
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ELIMINATING STEADY-STATE OSCILLATIONS
IN DISTRIBUTED OPTIMIZATION AND LEARNING
VIA ADAPTIVE STEPSIZE

Anonymous authors
Paper under double-blind review

ABSTRACT

Distributed stochastic optimization and learning is gaining increasing traction due
to its ability to enable large-scale data processing and model training across mul-
tiple agents without the need for centralized coordination. However, existing dis-
tributed stochastic optimization and learning approaches, such as distributed SGD
and their variants, generally face a dilemma in stepsize selection: a small stepsize
leads to low convergence speed, whereas a large stepsize often incurs pronounced
steady-state oscillations, which prevents the algorithm from achieving stable con-
vergence accuracy. In this paper, we propose an adaptive stepsize approach for
distributed stochastic optimization and learning that can eliminate steady-state os-
cillations and ensure fast convergence. Such guarantees are unattained by existing
adaptive stepsize approaches, even in centralized optimization and learning. We
prove that our proposed algorithm achieves linear convergence with respect to the
iteration number, and that the convergence error decays sublinearly with the batch
size of sampled data points. In the specific case in terms of deterministic dis-
tributed optimization with exact gradients accessible to agents, we prove that our
proposed algorithm linearly converges to an exact optimal solution. Moreover, we
quantify that the computational complexity of the proposed algorithm is on the
order of O(log(ϵ−1)), which matches the existing results on adaptive stepsize ap-
proaches for centralized optimization/learning. Experimental results on machine
learning benchmarks confirm the effectiveness of our proposed approach.

1 INTRODUCTION

With the advance of the era of big data, distributed stochastic optimization and learning methods
have attracted increasing attention due to their unique ability to leverage the computational power of
multiple devices to accelerate training (Nedic & Ozdaglar, 2009; Yang & Johansson, 2010; Shamir
& Srebro, 2014; Lian et al., 2017; Nedić & Liu, 2018; Yang et al., 2019; Kim et al., 2024; Hu et al.,
2024). Unlike centralized optimization and learning methods (Wang & Elia, 2011; Andrychowicz
et al., 2016; Ruder, 2016) that typically rely on a central server to aggregate local model parameters
or data from all participating agents, distributed methods allow each agent to collaboratively learn a
global model using only its own local dataset and information exchanged with neighboring agents,
without the assistance of any centralized server or aggregator (Scaman et al., 2018; Liu et al., 2020;
Yang et al., 2022).

However, existing distributed stochastic optimization/learning approaches often face a dilemma in
stepsize selection (Jacobs, 1988; Schaul et al., 2013; Wei et al., 2020; Zhuang et al., 2020; Li et al.,
2024a; Huang et al., 2024b; Crawshaw et al., 2025). Specifically, an excessively small stepsize
may lead to an overly low convergence speed (Srivastava & Nedic, 2011; Lin et al., 2023; Shar-
ifnassab et al., 2024), whereas an excessively large stepsize often causes pronounced steady-state
oscillations or overshoot, which prevents the algorithm from achieving stable convergence accu-
racy (Andriushchenko et al., 2023; Huang et al., 2024a). Recently, several adaptive or automatic
stepsize approaches have been proposed for centralized optimization and learning (Fletcher, 2005;
Kingma, 2014; Rolinek & Martius, 2018; Li & Orabona, 2019; Malitsky & Mishchenko, 2019;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Kavis et al., 2022; Jiang & Stich, 2023; Malitsky & Mishchenko, 2024). However, these approaches
generally rely on a centralized server to coordinate computation that are impractical in a fully dis-
tributed setting where no centralized server/aggregator exists to determine a common stepsize across
all agents (Nedić et al., 2018). Although some works have attempted to extend adaptive stepsize ap-
proaches to distributed optimization and learning (Nazari et al., 2022; Carnevale et al., 2022; Xie
et al., 2022; Ramezani-Kebrya et al., 2023; Chen & Wang, 2024; Kuruzov et al., 2024; Saravanos
et al., 2024), most of them still either require a centralized server to collect local model parame-
ters/stepsizes from all agents (Ramezani-Kebrya et al., 2023; Chen & Wang, 2024; Kuruzov et al.,
2024), or are limited to scenarios where agents must have access to accurate gradients of the ob-
jective functions (Carnevale et al., 2022; Xie et al., 2022; Saravanos et al., 2024) for stepsize ad-
justment. The only exception is the work in Nazari et al. (2022), which achieves adaptive stepsize
adjustments in distributed online learning by normalizing the gradient using an accumulated sum of
historical gradient values. However, this approach leads to a rapidly decaying stepsize, which in turn
results in slow convergence in the later stages of the algorithm (see our experimental results in Fig. 5
in Appendix C.3 for details). To the best of our knowledge, no existing adaptive stepsize approaches
can ensure fast and stable convergence in fully distributed stochastic optimization/learning.

Our contributions are summarized as follows:

1. We propose an adaptive stepsize algorithm for fully distributed stochastic optimization and
learning. This is in stark contrast to existing adaptive stepsize approaches, which either rely
on a centralized server to coordinate a common stepsize across all agents (in, e.g., Ramezani-
Kebrya et al. (2023); Kim et al. (2024); Chen & Wang (2024); Kuruzov et al. (2024)), or re-
quire that agents have access to accurate gradients of the objective functions (Carnevale et al.,
2022; Xie et al., 2022; Saravanos et al., 2024)—which, however, are often hard to obtain in
real-world applications where the randomness in sampled data results in only noisy gradi-
ents being accessible to agents. To the best of our knowledge, this is the first adaptive (non-
monotone decreasing) stepsize approach for fully distributed stochastic optimization/learning,
without the need for accurate gradients or the assistance of any centralized servers.

2. Our adaptive stepsize algorithm can eliminate steady-state oscillations and ensure stable con-
vergence accuracy in the later stages of the algorithm. This is unattained by most existing
adaptive stepsize approaches even in centralized optimization and learning (Fletcher, 2005; Li
& Orabona, 2019; Kavis et al., 2022; Jiang & Stich, 2023). The key enabler is our novel de-
sign of the stepsize update rule, which allows each agent to dynamically adjust its individual
stepsizes based on locally estimated curvature of the global objective function. This provides
each agent with large stepsizes in the early stages to accelerate convergence, and extremely
small stepsizes near the global optimum to ensure stable convergence accuracy (see our ex-
perimental results in Figs. 1(d)-1(f) and Figs. 2(d)-2(f) for details). Furthermore, since stable
convergence accuracy is achieved in the later stages of our algorithm, we can also provide
a clear stopping criterion1 for each agent in distributed optimization and learning, which is
rarely addressed in the state-of-the-art literature.

3. In addition to eliminating steady-state oscillations, we also establish the convergence rate
and computational complexity of our algorithm for both stochastic and deterministic dis-
tributed optimization and learning, which is different from existing adaptive stepsize results in,
e.g., McMahan & Streeter (2014); Yang et al. (2019); Crawshaw et al. (2025) that focus solely
on deterministic cases where accurate gradients of objective functions are accessible to agents.
For distributed stochastic optimization/learning, we prove that our algorithm achieves linear
convergence with respect to the number of algorithm iterations, and that the convergence error
decays sublinearly with the batch size of sampled data points. For the deterministic case, we
prove that our algorithm linearly converges to an exact optimal solution.

4. We systematically quantify that the computational complexity of our algorithm is on the order
of O(log(ϵ−1)) for both stochastic and deterministic cases, which matches the existing results
on adaptive stepsize approaches for centralized optimization and learning in, e.g., (Kavis et al.,
2022; Yang & Ma, 2023).

5. We conduct experimental evaluations using several machine learning benchmark datasets,
including the “MNIST” dataset, the “CIFAR-10” dataset, and the “CIFAR-100” dataset. The

1We use the “stopping criterion” to denote the condition that determines when each agent in a distributed
stochastic optimization and learning algorithm terminates its iterations (Vlachos, 2008; Ding et al., 2025).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

results confirm the effectiveness of our algorithm in terms of both test accuracy and steady-
state convergence performance.

2 RELATED WORK

Distributed stochastic optimization and learning. Distributed stochastic optimization methods
have been widely employed in modern machine learning (Yang, 2013; Xin et al., 2020; Nedic,
2020; Guo et al., 2020; Pu et al., 2020; Allen-Zhu et al., 2020; Khaled & Jin, 2023; Song et al.,
2025). However, most existing methods require all agents to share a common stepsize that is either
fixed (Pu & Nedić, 2021; Koloskova et al., 2021; Nguyen et al., 2023; Song et al., 2024) or dimin-
ishing (Jakovetic et al., 2018; Dieuleveut & Patel, 2019; Li et al., 2024b; Lee et al., 2025). The fixed
stepsize causes pronounced overshoot or oscillations near the global optimal solution (Pu & Nedić,
2021; Koloskova et al., 2021; Nguyen et al., 2023), whereas diminishing stepsizes often lead to an
overly low convergence speed, both of which prevent the algorithm from achieving stable conver-
gence accuracy (as shown in our experimental results in Fig. 1 and Fig. 2). Given these limitations,
designing an adaptive stepsize approach that allows each participating agent to adaptively adjust its
individual stepsizes is a promising direction for improving convergence speed and ensuring stable
learning performance in distributed stochastic optimization and learning.

Adaptive stepsize approaches. Several adaptive stepsize approaches have been proposed for cen-
tralized optimization and learning (Fletcher, 2005; Kingma, 2014; Rolinek & Martius, 2018; Li &
Orabona, 2019; Malitsky & Mishchenko, 2019; Kavis et al., 2022; Jiang & Stich, 2023; Malitsky &
Mishchenko, 2024). However, these methods typically consider a single agent setting where learning
is performed with only one adaptive stepsize adjustment. This makes them inapplicable to fully dis-
tributed stochastic optimization and learning, where multiple agents cooperatively perform learning
and each agent has its own stepsize updates. Moreover, the existing adaptive stepsize approaches of-
ten lead to steady-state oscillations, which prevent stable convergence accuracy in the later stages of
the algorithm and hinder the determination of a clear stopping criterion (as shown in our experimen-
tal results in Fig. 2). Although some efforts have attempted to extend adaptive stepsize approaches
to distributed optimization and learning (Nazari et al., 2022; Carnevale et al., 2022; Xie et al., 2022;
Ramezani-Kebrya et al., 2023; Chen & Wang, 2024; Kuruzov et al., 2024; Saravanos et al., 2024),
most of them still rely on a centralized server to collect local model parameters/stepsizes from all
agents to coordinate a stepsize (Ramezani-Kebrya et al., 2023; Chen & Wang, 2024; Kuruzov et al.,
2024), or are limited to scenarios where accurate gradients of the objective functions must be ac-
cessible to agents (Carnevale et al., 2022; Xie et al., 2022; Saravanos et al., 2024), both of which
are impractical in a fully distributed and stochastic setting. The only exception is the recent work
in Nazari et al. (2022), which achieves stepsize adjustments in distributed stochastic optimization
and learning. However, its approach parallels adaptive gradient methods (e.g., ADAM in Kingma
(2014)), which makes the stepsizes decay rapidly in practical neural-network training, thereby lead-
ing to a low convergence speed in the later stages of the algorithm (as shown in our experimental
results in Fig. 5 in Appendix C.3). To the best of our knowledge, no adaptive stepsize approaches
have been reported for distributed stochastic optimization and learning that can ensure both fast
convergence and stable steady-state performance.

Notations: We use Rn to denote the n-dimensional real Euclidean space and N(N+) to denote the set
of nonnegative (positive) integers. We write 0n and 1n for n-dimensional column vectors of all zeros
and all ones, respectively; in both cases we suppress the dimension when clear from the context. We
use ⟨x, y⟩ to denote the inner product of two vectors and ∥ · ∥ to denote the Euclidean norm of a
vector. We write E[x] for the expected value of a random variable x. We use [a]+ = max{0, a} to
refer to the maximum of 0 and a for any real number a and the convention a

0 = +∞ for any a > 0.
We denote the set of m agents as [m] and add an overbar to a letter to represent the average of m
agents, e.g., x̄ = 1

m

∑m
i=1 xi.

3 PROBLEM FORMULATION

We consider m agents that cooperatively learn a common optimal model parameter x∗ to the fol-
lowing stochastic optimization problem (Sundhar Ram et al., 2010; Lian et al., 2017; Chen & Wang,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2024):

min
x∈Rn

f(x) =
1

m

m∑
i=1

fi(x), fi(x) = Eξi∼Pi
[l(x, ξi)]. (1)

Here, the local objective function fi(x) : Rn 7→ R represents the mathematical expectation of agent
i’s loss function l(x, ξi), where ξi denotes the agent i’s data sample drawn from distribution Pi.

In real-world applications, since the data distribution Pi is typically unknown to each agent i, it can
only have access to a noisy estimate on the gradient of fi(x) (Pu & Nedić, 2021; Nazari et al., 2022;
Kim et al., 2024). In other words, at each iteration t, each agent i independently and identically
samples |B| data points (also called a batch size of |B|) from its local distribution Pi and computes a
noisy gradient estimate gti(x) =

1
|B|
∑|B|

j=1 ∇l(x, ξtij), where ξtij is the jth sampled data collected by
agent i at iteration t. Based on the gradient estimate gti(x) and communication with its neighbors,
each agent i performs distributed training. We make the following standard assumption about fi(x)
and gti(x):

Assumption 1. For any agent i ∈ [m], its local objective function fi(x) is µ-strongly convex and L-
smooth. The gradient estimate gti(x) is unbiased with bounded variance σ2, i.e., E[gti(x)] = ∇fi(x)

and E[∥gti(x)−∇fi(x)∥2] ≤ σ2

|B| hold for any x ∈ Rn and t ≥ 0.

In Assumption 1, the strong convexity of fi(x) is used to ensure linear convergence, which is com-
monly used in the existing literature (Ivkin et al., 2019; Hou et al., 2021; Akhavan et al., 2021; Wang
et al., 2023; Yang & Ma, 2023; He et al., 2024; Er et al., 2024).

We describe the local interaction among agents using a weight matrix W = {wij} ∈ Rm×m, where
wij > 0 if agent i and agent j can directly communicate with each other, and wij = 0 otherwise.
The neighboring set of agent i is defined as Ni = {j ∈ [m]|wij > 0}, which includes itself.
Furthermore, we make the following assumption on matrix W :

Assumption 2. The matrix W ∈ Rm×m is symmetric and satisfies 1⊤
mW = 1⊤

m, W1m = 1m, and

ρ ≜ ∥W − 1m1⊤
m

m ∥ < 1.

Existing distributed optimization and learning approaches typically require the stepsize to be either
fixed (Pu & Nedić, 2021; Koloskova et al., 2021; Nguyen et al., 2023; Song et al., 2024) or dimin-
ishing (Jakovetic et al., 2018; Dieuleveut & Patel, 2019; Li et al., 2024b; Lee et al., 2025). However,
the use of a fixed stepsize often suffers from error/bias terms proportional to the stepsize (Yuan
et al., 2016), which can cause pronounced overshoot or persistent oscillations near the global opti-
mum, thereby compromising convergence stability in the later stages of the algorithm (as shown in
our experimental results in Fig. 1). Although employing a diminishing stepsize can asymptotically
eliminate such errors and ensure stable steady-state convergence, it often results in an undesirably
low convergence speed, which is problematic for applications requiring fast convergence (Nedic &
Ozdaglar, 2009; Jakovetic et al., 2018; Dieuleveut & Patel, 2019; Lee et al., 2025). Given these lim-
itations, we aim to develop an adaptive stepsize approach for distributed stochastic optimization and
learning, enabling each agent to adaptively adjust its stepsize during algorithm iterations to achieve
both fast convergence and stable steady-state performance.

4 ALGORITHM DESIGN

In this section, we propose an adaptive stepsize approach for distributed stochastic optimization
and learning that ensures both fast convergence and stable steady-state performance. The proposed
approach is summarized in Algorithm 1, which is implemented in a fully distributed manner.

In Algorithm 1, Lines 3-7 execute a consensus-based gradient descent step for agent i. Lines 8,
11, and 14 update yt+1

i,1 to track 1
m

∑m
i=1 g

t
i(x

t+1
i), which serves to approximate the global gradient

1
m

∑m
i=1 ∇fi(x

t+1
i). Lines 9, 12, and 14 update an auxiliary variable yti,2 to track 1

m

∑m
i=1 g

t
i(x

t
i),

which serves to approximate the global gradient 1
m

∑m
i=1 ∇fi(x

t
i). With this understanding, we let

each agent i locally estimate the curvature of the global objective function in Line 15. Based on this
estimate, each agent i’s adaptive stepsize update rule is given in Line 15 and Line 16.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Adaptive stepsize design for distributed stochastic optimization and learning (from
agent i’s perspective)

1: Input: x0
i ∈ Rn, y0i,1 = g−1

i (x0
i) = g0i (x

0
i), y

−1
i,2 = g−1

i (x−1
i) = 0n, η0i > 0, β ∈ (1, 1.36),

r ∈ (0, 1), M ∈ N+, and T ∈ N+.
2: for t = 0, 1, . . . , T do
3: xt+1

i (0) = xt
i − ηtiy

t
i,1

4: for q = 0, 1, . . . ,M − 1 do
5: xt+1

i (q + 1) =
∑

j∈Ni
wijx

t+1
j (q)

6: end for
7: xt+1

i = xt+1
i (M)

8: yt+1
i,1 (0) = yti,1 + gti(x

t+1
i)− gt−1

i (xt
i)

9: yti,2(0) = yt−1
i,2 + gti(x

t
i)− gt−1

i (xt−1
i)

10: for q = 0, 1, . . . ,M − 1 do
11: yt+1

i,1 (q + 1) =
∑

j∈Ni
wijy

t+1
j,1 (q)

12: yti,2(q + 1) =
∑

j∈Ni
wijy

t
j,2(q)

13: end for
14: yt+1

i,1 = yt+1
i,1 (M) and yti,2 = yti,2(M)

15: Lt+1
i =

∥yt+1
i,1 −yt

i,2∥
∥xt+1

i −xt
i∥

if xt+1
i ̸= xt

i; otherwise, Lt+1
i = 1

16: ηt+1
i = min

{
βηti ,

7
√
r

10
ηt
i√

[m(ηt
iL

t+1
i)2−1]+

}
17: end for

The key enabler for us to ensure stable steady-state convergence is our meticulously designed step-
size update rule. More specifically, our stepsize update rule enables each agent to locally estimate
the curvature of the global objective function. In this way, each agent’s stepsize can be adapted
to large values in the early stages of the algorithm, and to extremely small values near the global
optimum (as shown in our experimental results in Figs. 1(d)-1(f) and Figs. 2(d)-2(f)). Therefore, our
design avoids the slow convergence caused by small diminishing stepsizes used in, e.g., Jakovetic
et al. (2018); Dieuleveut & Patel (2019); Li et al. (2024b); Lee et al. (2025) and eliminate the os-
cillations arising from fixed stepsizes in e.g., Pu & Nedić (2021); Koloskova et al. (2021); Nguyen
et al. (2023); Song et al. (2024).

It is worth noting that our algorithm is fundamentally different from existing adaptive stepsize meth-
ods in e.g., Malitsky & Mishchenko (2019; 2024); Kim et al. (2024); Chen & Wang (2024), which
explicitly require a centralized server to coordinate stepsize adjustment, which is infeasible in fully
distributed settings in the absence of a centralized server. Furthermore, our design is also differ-
ent from existing adaptive stepsize approaches for deterministic distributed optimization/learning
in Carnevale et al. (2022); Xie et al. (2022); Saravanos et al. (2024), which typically require access
to exact gradients of objective functions—such exact gradients are often unattainable in real-world
applications where only noisy gradient estimates are available to each agent (Lian et al., 2017).

In Algorithm 1, we provide optional inner-consensus-loop iterations for xt
i, y

t
i,1, and yti,2. This de-

sign is intended to accelerate consensus among agents and improve the accuracy of global gradient
tracking, thereby guaranteeing linear convergence (see Theorem 1 for details). In practical machine
learning applications, the number of inner-consensus-loop iterations M can be chosen as any pos-
itive integer. For example, we can simply select M = 1 (in which case Algorithm 1 reduces to a
single-loop algorithm) to minimize the computational and communication costs of our algorithm.
In fact, our experimental results in Fig. 3(c) show that the test accuracy of our algorithm remains
comparable even with M = 1.

5 CONVERGENCE RESULTS

In this section, we prove that Algorithm 1 can ensure linear convergence with respect to the number
of iterations T , and the convergence error decreases sublinearly with the batch size of sampled data.
The results are summarized in Theorem 1, whose proof can be found in Appendix B.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 1. Under Assumptions 1 and 2, for any T ≥ 0 and batch size |B| > 0, if the number
of inner-consensus-loop iterations M satisfies M ≥ M0 with detailed forms of M0 given in equa-
tion 79 in Appendix B.2, the iterates xt

i generated by Algorithm 1 satisfy

E
[∥∥xT

i − x∗∥∥2] ≤ O
(
γT
)
+O

(
σ2

|B|

)
, (2)

where the convergence rate γ is given by γ = max
{
1− µ

4L ,
91
92

}
.

Theorem 1 proves that Algorithm 1 linearly converges to an optimal solution to problem 1 with the
optimization error decreasing as the batch size of sampled data |B| increases. It is worth noting that
the bound O

(
σ2

|B|

)
in Theorem 1, caused by finite batch size of sampled data, inherently exists in

all stochastic optimization approaches with finite samples (Yuan et al., 2022; Sharma et al., 2023).
Although variance reduction techniques (Reddi et al., 2016; Fang et al., 2018) and diminishing
stepsize methods (Nedic & Ozdaglar, 2009) can be used to mitigate the influence of this term in
distributed stochastic optimization and learning, their successful implementation heavily relies on
the assumption of a fixed upper bound on the stepsizes, which is hard to satisfy when each agent’s
stepsize is dynamic and adaptive over iterations.

In Theorem 1, we consider a stochastic scenario in which each agent can only access to noisy
gradient estimates (which are computed based on data sampled from an unknown data distribution
Pi). Next, we consider a deterministic scenario in which each agent can access to accurate gradients.
The convergence result of Algorithm 1 in the deterministic scenario is summarized in the following
Theorem 2, whose proof is given in Appendix B.3.
Theorem 2. Under Assumptions 1 and 2, for any T ≥ 0, if the number of inner-consensus-loop
iterations M satisfies M ≥ M0 with detailed forms of M0 given in equation 79 of Appendix B.2,
the iterates xt

i generated by Algorithm 1 with deterministic gradients satisfy

E
[∥∥xT

i − x∗∥∥2] ≤ O
(
γT
)
, (3)

where the convergence rate γ is given by γ = max
{
1− µ

4L ,
91
92

}
.

Theorem 2 proves that when we consider distributed optimization and learning in a deterministic sce-
nario, Algorithm 1 converges to an exact solution to problem in equation 1 with a linear convergence
rate, which matches existing convergence results on adaptive stepsizes for centralized optimization
and learning (Li & Orabona, 2019; Malitsky & Mishchenko, 2019; Kavis et al., 2022; Malitsky &
Mishchenko, 2024). Moreover, this is also stronger than the convergence results achieved by exist-
ing distributed optimization methods with diminishing stepsizes (Jakovetic et al., 2018; Dieuleveut
& Patel, 2019; Li et al., 2024b; Lee et al., 2025), which guarantee only sublinear convergence rates.

Furthermore, to give a more intuitive description of the computational complexity, we define an
ϵ-solution to problem in equation 1 as follows.
Definition 1 (Lian et al. (2017)). For some integer T > 0, if E[∥xT

i − x∗∥2] ≤ ϵ holds, then we say
that the sequence {xt

i} can reach an ϵ-solution to the problem in equation 1.

Building on Theorem 1 and Theorem 2, we have the following corollary.
Corollary 1. Under Assumptions 1 and 2, for any ϵ > 0, Algorithm 1 with noisy gradient estimates
requires at most O((2|B|+3M+3) log(ϵ−1)) gradient evaluation to obtain an ϵ+O(σ2

|B|)-solution,
and Algorithm 1 with accurate gradients requires at most O((2M+3) log(ϵ−1)) gradient evaluation
to obtain an ϵ-solution.

In Corollary 1, the low bound on the number of inner-consensus-loop iterations M in Algorithm 1 is
a fixed constant, which is different from the existing distributed optimization results in, e.g., Berahas
et al. (2019); Li et al. (2020) which have the inner-loop iteration number increasing with the outer-
loop iterations, and hence have a higher computational complexity of the order of O((log(ϵ−1))2).
Moreover, the computational complexity of our Algorithm 1 matches the adaptive stepsize results
on centralized learning in, e.g., Malitsky & Mishchenko (2019; 2024) and the convergence results
on distributed optimization in, e.g., Chen & Wang (2024); Kuruzov et al. (2024). This is also less
than the convergence results in, e.g., Jakovetic et al. (2018); Dieuleveut & Patel (2019); Li et al.
(2024b) with diminishing stepsizes which have a computation complexity of the order of O(ϵ−1).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 a
cc

ur
ac

y

MNIST

Algorithm 1
distributed SGD
stochastic GT

(a) Test accuracy

0 20 40 60 80 100
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

CIFAR-10

Algorithm 1
distributed SGD
stochastic GT

(b) Test accuracy

0 10 20 30 40 50 60 70 80
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 a
cc

ur
ac

y

CIFAR-100

Algorithm 1
distributed SGD
stochastic GT

(c) Test accuracy

0 5 10 15 20
Epochs

10 10

10 8

10 6

10 4

10 2

100

Av
er

ag
e

st
ep

siz
e

MNIST

Algorithm 1
distributed SGD
stochastic GT

(d) Average stepsize across agents

0 20 40 60 80 100
Epochs

10 4

10 3

10 2

10 1

100

Av
er

ag
e

st
ep

siz
e

CIFAR-10

Algorithm 1
distributed SGD
stochastic GT

(e) Average stepsize across agents

0 20 40 60 80
Epochs

10 4

10 3

10 2

10 1

100

101

Av
er

ag
e

st
ep

siz
e

CIFAR-100

Algorithm 1
distributed SGD
stochastic GT

(f) Average stepsize across agents

Figure 1: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1, dis-
tributed SGD in Jakovetic et al. (2018), and stochastic GT in Pu & Nedić (2021) on the “MNIST”,
“CIFAR-10”, and “CIFAR-100” datasets, respectively. The 95% confidence intervals were com-
puted from three independent runs with random seeds 42, 1010, and 2024.

6 EXPERIMENTS

In this section, we evaluate the performance of our proposed Algorithm 1 on image classification
tasks using representative benchmark datasets, including the “MNIST” dataset (Deng, 2012), the
“CIFAR-10” dataset (Krizhevsky et al., 2010), and “CIFAR-100” dataset (DeVries & Taylor, 2017).
All these tasks involve nonsmooth and nonconvex objective functions, which are intended to show
the effectiveness of our algorithm beyond the settings of strong convexity or smoothness. Due to the
space limitations, we leave the experimental results on logistic regression with strongly convex and
smooth loss functions to Appendix C.3. In all experiments, we considered five agents connected in
a ring, where each agent communicates only with its two immediate neighbors. For the coupling
matrix W , we set wii = 0.4 for all agent i, wij = 0.3 if agents i and j are neighbors, and wij = 0
otherwise. For each experiment, we considered heterogeneous data distribution, with each agent
i randomly sampling 40% data points from the class i and sampling 60% data points from each
remaining class. We evaluated the performance of our proposed algorithm through the following
three cases: 1) we compared Algorithm 1 with existing distributed stochastic optimization/learning
approaches, including distributed SGD in Jakovetic et al. (2018) with diminishing stepsize and the
stochastic gradient-tracking (called stochastic GT) in Pu & Nedić (2021) with fixed stepsize; 2) we
compared Algorithm 1 with existing adaptive stepsize approaches for centralized learning, includ-
ing the well-known ADAM in Kingma (2014) and the adaptive SGD in Malitsky & Mishchenko
(2024); and 3) to evaluate the effect of the coefficients β and r in the stepsize update rule (i.e., Line
16 in Algorithm 1) and the number of inner-consensus-loop iterations M in Algorithm 1 on con-
vergence accuracy, we test the convergence performance of Algorithm 1 under different β, r, and
M , respectively. The detailed experimental settings are given in Appendix C.1 and Appendix C.2,
and additional experimental results on comparison of Algorithm 1 and distributed ADAM in Nazari
et al. (2022) are provided in Appendix C.3. The code for all experiments is available online2.

Comparison with existing distributed stochastic optimization approaches. We trained convolu-
tional neural networks (CNNs) with two, four, and five layers on the “MNIST”, “CIFAR-10”, and
“CIFAR-100” datasets, respectively. We conducted training for 20 epochs on the “MNIST” dataset

2https://anonymous.4open.science/r/DASGD-71D1/README.md

7

https://anonymous.4open.science/r/DASGD-71D1/README.md

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 a
cc

ur
ac

y

MNIST

Algorithm 1
ADAM
adaptive SGD

(a) Test accuracy

0 20 40 60 80 100
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

CIFAR-10

Algorithm 1
ADAM
adaptive SGD

(b) Test accuracy

0 10 20 30 40 50 60 70 80
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 a
cc

ur
ac

y

CIFAR-100

Algorithm 1
ADAM
adaptive SGD

(c) Test accuracy

0 5 10 15 20
Epochs

10 10

10 8

10 6

10 4

10 2

100

Av
er

ag
e

st
ep

siz
e

MNIST

Algorithm 1
ADAM
adaptive SGD

(d) Average stepsize across agents

0 20 40 60 80 100
Epochs

10 4

10 3

10 2

10 1

100

Av
er

ag
e

st
ep

siz
e

CIFAR-10

Algorithm 1
ADAM
adaptive SGD

(e) Average stepsize across agents

0 20 40 60 80
Epochs

10 4

10 3

10 2

10 1

100

101

Av
er

ag
e

st
ep

siz
e

CIFAR-100

Algorithm 1
ADAM
adaptive SGD

(f) Average stepsize across agents

Figure 2: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1, ADAM
in Kingma (2014), and adaptive SGD in Malitsky & Mishchenko (2024) on the “MNIST”, “CIFAR-
10”, and “CIFAR-100” datasets, respectively. The 95% confidence intervals were computed from
three independent runs with random seeds 42, 1010, and 2024.

and 80 epochs on the “CIFAR-10” and “CIFAR-100” datasets, using a batch size of 128. The step-
size for distributed SGD was set as ηi = 0.1

(t+1)0.5 and for stochastic GT was set as ηi = 0.1. Both
of them represent the best-performing stepsizes we could find in our comparison. In fact, during our
tuning process, we obverse that setting η = 0.01 for stochastic GT results in overly slow conver-
gence, whereas setting η = 1 leads to divergent behaviors. For Algorithm 1, we set the coefficients
β and r in stepsize update rule as β = 1.3 and r = 0.99, and the number of inner-loop iterations
as M = 10. (The test accuracies of Algorithm 1 under different β, r, and M are provided in
Figs. 3(a), 3(b), and 3(c), respectively.)

Fig. 1(a) to Fig. 1(c) show that our proposed Algorithm 1 achieves the highest test accuracy and a
more stable steady-state convergence compared with distributed SGD in Jakovetic et al. (2018) and
stochastic GT in Pu & Nedić (2021). The early-stage oscillations in test accuracy of Algorithm 1
are mainly attributable to the adaptive process of stepsize adjustments. Compared with distributed
SGD with diminishing stepsizes, stochastic GT with a fixed stepsize achieves faster convergence,
however, it suffers from larger steady-state oscillations. In contrast, our proposed algorithm elim-
inates steady-state oscillations, and hence, ensures fast convergence. This is achieved because our
proposed adaptive stepsize rule allows each agent to take large stepsizes in the early stages of Al-
gorithm 1 and extremely small stepsizes near the global optimum in the later stages, as shown in
Fig. 1(d) to Fig. 1(f). These results further imply a clear stopping criterion for each agent in the
implementation of our Algorithm 1. Specifically, we can preset a constant τ > 0 (e.g., τ = 10−9

in the “MNIST” experiment) for all agents, and once an agent i’s stepsize ηti falls below τ , it can
terminate training, which does not compromise the global learning accuracy.

Comparison with existing adaptive stepsize approaches. Since adaptive stepsize approaches are
rarely reported in a fully distributed setting without a centralized server/aggregator, we compared
the convergence performance of Algorithm 1 with that of existing adaptive stepsize approaches
for centralized learning, including ADAM in Kingma (2014) and the adaptive SGD in Malitsky &
Mishchenko (2019; 2024). This comparison is challenging because centralized methods can perform
training directly on aggregated data, while our approach in Algorithm 1 operates in a fully distributed
manner where each agent can only perform local computations and neighboring communication.

Fig. 2(a) to Fig. 2(c) show that Algorithm 1 has a higher test accuracy than both ADAM and adaptive
SGD, even without the assistance of any centralized server/aggregator. This finding is noteworthy, as

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

M=1, r=0.99, varying

=1.2
=1.25
=1.3
=1.35

(a) Test accuracy

0 20 40 60 80 100
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

M = 1, =1.3, varying r

r=0.7
r=0.8
r=0.9
r=0.99

(b) Test accuracy

0 20 40 60 80 100
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

=1.3, r=0.99, varying M

M=1
M=5
M=10
M=15

(c) Test accuracy

0 20 40 60 80 100
Epochs

10 4

10 3

10 2

10 1

100

Av
er

ag
e

st
ep

siz
e

M=1, r=0.99, varying

=1.2
=1.25
=1.3
=1.35

(d) Average stepsize across agents

0 20 40 60 80 100
Epochs

10 4

10 3

10 2

10 1

100

Av
er

ag
e

st
ep

siz
e

M = 1, =1.3, varying r

r=0.7
r=0.8
r=0.9
r=0.99

(e) Average stepsize across agents

0 20 40 60 80 100
Epochs

10 4

10 3

10 2

10 1

100

Av
er

ag
e

st
ep

siz
e

=1.3, r=0.99, varying M

M=1
M=5
M=10
M=15

(f) Average stepsize across agents

Figure 3: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1 under
different parameters β, r, and M , respectively, on the “CIFAR-10” dataset.

it empirically demonstrate that our fully distributed learning approach with heterogeneous adaptive
stepsizes among agents can accelerate learning compared with centralized methods with a single
adaptive stepsize. Furthermore, Fig. 2(d) to Fig. 2(f) once again confirm that our adaptive stepsize
approach provides agents with large stepsizes in the early stages and small stepsizes in the conver-
gence stages, thereby facilitating better performance than existing centralized counterparts.

The effects of β, r, and M on convergence accuracy. We evaluate the test accuracies of Algo-
rithm 1 under different coefficients β and r in the stepsize update rule (i.e., Line 16 in Algorithm 1)
and the number of inner-loop iterations M in Algorithm 1, respectively. We ran this experiment on
the “CIFAR-10” dataset over 100 epochs, with a batch size of 64 and a random seed as 1010.

Fig. 3(a), Fig. 3(b), Fig. 3(d), and Fig. 3(e) imply that larger β and r lead to faster convergence and
earlier stopping in Algorithm 1. This result is intuitively consistent, as large β and r contribute to
larger stepsizes before convergence stages (as shown in Fig. 3(d) and Fig. 3(e)), which in turn leads
to a higher convergence speed. Furthermore, Fig. 3(c) and Fig. 3(f) show that the number of inner-
consensus-loop iterations M has a negligible effect on convergence accuracy and the stopping crite-
rion. Hence, in practical machine learning tasks, we can set M = 1 (so that Algorithm 1 reduces to
a single-loop algorithm) to minimize the communication cost of Algorithm 1. In addition, the exper-
imental results in Fig. 3 also suggest a default parameter configuration (β, r,M) = (1.35, 0.99, 1)
for Algorithm 1, which helps ease the tuning effort in real-world applications.

The effect of network size m on convergence accuracy. We also evaluate the test accuracies of
Algorithm 1 under different network sizes m = 10, m = 15, and m = 20, respectively. This
experiment is conducted on the “CIFAR-10” dataset over 100 epochs with a batch size of 64 and a
fixed random seed of 42. The remaining parameter settings are the same as those presented in the
subsection “Comparison with existing distributed stochastic optimization approaches.”

Fig. 4 shows that Algorithm 1 achieves higher test accuracy and more stable steady-state conver-
gence than distributed SGD and stochastic GT, regardless of the network size m. Furthermore, we
observe that a larger network size (i.e., a larger number of agents) leads to lower convergence ac-
curacy under a fixed number of epochs. This is because increasing the network size reduces the
number of training samples held by each agent. With a fixed batch size of 128, this reduction in
local training samples decreases the number of iterations performed by each agent in each epoch,
and consequently results in lower convergence accuracy within 100 epochs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

The number of agents m = 10

Algorithm 1
distributed SGD
stochastic GT

(a) Test accuracy

0 20 40 60 80 100
Epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 a
cc

ur
ac

y

The number of agents m = 15

Algorithm 1
distributed SGD
stochastic GT

(b) Test accuracy

0 20 40 60 80 100
Epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 a
cc

ur
ac

y

The number of agents m = 20

Algorithm 1
distributed SGD
stochastic GT

(c) Test accuracy

Figure 4: Test-accuracy evolutions of Algorithm 1, distributed SGD in Jakovetic et al. (2018), and
stochastic GT in Pu & Nedić (2021) under different network sizes m = 10, m = 15, and m = 20,
respectively, on the “CIFAR-10” dataset.

0 20 40 60 80 100 120 140
Epochs

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Te
st

 a
cc

ur
ac

y

Dirichlet distribution with parameter = 0.1

Algorithm 1
distributed SGD
stochastic GT

(a) Test accuracy

0 20 40 60 80 100 120 140
Epochs

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 a
cc

ur
ac

y

Dirichlet distribution with parameter = 0.5

Algorithm 1
distributed SGD
stochastic GT

(b) Test accuracy

0 20 40 60 80 100 120 140
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

Dirichlet distribution with parameter = 10

Algorithm 1
distributed SGD
stochastic GT

(c) Test accuracy

Figure 5: Test-accuracy evolutions of Algorithm 1, distributed SGD in Jakovetic et al. (2018), and
stochastic GT in Pu & Nedić (2021) under different Dirichlet-distribution parameter α = 0.1, α =
0.5, and α = 10, respectively, on the “CIFAR-10” dataset.

The effect of data heterogeneity across agents on convergence accuracy. Furthermore, to eval-
uate the convergence performance of our algorithm under different data distributions across agents,
we conduct experiments on the “CIFAR-10” dataset using the Dirichlet partitioning scheme with
parameters α = 0.1, α = 0.5, and α = 10 (note that a smaller α corresponds to a higher level of
data heterogeneity among agents). The remaining experimental settings follow those presented in
previous subsection “The effect of network size m on convergence accuracy.”

Fig. 5 shows that Algorithm 1 maintains higher test accuracy and more stable steady-state conver-
gence than both distributed SGD and stochastic GT under all levels of data heterogeneity among
agents. In addition, it can be seen that a larger α (i.e., a lower level of data heterogeneity across
agents) leads to higher convergence accuracy.

7 CONCLUSION

In this paper, we have proposed an adaptive stepsize approach for distributed stochastic optimization
and learning without the assistance of any centralized server/aggregator or the need for accurate gra-
dients. This is nontrivial, because existing adaptive stepsize approaches either rely on a centralized
server to coordinate stepsizes among agents, or are limited to deterministic scenarios where agents
have access to accurate gradients of the objective functions. Moreover, our approach can eliminate
steady-state oscillations, and hence, ensures fast convergence. This stands in stark contrast to most
existing adaptive stepsize approaches that often incur steady-state oscillations near the global op-
timal solution, and thereby preventing the algorithm from achieving stable convergence accuracy.
In addition, we have systematically characterized the convergence rates of our algorithm for both
stochastic and deterministic distributed optimization, and quantified the computational complexities
for gradient evaluations on both cases. Experimental results on image classifications using three
benchmark datasets confirm the advantages of the proposed approach over existing counterparts.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ethics statement. All authors declare no conflicts of interest and no ethical issues in this work.

Reproducibility statement. All authors confirm the reproducibility of both the theoretical and
experimental results. The code for all experiments is available online at https://anonymous.
4open.science/r/DASGD-71D1/README.md. Detailed descriptions of the experimental
settings and implementation details are provided in the main text and Appendix. Theoretical as-
sumptions are clearly stated, and complete proofs of all results are included in the Appendix.

REFERENCES

Arya Akhavan, Massimiliano Pontil, and Alexandre Tsybakov. Distributed zero-order optimization
under adversarial noise. Advances in Neural Information Processing Systems, 34:10209–10220,
2021.

Zeyuan Allen-Zhu, Faeze Ebrahimianghazani, Jerry Li, and Dan Alistarh. Byzantine-resilient non-
convex stochastic gradient descent. In International Conference on Learning Representations,
2020.

Maksym Andriushchenko, Aditya Vardhan Varre, Loucas Pillaud-Vivien, and Nicolas Flammarion.
SGD with large step sizes learns sparse features. In International Conference on Machine Learn-
ing, pp. 903–925. PMLR, 2023.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in Neural Information Processing Systems, 29, 2016.

Albert S. Berahas, Raghu Bollapragada, Nitish Shirish Keskar, and Ermin Wei. Balancing commu-
nication and computation in distributed optimization. IEEE Transactions on Automatic Control,
64(8):3141–3155, 2019.

B. Bollobás. Combinatorics: Set Systems, Hypergraphs, Families of Vectors, and Combinato-
rial Probability. Cambridge University Press, 1986. ISBN 9780521337038. URL https:
//books.google.com.hk/books?id=psqFNlngZDcC.

Guido Carnevale, Francesco Farina, Ivano Notarnicola, and Giuseppe Notarstefano. GTAdam: Gra-
dient tracking with adaptive momentum for distributed online optimization. IEEE Transactions
on Control of Network Systems, 10(3):1436–1448, 2022.

Ziqin Chen and Yongqiang Wang. Locally differentially private distributed online learning with
guaranteed optimality. IEEE Transactions on Automatic Control, 2024.

Michael Crawshaw, Blake Woodworth, and Mingrui Liu. Constant stepsize local GD for logistic
regression: Acceleration by instability. In International Conference on Machine Learning, 2025.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Aymeric Dieuleveut and Kumar Kshitij Patel. Communication trade-offs for local-SGD with large
step size. Advances in Neural Information Processing Systems, 32, 2019.

Xuhui Ding, Yuchen Xu, Gaoyang Li, Kai Yang, Jinhong Yuan, and Jianping An. Design and per-
formance evaluation for BILCM-ID system with improved stopping criterion. IEEE Transactions
on Vehicular Technology, 74(4):6779–6784, 2025.

Guner Dilsad Er, Sebastian Trimpe, and Michael Muehlebach. Distributed event-based learning via
ADMM. In International Conference on Machine Learning, 2024.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. Advances in Neural Information
Processing Systems, 31, 2018.

11

https://anonymous.4open.science/r/DASGD-71D1/README.md
https://anonymous.4open.science/r/DASGD-71D1/README.md
https://books.google.com.hk/books?id=psqFNlngZDcC
https://books.google.com.hk/books?id=psqFNlngZDcC

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Roger Fletcher. On the barzilai-borwein method. In Optimization and Control with Applications,
pp. 235–256. Springer, 2005.

Zhishuai Guo, Mingrui Liu, Zhuoning Yuan, Li Shen, Wei Liu, and Tianbao Yang. Communication-
efficient distributed stochastic auc maximization with deep neural networks. In International
Conference on Machine Learning, pp. 3864–3874. PMLR, 2020.

Yutong He, Jie Hu, Xinmeng Huang, Songtao Lu, Bin Wang, and Kun Yuan. Distributed bilevel op-
timization with communication compression. In International Conference on Machine Learning,
2024.

Charlie Hou, Kiran K Thekumparampil, Giulia Fanti, and Sewoong Oh. FeDChain: Chained algo-
rithms for near-optimal communication cost in federated learning. In International Conference
on Learning Representations, 2021.

Jie Hu, Vishwaraj Doshi, et al. Accelerating distributed stochastic optimization via self-repellent
random walks. In International Conference on Learning Representations, 2024.

Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Booster: Tackling
harmful fine-tuning for large language models via attenuating harmful perturbation. In Interna-
tional Conference on Learning Representations, 2024a.

Yan Huang, Xiang Li, Yipeng Shen, Niao He, and Jinming Xu. Achieving near-optimal convergence
for distributed minimax optimization with adaptive stepsizes. Advances in Neural Information
Processing Systems, 37:19740–19782, 2024b.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Ion Stoica, Raman Arora, et al. Communication-
efficient distributed SGD with sketching. Advances in Neural Information Processing Systems,
32, 2019.

Robert A Jacobs. Increased rates of convergence through learning rate adaptation. Neural Networks,
1(4):295–307, 1988.

Dusan Jakovetic, Dragana Bajovic, Anit Kumar Sahu, and Soummya Kar. Convergence rates for
distributed stochastic optimization over random networks. In IEEE Conference on Decision and
Control, pp. 4238–4245. IEEE, 2018.

Xiaowen Jiang and Sebastian U Stich. Adaptive SGD with polyak stepsize and line-search: Robust
convergence and variance reduction. Advances in Neural Information Processing Systems, 36:
26396–26424, 2023.

Ali Kavis, Kfir Yehuda Levy, and Volkan Cevher. High probability bounds for a class of nonconvex
algorithms with AdaGrad stepsize. In International Conference on Learning Representations,
2022.

Ahmed Khaled and Chi Jin. Faster federated optimization under second-order similarity. In Inter-
national Conference on Learning Representations, 2023.

Junhyung Lyle Kim, Mohammad Taha Toghani, César A Uribe, and Anastasios Kyrillidis. Adaptive
federated learning with auto-tuned clients. In International Conference on Learning Representa-
tions, 2024.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Anastasiia Koloskova, Tao Lin, and Sebastian U Stich. An improved analysis of gradient tracking
for decentralized machine learning. Advances in Neural Information Processing Systems, 34:
11422–11435, 2021.

Alex Krizhevsky, Geoff Hinton, et al. Convolutional deep belief networks on CIFAR-10. Unpub-
lished Manuscript, 40(7):1–9, 2010.

Ilya Kuruzov, Gesualdo Scutari, and Alexander Gasnikov. Achieving linear convergence with
parameter-free algorithms in decentralized optimization. Advances in Neural Information Pro-
cessing Systems, 37:96011–96044, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Su Hyeong Lee, Manzil Zaheer, and Tian Li. Efficient distributed optimization under heavy-tailed
noise. In International Conference on Learning Representations, 2025.

Hanmin Li, Avetik Karagulyan, and Peter Richtarik. Det-CGD: Compressed gradient descent with
matrix stepsizes for non-convex optimization. In International Conference on Learning Repre-
sentations, 2024a.

Huan Li, Cong Fang, Wotao Yin, and Zhouchen Lin. Decentralized accelerated gradient methods
with increasing penalty parameters. IEEE Transactions on Signal Processing, 68:4855–4870,
2020.

Junyi Li, Feihu Huang, and Heng Huang. FedDA: Faster adaptive gradient methods for federated
constrained optimization. In International Conference on Learning Representations, 2024b.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adap-
tive stepsizes. In International Conference on Artificial Intelligence and Statistics, pp. 983–992.
PMLR, 2019.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic
gradient descent. Advances in Neural Information Processing Systems, 30, 2017.

Jihao Andreas Lin, Shreyas Padhy, Javier Antorán, Austin Tripp, Alexander Terenin, Csaba
Szepesvári, José Miguel Hernández-Lobato, and David Janz. Stochastic gradient descent for
gaussian processes done right. In International Conference on Learning Representations, 2023.

Xiaorui Liu, Yao Li, Rongrong Wang, Jiliang Tang, and Ming Yan. Linear convergent decentralized
optimization with compression. In International Conference on Learning Representations, 2020.

Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. arXiv
preprint arXiv:1910.09529, 2019.

Yura Malitsky and Konstantin Mishchenko. Adaptive proximal gradient method for convex opti-
mization. Advances in Neural Information Processing Systems, 37:100670–100697, 2024.

Brendan McMahan and Matthew Streeter. Delay-tolerant algorithms for asynchronous distributed
online learning. Advances in Neural Information Processing Systems, 27, 2014.

Parvin Nazari, Davoud Ataee Tarzanagh, and George Michailidis. Dadam: A consensus-based
distributed adaptive gradient method for online optimization. IEEE Transactions on Signal Pro-
cessing, 70:6065–6079, 2022.

Angelia Nedic. Distributed gradient methods for convex machine learning problems in networks:
Distributed optimization. IEEE Signal Processing Magazine, 37(3):92–101, 2020.

Angelia Nedić and Ji Liu. Distributed optimization for control. Annual Review of Control, Robotics,
and Autonomous Systems, 1(1):77–103, 2018.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
tion. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

Angelia Nedić, Alex Olshevsky, Wei Shi, and César A Uribe. Geometrically convergent distributed
optimization with uncoordinated step-sizes. In American Control Conference, pp. 3950–3955.
IEEE, 2017.

Angelia Nedić, Alex Olshevsky, and Michael G Rabbat. Network topology and communication-
computation tradeoffs in decentralized optimization. Proceedings of the IEEE, 106(5):953–976,
2018.

Edward Duc Hien Nguyen, Sulaiman A Alghunaim, Kun Yuan, and César A Uribe. On the perfor-
mance of gradient tracking with local updates. In IEEE Conference on Decision and Control, pp.
4309–4313. IEEE, 2023.

Shi Pu and Angelia Nedić. Distributed stochastic gradient tracking methods. Mathematical Pro-
gramming, 187(1):409–457, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Shi Pu, Alex Olshevsky, and Ioannis Ch Paschalidis. Asymptotic network independence in dis-
tributed stochastic optimization for machine learning: Examining distributed and centralized
stochastic gradient descent. IEEE Signal Processing Magazine, 37(3):114–122, 2020.

Ali Ramezani-Kebrya, Kimon Antonakopoulos, Igor Krawczuk, Justin Deschenaux, and Volkan
Cevher. Distributed extra-gradient with optimal complexity and communication guarantees. In
International Conference on Learning Representations, 2023.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance
reduction for nonconvex optimization. In International Conference on Machine Learning, pp.
314–323. PMLR, 2016.

Michal Rolinek and Georg Martius. L4: Practical loss-based stepsize adaptation for deep learning.
Advances in Neural Information Processing Systems, 31, 2018.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Augustinos D Saravanos, Hunter Kuperman, Alex Oshin, Arshiya Taj Abdul, Vincent Pacelli, and
Evangelos A Theodorou. Deep distributed optimization for large-scale quadratic programming.
In International Conference on Learning Representations, 2024.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Laurent Massoulié, and Yin Tat Lee. Optimal
algorithms for non-smooth distributed optimization in networks. Advances in Neural Information
Processing Systems, 31, 2018.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International Con-
ference on Machine Learning, 2013.

Ohad Shamir and Nathan Srebro. Distributed stochastic optimization and learning. In Annual
Allerton Conference on Communication, Control, and Computing, pp. 850–857. IEEE, 2014.

Arsalan Sharifnassab, Saber Salehkaleybar, and Richard Sutton. Metaoptimize: A framework for
optimizing step sizes and other meta-parameters. In International Conference on Machine Learn-
ing, 2024.

Rohan Sharma, Kaiyi Ji, and Changyou Chen. AUC-CL: A batchsize-robust framework for self-
supervised contrastive representation learning. In International Conference on Learning Repre-
sentations, 2023.

Yilong Song, Peijin Li, Bin Gao, and Kun Yuan. Distributed retraction-free and communication-
efficient optimization on the stiefel manifold. In International Conference on Machine Learning,
2025.

Zhuoqing Song, Lei Shi, Shi Pu, and Ming Yan. Optimal gradient tracking for decentralized opti-
mization. Mathematical Programming, 207(1):1–53, 2024.

Kunal Srivastava and Angelia Nedic. Distributed asynchronous constrained stochastic optimization.
IEEE Journal of Selected Topics in Signal Processing, 5(4):772–790, 2011.

S Sundhar Ram, Angelia Nedić, and Venugopal V Veeravalli. Distributed stochastic subgradient
projection algorithms for convex optimization. Journal of Optimization Theory and Applications,
147(3):516–545, 2010.

Kemal Tutuncu, Ilkay Cinar, Ramazan Kursun, and Murat Koklu. Edible and poisonous mushrooms
classification by machine learning algorithms. In Mediterranean Conference on Embedded Com-
puting, pp. 1–4. IEEE, 2022.

Andreas Vlachos. A stopping criterion for active learning. Computer Speech and Language, 22(3):
295–312, 2008. ISSN 0885-2308.

Jing Wang and Nicola Elia. A control perspective for centralized and distributed convex optimiza-
tion. In IEEE Conference on Decision and Control and European Control, pp. 3800–3805. IEEE,
2011.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xiaoyu Wang, Mikael Johansson, and Tong Zhang. Generalized polyak step size for first order
optimization with momentum. In International Conference on Machine Learning, pp. 35836–
35863. PMLR, 2023.

Kaixuan Wei, Angelica Aviles-Rivero, Jingwei Liang, Ying Fu, Carola-Bibiane Schönlieb, and Hua
Huang. Tuning-free plug-and-play proximal algorithm for inverse imaging problems. In Interna-
tional Conference on Machine Learning, pp. 10158–10169. PMLR, 2020.

Siyu Xie, Masoud H Nazari, George Yin, et al. Adaptive step size selection in distributed optimiza-
tion with observation noise and unknown stochastic target variation. Automatica, 135:109940,
2022.

Ran Xin, Soummya Kar, and Usman A Khan. Decentralized stochastic optimization and machine
learning: Aa unified variance-reduction framework for robust performance and fast convergence.
IEEE Signal Processing Magazine, 37(3):102–113, 2020.

Bo Yang and Mikael Johansson. Distributed optimization and games: A tutorial overview. Net-
worked Control Systems, pp. 109–148, 2010.

Shuoguang Yang, Xuezhou Zhang, and Mengdi Wang. Decentralized gossip-based stochastic bilevel
optimization over communication networks. Advances in Neural Information Processing Systems,
35:238–252, 2022.

Tao Yang, Xinlei Yi, Junfeng Wu, Ye Yuan, Di Wu, Ziyang Meng, Yiguang Hong, Hong Wang,
Zongli Lin, and Karl H Johansson. A survey of distributed optimization. Annual Reviews in
Control, 47:278–305, 2019.

Tianbao Yang. Trading computation for communication: Ddistributed stochastic dual coordinate
ascent. Advances in Neural Information Processing Systems, 26, 2013.

Zhuang Yang and Li Ma. Adaptive step size rules for stochastic optimization in large-scale learning.
Statistics and Computing, 33(2):45, 2023.

Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent. SIAM
Journal on Optimization, 26(3):1835–1854, 2016.

Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou, and Tianbao
Yang. Provable stochastic optimization for global contrastive learning: Small batch does not
harm performance. In International Conference on Machine Learning, pp. 25760–25782. PMLR,
2022.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Aadapting stepsizes by the belief in ob-
served gradients. Advances in Neural Information Processing Systems, 33:18795–18806, 2020.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX

• Section A: Notations

• Section B: Results of Algorithm 1

– B.1 Technical lemmas
– B.2 Proof of Theorem 1
– B.3 Proof of Theorem 2
– B.4 Proof of Corollary 1

• Section C: Experimental setups and additional experimental results

– C.1 Benchmark datasets
– C.2 Experimental setups
– C.3 Additional experimental results

A NOTATIONS

For the sake of notational simplicity, we introduce some additional notations. We use R+ to denote
the set of positive real numbers and use Xt ≜ col(xt

1, x
t
2, · · · , xt

m) ∈ Rmn to denote the stacked
model parameters of all agents. We also use ⊗ to denote the Kronecker product. We use xt(q) to
denote the average of all agents’ model parameters at the qth inner iteration of the tth outer iteration.
We define Ft ≜ {ξi,s|i = 1, · · · ,m and s = 0, · · · , t}, where ξi,t represents the data point sampled
by agent i at the tth iteration. For further notational simplicity, we define xt = 1

m

∑m
i=1 x

t
i, ηty

t
1 =

1
m

∑m
i=1 η

t
iy

t
1,i, η

t
max = maxi∈[m] η

t
i , ηmax = maxt∈N ηtmax, η̄t = 1

m

∑m
i=1 η

t
i , y

t
1 = 1

m

∑m
i=1 y

t
1,i,

yt2 = 1
m

∑m
i=1 y

t
2,i, x̂

t
i = xt

i − xt, ŷt1,i = yt1,i − yt1, and ŷt2,i = yt2,i − yt2.

B RESULTS OF ALGORITHM 1

B.1 TECHNICAL LEMMAS

We introduce the following three lemmas to characterize the consensus errors of Algorithm 1.

Lemma 1. Under Assumptions 1 and 2, the following inequality holds for Algorithm 1:

E[∥xt+1 − xt∥2] ≤ 45

46
E[∥xt − xt−1∥2]− E[∥xt+1 − xt∥2]

+
125

31β
E[ηt(f(xt−1)− f(xt))] + 2δt2,

(4)

where the constant δt3 is given by

δt2 =
bx̂,1
m

m∑
i=1

E[∥x̂t
i∥2] +

bx̂,2
m

m∑
i=1

E[∥x̂t−1
i ∥2] + bx̂,2

m

m∑
i=1

E[∥x̂t
i(0)∥2] +

bŷ,1
m

m∑
i=1

E[∥ŷt1,i∥2]

+
bŷ,2
m

m∑
i=1

E[∥ŷt−1
1,i ∥2] + bŷ,3

m

m∑
i=1

E[∥ŷt−1
2,i ∥2] + bσσ

2

|B|
,

(5)

where bx̂,1 = 125
124

(
L2ηmax

a8
+ 2β2

a7

)
+ 4β2 + 2, bx̂,2 = 2(1− a4)(1− a5)

(
1− 1

a6

)
β2 + 4β2 + 2,

bŷ,1 = 4η2max

(
1 + 1

a2

)
, bŷ,2 = 2(1 − a5)

(
1− 1

a6

)
η2max. bŷ,3 = 4η2max

(
1 + 1

a2

)
, and bσ =

4
(
1− 1

a4

)
η2max.

Proof. According to Line 3 in Algorithm 1, we have

xt+1 = xt+1(0) = xt − ηtyt1, (6)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

with xt = 1
m

∑m
i=1 x

t
i and ηtyt1 = 1

m

∑m
i=1 η

t
iy

t
1,i. Since ηtyt1 = 1

m2

∑m
i=1 η

t
i

∑m
j=1 y

t
1,j holds, we

obtain the following inequality:

E[∥xt+1 − xt∥2|Ft] = ∥ηtyt1∥2 = ∥ηtyt1 − ηtyt1 + ηtyt1∥2

≤
(
1 +

1

a1

)
∥ηtyt1 − ηtyt1∥2 + (1 + a1)∥ηtyt1∥2

=

(
1 +

1

a1

)
∥ 1

m

m∑
i=1

(ηtiy
t
1,i − ηtiy

t
1)∥2 + (1 + a1)∥ηtyt1∥2

≤
(
1 +

1

a1

)
1

m

m∑
i=1

(ηti)
2∥yt1,i − yt1∥2 + (1 + a1)∥ηtyt1∥2

≤
(
1 +

1

a1

)
1

m

m∑
i=1

η2max∥ŷt1,i∥2 + (1 + a1)∥ηtyt1∥2,

(7)

where Ft = {ξi,s|i = 1, . . . , N ; s = 0, . . . , t} with ξi,t denoting the data point sampled by agent
i at iteration t. Here, we have used the inequality ∥a+ b∥2 ≤ (1 + 1

α)∥a∥
2 + (1 + α)∥b∥2 for any

α > 0 and a, b ∈ Rn in the first inequality and the inequality ∥ 1
m

∑m
i=1 ai∥2 ≤ 1

m

∑m
i=1 ∥ai∥2 for

any ai ∈ Rn, i = 1, · · · ,m in the second inequality. By choosing a1 ∈ (0, 1
124) and applying the

relation ∥a∥2 = ∥a− b∥2 − ∥b∥2 + 2⟨a, b⟩ to equation 7, the term ∥ηtyt1∥ can be bounded by

∥ηtyt1∥2 = ∥ηt(yt1 − yt−1
2)∥2 − ∥ηtyt−1

2 ∥2 + 2⟨ηtyt1, ηtyt−1
2 ⟩. (8)

The first term on the right-hand side of equation 8 satisfies

∥ηt(yt1 − yt−1
2)∥2 =

∥∥∥∥∥ 1

m

m∑
i=1

ηti(y
t
1 − yt−1

2)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

m

m∑
i=1

ηti(y
t
1,i − yt−1

2,i)− ηti(ŷ
t
1,i − ŷt−1

2,i)

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

m

m∑
i=1

(1 + a2)η
t
i(y

t
1,i − yt−1

2,i)

∥∥∥∥∥
2

+
1

m

m∑
i=1

(
1 +

1

a2

)
∥ηti(ŷt1,i − ŷt−1

2,i)∥2,

≤

∥∥∥∥∥ 1

m

m∑
i=1

(1 + a2)η
t
iL

t
i(x

t
i − xt−1

i)

∥∥∥∥∥
2

+
1

m

m∑
i=1

(
1 +

1

a2

)
∥ηti(ŷt1,i − ŷt−1

2,i)∥2,

(9)
for any a2 ∈ R+.

Consider the second term on the right-hand side of equation 9.

E

[
1

m

m∑
i=1

(
1 +

1

a2

)
∥ηti(ŷt1,i − ŷt−1

2,i)∥2
]
≤ 2

m

m∑
i=1

η2max

(
1 +

1

a2

)
E
[
∥ŷt1,i∥2 + ∥ŷt−1

2,i ∥2
]
.

(10)

Substituting equation 10 into equation 9 yields

E
[
∥ηt(yt1 − yt−1

2)∥2
]
≤ E

∥∥∥∥∥ 1

m

m∑
i=1

(1 + a2)η
t
iL

t
i(x

t
i − xt−1

i)

∥∥∥∥∥
2


+
2

m

m∑
i=1

η2max

(
1 +

1

a2

)
E
[
∥ŷt1,i∥2 + ∥ŷt−1

2,i ∥2
]
.

(11)

We proceed to estimate a lower bound on the second term on the right-hand side of equation 8.

∥ηtyt−1
2 ∥2 = (ηt)2∥yt−1

2 ∥2 = (ηt)2∥yt−1
2 − yt−1

1 + yt−1
1 ∥2

≥ (1− a3)(η
t)2∥yt−1

1 ∥2 +
(
1− 1

a3

)
(ηt)2∥yt−1

2 − yt−1
1 ∥2,

(12)

for any a3 ∈ (0, 1), where in the derivation we have used the inequality ∥a+ b∥2 ≥ (1− 1
α)∥a∥

2 +

(1− α)∥b∥2, for any a ∈ (0, 1).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Since the relationship 1 − 1
a4

< 0 holds, the second term on the right-hand side of equation 12
satisfies(

1− 1

a4

)
E
[
(ηt)2∥yt−1

2 − yt−1
1 ∥2

]
≥
(
1− 1

a4

)
(ηmax)

2 1

m

m∑
i=1

E
[∥∥(gt−1

i (xt−1
i)− gt−2

i (xt−1
i))

∥∥2] ≥ 2

(
1− 1

a4

)
η2maxσ

2

|B|
.

(13)

By using the inequality
∑n

i=1 a
2
i ≤ (

∑n
i=1 ai)

2 ≤ n
∑n

i=1 a
2
i for any nonnegative constants

a1, . . . , an, the first term on the right-hand side of equation 12 satisfies

E
[
(ηt)2∥yt−1

1 ∥2
]
= E

[(
∥ηtyt−1

1 ∥
)2]

= E

(1

m

m∑
i=1

∥ηtiyt−1
1 ∥

)2


= E

(1

m

m∑
i=1

ηti∥yt−1
1,i − ŷt−1

1,i ∥

)2


≥ (1− a5)E

∥∥∥∥∥ 1

m

m∑
i=1

ηtiy
t−1
1,i

∥∥∥∥∥
2
+

(
1− 1

a5

)
η2max

m
E
[
∥ŷt−1

1,i ∥2
]
,

(14)

holds for any a5 ∈ (0, 1).

We estimate a lower bound on the first term on the right-hand side of equation 14 as follows:

E

∥∥∥∥∥ 1

m

m∑
i=1

ηtiy
t−1
1,i

∥∥∥∥∥
2
 =

(1

m

m∑
i=1

ηti
ηt−1
i

∥xt
i(0)− xt−1

i ∥

)2


≥ (1− a6)E

(1

m

m∑
i=1

ηti
ηt−1
i

∥xt − xt−1∥

)2


+

(
1− 1

a6

) m∑
i=1

E

(1

m

m∑
i=1

ηti
ηt−1
i

∥x̂t
i(0)− x̂t−1

i ∥

)2
 ,

(15)

for any a6 ∈ (0, 1).

By the inequality ρ2M
∑m

i=1 ∥x̂t
i(0)∥2 ≥

∑m
i=1 ∥x̂t

i∥2, which will be proved in the subsequent
Lemma 3, we have

m∑
i=1

E

(1

m

m∑
i=1

ηti
ηt−1
i

∥x̂t
i(0)− x̂t−1

i ∥

)2
 ≤ β2 1

m

m∑
i=1

E
[
∥x̂t

i(0)∥2 + ρ2M∥x̂t−1
i (0)∥2

]
. (16)

Finally, using inequalities equation 12 -equation 16, we arrive at

E[∥ηtyt−1
2 ∥2] ≥ (1− a4)(1− a5)(1− a6)E

(1

m

m∑
i=1

ηti
ηt−1
i

∥xt − xt−1∥

)2


+ 2

(
1− 1

a4

)
η2maxσ

2

|B|
+ (1− a4)

(
1− 1

a5

)
η2max

m

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]

+ (1− a4)(1− a5)

(
1− 1

a6

)
β2 1

m

m∑
i=1

E
[
∥x̂t

i(0)∥2 + ρ2M∥x̂t−1
i (0)∥2

]
.

(17)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Next, we estimate an upper bound for the last term on the right-hand side of equation 8 as follows:

2E
[
⟨ηtyt1, ηtyt−1

2 ⟩
]
=

2

m

m∑
i=1

E
[
⟨ηtyt1, ηti(yt−1

2 − yt−1
1 + yt−1

1)⟩
]

=
2

m

m∑
i=1

E
[〈
ηtyt1, η

t
iy

t−1
1,i

〉]
− 2

m

m∑
i=1

E
[
⟨ηtyt1, ηti ŷt−1

1,i ⟩
]
+

2

m

m∑
i=1

E
[
⟨ηtyt1, ηti(yt−1

2 − yt−1
1)⟩

]
=

2

m

m∑
i=1

E
[〈

ηtyt1,
ηti

ηt−1
i

(xt−1
i − xt

i(0))

〉]
− 2

m

m∑
i=1

E
[
⟨ηtyt1, ηti ŷt−1

1,i ⟩
]

+
2

m

m∑
i=1

E
[
⟨ηtyt1, ηti(yt−1

2 − yt−1
1)⟩

]
≤ 2

m

m∑
i=1

E
[〈

ηtyt1,
ηti

ηt−1
i

(xt−1
i − xt

i(0))

〉]
+ 2a7E

[
∥ηtyt1∥2

]
+

1

m

m∑
i=1

E
[
η2max

a7
∥ŷt−1

1,i ∥2
]

+ E
[
η2max

a7
∥yt−1

2 − yt−1
1 ∥2

]
, (18)

with a7 = 1−124a1

250 > 0, where we have used the inequality 2⟨a, b⟩ ≤ 1
α∥a∥

2 + α∥b∥2 in the last
inequality.

Next, we need to transform the first term on the right-hand side of equation 18.

2E
[〈

ηtyt1,
ηti

ηt−1
i

(xt−1
i − xt

i)

〉]
= 2E

[〈
ηtyt1,

ηti
ηt−1
i

(xt−1 − xt)

〉]
+ 2E

[〈
ηtyt1,

ηti
ηt−1
i

(x̂t−1
i − x̂t

i)

〉]
≤ 2

m

m∑
j=1

E
[〈

ηtjy
t
1,

ηti
ηt−1
i

(xt−1 − xt)

〉]
+ a7E

[
∥ηtyt1∥2

]
+

2β2

a7
E
[
∥x̂t−1

i ∥2
]
+

2β2

a7
E
[
∥x̂t

i∥2
]
.

(19)
Then, we estimate an upper bound on the first term on the right-hand side of equation 19 as follows:

E
[〈

ηtjy
t
1,

ηti
ηt−1
i

(xt−1 − xt)

〉]
= E

[
ηtj

〈
yt1 −∇f(xt),

ηti
ηt−1
i

(xt−1 − xt)

〉]
+ E

[
ηtj

〈
∇f(xt),

ηti
ηt−1
i

(xt−1 − xt)

〉]
≤ E

[
ηtj

〈
yt1 −∇f(xt),

ηti
ηt−1
i

(xt−1 − xt)

〉]
+

1

β
E
[
ηtj(f(x

t−1)− f(xt))
]
, (20)

with ∇f(xt) = 1
m

∑m
i=1 ∇fi(x

t), where we have used the convexity of the function f(x) and the

relationship ηt
i

ηt−1
i

≤ 1
β for any given t in the last inequality.

The first term on the right-hand side of equation 20 can be bounded by

1

m

m∑
i=1

E
[〈

yt1 −∇f(xt),
ηti

ηt−1
i

(xt−1 − xt)

〉]

≤ 1

2a8
E
[
∥yt1 −∇f(xt)∥2

]
+

a8
2
E

(1

m

m∑
i=1

ηti
ηt−1
i

)2

∥xt−1 − xt∥2
 , (21)

Since the random variables gt−1
i (xt

i) − ∇fi(x
t
i), i = 1, . . . ,m, are mutually indepen-

dent, and E
[
gt−1
i (xt

i)−∇fi(x
t
i)
]

= 0, we have E
[∥∥∥ 1

m

∑m
j=1

(
gt−1
i (xt

i)−∇fi(x
t
i)
)∥∥∥2] =

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1
m2

∑m
i=1 E

[∥∥gt−1
i (xt

i)−∇fi(x
t
i)
∥∥2] = σ2

|B|m . Using the L-smoothness of fj , the relationship

yt1 = 1
m

∑m
j=1 g

t−1
j (xt

j), and the inequality
∥∥ 1
m

∑m
i=1 ai

∥∥2 ≤ 1
m

∑m
i=1 ∥ai∥2 for any a1, · · · , am ∈

Rn, we have

E
[
∥yt1 −∇f(xt)∥2

]
= E

∥∥∥∥∥ 1

m

m∑
i=1

gt−1
i (xt

i)−
1

m

m∑
i=1

∇fi(x
t)

∥∥∥∥∥
2


≤ 2E

∥∥∥∥∥ 1

m

m∑
i=1

(
gt−1
i (xt

i)−∇fi(x
t
i)
)∥∥∥∥∥

2
+ 2E

∥∥∥∥∥ 1

m

m∑
i=1

(
∇fi(x̄

t)−∇fi(x
t
i)
)∥∥∥∥∥

2


≤ 2

m2

m∑
j=1

E
[∥∥gt−1

i (xt
i)−∇fi(x

t
i)
∥∥2]+ 2

m

m∑
i=1

E
[∥∥∇fi(x̄

t)−∇fi(x
t
i)
∥∥2]

≤ 2L2

m

m∑
i=1

E
[
∥x̂t

i∥2
]
+

2σ2

|B|m
.

(22)

Substituting equation 22 into equation 21 yields

1

m

m∑
i=1

E
[〈

yt1 −∇f(xt),
ηti

ηt−1
i

(xt−1 − xt)

〉]

≤ L2

ma8

m∑
i=1

E
[
∥x̂t

i∥2
]
+

a8
2
E

(1

m

m∑
i=1

ηti
ηt−1
i

)2

∥xt−1 − xt∥2
+

σ2

|B|ma8
, (23)

Combining equation 18 and equation 23, we obtain the following inequality:

2E
[
⟨ηtyt1, ηtyt−1

1 ⟩
]
≤ 2a7E

[
∥ηtyt1∥2

]
+

η2max

a7m

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]

+ a8E

(1

m

m∑
i=1

ηti
ηt−1
i

)2

∥xt−1 − xt∥2
+

2β2

a7m

m∑
i=1

E
[
∥x̂t−1

i ∥2
]
+

2σ2

|B|ma8

+
1

m

m∑
i=1

(
L2ηmax

a7
+

2β2

a7
+

2L2

a8

)
E
[
∥x̂t

i∥2
]
+

2

mβ

m∑
i=1

E
[
ηti(f(x

t−1)− f(xt))
]
.

(24)

Substituting equation 11, equation 17, and equation 24 into equation 8, we obtain

(1− 2a7)E
[
∥ηtyt1∥2

]
≤ (1 + a2)E

∥∥∥∥∥ 1

m

m∑
i=1

ηtiL
t
i(x

t
i − xt−1

i)

∥∥∥∥∥
2


− ((1− a5)(1− a6)(1− a7)− a8)E

(1

m

m∑
i=1

ηti
ηt−1
i

∥xt − xt−1∥

)2


+
2β

m

m∑
i=1

E
[
ηti(f(x

t−1)− f(xt))
]
+ δt1,

(25)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where the constant δt1 is given by

δt1 =
1

m

m∑
i=1

(
L2ηmax

a7
+

2β2

a7
+

2L2

a8

)
E
[
∥x̂t

i∥2
]
+

2β2

a7m

m∑
i=1

E
[
∥x̂t−1

i ∥2
]
+

2σ2

|B|ma8

+
η2max

a7m

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]
+ 2

(
1− 1

a4

)
η2maxσ

2

|B|
+ (1− a5)

(
1− 1

a6

)
η2max

m

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]

+ (1− a4)(1− a5)

(
1− 1

a6

)
β2 1

m

m∑
i=1

E
[
∥x̂t

i(0)∥2 + ρ2M∥x̂t−1
i (0)∥2

]
+

2

m

m∑
i=1

η2max

(
1 +

1

a2

)
E
[
∥ŷt1,i∥2 + ∥ŷt−1

2,i ∥2
]
. (26)

By Step 14 in Algorithm 1, we have

ηti ≤
7
√
r

10

ηt−1
i√

[m(ηt−1
i Lt

i)
2 − 1]+

. (27)

When m(ηt−1
i Lt

i)
2 ≤ 1,

(ηtiL
t
i)

2 − (ηti)
2

m(ηt−1
i)2

= (ηti)
2

(
(Lt

i)
2 − 1

m(ηt−1
i)2

)
≤ 0 ≤ 49r

100
. (28)

When m(ηt−1
i Lt

i)
2 > 1, equation 27 can be rewritten as

ηti ≤
7
√
r

10

ηt−1
i√

m(ηt−1
i Lt

i)
2 − 1

. (29)

It implies that

(ηtiL
t
i)

2 − (ηti)
2

m(ηt−1
i)2

≤ 49r

100m
≤ 49r

100
. (30)

According to equation 28 and equation 30, we always have

(ηtiL
t
i)

2 − (ηti)
2

m(ηt−1
i)2

≤ 49r

100
. (31)

Choose a2, a5, a6, a7, and a8 such that the

a2 ≤ 1− r

4β2
, max{a5, a6, a7, a8} ≤ 47(1− r)

1600β2
. (32)

Then we have

(1 + a2)(η
t
iL

t
i)

2 − ((1− a5)(1− a6)(1− a7)− a8)
(ηti)

2

m(ηt−1
i)2

≤ (1 + a2)

(
(ηtiL

t
i)

2 − ((1− a5)(1− a6)(1− a7)− a8
1 + a2

(ηti)
2

m(ηt−1
i)2

)
≤ (1 + a2)

(
(ηtiL

t
i)

2 − (ηti)
2

m(ηt−1
i)2

)
+ ((1 + a2)− (1− a5)(1− a6)(1− a7) + a8)β

2

≤ 49

100

(
1− 3(1− r)

4

)
+

147(1− r)

400
≤ 49

100
,

(33)

where we use the relationship (ηt
i)

2

(ηt−1
i)2

≤ β2, (1 + a2)
49r
100 = 49

100r
(
1 + 1−r

4

)
≤ 49

100

(
1− 3(1−r)

4

)
,

and
(1 + a2)− (1− a5)(1− a6)(1− a7) + a8 ≤ a2 + a5 + a6 + a7 + a8

≤ 1− r

4β2
+

47(1− r)

400β2
≤ 147(1− r)

400β2
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Since ηt
i

ηt−1
i

≤ β, it follows from equation 33 that

ηtiL
t
i ≤

1

1 + a2

(
((1− a5)(1− a6)(1− a7)− a8)

(ηti)
2

m(ηt−1
i)2

+
49

100

)
<

1

1 + a2

(
β2 +

1

2

)
.

(34)

Hence, it follows from equation 27 that

(1 + a2)E
[∥∥ηtiLt

i(x̄
t − x̄t−1)

∥∥2]− (1− a5)(1− a6)(1− a7)− a8
m

E

[(
ηti

ηt−1
i

∥x̄t − x̄t−1∥
)2
]

≤ 49

100
E[∥x̄t − x̄t−1∥2].

(35)
Applying the fact if ∥ai∥2 ≤ 1

m∥bi∥2 + ∥c∥2 for all i = 1, . . . ,m, then ∥ā∥2 ≤ ∥b̄∥2 + ∥c∥2, where
ai, bi, and c are positive constants, ā = 1

m

∑m
i=1 ai, b̄ =

1
m

∑m
i=1 bi, , we have

(1 + a2)E

∥∥∥∥∥ 1

m

m∑
i=1

ηtiL
t
i(x

t
i − xt−1

i)

∥∥∥∥∥
2


− ((1− a5)(1− a6)(1− a7)− a8)E

(1

m

m∑
i=1

ηti
ηt−1
i

∥xt − xt−1∥

)2


≤ 24

50
E

∥∥∥∥∥ 1

m

m∑
i=1

(x̄t − x̄t−1)

∥∥∥∥∥
2
+ 48(1 + a2)

1

m

m∑
i=1

E
[∥∥ηtiLt

i(x̂
t
i − x̂t−1

i)
∥∥2] .

(36)

By equation 34, we have

(1 + a2)E
[∥∥ηtiLt

i(x̂
t
i − x̂t−1

i)
∥∥2] ≤ (2β2 + 1)E

[∥∥x̂t
i

∥∥2 + ∥∥x̂t−1
i

∥∥2] . (37)

Based on the above analysis, we can rewrite equation 36 as follows:

(1− 2a8)E
[
∥ηtyt1∥2

]
≤ 24

50
E
[∥∥x̄t − x̄t−1

∥∥2]+ 2β2 + 1

m

m∑
i=1

E
[∥∥x̂t

i

∥∥2 + ∥∥x̂t−1
i

∥∥2]
+

2β

m

m∑
i=1

E
[
ηti(f(x

t−1)− f(xt))
]
+ δt1. (38)

By substituting equation 38 into equation 7, we obtain

E
[
∥xt+1 − xt∥2

]
≤ c1E

[
∥xt − xt−1∥2

]
+

2(1 + a1)

mβ(1− 2a8)

m∑
i=1

E
[
ηti(f(x

t−1)− f(xt))
]
+ δt3,

(39)

with δt2 = 1+a1

1−2a8

(
δt1 +

2β2+1
m

∑m
i=1 E

[
∥x̂t

i∥
2
+
∥∥x̂t−1

i

∥∥2]) + (1 + 1
a1
) 1
m

∑m
i=1 η

2
max∥ŷt1,i∥2 and

c1 = 1+a1

1−2a8
(24(1+a7)

50). Choose a8 as

a8 =
1− 124a1

250
> 0, (40)

where a8 exists due to a1 < 1
124 given in the lemma statement. Then we have

c1 =
24

50
× 1 + a1

1− 2a8
<

1

2
. (41)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Substituting the second equation in equation 40 and equation 41 into equation 39, we obtain

E
[
∥xt+1 − xt∥2

]
≤ c1E

[
∥xt − xt−1∥2

]
+

125

62mβ

m∑
i=1

E
[
ηti(f(x

t−1)− f(xt))
]
+ δt3.

(42)

Multiplying both sides of equation 42 by 2 leads to

E
[
∥xt+1 − xt∥2

]
≤ 2c1E

[
∥xt − xt−1∥2

]
− E

[
∥xt+1 − xt∥2

]
+

125

31β
E
[
ηt(f(xt−1)− f(xt))

]
+ 2δt3,

(43)

which implies Lemma 1.

Lemma 2. Under Assumptions 1 and 2, the following inequality holds for Algorithm 1:

E[∥xt+1 − x∗∥2}+ E[∥xt+1 − xt∥2}+
(
2 +

125β

31

)
ηtE[f(xt)− f(x∗)}

≤
(
1− µ

2L
+ a9µηmax

)
E[∥xt − x∗∥2}+ 45

46
E
[
∥xt − xt−1∥2

]
+ γ

(
2 +

125β

31

)
E
[
ηt−1(f(xt−1)− f(x∗))

]
+ δt5,

(44)

for any γ ∈ (0, 1), where the constant δt5 is given by

δt5 =
2b̄x̂,1
m

m∑
i=1

E[∥x̂t
i∥2] +

b̄x̂,2
m

m∑
i=1

E[∥x̂t−1
i ∥2] + b̄x̂,2

m

m∑
i=1

E[∥x̂t
i(0)∥2] +

b̄ŷ,1
m

m∑
i=1

E[∥ŷt1,i∥2]

+
b̄ŷ,2
m

m∑
i=1

E[∥ŷt−1
1,i ∥2] + b̄ŷ,3

m

m∑
i=1

E[∥ŷt−1
2,i ∥2] + b̄σσ

2

|B|
,

(45)

where b̄x̂,1 = 2bx̂,1 +
2ηmaxL

2

a9µ
, b̄x̂,2 = 2bx̂,2, b̄ŷ,1 = 2bŷ,1 ++ 2ηmaxL

2

|a9µ
, b̄ŷ,2 = 2bŷ,2, b̄ŷ,3 = 2bŷ,3,

and b̄σ = 2bσ + 2ηmaxL
2

|a9µ
.

Proof. According to the dynamics of xt
i in Algorithm 1, we have

E
[
∥xt+1 − x∗∥2

]
= E

[
∥xt − ηtyt − x∗∥2

]
= E

[
∥xt − x∗∥2

]
+ E

[
∥ηtyt∥2

]
− 2E

[
⟨xt − x∗, ηtyt⟩

]
= E

[
∥xt − x∗∥2

]
+ E

[
∥xt+1 − xt∥2

]
− 2E

[
⟨xt − x∗, ηtyt⟩

]
,

(46)

with ηtyt := 1
N

∑N
i=1 η

t
iy

t
1,i.

The third term on the right-hand side of equation 46 satisfies:

2E
[
⟨xt − x∗, ηtyt⟩

]
= −2⟨xt − x∗,

1

m

m∑
i=1

ηtiy
t
1,i⟩

≤ −2E
[
ηt(f(xt)− f(x∗))− µηmin∥xt − x∗∥2

]
− 2E

[〈
xt − x∗,

1

m

m∑
i=1

ηti(y
t
1,i −∇f(xt))

〉]
,

(47)

where in the derivation we have used the µ-strong convexity of f(x) and ηmin = mini∈[m],t∈N+ ηti .
Furthermore, since the function f is L-smoothness, the minimum of the stepsizes exists.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

By using the Cauchy–Schwarz inequality, the third term on the right-hand side of inequality equa-
tion 47 satisfies

− 2E

[〈
xt − x∗,

1

m

m∑
i=1

ηti(y
t
1,i −∇f(xt))

〉]

= − 2

m

m∑
i=1

E
[〈√

ηti(x
t − x∗),

√
ηti(y

t
1,i −∇f(xt))

〉]

≤ 2

m

√√√√(m∑
i=1

E

[∥∥∥∥√ηti(x
t − x∗)

∥∥∥∥2
])(

m∑
i=1

E

[∥∥∥∥√ηti(y
t
1,i −∇f(xt)

∥∥∥∥2
)]

.

By applying the inequality 2⟨a, b⟩ ≤ α∥a∥2 + 1
α∥b∥

2 for any α > 0 and a, b ∈ Rn to equation 48,
we obtain

− 2E

[〈
xt − x∗,

1

m

m∑
i=1

ηti(y
t
1,i −∇f(xt))

〉]

≤ a9µ

m

m∑
i=1

E
[
ηti∥xt − x∗∥2

]
+

1

ma9µ

m∑
i=1

E
[
ηti∥yt1,i −∇f(xt)∥2

]
≤ a9µηmaxE

[
∥xt − x∗∥2

]
+

ηmax

ma9µ

m∑
i=1

E
[
∥yt1,i −∇f(xt)∥2

]
for any positive a9.

The second term on the right-hand side of equation 48 satisfies

ηmax

ma9µ

m∑
i=1

E
[
∥yt1,i −∇f(xt)∥2

]
=

ηmax

ma9µ

m∑
i=1

E
[
∥yt1,i − yt1 + yt1 −∇f(xt)∥2

]
≤ 2ηmax

ma9µ

m∑
i=1

E
[
∥yt1,i − yt1∥2

]
+

2ηmax

ma9µ

m∑
i=1

E
[
∥yt1 −∇f(xt)∥2

]
.

(48)

By using the Lipschitz continuity of ∇f from Assulption 1, we have

m∑
i=1

E
[
∥yt1 −∇f(xt)∥2

]
≤ 1

m

m∑
i=1

E
[
∥gti(xt

i)−∇fi(x
t)∥2

]
=

σ2

B
+

1

m

m∑
i=1

E
[
∥∇f t

i (x
t
i)−∇fi(x

t)∥2
]
≤ σ2

|B|
+

L2

m

m∑
i=1

E
[
∥x̂t

i∥2
]
.

Substituting equation 49 into equation 48 leads to

ηmax

ma9µ

m∑
i=1

E
[
∥yt1,i −∇f(xt)∥2

]
≤ 2ηmax

ma9µ

m∑
i=1

E
[
∥ŷt1,i∥2

]
+

2ηmaxL
2

ma9µ

m∑
i=1

E
[
∥x̂t

i∥2
]
+

2ηmaxL
2σ2

|B|a9µ
.

(49)

By substituting equation 47 to equation 49 into equation 46, we obtain

E
[
∥xt+1 − x∗∥2

]
≤ (1− µηmin + a9µηmax)E

[
∥xt − x∗∥2

]
+ E

[
∥xt+1 − xt∥2

]
− 2E

[
ηt(f(xt)− f(x∗))

]
+ δt4,

(50)

with δt4 = 2ηmax

ma9µ

∑m
i=1 E

[
∥ŷt1,i∥2

]
+ 2ηmaxL

2

ma9µ

∑m
i=1 E

[
∥x̂t

i∥2
]
+ 2ηmaxL

2σ2

|B|a9µ
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

By adding both sides of equation 4 in Lemma 1 and equation 50, we obtain

E
[
∥xt+1 − x∗∥2

]
+ E

[
∥xt+1 − xt∥2

]
+

(
2 +

125β

31

)
E
[
ηt(f(xt)− f(x∗))

]
≤ (1− µηmin + a9µηmax)E

[
∥xt − x∗∥2

]
+

45

46
E
[
∥xt − xt−1∥2

]
+

125β

31
E
[
ηt(f(xt−1)− f(x∗))

]
+ δt5,

(51)

with δt5 = δt4 + 2δt3.

By setting β ∈ (1, 1.36) and using Line 16 in Algorithm 1, we have 125β
31 ηt ≤ 125β2

31 ηt−1 =

γ1

(
2 + 125β

31

)
ηt−1 for some γ1 ∈

(
0, 91

92

)
, which implies the following inequality:

125β

31
ηt ≤ γ1

(
2 +

125β

31

)
ηt−1 and

125β2

31
≤ γ1

(
2 +

125β

31

)
. (52)

By letting a9 = ηmin

2ηmax
, we have

E
[
∥xt+1 − x∗∥2

]
+ E

[
∥xt+1 − xt∥2

]
+

(
2 +

125β

31

)
E
[
ηt(f(xt)− f(x∗))

]
≤
(
1− µηmin

2

)
E
[
∥xt − x∗∥2

]
+

45

46
E
[
∥xt − xt−1∥2

]
+ E

[
γ1

(
2 +

125β

31

)
ηt−1(f(xt−1)− f(x∗))

]
+ δt5,

(53)

which proves Lemma 2.

Lemma 3. Under Assumptions 1 and 2, the following inequality holds for Algorithm 1:
m∑
i=1

E
[
x̂t
i∥2
]
≤ ρ2M

(
12η2max

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]
+ (24η2maxL

2 + 3)

m∑
i=1

E
[
∥x̂t−1

i ∥2
]

+ 48mη2maxL
2E
[
∥xt − x∗∥2

]
+ 48mη2maxL

2E
[
∥xt − xt−1∥2

]
+

12η2maxσ
2

|B|

)
, (54)

m∑
i=1

E
[
∥ŷt1,i∥2

]
≤ ρ2M

(
18L2

m∑
i=1

E
[
∥x̂t

i∥2
]
+ 18L2

m∑
i=1

E
[
∥x̂t−1

i ∥2
]
+ 3

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]

+ 18mL2E
[
∥xt − xt−1∥2

]
+

36mσ2

|B|

)
, (55)

m∑
i=1

E
[
∥ŷt2,i∥2

]
≤ ρ2M

(
18L2

m∑
i=1

E
[
∥x̂t

i∥2
]
+ 18L2

m∑
i=1

E
[
∥x̂t−1

i ∥2
]
+ 3

m∑
i=1

E
[
∥ŷt−1

2,i ∥2
]

+ 18mL2E
[
∥xt − xt−1∥2

]
+

36mσ2

|B|

)
, (56)

where ρ < 1 is from Assumption 2 and M is the number of inner-consensus-loop iterations from
Algorithm 1.

Proof. According to Line 5 in Algorithm 1, we have

Xt(q + 1) = (W ⊗ In)X
t(q), q = 0, 1, . . . ,M − 1, (57)

where W ∈ Rm×m is the adjacency matrix given in Assumption 2. Since the relationship x̄t(q) =
1
m

∑m
i=1 x

t
i(q) holds, we have

xt(q + 1) =
1

m

m∑
i=1

xt
i(q + 1) =

1

m

m∑
i=1

m∑
j=1

wijx
t
j(q) =

1

m

m∑
j=1

xt
j(q) = xt(q), (58)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

where we have used Assumption 2 in the derivation.

By using the definition X̄t = col(xt, · · · , xt) ∈ Rmn and equation 58, we have

X̄t = (W ⊗ In)X̄
t. (59)

By defining ∆t(q) ≜ Xt(q)− X̄t and subtracting equation 59 from equation 57, we obtain

∆t(q + 1) = Xt(q + 1)−Xt
1 = (W ⊗ In)∆

t(q)

∆t(q + 1) = (W ⊗ In)∆
t(q).

Since W is a doubly stochastic matrix, there must exist an orthogonal matrix Φ ∈ Rm×m such that
W satisfies the following transformation:

Φ⊤WΦ = diag{1, λ2, . . . , λm}, (60)

with |λi| < 1, i = 2, . . . ,m. The first column of Φ is given by 1√
m
1n, which corresponds to the

eigenvalue 1 of W . By further considering the following transformation:

∆t
1(q) = (Φ⊤ ⊗ In)∆

t(q), (61)

with ∆t
1(q) = [σt

1(q);σ
t
2(q); . . . ;σ

t
m(q)] ∈ Rmn, we have

σt
i(q) =

m∑
j=1

Φ⊤
ij(x

t
j(q)− xt), (62)

where Φ⊤
ij denotes the element in the ith row and jth column of the matrix Φ⊤. By using σt

1(q) =
1√
m

∑m
j=1(x

t
j(q)− xt) = 0, equation 60 can be rewritten as follows:

∆t
1(q + 1) = (diag{1, λ2, . . . , λm} ⊗ In)∆

t
1(q). (63)

Since the relationship σt
1(q) = 0 holds, equation 63 implies

σt
i(q + 1) = λiσ

t
i(q) ≤ ρσt

i(q) ≤ ρq+1σt
i(0), (64)

with ρ = max{|λ2|, · · · , |λm|} < 1. According to equation 64, we have

∥∆t(M)∥2 ≤ ρ2M∥∆t(0)∥2, (65)

which further implies
m∑
i=1

∥xt
i − xt∥2 ≤ ρ2M

m∑
i=1

∥xt
i(0)− xt∥2. (66)

By using an argument similar to the derivation of equation 66, we obtain
m∑
i=1

∥yt1,i − yt1∥2 ≤ ρ2M
m∑
i=1

∥yt1,i(0)− yt1∥2,

m∑
i=1

∥yt2,i − yt2∥2 ≤ ρ2M
m∑
i=1

∥yt2,i(0)− yt2∥2.
(67)

Using equation 66, we have
m∑
i=1

∥xt
i − xt∥2 ≤ ρ2M

m∑
i=1

∥xt
i(0)− xt∥2

= ρ2M
m∑
i=1

∥xt
i(0)− xt−1

i + xt−1
i − xt−1 + xt−1 − xt∥2

≤ 3ρ2M (

m∑
i=1

∥xt
i(0)− xt−1

i ∥2 +
m∑
i=1

∥xt−1
i − xt−1∥2 +

m∑
i=1

∥xt−1 − xt∥2)

= 3ρ2M

(
m∑
i=1

∥xt
i(0)− xt−1

i ∥2 +
m∑
i=1

∥x̂t−1
i ∥2 +m∥xt − xt−1∥2

)
,

(68)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

where we have used the relationship ∥a+b+c∥2 ≤ 3∥a∥2+3∥b∥2+3∥c∥2 in the second inequality.

We estimate an upper bound on the first term on the right-hand side of equation 68 as follows:
m∑
i=1

∥xt
i(0)− xt−1

i ∥2 =

m∑
i=1

∥ηt−1
i yt−1

1,i ∥2 ≤ 2

m∑
i=1

∥ηt−1
i ŷt−1

1,i ∥2 + 2

m∑
i=1

∥ηt−1
i yt−1

1 ∥2

= 2η2max

m∑
i=1

∥ŷt−1
1,i ∥2 + 2mη2max

∥∥∥∥∥ 1

m

m∑
i=1

(gt−1
i (xt−1

i)−∇f(x∗))

∥∥∥∥∥
2

.

(69)

By using the following inequality and equation 69

E

∥∥∥∥∥ 1

m

m∑
i=1

(gt−1
i (xt−1

i)−∇f(x∗))

∥∥∥∥∥
2
 ≤ σ2

|B|m
+

1

m
E

∥∥∥∥∥
m∑
i=1

(∇fi(x
t−1
i)−∇fi(x

∗))

∥∥∥∥∥
2


≤ σ2

|B|m
+

L2

m

m∑
i=1

E
[
∥xt−1

i − x∗∥2
]
,

we obtain the following relationship:
m∑
i=1

E
[
∥xt

i(0)− xt−1
i ∥2

]
≤ 2η2max

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]
+ 2η2maxL

2
m∑
i=1

E
[
∥xt−1

i − x∗∥2
]
+ 2η2maxσ

2

≤ 2η2max

m∑
i=1

∥ŷt−1
1,i ∥2 + 4η2maxL

2
m∑
i=1

E
[
∥x̂t−1

i ∥2
]

+ 4mη2maxL
2E
[
∥xt−1 − x∗∥2

]
+ 2η2maxσ

2

≤ 2η2max

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]
+ 4η2maxL

2
m∑
i=1

E
[
∥x̂t−1

i ∥2
]
+ 8mη2maxL

2(E
[
∥xt − xt−1∥2

]
+ E

[
∥xt − x∗∥2

]
) +

2η2maxσ
2

|B|
.

(70)

The third term on the right-hand side of equation 68 satisfies

m∥xt−1 − xt∥2

= m∥ηt−1yt−1∥2 = m∥ 1

m

m∑
i=1

ηt−1
i yt−1

i ∥2

≤
m∑
i=1

∥ηt−1
i yt−1

i ∥2 ≤ η2max

m∑
i=1

∥yt−1
i ∥2 ≤ 2η2max

m∑
i=1

∥ŷt−1
1,i ∥2 + 2mη2max∥yt−1

1 ∥2

= 2η2max

 m∑
i=1

∥ŷt−1
1,i ∥2 +m

∥∥∥∥∥ 1

m

m∑
i=1

(gt−1
i (xt−1

i)− f(x∗))

∥∥∥∥∥
2
 ,

(71)

with ηt−1yt−1 = 1
m

∑m
i=1 η

t−1
i yt−1

1,i . Substituting equation 69 into equation 72 leads to

mE
[
∥xt−1 − xt∥2

]
≤ 2η2max

(
m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]
+ L2

m∑
i=1

E
[
∥xt−1

i − x∗∥2
])

+ 2η2maxσ
2

≤ 2η2max

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]
+ 4η2maxL

2
m∑
i=1

E
[
∥x̂t−1

i ∥2
]

+ 8mη2maxL
2
(
E
[
∥xt − xt−1∥2

]
+ E

[
∥xt − x∗∥2

])
+

2η2maxσ
2

|B|
.

(72)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

By substituting equation 70 and equation 72 into equation 68, we arrive at equation 54.

By using equation 67, we have

m∑
i=1

∥yt1,i − yt1∥2

≤ ρ2M
m∑
i=1

∥yt1,i(0)− yt1∥2

= ρ2M
m∑
i=1

∥yt1,i(0)− yt−1
1,i + yt−1

1,i − yt−1
1 + yt−1

1 − yt1∥2

≤ 3ρ2M

(
m∑
i=1

∥yt1,i(0)− yt−1
1,i ∥2 +

m∑
i=1

∥ŷt−1
1,i ∥2 +m∥yt1 − yt−1

1 ∥2
)
.

(73)

The first term on the right-hand side of equation 73 satisfies

m∑
i=1

E
[
∥yt1,i(0)− yt−1

1,i ∥2
]
=

m∑
i=1

E
[
∥gt−1

i (xt
i)− gt−2

i (xt−1
i)∥2

]
≤

m∑
i=1

E
[
∥∇fi(x

t
i)−∇fi(x

t−1
i)∥2

]
+

2mσ2

|B|

≤ L2
m∑
i=1

E
[
∥xt

i − xt−1
i ∥2

]
+

2mσ2

|B|

= L2
m∑
i=1

E
[
∥xt

i − xt + xt − xt−1 + xt−1 − xt−1
i ∥2

]
+

2mσ2

|B|

≤ 3L2

(
m∑
i=1

E
[
∥x̂t

i∥2
]
+mE

[
∥xt − xt−1∥2

]
+

m∑
i=1

E
[
∥x̂t−1

i ∥2
])

+
2mσ2

|B|
.

(74)

The third term on the right-hand side of inequality equation 73 satisfies

mE
[
∥yt1 − yt−1

1 ∥2
]
= mE

∥∥∥∥∥ 1

m

m∑
i=1

(gt−1
i (xt

i)− gt−2
i (xt−1

i))

∥∥∥∥∥
2


= mE

∥∥∥∥∥ 1

m

m∑
i=1

(∇fi(x
t
i)−∇fi(x

t−1
i))

∥∥∥∥∥
2
+

2σ2

|B|
≤ L2

m∑
i=1

E
[
∥xt

i − xt−1
i ∥2

]
+

2σ2

|B|

≤ 3L2

(
m∑
i=1

E
[
∥x̂t

i∥2
]
+mE

[
∥xt − xt−1∥2

]
+

m∑
i=1

E
[
∥x̂t−1

i ∥2)
])

+
2σ2

|B|
.

By substituting equation 74 and equation 75 into equation 73, we arrive at equation 55.

The proof of equation 56 is similar to the derivation of equation 55, and thus is omitted here.

B.2 PROOF OF THEOREM 1

Proof of theorem 1: By setting α1 = 1− µ
2L , α2 = min

{
45
46 ,

1−r
4β2

}
, α3 = 125

62m (L
2ηmax

a6
+ 2β2

a8
+b1+

49(1+a7)
50a7

+ 124L2ηmax

125a9µ
), α4 = 125

62m (2β
2

a8
+ b1 +

49(1+a7)
50a7

), α5 =
η2
max

m (18731 + 125
31a2

+ 2
a1

+ 2
a9µηmax

),

α6 =
125η2

max

62m (1
a3
+1+ 1

a8
+ 2

a2
), and α7 := 2

((
1− 1

a3

)(
2 + 2ηmax

ηmin
+ ηmin

2ηmax

)
+ 1

a6m

)
+ 2ηmaxL

2

a9µ
,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

equation 44 can be rewritten as follows:

E[∥xt+1 − x∗∥2}+ E[∥xt+1 − xt∥2}+
(
2 +

125β

31

)
E[ηt(f(xt)− f(x∗))}

≤ α1E[∥xt − x∗∥2}+ α2E[∥xt − xt−1∥2}+ γ

(
2 +

125β

31

)
E[ηt−1(f(xt−1)− f(x∗))]

+ α3

m∑
i=1

E[∥x̂t
i∥2] + α4

m∑
i=1

E[∥x̂t−1
i ∥2] + α5

m∑
i=1

(
E[∥ŷt1,i∥2] + E[∥ŷt−1

2,i ∥2]
)

+ α6

m∑
i=1

E[∥ŷt−1
1,i ∥2] + α7σ

2

|B|
.

(75)

By using an argument similar to the derivation of equation 75, equation 54 and equation 55 can be
rewritten as follows:

m∑
i=1

E[∥x̂t
i∥2} ≤ ρ2M

(
α8

m∑
i=1

E[∥ŷt−1
1,i ∥2] + α9

m∑
i=1

E[∥x̂t−1
i ∥2]

+ α10E[∥xt − x∗∥2}+ α10E[∥xt − xt−1∥2] + α8σ
2

|B|

)
, (76)

m∑
i=1

(
E[∥ŷt1,i∥2}+ E[∥ŷt2,i∥2]

)
≤ ρ2M (α11

m∑
i=1

E[∥x̂t
i∥2] + α11

m∑
i=1

E[∥x̂t−1
i ∥2]

+ α12

m∑
i=1

(
E[∥ŷt−1

1,i ∥2}+ E[∥ŷt−1
2,i ∥2]

)
+ α13E[∥xt − xt−1∥2] + α14σ

2

|B|
, (77)

with α8 = 12η2max, α9 = 24η2maxL
2 + 3, α10 = 48mη2maxL

2, α11 = 18L2, α12 = 3, α13 =
18mL2 > 0, and α14 = 72m.

Multiplying inequalities equation 76 and equation 77 by K and then using equation 75 lead to

E[∥xt+1 − x∗∥2] + E[∥xt+1 − xt∥2] +
(
2 +

125β

31

)
E[ηt(f(xt)− f(x∗))]

+ (K − α3 − ρ2Mα10K)

m∑
i=1

E[∥x̂t
i∥2] + (K − α5)

m∑
i=1

(
E[∥ŷt1,i∥2] + E[∥ŷt2,i∥2]

)
≤
(
α1 + ρ2Mα9K

)
E[∥xt − x∗∥2] + (α2 + ρ2MK(α9 + α12))E[∥xt − xt−1∥2]

+ γ(2 +
125β

31
)E[ηt−1(f(xt−1)− f(x∗))] +

(
α4 + ρ2MK(α8 + α10)

) m∑
i=1

E[∥x̂t−1
i ∥2]

+
(
α6 + ρ2MK(α7 + α11)

) m∑
i=1

(
E[∥ŷt−1

1,i ∥2] + E[∥ŷt−1
2,i ∥2]

)
+ (α7 +Kα14 +Kα8)

σ2

|B|
.

(78)

By choosing sufficiently large K and M satisfying

K ≥ max

{
2(92α4 + 91α3)

91
,
2(92α5 + 91α6)

91

}
,

M ≥ max

{
ln(1/2)− ln(α8 + 2α10)

2 ln(ρ)
,
ln(1/2)− ln(α7 + α11)

2 ln(ρ)
,

ln(1− α1)− ln(2)− ln(α9K)

2 ln(ρ)
,
ln(1− α2)− ln(2)− ln((α9 + α12)K)

2 ln(ρ)

}
≜ M0,

(79)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

the following inequalities always hold:

α1 + ρ2Mα9K ≤ 1 + α1

2
< 1,

α2 + ρ2MK(α9 + α12) ≤
1 + α2

2
< 1,

α4 + ρ2MK(α8 + α10) <
91

92

(
K − α3 − ρ2Mα10K

)
,

α6 + ρ2MK(α7 + α11) <
91

92
(K − α5).

(80)

Define an auxiliary function V (t+ 1) as follows:

V (t+ 1) = E[∥xt+1 − x∗∥2 + ∥xt+1 − xt∥2}+
(
2 +

125β

31

)
E[ηt(f(xt)− f(x∗))]

+ (K − α3 − ρ2Mα10K)

m∑
i=1

E[∥x̂t
i∥2}+ (K − α5)

(
m∑
i=1

E[∥ŷt1,i∥2] + E[∥ŷt−1
2,i ∥2]

)
.

(81)

Set γ = max{1− µ
4L ,

91
92}. Since α1 = 1− µ

2L , α2 = min
{

45
46 ,

1−r
4β2

}
, and 1−r

4β2 < 1
4 , we have

max

{
1 + α1

2
,
1 + α2

2
,
91

92

}
≤ max

{
1− µ

4L
,
91

92

}
= γ. (82)

It follows from equation 80that

V (t+ 1) ≤ γV (t) + (α7 +Kα14 +Kα8)
σ2

|B|
,

which is equivalent to(
V (t+ 1)− (α7 +Kα14 +Kα8)σ

2

(1− γ)|B|

)
≤ γ

(
V (t)− (α7 +Kα14 +Kα8)σ

2

(1− γ)|B|

)
. (83)

Therefore, by using equation 83, we arrive at

V (t) ≤ γtV (0) +
(α7 +Kα14 +Kα8)σ

2

(1− γ)|B|
. (84)

Moreover, since the relations η−1 = 0,
∑m

i=1 ∥x̂
−1
i ∥2 = 0 and

∑m
i=1 ∥ŷ

−1
1,i ∥2 = 0 hold, we have

V (0) = ∥x0 − x∗∥2 + ∥x0∥2.

Furthermore, according to the definition of V (t) in equation 81, we arrive at

E[∥xt
i − x∗∥2} = E[∥xt

i − xt + xt − x∗∥2} ≤ 2E[∥x̂t
i∥2}+ 2E[∥xt − x∗∥2}

≤ max

{
2

K1 − α3 − ρ2M2α10K1
, 2

]
V (t)

≤ max

{
2V (0)

K1 − α3 − ρ2M2α10K1
, 2V (0)

]
γt

+

(
(α7 +Kα14 +Kα8)

1− γ
max

{
2

K1 − α3 − ρ2M2α10K1
, 2

})
σ2

|B|
,

(85)

which implies E
[
∥xt

i − x∗∥2
]
≤ O (γt) +O

(
σ2

|B|

)
and Theorem 1.

B.3 PROOF OF THEOREM 2

When accurate gradients are accessible to agents, Algorithm 1 reduces to the following algorithm.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Algorithm 2 Deterministic version of Algorithm 1 (from agent i’s perspective)

1: Input: x0
i ∈ Rn, y0i = ∇fi(x

0
i), η

0
i > 0, β ∈ (0, 1.36), r ∈ (0, 1), M ∈ N+, and T ∈ N+.

2: for t = 0, 1, . . . , T do
3: xt+1

i (0) = xt
i − ηtiy

t
i

4: for q = 0, 1, . . . ,M − 1 do
5: xt+1

i (q + 1) =
∑

j∈Ni
wijx

t+1
j (q)

6: end for
7: xt+1

i = xt+1
i (M)

8: yt+1
i (0) = yti +∇fi(x

t+1
i)−∇fi(x

t
i)

9: for q = 0, 1, . . . ,M − 1 do
10: yt+1

i (q + 1) =
∑

j∈Ni
wijy

t+1
j (q)

11: end for
12: yt+1

i = yt+1
i (M)

13: Lt+1
i =

∥yt+1
i,1 −yt

i,2∥
∥xt+1

i −xt
i∥

if xt+1
i ̸= xt

i; otherwise, Lt+1
i = 1

14: ηt+1
i = min

{
βηti ,

7
√
r

10
ηt
i√

[(ηt
iL

t+1
i)2−1]+

}
15: end for

Proof of Theorem 2: By using an argument similar to the derivation of equation 44, we obtain

∥xt+1 − x∗∥2 + ∥xt+1 − xt∥2 +
(
2 +

125β

31

)
ηtf(xt)− f(x∗)

≤ (1− µηmin + a9µηmax)∥xt − x∗∥2 + 45

46
∥xt − xt−1∥2

+ γ

(
2 +

125β

31

)
ηt−1(f(xt−1)− f(x∗)) + δt5, (86)

for γ ∈ (0, 1), where the constant and δt5 is given by

δt5 =
125

62m
(
L2ηmax

a6
+

2β2

a8
+ b1 +

49(1 + a7)

50a7
+

124L2ηmax

125a9µ
)

m∑
i=1

∥x̂t
i∥2

+
125

62m

(
2β2

a8
+ b1 +

49(1 + a7)

50a7

) m∑
i=1

∥x̂t−1
i ∥2

+
η2max

m

(
187

31
+

125

31a2
+

2

a1
+

2

a9µηmax

) m∑
i=1

∥ŷti∥2

+
125η2max

62m

(
1

a3
+ 1 +

1

a8
+

2

a2

) m∑
i=1

∥ŷt−1
i ∥2. (87)

By using an argument similar to the derivations of equation 54 and equation 55, we have
m∑
i=1

∥x̂t
i∥2 ≤ρ2M

(
12η2max

m∑
i=1

∥ŷt−1
i ∥2 + (24η2maxL

2 + 3)

m∑
i=1

∥x̂t−1
i ∥2

+ 48mη2maxL
2∥xt − x∗∥2 + 48mη2maxL

2∥xt − xt−1∥2
)
, (88)

m∑
i=1

∥ŷt1,i∥2 ≤ρ2M

(
18L2

m∑
i=1

∥x̂t
i∥2 + 18L2

m∑
i=1

∥x̂t−1
i ∥2 + 3

m∑
i=1

∥ŷt−1
1,i ∥2

+ 18mL2∥xt − xt−1∥2
)
. (89)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

By using an argument similar to the derivation of equation 84 and constructing the following func-
tion:

V (t+ 1) =∥xt+1 − x∗∥2 + ∥xt+1 − xt∥2 +
(
2 +

125β

31

)
ηt(f(xt)− f(x∗))

+ (K − α3 − ρ2Mα10K)

m∑
i=1

∥x̂t
i∥2 + (K − α5)

m∑
i=1

∥ŷti∥2,
(90)

we obtain the following relationship:

V (t+ 1) ≤ γV (t), (91)

which implies V (t) ≤ γtV (0). Then, following an argument similar to the derivations of equa-
tion 85, we arrive at ∥xt

i − x∗∥2 ≤ O (γt), which proves Theorem 2.

B.4 PROOF OF COROLLARY 1

According to Theorem 1, the convergence rate of Algorithm 1 is O
(
γT
)
+O

(
δ2

|B|

)
. Hence, to find

an ϵ-optimal solution, the number of outer-loop iterations T needs to satisfy T = O(log(ϵ−1)). At
each outer-loop iteration, Algorithm 1 requires |B| gradient evaluations at both gti(x

t+1
i) and gti(x

t
i),

resulting in a total of 2|B| evaluations. Meanwhile, Lines 3, 8, and 9 in Algorithm 1 require M
gradient evaluations at xt+1

i,1 (0), yt+1
i,1 (0), and yti,2(0), Lines 5, 11, and 12 in Algorithm 1 require

M gradient evaluations at xt+1
i (q), yt+1

i,1 (q), and yti,2(q); and Lines 15 and 16 in Algorithm 1 each
require one gradient evaluation at Lt+1

i and ηt+1
i , respectively. Based on the above discussion, we

have that Algorithm 1 requires at most 2|B|+ 3M + 3 gradient evaluations per outer-loop iteration
t, leading to a computational complexity of O((2|B| + 3M + 3) log(ϵ−1)) over T iterations. In
the deterministic setting, Algorithm 1 reduces to Algorithm 2, which requires at most 2M + 3
gradient evaluations per outer-loop iteration t, and thus has a computational complexity of O((2M+
3) log(ϵ−1)) over T iterations.

C EXPERIMENTAL SETUPS AND ADDITIONAL EXPERIMENTAL RESULTS

C.1 BENCHMARK DATASETS

MNIST. The “MNIST” dataset is a benchmark dataset widely used in machine learning and com-
puter vision (Deng, 2012). It typically consists of 70, 000 grayscale images of handwritten digits
(i.e., 0–9), with 60, 000 used for training and 10, 000 for testing. Each image has a size of 28 × 28
pixels, with the digit centered in the frame.

CIFAR-10. The “CIFAR-10” dataset consists of 60, 000 color images of size 32 × 32 pixels in
10 classes, with 6, 000 images per class (Krizhevsky et al., 2010). Among them, 50, 000 images
are used for training and 10, 000 for testing. The dataset covers a diverse set of object categories,
including airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Compared
with the “MNIST” dataset, the “CIFAR-10” dataset poses a greater challenge due to its colored and
natural images with larger intra-class variability.

CIFAR-100. The “CIFAR-100” dataset is a natural extension of the “CIFAR-10” dataset (DeVries
& Taylor, 2017). It contains 60, 000 color images of size 32 × 32 pixels, and spreads across 100
classes with 600 images per class. The 50, 000 images are used for training and 10, 000 for testing.
However, due to its larger number of categories and the fine-grained nature of many classes, the
“CIFAR-100” dataset is regarded as the most challenging dataset within the CIFAR series.

Mushrooms. The “Mushrooms” dataset is a classic benchmark dataset from the UCI Machine
Learning Repository (Tutuncu et al., 2022). It contains 8, 124 instances of gilled mushrooms, each
described by 22 categorical attributes, such as cap shape, surface, and color. The prediction task
is to classify each mushroom as either edible or poisonous. In this paper, we focus on l2-logistic
regression on the “Mushrooms” dataset, as the task naturally fits into a binary classification problem.

Shakespeare. The “Shakespeare” dataset contains 3, 829, 611 training samples and 1, 646, 425 test
samples. Each sample consists of a sequence of 80 characters and the subsequent character to be

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

predicted. The dataset is derived from the lines of various characters in Shakespeare’s plays. Due
to the diversity of characters and scenes, the next character to appear often varies significantly. This
dataset is regarded as a highly challenging benchmark.

C.2 EXPERIMENTAL SETUPS

Convolutional neural network (CNN) training. For the “MNIST” dataset, we trained a two-layer
CNN. The first convolutional layer has 64 output channels with 3× 3 kernels, stride 1, and padding
1, followed by batch normalization, LeakyReLU activation, and 2 × 2 max pooling. The second
convolutional layer has 128 output channels with the same kernel configuration. The feature maps
are then passed through adaptive average pooling to a 1× 1 representation, flattened, and fed into a
fully connected layer to produce the output classes. The model was trained with a batch size of 128
using the cross-entropy loss.

For the “CIFAR-10” dataset, we trained a four-layer CNN consisting of four convolutional layers
with progressively increasing channel sizes of 32, 64, 128, and 256. Each convolution uses a 3× 3
kernel with stride 1 and padding 1. To stabilize training and reduce spatial resolution, we employed
batch normalization, a LeakyReLU activation, and 2×2 max pooling after every convolutional block.
The resulting feature maps are aggregated by adaptive average pooling to a 1 × 1 representation,
which is then flattened and passed to a fully connected layer to produce the final class predictions.
The model was trained with a batch size of 128 using the cross-entropy loss.

For the “CIFAR-100” dataset, we trained a five-layer CNN with residual connections to enhance
feature extraction. The network begins with a 32-channel convolutional layer (3 × 3 kernels, stride
1, padding 1), followed by batch normalization, LeakyReLU activation, and 2×2 max pooling. The
subsequent convolutional blocks progressively increase the channels to 64, 128, 256, and 512. To
enhance feature extraction, we introduced residual paths: one from the raw input through a 2 × 2
convolution with stride 2, another from the second block via a 2 × 2 convolution, and a direct path
from the raw input via an 8× 8 convolution. The model was trained with a batch size of 128 using
the cross-entropy loss.

Logistic regression. For the logistic regression task using the “Mushrooms” dataset, we employed
a single-layer linear model, which directly maps the 22 input features to two output logits corre-
sponding to the classes. Training was conducted using the loss function given in equation 92.

Recurrent neural network (RNN) training. For the “Shakespeare” dataset, we trained an LSTM-
based recurrent neural network. The model first maps each input token to a dense vector through
an embedding layer with an embedding dimension of 8. The embedded sequence is then fed into a
single-layer LSTM with a hidden size of 128 and batch-first input formatting. Finally, the represen-
tation is passed through a fully connected layer to project it back to the vocabulary space, producing
logits for the next-character prediction.

C.3 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide five additional experimental results: (1) the performance evaluation of
Algorithm 1 on logistic regression with strongly convex and smooth loss functions; (2) the per-
formance evaluation of Algorithm 1 on next-characterize prediction tasks using the “Shakespeare”
dataset; (3) the comparison of Algorithm 1 and distributed ADAM in Nazari et al. (2022); (4) the
performance evaluation of Algorithm 1 under different β, r, and M , respectively, on the “MNIST”
dataset; and (5) the performance evaluation of Algorithm 1 under various network topologies.

(1) Logistic regression using the “Mushrooms” dataset. We evaluate the effectiveness of Algo-
rithm 1 by using an l2-logistic regression classification problem on the “Mushrooms” dataset (Tu-
tuncu et al., 2022). To ensure heterogeneous data distribution, we spread data samples among five
agents according to their target values. Specifically, agents 1, 2, and 3 have samples with the target
value of 0, while agents 4 and 5 have samples with the target value of 1. All agents cooperatively
learn an optimal model parameter x∗ to problem 1, in which the loss function of agent i is given by

l(x, ξi) =
1

|B|

|B|∑
j=1

(
−(1− bij) ln

(
ex1aij

ex1aij + ex2aij

)
− bij ln

(
ex2aij

ex1aij + ex2aij

)
+

L2

2
∥x∥2

)
,

(92)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

where |B| represents the number of sampled data points per iteration. In this experiment, we used a
full batch setting, i.e., |B| = |Di| with Di denoting the local dataset of agent i. Here, x = [x1, x2]

⊤

is the model parameter and the positive constant L2 is a regularization parameter. It is clear that the
loss function in equation 92 is strongly convex and smooth.

In this experiment, we compared the test accuracies of Algorithm 1 with existing distributed opti-
mization algorithms, including distributed GD in Nedic & Ozdaglar (2009) and deterministic GT
in Nedić et al. (2017). The stepsizes for distributed GD and deterministic GT are the same as those
employed in our “MNIST” experiment in the main text (i.e., ηti = 0.1

(1+t)0.5 for distributed GD and
ηi = 0.1 for deterministic GT). The training process spanned 250 iterations.

0 50 100 150 200 250
Iterations

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Mushrooms

Algorithm 1
distributed GD
deterministic GT

(a) Test accuracy

0 50 100 150 200 250
Iterations

10 3.0

10 2.5

10 2.0

10 1.5

10 1.0

10 0.5

100.0

100.5

Av
er

ag
e

st
ep

siz
e

Mushrooms

Algorithm 1
distributed GD
deterministic GT

(b) Average stepsize across agents

Figure 6: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1, dis-
tributed GD in Nedic & Ozdaglar (2009), and deterministic GT in Nedić et al. (2017). The 95%
confidence intervals were computed from three independent runs with seeds 42, 1010, and 2024.

Fig. 6(a) shows that Algorithm 1 achieves the highest test accuracy and convergence speed com-
pared with distributed GD and deterministic GT. This is because larger stepsizes is allowed in the
early stages of Algorithm 1 than distributed GD and deterministic GT (as shown in Fig. 6(b)). Fur-
thermore, Fig. 6 shows that Algorithm 1 exhibits stable convergence accuracy after 200 iterations.
This result implies a clear stopping criterion for our algorithm, that is, by setting τ = 10−3, each
agent i can stop training once |ηti | < τ .

(2) Next-characterize prediction using the “Shakespeare” dataset. We evaluate the learning
accuracy of Algorithm 1 using a next-characterize prediction task on the “Shakespeare” dataset. To
ensure heterogeneous data distribution, we spread data samples among five agents according to a
Dirichlet distribution with parameter α = 0.5.

In this experiment, we compared the test accuracies of Algorithm 1 with existing distributed stochas-
tic optimization algorithms, including distributed SGD in Jakovetic et al. (2018) and stochastic GT
in Pu & Nedić (2021). The stepsize for distributed SGD was set to ηi,t =

10
(1+t)0.51 while the stepsize

for stochastic GT was set to η = 0.5. The training process spanned 200 epochs.

Fig. 7(a) shows that Algorithm 1 outperforms both distributed SGD and stochastic GT in test ac-
curacy. This improvement can be attributed to the larger stepsizes allowed by our adaptive stepsize
approach, as evidenced by Fig. 7(b).

(3) Comparison of Algorithm 1 and distributed ADAM in Nazari et al. (2022). To compare the
convergence accuracy of Algorithm 1 with the existing adaptive stepsize approach for distributed
(online) learning, i.e., distributed ADAM in Nazari et al. (2022), we conducted additional experi-
ments by comparing their test accuracies on image classification using the “CIFAR-10” dataset.

Fig. 8(a) shows that our Algorithm 1 outperforms distributed ADAM in terms of both test accu-
racy and steady-state performance. Furthermore, Fig. 8(b) indicates that the stepsize in distributed
ADAM decays rapidly, which leads to a low convergence speed in the later stages of the algorithm.

(4) The effects of β, r, and M on convergence accuracy with respect to the “MNIST” dataset.
We evaluate the test accuracies of Algorithm 1 under different coefficients β and r in the stepsize

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 a
cc

ur
ac

y

Shakespeare

Algorithm 1
distributed SGD
stochastic GT

(a) Test accuracy

0 50 100 150 200
Epochs

10 2.0

10 1.5

10 1.0

10 0.5

100.0

100.5

101.0

Av
er

ag
e

st
ep

siz
e

Shakespeare

Algorithm 1
distributed SGD
stochastic GT

(b) Average stepsize across agents

Figure 7: Test-accuracy and average-stepsize (across ten agents) evolutions of Algorithm 1, dis-
tributed SGD in Jakovetic et al. (2018), and stochastic GT in Pu & Nedić (2021). The 95% confi-
dence intervals were computed from three independent runs with seeds 42, 1010, and 2024.

0 20 40 60 80 100
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

CIFAR-10

Algorithm 1
distributed ADAM

(a) Test accuracy

0 20 40 60 80 100
Epochs

10 4

10 3

10 2

10 1

100

Av
er

ag
e

st
ep

siz
e

CIFAR-10

Algorithm 1
distributed ADAM

(b) Average stepsize across agents

Figure 8: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1 and
distributed ADAM (Nazari et al., 2022). The 95% confidence intervals were computed from three
independent runs with random seeds 42, 1010, and 2024.

update rule (i.e., Line 16 in Algorithm 1) and the number of inner-loop iterations M in Algorithm 1,
respectively. We ran this experiment on the “MNIST” dataset over 20 epochs, with a batch size of
128 and a random seed as 42.

Fig. 9(a), Fig. 9(b), Fig. 9(d), and Fig. 9(e) imply that larger β and r lead to faster convergence
and earlier stopping in Algorithm 1. This result is intuitively consistent, as large β and r contribute
to larger stepsizes before convergence stages (as shown in Fig. 9(d) and Fig. 9(e)), which in turn
leads to a higher convergence speed. Furthermore, Fig. 9(c) and Fig. 9(f) show that the number of
inner-consensus-loop iterations M has a negligible effect on convergence accuracy and the stopping
criterion. Hence, in practical machine learning tasks, we can set M = 1 (so that Algorithm 1 reduces
to a single-loop algorithm) to minimize the communication cost of Algorithm 1. The experimental
results in Fig. 9 further confirm the default parameter configuration (β, r,M) = (1.35, 0.99, 1) for
our algorithm, which align with the discussion in the subsection “The effects of β, r, and M on
convergence accuracy” (with respect to the “CIFAR-10” dataset) in the main text.

(5) Performance evaluation of Algorithm 1 under various network topologies. We conducted
experiments to evaluate the efficacy of our Algorithm 1 under different network topologies. We
considered a network of m = 10 agents, with the interaction graph being a ring network and random
d-regular graph Bollobás (1986) with d (called “Degree” in Fig. 10) set to 2, 3, 5, and 8. We used the
same parameters as those employed in subsection “Comparison with existing distributed stochastic
optimization approaches” in our main text. The experimental results are shown in Fig. 10.

The experimental results in Fig. 10(a) and Fig. 10(b) show that the impact of network topologies on
the convergence accuracy of our algorithms is slight when Assumption 2 is satisfied.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

12 13 14 15 16 17 18 19 20
Epochs

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990
Te

st
 a

cc
ur

ac
y

M=10, r=0.99, varying

=1.2
=1.25
=1.3
=1.35

(a) Test accuracy

12 13 14 15 16 17 18 19 20
Epochs

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Te
st

 a
cc

ur
ac

y

M=10, =1.3, varying r

r=0.7
r=0.8
r=0.9
r=0.99

(b) Test accuracy

12 13 14 15 16 17 18 19 20
Epochs

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Te
st

 a
cc

ur
ac

y

=1.3, r=0.99, varying M

M=1
M=5
M=10
M=15

(c) Test accuracy

0 5 10 15 20
Epochs

10 8

10 6

10 4

10 2

100

Av
er

ag
e

st
ep

siz
e

M=10, r=0.99, varying

=1.2
=1.25
=1.3
=1.35

(d) Average stepsize across agents

0 5 10 15 20
Epochs

10 8

10 6

10 4

10 2

100

Av
er

ag
e

st
ep

siz
e

M=10, =1.3, varying r

r=0.7
r=0.8
r=0.9
r=0.99

(e) Average stepsize across agents

0 5 10 15 20
Epochs

10 8

10 6

10 4

10 2

100

Av
er

ag
e

st
ep

siz
e

=1.3, r=0.99, varying M

M=1
M=5
M=10
M=15

(f) Average stepsize across agents

Figure 9: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1 under
different parameters β, r, and M , respectively.

0 10 20 30 40 50 60
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

MNIST

Ring
Degree-2
Degree-3
Degree-5
Degree-8

(a) Test accuracy

0 20 40 60 80 100 120
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

CIFAR-10

Ring
Degree-2
Degree-3
Degree-5
Degree-8

(b) Test accuracy

0 10 20 30 40 50 60
Epochs

10 8

10 6

10 4

10 2

100

Av
er

ag
e

st
ep

siz
e

MNIST

Ring
Degree-2
Degree-3
Degree-5
Degree-8

(c) Average stepsize across agents

0 20 40 60 80 100 120
Epochs

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Av
er

ag
e

st
ep

siz
e

CIFAR-10

Ring
Degree-2
Degree-3
Degree-5
Degree-8

(d) Average stepsize across agents

Figure 10: Test-accuracy and average-stepsize (across ten agents) evolutions of Algorithm 1 under
different network topologies.

36

	Introduction
	Related work
	Problem formulation
	Algorithm design
	Convergence results
	Experiments
	Conclusion
	Notations
	Results of Algorithm 1
	Technical lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary 1

	Experimental setups and additional experimental results
	Benchmark datasets
	Experimental setups
	Additional experimental results

