds redundancy. Whereas, Local-bin+opt seems to find subsets where the number of
set overlap bits is much higher and is comparable to the average extra bits per target( extra bits

m ≈ 2.5).
In addition, the number of extra bits is also lower. Since decomposing binary mask into overlap
and extra bit planes in such cases improves the overall sparsity in the extra planes when the model
is saved according to the (m + 1) plane scheme, we see that the number of total bits and average
computations required to reconstruct network to a suitable approximation are lower. This makes
Local-bin+opt with masks saved according to (m+1) plane scenario, the best methodology to avail
for ensemble models or if an entire MoE model must be loaded onto memory at once. On the other
hand, when models should be deployed on edge devices with low memory, loading and evaluating
only the required expert head of an MoE model is more prudent. This can be quantified by the
average computations in the (m) plane scheme and hence Local-bin is the recommended approach
here.

Shared source vs different sources: As shown in Fig 1, having a shared source increases overlap
bits and reduces extra bits compared to different sources, confirming the intuition acquired from
Theorem 3.4. The effect is more pronounced for Local-bin+opt where having a shared source lowers
both the total bits required and average computations over the (m + 1) plane scenario to which the
approach is better suited. On the other hand, there is no tangible difference between using a shared
source or different sources to approximate targets for Partition & Local-bin. This is as expected
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Algorithm 3 Local-bin+opt
Require: satIndices for Z, the number of targets m
overlaps← ∧mi=1si,∀ combinations of si ∈ satIndices[i]
optOverlap, optInd ← argmino∈overlaps,indi∀i∈{1,2,...,m}[setBits(o) +

∑m
i=1 setBits(o ⊕

indi)]
such that indi ∈ satIndices[i] & [(o ∧ indi) = o] ,∀i ∈ {1, 2, ...m}

return Optimal subsets {binary(optIndi),∀i ∈ {1, 2, ...,m}}

Figure 1: Memory savings and inference speedup for the proposed sparsity approaches over shared
and different sources. The first column shows the average number of overlap and extra bits required
by each approach, the second and third columns show the total number of bits to be saved and the
number of computations to be performed at inference following the m and m+ 1 schemes.

as each target is optimized on its own. In addition, we show in the appendix that for different n,
the success probability (1 − δ) is higher for shared source than different sources. Therefore, it is
preferable to use a shared source as a general rule.

Impact of source size n: The statistics for n = {15, 16, 17}, ϵ = 0.001,m = 4 where source
set is shared are shown in plot Fig. 2. As the source size increases, the overlap among chosen
subsets increases and the total bits to approximate targets and the computations decrease irrespective
of the (m)/(m + 1) scheme. Also having a higher n reduces the error probability δ since n ≥
C log 2

min{ϵ,δ} from Theorem 3.1. Yet, using a higher n comes at a cost. Solving the multi-subset-
sum approximation (as shown in Alg. 1]) problem requires searching for ideal subsets in a search
space of size 2n. Therefore, it can be computationally expensive to find binary masks.

Reliable reconstruction using SLTs: Next, we verify if the subsets found by the proposed
approaches can approximate a target MoE following the explicit SLT reconstruction approach
(Burkholz, 2022a). As the target network, we consider an MoE model with 8 experts, each a single-
layered 1-dimensional convolutional network, and a single-layered convolutional layer as router
network. The MoE model is trained on the dataset created according to Definition 3.1 of Chen et al.
(2022) and has an accuracy ∼ 94.1%. We solve the multi-subsetsum problem over the randomly
initialized parameters of a source network with 2 layers by comparing our different approaches. We
use n = 15, ϵ = 0.01, which guarantees δ < 0.01. Note that, for expert models with L = 1, the
reconstruction is the same with both the 2L (Pensia et al., 2020) or L+1- constructions (Burkholz,

9
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Figure 2: Memory savings and inference speedup over different sizes (n) of shared source network.
The first column shows the average number of overlap and extra bits required by each approach, the
second and third columns show the total number of bits to be saved and the number of computations
to be performed at inference following the m and m+ 1 schemes.

2022a). We find that every approach is able to find masks that ensure robust reconstructions of the
target network with accuracy ∼ 94% over both shared and different source networks.

6 DISCUSSION

We investigate the potential of the strong lottery ticket (SLT) concept to reduce the joint memory
footprint of model families that have similar deep neural network architectures and have SLT ap-
proximations, which can be subnetworks of the same source network. If the models overlap in
their sparsity patterns in addition, they can be further exploited for compressed representations, if
they share the same source network in the SLT construction, as we have established theoretically.
Beyond similarity in the original parameterization, we have propose and analyze multiple criteria
to select jointly optimized masks that characterize individual models, which we derive from novel
insights into subset-sum approximation. This enabled us to identify fundamental trade-offs between
computationally relevant objectives like the inference cost and memory footprint. At first consider-
ation surprisingly, we further find that larger source sizes, which imply larger masks, can achieve
higher memory savings, as they offer more masks to choose from during the optimization. Beyond
a certain source size threshold, however, we expect that this effect saturates so that increasing the
overparameterization further can only have a negative impact. Yet, this threshold is not attainable
in a computationally effective way because the space of all potential subsetsum approximations in-
creases exponentially in the source set size. However, we identify potential for already great memory
improvements for moderate, practical sizes of source sizes. With our analysis, we have thus laid the
theoretical basis for utilizing the SLT principle to obtain memory savings of multiple large-scale
models.
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A SCHEMATIC DIAGRAM FOR THE TWO MASK SAVING METHODS

We provide a schematic diagram shown in 3 to explain the (m) and (m+1) methods to save subsets
masks.

B OTHER MEMORY SAVING ALGORITHMS

In this section we present additional experiments on memory savings. We will consider the case
where we have two target models and look at the relationship between overlap in bits and the distance
between the two targets. We consider also multiple different algorithms. The algorithms we consider
are:

• Smallest superset: Minimizes the superset from which all masks have too choose. This
promotes overlap by shrinking the total posibilities for each mask.

• Smallest overlap + extra (Local-Bin + opt): See Section 4.
• Smallest extra - overlap: Minimizes the extra bits used and maximizes the shared bits.
• Smallest extra: Minimizes the extra bits used.
• Local-Bin: See Section 4.
• Partition: See Section 4.
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Figure 3: Schematic diagram for the (m) and (m+1) mask saving methods. The numbers in pink are
the integer equivalents of the binary subset(e.g., 0100011 = 35). While the m-scheme individually
picks the sparsest candidates to represent each target, (m + 1)-scheme picks the candidates that
minimize the sum of the set overlap bits and extra bits.

Note that all algorithms take the best representative for each mask in a (−ϵ, ϵ) interval for their re-
spective optimization task. In contrast, partition, splits up the target space [− 1

2 ,
1
2 ] into sub intervals

of size 2ϵ. Then for each target it takes the best representative that corresponds to the subinterval.
Moreover, we use single source size n = 14, 15 and 16 .

The results for the distance versus overlap is presented in Figure 4. We observe that for all consid-
ered algorithms the distribution is uniform. Furthermore, note that between methods there is still a
significant difference as also observed between the algorithms considered in the main text.

The results for the storage of overlap, extra and total bit storage is given in Figure 5. Note that we
here are in the same setting as Figure 2 and use n = 15, 16, and 17. We observe that the method that
maximize overlap and the method that minimizes extra bits have the largest bit overlap, followed by
local-bin+opt. Nevertheless, maximizing overlap or minimizing extra bits comes at a cost in the m
scheme, while not punished in the m+1 scheme. Furthermore, as expected, local-bin+opt still uses
less bits in m + 1 scheme. Moreover, individual optimizers such as partition and local-bin are best
in the m scheme and competetive with the extra proposed methods in the m+ 1 scheme.

C EMPRIRICAL ANALYSIS

In this section, we evaluate the mask savings schemes and algorithms discussed in Section 4 over
their reconstruction quality and the computational and storage requirements. For the experiments,
we use the largescale switch-base-8 transformer (Fedus et al. (2022a)) model that is fine-tuned for
the Samsum dialogue dataset for abstractive summarization(Gliwa et al. (2019)). The model consists
of 24 mixtures of experts(MoE)-layers with 8 experts in each layer. Each expert is a dense layer with
≈ 2.36 million parameters.

For the multi-subset-sum approximations(MSSA), we choose a source set size n = 15, with a
permissible error, ϵ = 0.01. The cases where a suitable subset that satisfies ϵ-approximation does not
exist (can occur by a probability of δ = 0.01), we choose the subset with the smallest approximation
error. Since our theory applies to parameter targets in the range (−0.5, 0.5), we scale the parameters
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Figure 4: For all considered algorithms and n = 14, 15 and 16 we show the average overlap between
two targets depending on their distance to each other.

Figure 5: Memory savings and inference speedup for the additional proposed sparsity approaches
over different sizes (n) of shared source network. The first column shows the average number
of overlap and extra bits required by each approach, the second and third columns show the total
number of bits to be saved and the number of computations to be performed at inference following
the m and m + 1 schemes respectively. A-Partition, B-Local-bin, C-Local-bin+opt, D-opt(overall
subset), E-opt(extra-overlap), F-opt(extra)
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of each expert layer to this range. Doing so would not be inappropriate since the model architecture
uses a ReLu activation function which is scale-invariant in its behavior. Also, since most activation
functions can be approximated using ReLUs (Burkholz (2022a)), this scaling can be applied in
general. We try to approximate the 8 target values using source sets sampled uniformly from (−1, 1).
All computations to find the approximating subsets are performed on a single 2nd-generation Intel
Xeon Scalable processor (3.9GHz).

C.1 RECONSTRUCTION QUALITY

We compare the text summarization performance of models reconstructed using our proposed algo-
rithms over the Rouge suite metrics. The detailed results are presented in Table 1. Compared to the
original model, the models reconstructed using both the Partition and Local−bin show negligible
degradation to the summarization performance over the validation set of the Samsum dataset. This
confirms the qualitative viability of the proposed methods without the need for excessive SLT sizes.
Since they are well-optimized for the task, we use the parameters n = 15 and ϵ = 0.01 for further
quantitative analysis in Section C.2.

We are unable to include the reconstruction performance of Local-bin+opt algorithm due to the high
computational complexity of the Local-bin+opt approach. This limitation is addressed in detail in
Section C.2.

Metric Original Model Local-bin Partition
Validation loss 1.461 1.470 1.468
Rouge-1 0.46539 0.465144 0.466098
Rouge-2 0.232704 0.229176 0.227615
Rouge-L 0.394087 0.393255 0.39309
Rouge-L sum 0.430643 0.427835 0.429367

Table 1: Reconstruction quality of Local − bin, and Partition algorithms compared to a full
precision switch-base-8 model (Fedus et al. (2022a)). Rouge metrics are calculated on the validation
set of Samsum dataset.

C.2 COMPUTATION TIME AND STORAGE EFFICIENCY

Traditional strong lottery ticket finding process involves sampling the weights of an entire network at
random and finding masks that approximate target parameter values by performing multiple subset-
sum approximation operations(SSA). We mimic the same and sample different source sets randomly
for each target parameter vector of size m=8. A multi-subset-sum approximation(MSSA) is then
performed to identify ideal subsets that optimize some objective(sparsest individual subsets, total
set bits length in (m+ 1)-scheme, etc.).

Time complexity of algorithms: MSSA comprises two operations. Firstly, we find candidate sets
that approximate each of m targets by parsing through the 2n possible subsets. The time complexity
of repeating this for each of p target vectors in an MoE layer is O(p.2n). Secondly, we choose the
ideal subset. Finding the sparsest individual subsets like in the case of Partition and Local − bin
does not incur any comparable time complexity. Whereas, Local−bin+opt incurs a lot of additional
overhead that scales exponentially with the number of experts m. Let c be the average number of
candidates that approximate each target to ϵ. Then the additional overhead is O(cm). The encoding
times per an 8 expert MoE layer observed for the algorithms and their corresponding number of set
bits are shown in Table 2. To ensure a fair comparison between algorithms we consider them in
the memory storage scheme that they are tailored for. Therefore, for Partition&Local − bin, we
follow (m)-scheme and for Local − bin+ opt, we follow (m+ 1)-scheme.

As we see in Table 2, both operations are costly over millions of parameters. Especially, comparing
across candidate sets of 8 targets to find subsets that optimize total length in (m+1)-scheme seems
to be more computationally intensive than generating candidate sets. But as a result, we do observe
an improvement in the number of set bits per parameter. While we acknowledge that 4hrs. is
a significant amount of time to encode, it is still negligible compared to the hundred/millions of
GPU hours that large foundation models train for(Marcińczuk (2023)). Even finetuning them takes

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

multiple GPU hours. Also, the algorithms that we propose are post-hoc techniques that only need to
be performed once.

Multiple source sets vs single source set: The time complexity due to the MSSA operations can
be eliminated to a large extent by reusing a single source set to approximate all target parameters.
Theorem 3.1, ensures the viability of this proposal since the entire target range can be approximated
to a precision ϵ, with a probability δ. Further, the Partition algorithm serves as a perfect match
since we need only calculate candidates for each of the 1/epsilon bins once and choose the corre-
sponding sparsest representation. Essentially, this creates a lookup table that can be reused across
all target parameter vectors thereby, accelerating the encoding process of the entire model by leaps
and bounds to mere seconds. But, a tradeoff exists between the encoding time and the number of
set-bits within subset representation per parameter as shown in Table 2.

Multiple source sets Single source set

Partition Local-bin Local-bin+opt Partition

Encoding time/layer 4 hrs. 4 hrs. 23 days* 0.424 sec.
Set-bits/parameter 1.7438 1.7436 1.5740 2.4

Table 2: Comparison of encoding times and set-bits per parameter when multiple source sets vs a sin-
gle source set are sampled to approximate parameters. For a fair comparison, the set-bits/parameter
is calculated according to m-scheme for both Partition and Local − bin and (m+ 1)-scheme for
Local − bin+ opt algorithms respectively.

Storage Compression Formats: To analyze the extent to which the mask sparsity and similarity
can be exploited, we compare four different compression/file storage schemes. They are:

• Float-32: This is the default way models are saved where each parameter is stored as 32-bit
float data. This will serve as the baseline.

• N-bit Mask: The n-bit masks, that are identified by the multi-subset-sum approximation
over a source set of size n, and the associated seed are saved.

• Huffman Encoded - Set Bit Positions(HE-SBP): The main goal of this storage format is
to save the positions of set bits within the n-bit mask efficiently and to exploit the sparsity
of the binary masks. We use Huffman encoding to optimize the binary code representation
of each of the n bit positions based on the frequency with which they occur across all
parameters in an MoE layer. It is important to note that a delimiter token must also be
included within this style of encoding since the number of set bits within approximating
subsets of different parameters can vary. Within the encoded file, a delimiter marks the end
of a list of set bit positions applicable to the parameter that is being parsed. HE-SBP can be
applied to store masks following either the (m)-scheme or the (m+ 1)-scheme and any of
the three proposed algorithms. It is important to note that the code block that compresses
a target vector of size m would have m delimiter tokens in the (m) − scheme, whereas,
(m + 1) delimiter tokens in the (m + 1)-scheme. To decode, one must save the seed, the
encoded message as well as the Huffman tree that was used.

• Huffman Encoded - Bin Representatives(HE-BR): Using Huffman encoding, this
method encodes the unique approximating subset masks directly. It couples well with
the masks found by the Partition algorithm operating on a single source set for all target
parameter vectors. This is because the number of unique approximating subset masks are
restricted (= 1/epsilon bin representatives). Its compression performance suffers as the
number of unique approximating subsets increases.

The storage requirements and the time to encode and decode based on the methods discussed above
are shown in Table 3. We have tried a combination of mask-finding algorithms(in their optimal
mask-saving schemes), single vs multiple sources, and shared vs different sources that were relevant
to the storage formats.

As expected, the 15-bit mask was able to reduce the storage requirement by half with no significant
computational overhead to encode/decode. However, a loose trade-off exists between the storage
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Method Storage Space Bits/ Encode Time Decode Time
Parameter (Full model) (Full model)

Float-32 1.728 GB 32 - -

15-bit mask 810.01 MB 15 10.18 sec 16.32 sec

HE–SBP
Partition Single source 602.74 MB 11.16 589 sec 4065 sec
Partition Multiple sources 527.1 MB 9.46 4 days 4150 sec
Local-bin+opt Multiple sources 556.9 MB 9.99 23 days* 4133 sec

HE–BR
Partition Single-Shared source 265.82 MB 4.92 331 sec 828 sec
Partition Single-Different sources 292.75 MB 5.31 399 sec 1102 sec

Table 3: Comparison of various storage compression formats. Note: Partition follows (m)-scheme
and Local-bin+opt follows (m+ 1)-scheme.

requirements and computational overhead. While HE-SBP and HE-BR formats compress the model
even further, they pay in terms of the compute required to encode and decode.

Shared vs Different sources: Overall, the combination of HE-BR + Partition on a single shared
source strikes a good balance between memory and overhead. Also, having a shared source is
beneficial over having different source networks within the HE-BR format. This reinforces our
insights from Section 5. Having different sources increases the number of unique approximating
subsets resulting in increased sizes of the individual Huffman codes.

Single vs Multiple sources: Having individual sources for each target parameter vector results in
a better storage and set-bits/parameter rate than a single source. Having a single source network
freezes the candidates that can approximate each bin centre. If certain bins (m)/combinations of
bins(m + 1) end up having candidates that aren’t sparse, it affects the overall sparsity. Whereas,
having multiple source networks makes the system more dynamic and increases the chances of
finding sparser candidates that can be chosen as representatives.

(m) vs (m+ 1): Counter to our findings in Section 5, optimizing mask to be sparse in an (m+ 1)
mask saving scheme doesn’t seem to translate into storage benefits. Though the number of set-
bits/parameter (2) of (m + 1)-scheme is lesser than the (m)-scheme, the presence of additional
delimiter token due to the overlap bits seems to nullify the effect. This is even though HE-SBP
optimizes the code over set bit positions.
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