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Abstract

Vision-Language models (VLMs), i.e., image-text pairs
of CLIP, have boosted image-based Deep Learning (DL).
Unseen images by transferring semantic knowledge from
seen classes can be dealt with the help of language models
pre-trained only with texts. Two-dimensional spatial rela-
tionships and a higher semantic level have been performed.
Moreover, Visual-Question-Answer (VQA) tools and open-
vocabulary semantic segmentation provide us with more de-
tailed scene descriptions, i.e., qualitative texts, in captions.
However, the capability of VLMs presents still far from that
of human perception. This paper proposes PanopticCAP
for refined and enriched qualitative and quantitative cap-
tions to make them closer to what human recognizes by
combining multiple DLs and VLMs. In particular, cap-
tions with physical scales and objects’ surface properties
are integrated by water level, counting, depth map, visibil-
ity distance, and road conditions. Fine-tuned VLM models
are also used. An iteratively refined caption model with a
new physics-based contrastive loss function is used. Exper-
imental results using images with adversarial weather con-
ditions, i.e., rain, snow, fog, landslide, flooding, and traffic
events, i.e., accidents, outperform state-of-the-art DLs and
VLMs. A higher semantic level in captions for real-world
scene descriptions are shown.

1. Introduction

Segmentation has become an important task for real-
world applications by Deep Learning (DL) [4, 5, 8–12, 15,
18–20, 26, 28, 33, 37, 39, 40, 50, 51, 56–58, 60, 61, 69–
72, 74, 75, 79–81, 88, 93–95, 98, 106, 112, 115, 116, 120,
124, 126, 132–134, 152]. Segmentation has become diver-
sified into semantic and instance segmentation. Although
many variants of segmentation models are presented, issues
with limits of training image datasets and robustness to il-
lumination and noise remain unsolved. Only pretraining a
finite number of images could not have enhanced segmenta-
tion accuracy in real-world scenes. Dynamic changes have
been dealt with by rain drops [98, 134], defog, and dehaze
[40, 61, 71, 74, 89, 132]; however, these methods fail to deal

with heavy fog and snowfall events. Moreover, unpredicted
disaster and traffic accident scenes require more pretrain-
ing image datasets; however, in spite of vital events, they
are hard to collect sufficient images and videos due to rare
chances. Therefore, segmentation to such conditions and
events becomes degraded.

Recently, CV, DL, and NLP have been combined, i.e.,
Vision Language Model (VLM). It is known that unseen
images that have not been pretrained have been recognized
much better than only CV or DL models [3, 6, 14, 23, 25,
34, 41–43, 48, 54, 55, 64, 67, 83, 86, 91, 96, 97, 100, 108,
111, 114, 117, 121, 129, 139, 140, 142, 144, 146, 147, 151].
VLMs can understand vision and text, allowing them to
perform tasks requiring multimodal understanding, i.e., Vi-
sual Question Answer (VQA), image captioning, or im-
age retrieval. Moreover, VLMs can be pre-trained on large
datasets [64, 91, 100] and fine-tuned on smaller datasets for
specific tasks, allowing for efficient transfer learning [3, 6,
14, 23, 25, 34, 41–43, 48, 54, 55, 67, 83, 86, 96, 97, 108,
111, 114, 117, 121, 129, 139, 140, 142, 144, 146, 147, 151].

This can be useful in various applications, such as object
detection [29, 30, 32, 38, 49, 59, 77, 82, 90, 92, 102, 119,
128, 138, 143, 149], segmentation [24, 36, 63, 76, 78, 84,
87, 110, 127, 131, 137, 145, 150], and classification. VLMs
can save time and resources in various applications and im-
prove semantic understanding by recognizing relationships
between objects and concepts and developing a comprehen-
sive understanding of visual content.

Image captioning is an important and challenging task in
computer vision that involves generating natural language
descriptions of complex visual scenes that include objects
and their surrounding context. However, single VML is of-
ten weak for dynamic changes, i.e., disaster scenes [113].
Moreover, heavy rainfall and snowfall have been increasing,
which may cause a chain reaction of natural disasters ob-
served from the satellite images, i.e., landslides and flood-
ing [17, 44, 125].

However, camera image-based post-disaster object
recognition for dirt, water, and rocks remains unsolved on
the road. Since domain adaptation segmentation DL mod-
els [46, 118] require manual selection of the optimal pre-
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trained model, they are not useful for dynamic changes.
However, few papers effectively integrate physical scale
into the VLM model and combine multi-VLMs.

For images to be best captioned, they need to depict in-
formation most similar to Human perception. Human per-
ception can simultaneously process different visual cues,
i.e., texture, shape, and depth, to identify and label objects
at varying distances. Therefore, a method for refining and
enriching captions with different visual cues is needed.

To this end, this paper proposes PanopticCAP: a panop-
tic vision-language model under adversarial visual condi-
tions using single images. This paper proposes refined and
enriched captions for scene descriptions under adversar-
ial conditions by the proposed PanopticCAP with multiple
task-oriented DLs and VLMs.

PanopticCAP consists of eleven modules, i.e., Deep Vi-
sual Language Classification (Dvlc), Deep Visual Language
Segmentation (Dvls), Visual-Query-Answer (VQA), Con-
trastive Language Physical scale Pretraining (CLPP), Deep
Visibility estimation (Dvis), Deep Road conditions (Droad),
Deep Depth (Ddepth), Deep anomaly (Danomal), Deep
water-level (Dwater), Deep snowfall (Dsnow), and Deep
Scene (DScene). The branched architecture allows us to ef-
ficiently maintain and upgrade each of the eleven modules.
Contributions of this paper are fourfold:

1. Multiple vision language and Transformer-based Deep
Learning (DL) models with branched structures for
efficiency in light of memory, training, and mainte-
nance. Danomal excludes difficult images, i.e., lenz
reflection, to stabilize the overall system. Due to enor-
mous datasets of VLMs, Dvls, and Dvlc are fine-tuned
VLMs from SOTA models for segmentation and clas-
sification, respectively.

2. It is the first time to contain dynamic changes with
physical scales, i.e., depth by Ddepth, fog visibility
distance by Dvis, weather conditions by Dsnow, wa-
ter level by Dwater, and road conditions by Droad.
Unseen images like adversarial weather and disaster
conditions can be dealt with. Moreover, more detailed
scene descriptions of traffic accident events are shown.
Captions with 3D-related adverbs, i.e., behind, rear, in
front of, and far, enable to generate as SOTAs have
used 2D-related adverbs, i.e., left and right.

3. More refined and enriched captions are generated
based on fixed queries at VQA, CLPP, and the above
multiple modules. A new contrastive loss function is
proposed in CLPP to refine and enrich captions with
the object’s physical scale, i.e., size and position, un-
der an iterative refinement process. API tools, i.e.,
Visual ChatGPT [123], may be hard to generate dy-
namic scene changes with physical scales as this paper
presents.

4. Many experimental results show the superiority of the
proposed PanopticCAP over SOTA DLs and VLMs.
The proposed PanopticCAP will help notify detailed
scene descriptions, i.e., more quantitative texts, to
drivers, auto-driving, and rescue workers from camera
images.

2. Related Work
This section briefly describes Computer Vision (CV),

Deep Learning (DL), and Vision Language Model (VLM)
concerning methods and issues in scene understanding of
camera images under various conditions. Visibility lev-
els are one of the most important visual factors to esti-
mate for monitoring and auto-driving. To estimate visibil-
ity, segmentation-based DL models have been reported and
used by Dvis [2] and Droad [1].

An all-in-one image restoration network for unknown
corruption has been proposed [62]; however, this method
can be degraded heavy fog and snowfall, as shown in Dvis
[2] and Droad [1]. Dehazing in [33] is limited to closer
views of daytime lighter foggy scenes, i.e., indoor and gar-
den, unlike our proposed method [2] for distant scenes with
heavy fog at night, i.e., highway. A unified framework for
depth-aware panoptic segmentation has been reported [57]
under clear weather conditions.

Although Cityscapes with 3000 images [21], Foggy
Cityscape DBF with 500 synthetic foggy images [103], and
Foggy Zurich with 3800 real light foggy images [104] are
publicly available, they are almost all daytime and lighter
fog data. Moreover, image datasets for road conditions have
not been built, unlike Droad [1].

In recent years, the Vision Language model (VLM)
field has undergone significant progress [141, 147, 148].
But most of them are pre-trained with large-scale training
datasets and fine-tuned with task-specific annotated train-
ing data. The pre-training of VLMs has been explored using
three main approaches: contrastive objectives [22, 73, 99],
generative objectives [47, 122][108, 109], and alignment
objectives [35, 52, 85, 101, 130, 136]. VLMs are trans-
ferred by Text-Prompt Tuning [3, 6, 23, 42, 43, 55, 83, 86,
108, 111, 129, 139, 142, 146, 147, 151].

Besides finetuning, knowledge distillation is a method
to improve VMLs for downstream tasks, including object
detection [29, 30, 32, 38, 49, 59, 77, 82, 90, 92, 102, 119,
128, 138, 143, 149] and semantic segmentation [24, 36, 63,
76, 78, 84, 87, 110, 127, 131, 137, 145, 150].

Unseen images that have not been pre-trained have be-
come recognized by VLM frameworks [13, 31]. More di-
verse and out-of-distribution data for pre-training and eval-
uation are used [45]. Prompt learning to adapt VLMs to
new tasks without fine-tuning is also shown [53]. Contents
of captions have been enhanced for better descriptions of
real-world objects [31].
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Geometric reasoning or depth estimation to infer 3-D in-
formation from 2-D images [135, 141] is shown using 3D
point-cloud data and indoor scenes. Pretraining VLMs re-
quire over 100 million image-text paired datasets for high
accuracy, more than DL models require. Therefore, many
efficient models have been introduced [13, 31, 65, 68, 100,
105, 109, 153]. However, laborious and time-consuming
tasks remain unsolved in pretraining VLMs.

Visual ChatGPT API tool has become famous as the
image-text captioning tool. The advantage of Visual Chat-
GPT [123] is that it can produce acceptable results on the
general scene and unseen classes. However, since Visual
ChatGPT [123] is trained on the limited data of the year
2021, it generates captions under older datasets. So far, Vi-
sual ChatGPT [123] is weak at generating dynamic scene
descriptions like weather and road conditions. Moreover,
the physical size of objects, fog visibility distance, and wa-
ter level are contained.

Therefore, as aforementioned above, no SOTA VLM pa-
pers and API tools have challenged images with the phys-
ical scale in natural phenomena, i.e., fog visibility in 3D
depth and water level. More refined and enriched captions
will be provided by the proposed PanopticCAP in the fol-
lowing sections.
3. Proposed Method

This section describes the proposed PanopticCAP
method/system for refinement and enrichment of caption-
ing and classes from a single image input. Instead of using
only vision models or a single vision-language model, this
paper proposes a new architecture that integrates multiple
Deep Learning and vision-language modules.

Figure 1: Overview of the proposed PanopticCAP model.
Figure 1 shows an overview of the proposed Panoptic-

CAP. Since this paper deals with many challenging scenes
with disasters and car accidents, adversarial conditions are
taken into account. Further detailed explanations of the
multiple modules will be given in Sub-sections 3.1 to 3.4.

3.1. Proposed Danomal

To identify and reject adversarial images, as shown in
Figure 2, an algorithm to reject such images is proposed
to avoid the degradation of the cascaded other recognition

modules. Three major adversarial image patterns have been
selected: a) lens reflection, b) strong headlight, and c) rain-
drops. These adversarial images were collected from over
2500 images and used to train by Swin Transformer [37]
into 3 classes.

(a) (b) (c)

Figure 2: Examples of rejected images: (a) Lens reflection. (b) Strong
headlight. (c) Raindrops.

3.2. Proposed Dvlc and Dvls

Dvlc is a vision-language model trained on image and
text pairs that can predict the most relevant text given an
image. It does not need to be directly optimized for this
task and can perform “zero-shot” learning like GPT-3 and
-4. Dvlc matches the performance of the original ResNet50
on ImageNet “zero-shot” without using any of the original
1.28M labeled examples, which is a significant accomplish-
ment in Computer Vision.

Dvlc utilizes the input texts of five distinct disaster cate-
gories: car crashes, flooding, fog, landslide, and rain. Tai-
lored textual input descriptions are employed for each dis-
aster category to enhance natural language processing tech-
niques in analyzing disaster-related data. These scenes are
associated with domain-specific terms to improve the accu-
racy of automated disaster detection and classification.

Dvls is proposed to obtain semantic segmentation of
these scenes. Dvls is finetuned from OvSeg [76] by adding
a new physical constraint to the loss function. To obtain de-
scriptions of disasters for the Dvlc, a classification task is
performed using keywords corresponding to each disaster
scene. These texts are used to generate text descriptions of
the disasters that are fixed for each type of scene.

Therefore, since Dvlc and Dvls recognize texts and seg-
mentation from a single image, this paper proposes to com-
bine respective outputs.

3.3. Proposed CLPP

The proposed Contrastive Language Physical-Scale Pre-
training (CLPP) is a VLM with inputs from a depth map,
object location from image and text description pairs, and
a modified contrastive loss function. Unlike SOTA VLMs
with no physical models in contrastive loss functions, this
paper proposes CLPP with additional physical constraints,
as shown in Figure 3. The original contrastive loss function
of CLIP [100] is defined by

L =
1

2
(1− Y ).D2 +

1

2
Y.max(0,m−D)2 (1)

where Y is the binary label indicating whether the text and
image are similar or dissimilar, D is the distance between
the learned embeddings of the text and image, and m is the
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margin hyperparameter, i.e., 0.2. In order to incorporate the
physical scale, including the size and location of objects,
i.e., meters, a similarity metric is added. The modified con-
trastive loss is then defined as

L =
1

2
(1− Y ).D2.(1− sim) +

1

2
Y.max(0,m−D)2.sim (2)

where sim is the physical similarity between the text de-
scription and the image with object location. sim is com-
puted as the Euclidean distance between the location of ob-
jects in the image and its description in the text. sim is
defined by

sim = ws.E(ST , SI) + wl.E(RT , RI) (3)

where: ws is the weight of an object physical size, and wl

is the weight of object’s physical location, normally, ws and
wl are both set equal to 0.5. E(ST , SI) is the Euclidean dis-
tance between the physical size in image SI and in the text
description ST . E(RT , RI) is RMSE between the physical
object location in the image RI and in text description RT .
The physical size of the object is determined based on the
ratio between the object size in pixels and the object size in
meters as labeled in the dataset.

When using cosine similarity as the distance metric D
in the contrastive loss function, which ranges from −1 to 1,
the margin hyperparameter is typically set to a small value,
i.e., 0.2 to 0.5.

Figure 3: Proposed contrastive language for pre-training in physical scale.

3.4. Proposed Droad, Dsnow, and Dvis

This section discusses the proposed Droad, Dsnow, and
Dvis as explained in Section 3. Unlike SOTA papers in
DLs and VLMs, this paper aims to generate dynamic scene
changes with the weather conditions, i.e., rain, snow, and
fog, and road conditions, i.e., dry, wet, and snow. Dvis [2]
and Droad [1] are applied for further detailed classes of seg-
mented objects. Dscene [1, 2]is also applied to ensure snow
conditions.

In Dvis [2], Droad [1], and Dscene [1, 2], Swinformer
[126] is trained from over 7500 winter road images. It is
noted that since publicly available annotation datasets are
insufficient, various weather and road scenes from different
countries under adversarial conditions have been collected
and used to train.
3.5. Dwater

Dwater is a simple combination of Dscene and a
transformer-based classifier, specifically the ViT [27] clas-
sifier. Dwater estimates the water level based on reference

objects, such as cars, buses, humans, trees, poles, and traf-
fic signs, through two steps: In Step 1, objects are extracted
from the image using Dscene. In Step 2, the extracted ob-
jects are classified to their respective water levels, which
are pre-defined for each object. Table 1 shows the physical
height of the reference object for water levels.

Table 1: Physical height of reference objects.

Level/Objects human (m) car (m) pole (m)
Lv1 0.3 0.3 0.5
Lv2 0.6 0.6 1
Lv3 0.9 0.9 2
Lv4 1.3 1.2 3
Lv5 1.7 1.5 4

4. Experiments and Discussion

4.1. Danomal for adversarial conditions

This section evaluates the performance of the proposed
Danomal. The dataset comprises over 2500 images with
1 normal condition and 3 different adversarial conditions:
lens reflection, strong light, and raindrops. In a compara-
tive study, Droad, Dsnow, Dvis, and Dvlc are applied with
and without Danomal. Evaluation is conducted using three
classes of road condition, three classes of snowfall, four
classes of visibility, and five classes of scene types.

Table 2 shows the results that Danomal can effectively
reject images with adversarial conditions, where the ac-
curacy using Danomal becomes better for each DL model
without Danomal. No thresholding setting is required.
Therefore, the proposed Danomal has been proven useful
in rejecting such three adversarial factors in road images.

Table 2: Accuracy comparison with and without DAnomal under adversar-
ial conditions for Droad, Dsnow, Dvis, and Dvlc.

Without Danomal (%) With Danomal (%)
Droad 81.31 86.07
Dsnow 72.90 78.22
Dvis 75.58 80.86
Dvlc 91.78 92.65

4.2. Scene Recognition Capability of CLPP and
Dvlc

To evaluate the performance of scene analysis of the pro-
posed system, this section demonstrates the qualitative and
quantitative accuracies of CLPP and Dvlc. The test dataset
consists of six selected categories: a car crash in snow con-
ditions, flooding with rain, low visibility with fog, land-
slide, wet road with rain, and traffic flow. Figure 4 (a)-(f)
shows such images. In the test dataset, ground truth cap-
tions have been manually annotated and contain the follow-
ing key criteria: the number of vehicles, scene category, and
road conditions. Totally, 3500 images are collected. The ex-
periments have been conducted to evaluate the performance
of scene understanding using VLMs on dynamic scenes as
well as the level of detail of the description based on the
generated captions. BLIP [66] model has been chosen to
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Table 3: Comparison of captions among ground truth, proposed CLPP, and
BLIP [66]

Ground truth CLPP BLIP [66]

(a)
7 cars under

heavy snowfall in
a crashed scene

7 cars on the frozen
road, 1 severely

damaged car

A car is stuck in
the snow

(b)
4 vehicles under
flooding scene

Cars and motorcycle
on the flooded

highway

A man is crossing the
street in the rain

(c)
Empty highway

under heavy foggy
scene

Highway under heavy
foggy at daytime

Foggy road in the
mountains

(d)
One car on
the road, in

a landslide scene

One car on the
damaged road

occluded by the rock

A tractor is parked on
the side of a road next

to a pile of rocks

(e)
One car on the

rainy road
A street under a light

rain at night

The image is of a
street intersection at

night

compare since the achievement of high capability of trans-
fer flexibly for vision language understanding and caption-
ing tasks.

Table 3 shows the captions containing ground truth and
two captions generated by the proposed CLPP (m = 4 in
eq. 2) and BLIP [66] on six images in Figure 4. CLPP and
BLIP [66] can recognize the scene’s context and key ob-
jects, i.e., traffic conditions and several objects. However,
BLIP [66] is insufficient to capture detailed scene features
compared with CLPP. In (a), (b), and (f), the counting num-
ber of vehicles by CLPP has been improved from one to
many. In (b), no road conditions by BLIP [66] have been
recognized, but CLPP recognizes the flooding highway. In
(e) and (f), CLPP recognizes rain and sunny, respectively.

However, BLIP [66] shows no weather conditions. In
(c), it is shown that the degree of fog is recognized as heavy
fog by CLPP with time. In (d), CLPP recognizes that the
road is occluded by the rock, but BLIP [66] shows a pile
of rocks. Therefore, the proposed CLPP has demonstrated
more refined and enriched captions over BLIP [66].

(a) (b) (c)

(d) (e) (f)

Figure 4: Results of captions in images: (a) Car crash. (b) Flooding. (c)
Fog. (d) Landslide. (e) Rain. (f) Traffic flow.

Table 3 shows the captions containing Ground truth and
two captions generated by CLPP and BLIP [66] on five im-
ages in Figure 4. CLPP and BLIP [66] are able to recognize
and count on things of the scenes; however, the captions
generated by CLPP are semantically closer to the class of
ground truths. Moreover, CLPP shows a higher level of de-
tail in the caption since the reflection of the condition of the
road surface is due to the effects of weather and disaster. In
order to evaluate the classification capability of CLPP for
dynamic scenes quantitatively, the similarity between the
captions generated by CLPP and the annotated class of the
images is evaluated based on the adjective or noun sets, i.e.,
frozen, flooded, damaged, and light as well as synonyms
words occurring in the caption.

Table 4 demonstrates a comparison of the classification

Table 4: Accuracy comparison among ViT, Resnet, Vgg18, and Dvlc. The
bold font indicates the best score.

Classes/model Dvlc (%) ViT (%) Resnet101(%) Vgg19(%)
Car crashes 93.37 92.41 91.12 87.67

Flooding 90.69 89.23 87.83 86.54
Fog 92.98 91.19 86.77 85.23

Landslide 89.52 87.63 87.19 84.89
Rain 92.33 87.58 88.92 83.11

Average 91.78 89.61 88.37 85.49

results among the proposed Dvlc, CLPP, and SOTA clas-
sifiers, i.e., ViT [27], VGG19, and Resnet101. Dvlc has
classified best in the accuracy of 91.78% accuracy without
retraining. Therefore, the effectiveness of Dvlc as prompt
engineering facilitating to Dvls has been proven.

4.3. Refined Semantic Segmentation by Prompt En-
gineering

This section denotes the proposed Dvls and how to ob-
tain the final refined captions using prompt engineering.
The prompt for each scene is pre-defined as a list of words,
i.e., (1) car crashes: [”pedestrian”, ”car”, ”car crash”,
”road”, ”bike”, ”tree”]; (2) flooding: [”water”, ”car”, ”per-
son”, ”tree”, ”sky”]; (3) fog: [”foggy”, ”mountain”, ”road”,
”car”, ”wet”]; (4) landslide: [”landslide”, ”debris flow”,
”rocks”, ”road”, ”dirt”]; (5)rain: [”water”, ”rain”, ”um-
brella”, ”road”, ”person”]. Prompts are selected respec-
tively by classification results from Dvlc.

Figure 5 illustrates the effectiveness of our approach on
images with foggy and traffic accident scenes. (a) shows
the input images, while (c) displays the segmentation re-
sults generated by the transformer-based SOTA segmenta-
tion model, i.e., Mask2former [19], which shows generic
classes, i.e., “sky-other-merged”, and “car”. (b) presents
improved segmentation results, and achieved prompt en-
gineering, which provides more detailed semantic seg-
mentation results, i.e., more detail from“sky-other-merged”
to“foggy” for the foggy scene and from “car” to “car crash”
for the traffic accident scene.

It has been demonstrated that prompt tuning for Dvlc
is helpful for detailing segmentation results under dynamic
conditions.

4.4. Image Captioning by CLPP

This section challenges image captioning with obsta-
cles on the road using the proposed Contrastive Language
Physical-Scale Pretraining (CLPP) (m = 4 in eq. 2) in a 3D
manner, unlike GraphVQA [1] with the 2D graph of on, left,
or right. Figure 6 (a) shows post-disaster images suffered
from the enormous typhoon, where many obstacles like dirt
and rocks piled up on the road and other regions. In or-
der to recognize whether obstacles are present on the road
or not, the occluded road surfaces must first be identified.
For this, DeepDepth (b) with vertical (Oy), horizontal (Ox),
and depth (Oz) coordinates are used to recognize nearly flat
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(a) (b) (c)

Figure 5: Results of segmentation by SOTA and proposed PanopticCAP:
(a) Original image. (b) Proposed refined semantic segmentation. (c)
Mask2Former [19]

road surfaces that are assumed to be the normal road (xOz)
below the obstacles.

On the other hand, Dscene (c) can provide segmented
objects. Depth maps (b) and objects from (c) are fed into
the image encoder of a VLM to make contrastive with de-
scription texts, respectively. The presentation of the depth
map in 3D (d) shows the relative location of objects. The lo-
cation of objects like tree and mountain classes are included
in the caption for the image when encoding depth map with
objects mask respectively with relative location by adverbs
in texts, i.e., “on”, “before”, “above”, “bottom”, and “side”
for 2D and adverbs for 3D are “behind,” “in front of”, and
“rear”.

The refined caption and segmentation (e) show that the
proposed method can enrich the caption by adding detailed
locations of objects and road conditions. SOTA single
VLMs, i.e., BLIP [66], could not estimate the depth and
road condition. It has been proven that CLPP can estimate
physical factors on images, and CLPP caption result is more
detailed than single VLM.

(a) (b) (c) (d)

(e)
Figure 6: Proposed CLPP applied to post-disaster scenes to identify road
regions with various obstacles (dirt, water, rock): (a) Input image. (b)
Depth map. (c) Panoptic segmentation. (d) Refined road surface. (e) The
left image is the input image with the BLIP caption result. The right image
is the refined caption: “Rock on the dry road”.

Table 5: Comparison of the refined captions with BLIP caption results.

Proposed method BLIP [66]

(1)
Rocks lay on the flooding road, within

938m in visibility
A flooded road in the

rain

(2)
Rock debris lay on the wet road, within

clear visibility

A road in the rain with
rocks and debris on

the side

(3)
15 vehicles on the wet highway, under

heavy snowfall and within 637m in
visibility

A snowstorm on a
highway

(4)
A truck on the wet highway, snow on
the side of the highway, under heavy

snowfall and within 512m in visibility

A snow plow clears a
road in the snow

(5)
12 people stand on a flooded road,
within 812m in visibility, and 0.5m

water level (Lv2)

A group of people on
flooded road

(6)
The highway under light snowfall

with the snow on the side of the road,
within 748m in visibility

Snow-covered road
with a fence and

a street light

4.5. Dynamic Captions with Weather and Road
Conditions by Proposed Dvis, Dsnow, Droad,
and Dwater

To provide further complicated captions, this section
conducts experiments on various weather conditions with
traffic and disaster scenes. The proposed Dsnow, Droad,
and Dvis are used by comparing a SOTA VL captioning
model, BLIP [66]. Figure 7 shows six scenes. As a result,
road conditions by Droad (1)-(6) are wet in blue and snow
in yellow. Dsnow’s indicators (3)-(6) present light to heavy
snowfall. Dvlc recognizes overall scene objects like moun-
tains, rivers, rocks, sky, and trees. Proposed Dvis [2] from
images (1)-(6) can estimate a physical scale from weather
phenomenon, i.e., foggy visibility distances in meters: 938,
clear, 637, 512, 812, and 748 m, respectively. Therefore, the
road condition and visibility distance have been included in
the captions of Dvlc. Table 4 shows a comparison of the re-
fined captions and a SOTA BLIP [66] result using six scenes
of Figure 7. The comparison results show that a refined cap-
tion is detailed about the scene by adding road conditions,
snowfall status, location of objects, and exact visibility in
meters. Besides, the caption from BLIP lacks a description.
The result has proven that the proposed method integrat-
ing Droad, Dsnow, and Dvis outperforms single VML, i.e.,
BLIP [66].

(1) (2)

(3) (4)

(5)

Figure 7: Results of proposed Dvls with refined and enriched captions in
dynamic scenes: (1) Flooding road. (2) Landslide on the road. (3), (4)
Heavy snowfall on the highway. (5) Flooded scene with water level, Lv2.
(6) Light snowfall on the highway.

5. Ablation study
To justify the proposed PanopticCAP, many additional

experiments are ablated below.
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5.1. Caption Refinement by Dvls

To show the usefulness of refined Dvls, many unseen
disaster scenes that have not been pre-trained are used to
segment with classes. As shown in Figure 8 (a), images
present disaster events. Two SOTAs of (c) MaskDINO [7].
(d) OVSeg [76] are compared. As a result, Table 6 summa-
rizes classes of (b) proposed Dvls and (c), (d) two SOTAs.
In (1), a track (c) or boat (d) has been annotated, whereas
the proposed Dvls has refined to “car crash” over water (b).
In (2)-(5), snow to water, landslide to rocks, pavement to
rain, and tree to strong wind have been annotated by (b) the
proposed Dvls, respectively.

Therefore, refined texts from SOTAs’ texts could en-
hance original to higher semantic texts. In particular, (5)
tree (c) is normal segmentation, but strong wind (b), (d)
stands for intuitive weather conditions as humans may an-
nounce. When depth maps are added, combined with lo-
cation prompts, Dvls can label segmented objects more se-
mantically. Therefore, it has been proven that the proposed
Dvls with texts will play an important role in messaging
heavy disaster events more clearly than SOTAs’ texts.

(1)

(2)

(3)

(4)

(5)

(a) (b) (c) (d)

Figure 8: Comparison of the proposed method, MaskDINO [7], and
OVSeg [76] (a) Input image. (b) Proposed Dvls. (c) MaskDINO [7] (d)
OVSeg [76]

Table 6: Comparison of classes by SOTAs and proposed Dvls.
Image SOTA Proposed
(1) boat, truck car crash
(2) snow, rain water
(3) rock-merged, rain landslide
(4) pavement-merged, rain rain
(5) tree-merged, typhoon strong wind

5.2. Caption Enrichment Using Refined Segmenta-
tion and Query Loop

This section describes a combination of refined segmen-
tation from the proposed Dvls with a query loop from VQA
to further refine the caption for an image. A loop is neces-
sary because the resulting segmentation of Dvls depends on
the newly added class. By selecting the most appropriate
word, the best segmentation result can be achieved during
the looping. Figure 9 depicts a looping scheme between
VQA and Dvls. The list of objects/events consists of words

with similar meanings that describe an object/event. The
process of selecting the best answer involves evaluating the
cosine similarity between the answer and the image. The
answer with the highest cosine similarity score is consid-
ered the best. To ensure the most accurate selection, all
words with similar meanings are looped through until the
best answer has been chosen. The effectiveness of these in-
tegrated models is compared to an online image captioning
API, i.e., visual ChatGPT. The queries are designed to cor-
respond to different types of events, such as ”car crashes,”
”flooding,” ”fog,” ”landslide,” ”rain,” and ”snowfall.” Pre-
defined prompts for these scenes are used, including cars,
water, snow, rocks, and debris flow. Figure 10 presents a

Figure 9: Query loop and segmentation combination.

comparison between two approaches: (a) visual ChatGPT
[123] caption results and (b) finally refined segmentation
using a query loop with consideration of the relative size
and location of objects. The comparison reveals that vi-
sual ChatGPT [123] only provides an overview of scene de-
scriptions with no physical scales. On the other hand, the
proposed model presents more detailed physical scales of
sizes and locations for accident events. Thus, the proposed
method has proven capable of handling dynamic captions.
More refined and enriched captions by the proposed model
have been generated for such traffic accident scenes than
visual ChatGPT [123].

(a) (b) (c)

Figure 10: Comparison of vision-language models between visual Chat-
GPT and the proposed method: (a) Image captioning using visual Chat-
GPT. (b) Refined segmentation and captions with physical scales by the
proposed CaptionCAP. (c) Captions from visual ChatGPT and the pro-
posed CaptionCAP.

5.3. Compare the Proposed PanopticCAP with
SOTA VMLs

To justify the performance of the proposed Panoptic-
CAP, more complicated scenes under adversarial weather
and disaster conditions are selected to provide captions,
as shown in Figure 11 (a). VLM-based SOTAs, i.e., (d)
ZegFormer [24], (e) OvSeg [76], and (f) ClipSeg [84], are
compared. Dwater is used for water level estimation us-
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ing pre-registered known standard objects’ sizes, i.e., build-
ings, cars, poles, and human heights. Results by (f) ClipSeg
[84] show the worst segmentation, particularly flooding re-
gions. On the other hand, results by (d) ZegFormer [24]
segment are better than results by (e) OvSeg [76]. However,
all SOTAs are limited to generating captions with physical
scales. Results by (b) the proposed PanopticCAP present
segmented objects with bikes, cars, and water. In captions
(c) from (b), water levels from 0.3 m to 1.56 m and sev-
eral cars have been contained. These quantitative captions
can describe more details than only qualitative texts, i.e.,
flooding. Therefore, it has been demonstrated that the pro-
posed PanopticCAP provides dynamic physical scales that
are helpful in understanding how cars and bikes are dam-
aged. It is the first time to generate dynamic captions from
such disaster scenes. When videos are available, spatio-
temporal changes will also be captioned to monitor for res-
cue purposes.

(a) (b) (c) (d) (e) (f)
Figure 11: Results of SOTA VL-based segmentation: (a) Input image. (b)
Proposed PanopticCAP. (c) Refined caption by the proposed PanopticCAP
with scene descriptions and physical scale in water level. (d) ZegFormer
[24] (e) OvSeg [76] (f) ClipSeg [84]
5.4. CLPP with Different Loss Function Parameters

This section presents an experimental comparison of var-
ious parameters for the contrastive loss function (L) used in
the proposed CLPP. CLPP is applied in Sections 4.2 and
4.4 with m = 0.4 in equations 2 and 3. In this experi-
ment, m is used from array list values [0.2, 0.3, 0.4, 0.5]. A
comparison of equation (1) and the proposed equations (2)
and (3) is carried out. Table 7 shows a comparison of the
modified loss function and the original one for the physical
scale-generated caption. The result shows that the perfor-
mance of CLPP is the lowest in RMSE when m is set to
0.4. Therefore, it has been reconfirmed that the selected m
is optimal.

Table 7: RMSE of different values m with/without sim.

m Modified Original
0.2 0.1985 0.2214
0.3 0.2043 0.2375
0.4 0.1894 0.2018
0.5 0.1964 0.2145

5.5. Overall Evaluation PanopticCAP

This section presents an experiment that evaluates the fi-
nal output of all eleven modules. The experiment measures

Table 8: Performance evaluation of proposed panopticCAP on public
image-text datasets

Dataset/Method PanopticCAP Visual
ChatGPT

COCO Caption 0.3854 0.4415
Conceptual Caption 0.3659 0.4235

Table 9: Performance evaluation of proposed panopticCAP on collected
datasets.

Dataset/Method PanopticCAP Visual
ChatGPT

Disaster 0.4521 0.3124
Traffic accident 0.4315 0.3254

Table 10: Computational cost and memory usage comparisons.

Perform/Model Computational cost
(second)

Memory
usage (Mb)

Proposed method 9.423 11231
Visual ChatGPT 8.123 6132
BLIP[66] 1.432 3214

performance using the BLEU score and is conducted on
two datasets. The first dataset is publicly available and in-
cludes the COCO Caption dataset [16] and the Conceptual
Captions dataset [107], both of which contain image-text
pairs. The second dataset includes two images with accom-
panying text descriptions describing snowfall status, water
level, and physical scale. These collections are the Disas-
ter dataset (1850 image-text pairs) and the Traffic accident
dataset (2130 image-text pairs).
According to the results in Table 8, PanopticCAP does not
perform as well as Visual ChatGPT. This could be due to
the fact that the text descriptions in the public image set do
not include information about road conditions, water levels,
snow conditions, or visibility, whereas PanopticCAP is ca-
pable of generating captions with these details. However,
Table 9 presents contradictory results, where PanopticCAP
outperforms Visual ChatGPT on datasets featuring disaster
or traffic accident conditions. It has been proven that Panop-
ticCAP can provide detailed semantics about the physical
aspects of scenes. These can be highly useful for tasks such
as traffic coordination and rescue operations.
In addition, we compared the computational cost and mem-

ory usage of the proposed system with that of SOTA meth-
ods on the same hardware device. Table 10 presents a com-
parison of the computational cost and memory usage for
these methods.

6. Conclusion
This paper has proposed PanopticCAP with multiple DL

and VLM models, which consist of branched structures for
efficiency in light of memory, training, and maintenance. It
is the first time to contain dynamic changes in captions with
physical scales, i.e., depth, fog visibility distance, weather
conditions, water level, and road conditions. A physics-
based loss function generates more refined and enriched
captions at a contrastive loss. PanopticCAP will help no-
tify detailed scene descriptions to drivers, auto-driving, and
rescue workers from camera images.
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