

000 001 002 003 004 005 006 007 008 009 010 011 012 013 ELIMINATING STEADY-STATE OSCILLATIONS IN DISTRIBUTED OPTIMIZATION AND LEARNING VIA ADAPTIVE STEPSIZE

008 **Anonymous authors**
009 Paper under double-blind review

ABSTRACT

014 Distributed stochastic optimization and learning is gaining increasing traction due
015 to its ability to enable large-scale data processing and model training across mul-
016 tiple agents without the need for centralized coordination. However, existing dis-
017 tributed stochastic optimization and learning approaches, such as distributed SGD
018 and their variants, generally face a dilemma in stepsize selection: a small stepsize
019 leads to low convergence speed, whereas a large stepsize often incurs pronounced
020 steady-state oscillations, which prevents the algorithm from achieving stable con-
021 vergence accuracy. In this paper, we propose an adaptive stepsize approach for
022 distributed stochastic optimization and learning that can eliminate steady-state os-
023 cillations and ensure fast convergence. Such guarantees are unattained by existing
024 adaptive stepsize approaches, even in centralized optimization and learning. We
025 prove that our proposed algorithm achieves linear convergence with respect to the
026 iteration number, and that the convergence error decays sublinearly with the batch
027 size of sampled data points. In the specific case in terms of deterministic dis-
028 tributed optimization with exact gradients accessible to agents, we prove that our
029 proposed algorithm linearly converges to an exact optimal solution. Moreover, we
030 quantify that the computational complexity of the proposed algorithm is on the
031 order of $\mathcal{O}(\log(\epsilon^{-1}))$, which matches the existing results on adaptive stepsize ap-
032 proaches for centralized optimization/learning. Experimental results on machine
033 learning benchmarks confirm the effectiveness of our proposed approach.

034 1 INTRODUCTION

035 With the advance of the era of big data, distributed stochastic optimization and learning methods
036 have attracted increasing attention due to their unique ability to leverage the computational power of
037 multiple devices to accelerate training (Nedic & Ozdaglar, 2009; Yang & Johansson, 2010; Shamir
038 & Srebro, 2014; Lian et al., 2017; Nedić & Liu, 2018; Yang et al., 2019; Kim et al., 2024; Hu et al.,
039 2024). Unlike centralized optimization and learning methods (Wang & Elia, 2011; Andrychowicz
040 et al., 2016; Ruder, 2016) that typically rely on a central server to aggregate local model parameters
041 or data from all participating agents, distributed methods allow each agent to collaboratively learn a
042 global model using only its own local dataset and information exchanged with neighboring agents,
043 without the assistance of any centralized server or aggregator (Scaman et al., 2018; Liu et al., 2020;
044 Yang et al., 2022).

045 However, existing distributed stochastic optimization/learning approaches often face a dilemma in
046 stepsize selection (Jacobs, 1988; Schaul et al., 2013; Wei et al., 2020; Zhuang et al., 2020; Li et al.,
047 2024a; Huang et al., 2024b; Crawshaw et al., 2025). Specifically, an excessively small stepsize
048 may lead to an overly low convergence speed (Srivastava & Nedic, 2011; Lin et al., 2023; Shar-
049 ifnassab et al., 2024), whereas an excessively large stepsize often causes pronounced steady-state
050 oscillations or overshoot, which prevents the algorithm from achieving stable convergence accu-
051 racy (Andriushchenko et al., 2023; Huang et al., 2024a). Recently, several adaptive or automatic
052 stepsize approaches have been proposed for centralized optimization and learning (Fletcher, 2005;
053 Kingma, 2014; Rolinek & Martius, 2018; Li & Orabona, 2019; Malitsky & Mishchenko, 2019;

054 Kavis et al., 2022; Jiang & Stich, 2023; Malitsky & Mishchenko, 2024). However, these approaches
 055 generally rely on a centralized server to coordinate computation that are impractical in a fully dis-
 056 tributed setting where no centralized server/aggregator exists to determine a common stepsize across
 057 all agents (Nedić et al., 2018). Although some works have attempted to extend adaptive stepsize ap-
 058 proaches to distributed optimization and learning (Nazari et al., 2022; Carnevale et al., 2022; Xie
 059 et al., 2022; Ramezani-Kebrya et al., 2023; Chen & Wang, 2024; Kuruzov et al., 2024; Saravano-
 060 s et al., 2024), most of them still either require a centralized server to collect local model parame-
 061 ters/stepsizes from all agents (Ramezani-Kebrya et al., 2023; Chen & Wang, 2024; Kuruzov et al.,
 062 2024), or are limited to scenarios where agents must have access to accurate gradients of the ob-
 063 jective functions (Carnevale et al., 2022; Xie et al., 2022; Saravano-
 064 s et al., 2024) for stepsize ad-
 065 justment. The only exception is the work in Nazari et al. (2022), which achieves adaptive stepsize
 066 adjustments in distributed online learning by normalizing the gradient using an accumulated sum of
 067 historical gradient values. However, this approach leads to a rapidly decaying stepsize, which in turn
 068 results in slow convergence in the later stages of the algorithm (see our experimental results in Fig. 5
 069 in Appendix C.3 for details). To the best of our knowledge, no existing adaptive stepsize approaches
 070 can ensure fast and stable convergence in fully distributed stochastic optimization/learning.

Our contributions are summarized as follows:

1. We propose an adaptive stepsize algorithm for fully distributed stochastic optimization and learning. This is in stark contrast to existing adaptive stepsize approaches, which either rely on a centralized server to coordinate a common stepsize across all agents (in, e.g., Ramezani-Kebrya et al. (2023); Kim et al. (2024); Chen & Wang (2024); Kuruzov et al. (2024)), or require that agents have access to accurate gradients of the objective functions (Carnevale et al., 2022; Xie et al., 2022; Saravano-
 064 s et al., 2024)—which, however, are often hard to obtain in real-world applications where the randomness in sampled data results in only noisy gradients being accessible to agents. To the best of our knowledge, this is the first adaptive (non-monotone decreasing) stepsize approach for fully distributed stochastic optimization/learning, without the need for accurate gradients or the assistance of any centralized servers.
2. Our adaptive stepsize algorithm can eliminate steady-state oscillations and ensure stable convergence accuracy in the later stages of the algorithm. This is unattained by most existing adaptive stepsize approaches even in centralized optimization and learning (Fletcher, 2005; Li & Orabona, 2019; Kavis et al., 2022; Jiang & Stich, 2023). The key enabler is our novel design of the stepsize update rule, which allows each agent to dynamically adjust its individual stepsizes based on locally estimated curvature of the global objective function. This provides each agent with large stepsizes in the early stages to accelerate convergence, and extremely small stepsizes near the global optimum to ensure stable convergence accuracy (see our experimental results in Figs. 1(d)-1(f) and Figs. 2(d)-2(f) for details). Furthermore, since stable convergence accuracy is achieved in the later stages of our algorithm, we can also provide a clear stopping criterion¹ for each agent in distributed optimization and learning, which is rarely addressed in the state-of-the-art literature.
3. In addition to eliminating steady-state oscillations, we also establish the convergence rate and computational complexity of our algorithm for both stochastic and deterministic distributed optimization and learning, which is different from existing adaptive stepsize results in, e.g., McMahan & Streeter (2014); Yang et al. (2019); Crawshaw et al. (2025) that focus solely on deterministic cases where accurate gradients of objective functions are accessible to agents. For distributed stochastic optimization/learning, we prove that our algorithm achieves linear convergence with respect to the number of algorithm iterations, and that the convergence error decays sublinearly with the batch size of sampled data points. For the deterministic case, we prove that our algorithm linearly converges to an exact solution.
4. We systematically quantify that the computational complexity of our algorithm is on the order of $\mathcal{O}(\log(\epsilon^{-1}))$ for both stochastic and deterministic cases, which matches the existing results on adaptive stepsize approaches for centralized optimization and learning in, e.g., (Kavis et al., 2022; Yang & Ma, 2023).
5. We conduct experimental evaluations using several machine learning benchmark datasets, including the “MNIST” dataset, the “CIFAR-10” dataset, and the “CIFAR-100” dataset. The

¹We use the “stopping criterion” to denote the condition that determines when each agent in a distributed stochastic optimization and learning algorithm terminates its iterations (Vlachos, 2008; Ding et al., 2025).

108 results confirm the effectiveness of our algorithm in terms of both test accuracy and steady-
 109 state convergence performance.
 110

111

112 2 RELATED WORK

113

114 **Distributed stochastic optimization and learning.** Distributed stochastic optimization methods
 115 have been widely employed in modern machine learning (Yang, 2013; Xin et al., 2020; Nedic,
 116 2020; Guo et al., 2020; Pu et al., 2020; Allen-Zhu et al., 2020; Khaled & Jin, 2023; Song et al.,
 117 2025). However, most existing methods require all agents to share a common stepsize that is either
 118 fixed (Pu & Nedić, 2021; Koloskova et al., 2021; Nguyen et al., 2023; Song et al., 2024) or dimin-
 119 ishing (Jakovetic et al., 2018; Dieuleveut & Patel, 2019; Li et al., 2024b; Lee et al., 2025). The fixed
 120 stepsize causes pronounced overshoot or oscillations near the global optimal solution (Pu & Nedić,
 121 2021; Koloskova et al., 2021; Nguyen et al., 2023), whereas diminishing stepsizes often lead to an
 122 overly low convergence speed, both of which prevent the algorithm from achieving stable conver-
 123 gence accuracy (as shown in our experimental results in Fig. 1 and Fig. 2). Given these limitations,
 124 designing an adaptive stepsize approach that allows each participating agent to adaptively adjust its
 125 individual stepsizes is a promising direction for improving convergence speed and ensuring stable
 126 learning performance in distributed stochastic optimization and learning.
 127

127 **Adaptive stepsize approaches.** Several adaptive stepsize approaches have been proposed for cen-
 128 tralized optimization and learning (Fletcher, 2005; Kingma, 2014; Rolinek & Martius, 2018; Li &
 129 Orabona, 2019; Malitsky & Mishchenko, 2019; Kavis et al., 2022; Jiang & Stich, 2023; Malitsky &
 130 Mishchenko, 2024). However, these methods typically consider a single agent setting where learning
 131 is performed with only one adaptive stepsize adjustment. This makes them inapplicable to fully dis-
 132 tributed stochastic optimization and learning, where multiple agents cooperatively perform learning
 133 and each agent has its own stepsize updates. Moreover, the existing adaptive stepsize approaches of-
 134 ten lead to steady-state oscillations, which prevent stable convergence accuracy in the later stages of
 135 the algorithm and hinder the determination of a clear stopping criterion (as shown in our experimen-
 136 tal results in Fig. 2). Although some efforts have attempted to extend adaptive stepsize approaches
 137 to distributed optimization and learning (Nazari et al., 2022; Carnevale et al., 2022; Xie et al., 2022;
 138 Ramezani-Kebrya et al., 2023; Chen & Wang, 2024; Kuruzov et al., 2024; Saravano et al., 2024),
 139 most of them still rely on a centralized server to collect local model parameters/stepsizes from all
 140 agents to coordinate a stepsize (Ramezani-Kebrya et al., 2023; Chen & Wang, 2024; Kuruzov et al.,
 141 2024), or are limited to scenarios where accurate gradients of the objective functions must be ac-
 142 cessible to agents (Carnevale et al., 2022; Xie et al., 2022; Saravano et al., 2024), both of which
 143 are impractical in a fully distributed and stochastic setting. The only exception is the recent work
 144 in Nazari et al. (2022), which achieves stepsize adjustments in distributed stochastic optimization
 145 and learning. However, its approach parallels adaptive gradient methods (e.g., ADAM in Kingma
 146 (2014)), which makes the stepsizes decay rapidly in practical neural-network training, thereby lead-
 147 ing to a low convergence speed in the later stages of the algorithm (as shown in our experimental
 148 results in Fig. 5 in Appendix C.3). To the best of our knowledge, no adaptive stepsize approaches
 149 have been reported for distributed stochastic optimization and learning that can ensure both fast
 150 convergence and stable steady-state performance.
 151

152 *Notations:* We use \mathbb{R}^n to denote the n -dimensional real Euclidean space and $\mathbb{N}(\mathbb{N}^+)$ to denote the set
 153 of nonnegative (positive) integers. We write $\mathbf{0}_n$ and $\mathbf{1}_n$ for n -dimensional column vectors of all zeros
 154 and all ones, respectively; in both cases we suppress the dimension when clear from the context. We
 155 use $\langle x, y \rangle$ to denote the inner product of two vectors and $\| \cdot \|$ to denote the Euclidean norm of a
 156 vector. We write $\mathbb{E}[x]$ for the expected value of a random variable x . We use $[a]_+ = \max\{0, a\}$ to
 157 refer to the maximum of 0 and a for any real number a and the convention $\frac{a}{0} = +\infty$ for any $a > 0$.
 158 We denote the set of m agents as $[m]$ and add an overbar to a letter to represent the average of m
 159 agents, e.g., $\bar{x} = \frac{1}{m} \sum_{i=1}^m x_i$.
 160

161

3 PROBLEM FORMULATION

162 We consider m agents that cooperatively learn a common optimal model parameter x^* to the fol-
 163 lowing stochastic optimization problem (Sundhar Ram et al., 2010; Lian et al., 2017; Chen & Wang,
 164

162 2024):

163
164
$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{m} \sum_{i=1}^m f_i(x), \quad f_i(x) = \mathbb{E}_{\xi_i \sim \mathcal{P}_i} [l(x, \xi_i)]. \quad (1)$$
 165
166

167 Here, the local objective function $f_i(x) : \mathbb{R}^n \mapsto \mathbb{R}$ represents the mathematical expectation of agent 168 i 's loss function $l(x, \xi_i)$, where ξ_i denotes the agent i 's data sample drawn from distribution \mathcal{P}_i . 169170 In real-world applications, since the data distribution \mathcal{P}_i is typically unknown to each agent i , it can 171 only have access to a noisy estimate on the gradient of $f_i(x)$ (Pu & Nedić, 2021; Nazari et al., 2022; 172 Kim et al., 2024). In other words, at each iteration t , each agent i independently and identically 173 samples $|\mathcal{B}|$ data points (also called a batch size of $|\mathcal{B}|$) from its local distribution \mathcal{P}_i and computes a 174 noisy gradient estimate $g_i^t(x) = \frac{1}{|\mathcal{B}|} \sum_{j=1}^{|\mathcal{B}|} \nabla l(x, \xi_{ij}^t)$, where ξ_{ij}^t is the j th sampled data collected by 175 agent i at iteration t . Based on the gradient estimate $g_i^t(x)$ and communication with its neighbors, 176 each agent i performs distributed training. We make the following standard assumption about $f_i(x)$ 177 and $g_i^t(x)$:178 **Assumption 1.** For any agent $i \in [m]$, its local objective function $f_i(x)$ is μ -strongly convex and L - 179 smooth. The gradient estimate $g_i^t(x)$ is unbiased with bounded variance σ^2 , i.e., $\mathbb{E}[g_i^t(x)] = \nabla f_i(x)$ 180 and $\mathbb{E}[\|g_i^t(x) - \nabla f_i(x)\|^2] \leq \frac{\sigma^2}{|\mathcal{B}|}$ hold for any $x \in \mathbb{R}^n$ and $t \geq 0$.181 In Assumption 1, the strong convexity of $f_i(x)$ is used to ensure linear convergence, which is com- 182 monly used in the existing literature (Ivkin et al., 2019; Hou et al., 2021; Akhavan et al., 2021; Wang 183 et al., 2023; Yang & Ma, 2023; He et al., 2024; Er et al., 2024).184 We describe the local interaction among agents using a weight matrix $W = \{w_{ij}\} \in \mathbb{R}^{m \times m}$, where 185 $w_{ij} > 0$ if agent i and agent j can directly communicate with each other, and $w_{ij} = 0$ otherwise. 186 The neighboring set of agent i is defined as $\mathcal{N}_i = \{j \in [m] | w_{ij} > 0\}$, which includes itself. 187 Furthermore, we make the following assumption on matrix W :188 **Assumption 2.** The matrix $W \in \mathbb{R}^{m \times m}$ is symmetric and satisfies $\mathbf{1}_m^\top W = \mathbf{1}_m^\top$, $W\mathbf{1}_m = \mathbf{1}_m$, and 189 $\rho \triangleq \|W - \frac{\mathbf{1}_m\mathbf{1}_m^\top}{m}\| < 1$. 190

191 Existing distributed optimization and learning approaches typically require the stepsize to be either 192 fixed (Pu & Nedić, 2021; Koloskova et al., 2021; Nguyen et al., 2023; Song et al., 2024) or dimin- 193 ishing (Jakovetic et al., 2018; Dieuleveut & Patel, 2019; Li et al., 2024b; Lee et al., 2025). However, 194 the use of a fixed stepsize often suffers from error/bias terms proportional to the stepsize (Yuan 195 et al., 2016), which can cause pronounced overshoot or persistent oscillations near the global opti- 196 mum, thereby compromising convergence stability in the later stages of the algorithm (as shown in 197 our experimental results in Fig. 1). Although employing a diminishing stepsize can asymptotically 198 eliminate such errors and ensure stable steady-state convergence, it often results in an undesirably 199 low convergence speed, which is problematic for applications requiring fast convergence (Nedic & 200 Ozdaglar, 2009; Jakovetic et al., 2018; Dieuleveut & Patel, 2019; Lee et al., 2025). Given these lim- 201 itations, we aim to develop an adaptive stepsize approach for distributed stochastic optimization and 202 learning, enabling each agent to adaptively adjust its stepsize during algorithm iterations to achieve 203 both fast convergence and stable steady-state performance.

204
205

4 ALGORITHM DESIGN

206 In this section, we propose an adaptive stepsize approach for distributed stochastic optimization 207 and learning that ensures both fast convergence and stable steady-state performance. The proposed 208 approach is summarized in Algorithm 1, which is implemented in a fully distributed manner.

209 In Algorithm 1, Lines 3-7 execute a consensus-based gradient descent step for agent i . Lines 8, 210 11, and 14 update $y_{i,1}^{t+1}$ to track $\frac{1}{m} \sum_{i=1}^m g_i^t(x_i^{t+1})$, which serves to approximate the global gradient 211 $\frac{1}{m} \sum_{i=1}^m \nabla f_i(x_i^{t+1})$. Lines 9, 12, and 14 update an auxiliary variable $y_{i,2}^t$ to track $\frac{1}{m} \sum_{i=1}^m g_i^t(x_i^t)$, 212 which serves to approximate the global gradient $\frac{1}{m} \sum_{i=1}^m \nabla f_i(x_i^t)$. With this understanding, we let 213 each agent i locally estimate the curvature of the global objective function in Line 15. Based on this 214 estimate, each agent i 's adaptive stepsize update rule is given in Line 15 and Line 16.

216 **Algorithm 1** Adaptive stepsize design for distributed stochastic optimization and learning (from
 217 agent i 's perspective)

```

219 1: Input:  $x_i^0 \in \mathbb{R}^n$ ,  $y_{i,1}^0 = g_i^{-1}(x_i^0) = g_i^0(x_i^0)$ ,  $y_{i,2}^{-1} = g_i^{-1}(x_i^{-1}) = \mathbf{0}_n$ ,  $\eta_i^0 > 0$ ,  $\beta \in (1, 1.36)$ ,  

220  $r \in (0, 1)$ ,  $M \in \mathbb{N}^+$ , and  $T \in \mathbb{N}^+$ .
221 2: for  $t = 0, 1, \dots, T$  do
222 3:    $x_i^{t+1}(0) = x_i^t - \eta_i^t y_{i,1}^t$ 
223 4:   for  $q = 0, 1, \dots, M - 1$  do
224 5:      $x_i^{t+1}(q+1) = \sum_{j \in \mathcal{N}_i} w_{ij} x_j^{t+1}(q)$ 
225 6:   end for
226 7:    $x_i^{t+1} = x_i^{t+1}(M)$ 
227 8:    $y_{i,1}^{t+1}(0) = y_{i,1}^t + g_i^t(x_i^{t+1}) - g_i^{t-1}(x_i^t)$ 
228 9:    $y_{i,2}^t(0) = y_{i,2}^{t-1} + g_i^t(x_i^t) - g_i^{t-1}(x_i^{t-1})$ 
229 10:  for  $q = 0, 1, \dots, M - 1$  do
230 11:     $y_{i,1}^{t+1}(q+1) = \sum_{j \in \mathcal{N}_i} w_{ij} y_{j,1}^{t+1}(q)$ 
231 12:     $y_{i,2}^t(q+1) = \sum_{j \in \mathcal{N}_i} w_{ij} y_{j,2}^t(q)$ 
232 13:  end for
233 14:   $y_{i,1}^{t+1} = y_{i,1}^{t+1}(M)$  and  $y_{i,2}^t = y_{i,2}^t(M)$ 
234 15:   $L_i^{t+1} = \frac{\|y_{i,1}^{t+1} - y_{i,2}^t\|}{\|x_i^{t+1} - x_i^t\|}$  if  $x_i^{t+1} \neq x_i^t$ ; otherwise,  $L_i^{t+1} = 1$ 
235 16:   $\eta_i^{t+1} = \min \left\{ \beta \eta_i^t, \frac{7\sqrt{r}}{10} \frac{\eta_i^t}{\sqrt{[m(\eta_i^t L_i^{t+1})^2 - 1]_+}} \right\}$ 
236 17: end for
237
238
239
```

240 The key enabler for us to ensure stable steady-state convergence is our meticulously designed step-
 241 size update rule. More specifically, our stepsize update rule enables each agent to locally estimate
 242 the curvature of the global objective function. In this way, each agent's stepsize can be adapted
 243 to large values in the early stages of the algorithm, and to extremely small values near the global
 244 optimum (as shown in our experimental results in Figs. 1(d)-1(f) and Figs. 2(d)-2(f)). Therefore, our
 245 design avoids the slow convergence caused by small diminishing stepsizes used in, e.g., Jakovetic
 246 et al. (2018); Dieuleveut & Patel (2019); Li et al. (2024b); Lee et al. (2025) and eliminate the os-
 247 cillations arising from fixed stepsizes in e.g., Pu & Nedić (2021); Koloskova et al. (2021); Nguyen
 248 et al. (2023); Song et al. (2024).

249 It is worth noting that our algorithm is fundamentally different from existing adaptive stepsize meth-
 250 ods in e.g., Malitsky & Mishchenko (2019; 2024); Kim et al. (2024); Chen & Wang (2024), which
 251 explicitly require a centralized server to coordinate stepsize adjustment, which is infeasible in fully
 252 distributed settings in the absence of a centralized server. Furthermore, our design is also differ-
 253 ent from existing adaptive stepsize approaches for deterministic distributed optimization/learning
 254 in Carnevale et al. (2022); Xie et al. (2022); Saravacos et al. (2024), which typically require access
 255 to exact gradients of objective functions—such exact gradients are often unattainable in real-world
 256 applications where only noisy gradient estimates are available to each agent (Lian et al., 2017).

257 In Algorithm 1, we provide *optional* inner-consensus-loop iterations for x_i^t , $y_{i,1}^t$, and $y_{i,2}^t$. This de-
 258 sign is intended to accelerate consensus among agents and improve the accuracy of global gradient
 259 tracking, thereby guaranteeing linear convergence (see Theorem 1 for details). In practical machine
 260 learning applications, the number of inner-consensus-loop iterations M can be chosen as any pos-
 261 itive integer. For example, we can simply select $M = 1$ (in which case Algorithm 1 reduces to a
 262 single-loop algorithm) to minimize the computational and communication costs of our algorithm.
 263 In fact, our experimental results in Fig. 3(c) show that the test accuracy of our algorithm remains
 264 comparable even with $M = 1$.

265

5 CONVERGENCE RESULTS

266 In this section, we prove that Algorithm 1 can ensure linear convergence with respect to the number
 267 of iterations T , and the convergence error decreases sublinearly with the batch size of sampled data.
 268 The results are summarized in Theorem 1, whose proof can be found in Appendix B.2.

270 **Theorem 1.** *Under Assumptions 1 and 2, for any $T \geq 0$ and batch size $|\mathcal{B}| > 0$, if the number*
 271 *of inner-consensus-loop iterations M satisfies $M \geq M_0$ with detailed forms of M_0 given in equa-*
 272 *tion 79 in Appendix B.2, the iterates x_i^t generated by Algorithm 1 satisfy*

$$274 \quad \mathbb{E} \left[\|x_i^T - x^*\|^2 \right] \leq \mathcal{O}(\gamma^T) + \mathcal{O} \left(\frac{\sigma^2}{|\mathcal{B}|} \right), \quad (2)$$

275 *where the convergence rate γ is given by $\gamma = \max \left\{ 1 - \frac{\mu}{4L}, \frac{91}{92} \right\}$.*

278 Theorem 1 proves that Algorithm 1 linearly converges to an optimal solution to problem 1 with the
 279 optimization error decreasing as the batch size of sampled data $|\mathcal{B}|$ increases. It is worth noting that
 280 the bound $\mathcal{O} \left(\frac{\sigma^2}{|\mathcal{B}|} \right)$ in Theorem 1, caused by finite batch size of sampled data, inherently exists in
 281 all stochastic optimization approaches with finite samples (Yuan et al., 2022; Sharma et al., 2023).
 282 Although variance reduction techniques (Reddi et al., 2016; Fang et al., 2018) and diminishing
 283 stepsize methods (Nedic & Ozdaglar, 2009) can be used to mitigate the influence of this term in
 284 distributed stochastic optimization and learning, their successful implementation heavily relies on
 285 the assumption of a fixed upper bound on the stepsizes, which is hard to satisfy when each agent's
 286 stepsize is dynamic and adaptive over iterations.

287 In Theorem 1, we consider a stochastic scenario in which each agent can only access to noisy
 288 gradient estimates (which are computed based on data sampled from an unknown data distribution
 289 \mathcal{P}_i). Next, we consider a deterministic scenario in which each agent can access to accurate gradients.
 290 The convergence result of Algorithm 1 in the deterministic scenario is summarized in the following
 291 Theorem 2, whose proof is given in Appendix B.3.

292 **Theorem 2.** *Under Assumptions 1 and 2, for any $T \geq 0$, if the number of inner-consensus-loop*
 293 *iterations M satisfies $M \geq M_0$ with detailed forms of M_0 given in equation 79 of Appendix B.2,*
 294 *the iterates x_i^t generated by Algorithm 1 with deterministic gradients satisfy*

$$295 \quad \mathbb{E} \left[\|x_i^T - x^*\|^2 \right] \leq \mathcal{O}(\gamma^T), \quad (3)$$

297 *where the convergence rate γ is given by $\gamma = \max \left\{ 1 - \frac{\mu}{4L}, \frac{91}{92} \right\}$.*

299 Theorem 2 proves that when we consider distributed optimization and learning in a deterministic sce-
 300 nario, Algorithm 1 converges to an exact solution to problem in equation 1 with a linear convergence
 301 rate, which matches existing convergence results on adaptive stepsizes for centralized optimization
 302 and learning (Li & Orabona, 2019; Malitsky & Mishchenko, 2019; Kavis et al., 2022; Malitsky &
 303 Mishchenko, 2024). Moreover, this is also stronger than the convergence results achieved by existing
 304 distributed optimization methods with diminishing stepsizes (Jakovetic et al., 2018; Dieuleveut
 305 & Patel, 2019; Li et al., 2024b; Lee et al., 2025), which guarantee only sublinear convergence rates.

306 Furthermore, to give a more intuitive description of the computational complexity, we define an
 307 ϵ -solution to problem in equation 1 as follows.

308 **Definition 1** (Lian et al. (2017)). *For some integer $T > 0$, if $\mathbb{E}[\|x_i^T - x^*\|^2] \leq \epsilon$ holds, then we say*
 309 *that the sequence $\{x_i^t\}$ can reach an ϵ -solution to the problem in equation 1.*

310 Building on Theorem 1 and Theorem 2, we have the following corollary.

311 **Corollary 1.** *Under Assumptions 1 and 2, for any $\epsilon > 0$, Algorithm 1 with noisy gradient estimates*
 312 *requires at most $\mathcal{O}((2|\mathcal{B}| + 3M + 3) \log(\epsilon^{-1}))$ gradient evaluation to obtain an $\epsilon + \mathcal{O}(\frac{\sigma^2}{|\mathcal{B}|})$ -solution,*
 313 *and Algorithm 1 with accurate gradients requires at most $\mathcal{O}((2M + 3) \log(\epsilon^{-1}))$ gradient evaluation*
 314 *to obtain an ϵ -solution.*

316 In Corollary 1, the low bound on the number of inner-consensus-loop iterations M in Algorithm 1 is
 317 a fixed constant, which is different from the existing distributed optimization results in, e.g., Berahas
 318 et al. (2019); Li et al. (2020) which have the inner-loop iteration number increasing with the outer-
 319 loop iterations, and hence have a higher computational complexity of the order of $\mathcal{O}((\log(\epsilon^{-1}))^2)$.
 320 Moreover, the computational complexity of our Algorithm 1 matches the adaptive stepsize results
 321 on centralized learning in, e.g., Malitsky & Mishchenko (2019; 2024) and the convergence results
 322 on distributed optimization in, e.g., Chen & Wang (2024); Kuruzov et al. (2024). This is also less
 323 than the convergence results in, e.g., Jakovetic et al. (2018); Dieuleveut & Patel (2019); Li et al.
 324 (2024b) with diminishing stepsizes which have a computation complexity of the order of $\mathcal{O}(\epsilon^{-1})$.

Figure 1: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1, distributed SGD in Jakovetic et al. (2018), and stochastic GT in Pu & Nedić (2021) on the “MNIST”, “CIFAR-10”, and “CIFAR-100” datasets, respectively. The 95% confidence intervals were computed from three independent runs with random seeds 42, 1010, and 2024.

6 EXPERIMENTS

In this section, we evaluate the performance of our proposed Algorithm 1 on image classification tasks using representative benchmark datasets, including the “MNIST” dataset (Deng, 2012), the “CIFAR-10” dataset (Krizhevsky et al., 2010), and “CIFAR-100” dataset (DeVries & Taylor, 2017). All these tasks involve nonsmooth and nonconvex objective functions, which are intended to show the effectiveness of our algorithm beyond the settings of strong convexity or smoothness. Due to the space limitations, we leave the experimental results on logistic regression with strongly convex and smooth loss functions to Appendix C.3. In all experiments, we considered five agents connected in a ring, where each agent communicates only with its two immediate neighbors. For the coupling matrix W , we set $w_{ii} = 0.4$ for all agent i , $w_{ij} = 0.3$ if agents i and j are neighbors, and $w_{ij} = 0$ otherwise. For each experiment, we considered heterogeneous data distribution, with each agent i randomly sampling 40% data points from the class i and sampling 60% data points from each remaining class. We evaluated the performance of our proposed algorithm through the following three cases: 1) we compared Algorithm 1 with existing distributed stochastic optimization/learning approaches, including distributed SGD in Jakovetic et al. (2018) with diminishing stepsize and the stochastic gradient-tracking (called stochastic GT) in Pu & Nedić (2021) with fixed stepsize; 2) we compared Algorithm 1 with existing adaptive stepsize approaches for centralized learning, including the well-known ADAM in Kingma (2014) and the adaptive SGD in Malitsky & Mishchenko (2024); and 3) to evaluate the effect of the coefficients β and r in the stepsize update rule (i.e., Line 16 in Algorithm 1) and the number of inner-consensus-loop iterations M in Algorithm 1 on convergence accuracy, we test the convergence performance of Algorithm 1 under different β , r , and M , respectively. The detailed experimental settings are given in Appendix C.1 and Appendix C.2, and additional experimental results on comparison of Algorithm 1 and distributed ADAM in Nazari et al. (2022) are provided in Appendix C.3. The code for all experiments is available online².

Comparison with existing distributed stochastic optimization approaches. We trained convolutional neural networks (CNNs) with two, four, and five layers on the “MNIST”, “CIFAR-10”, and “CIFAR-100” datasets, respectively. We conducted training for 20 epochs on the “MNIST” dataset

²<https://anonymous.4open.science/r/DASGD-71D1/README.md>

Figure 2: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1, ADAM in Kingma (2014), and adaptive SGD in Malitsky & Mishchenko (2024) on the “MNIST”, “CIFAR-10”, and “CIFAR-100” datasets, respectively. The 95% confidence intervals were computed from three independent runs with random seeds 42, 1010, and 2024.

and 80 epochs on the “CIFAR-10” and “CIFAR-100” datasets, using a batch size of 128. The stepsize for distributed SGD was set as $\eta_i = \frac{0.1}{(t+1)^{0.5}}$ and for stochastic GT was set as $\eta_i = 0.1$. Both of them represent the best-performing stepsizes we could find in our comparison. In fact, during our tuning process, we observe that setting $\eta = 0.01$ for stochastic GT results in overly slow convergence, whereas setting $\eta = 1$ leads to divergent behaviors. For Algorithm 1, we set the coefficients β and r in stepsize update rule as $\beta = 1.3$ and $r = 0.99$, and the number of inner-loop iterations as $M = 10$. (The test accuracies of Algorithm 1 under different β , r , and M are provided in Figs. 3(a), 3(b), and 3(c), respectively.)

Fig. 1(a) to Fig. 1(c) show that our proposed Algorithm 1 achieves the highest test accuracy and a more stable steady-state convergence compared with distributed SGD in Jakovetic et al. (2018) and stochastic GT in Pu & Nedić (2021). The early-stage oscillations in test accuracy of Algorithm 1 are mainly attributable to the adaptive process of stepsize adjustments. Compared with distributed SGD with diminishing stepsizes, stochastic GT with a fixed stepsize achieves faster convergence, however, it suffers from larger steady-state oscillations. In contrast, our proposed algorithm eliminates steady-state oscillations, and hence, ensures fast convergence. This is achieved because our proposed adaptive stepsize rule allows each agent to take large stepsizes in the early stages of Algorithm 1 and extremely small stepsizes near the global optimum in the later stages, as shown in Fig. 1(d) to Fig. 1(f). These results further imply a clear stopping criterion for each agent in the implementation of our Algorithm 1. Specifically, we can preset a constant $\tau > 0$ (e.g., $\tau = 10^{-9}$ in the “MNIST” experiment) for all agents, and once an agent i ’s stepsize η_i^t falls below τ , it can terminate training, which does not compromise the global learning accuracy.

Comparison with existing adaptive stepsize approaches. Since adaptive stepsize approaches are rarely reported in a fully distributed setting without a centralized server/aggregator, we compared the convergence performance of Algorithm 1 with that of existing adaptive stepsize approaches for centralized learning, including ADAM in Kingma (2014) and the adaptive SGD in Malitsky & Mishchenko (2019; 2024). This comparison is challenging because centralized methods can perform training directly on aggregated data, while our approach in Algorithm 1 operates in a fully distributed manner where each agent can only perform local computations and neighboring communication.

Fig. 2(a) to Fig. 2(c) show that Algorithm 1 has a higher test accuracy than both ADAM and adaptive SGD, even without the assistance of any centralized server/aggregator. This finding is noteworthy, as

Figure 3: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1 under different parameters β , r , and M , respectively, on the “CIFAR-10” dataset.

it empirically demonstrate that our fully distributed learning approach with heterogeneous adaptive stepsizes among agents can accelerate learning compared with centralized methods with a single adaptive stepsize. Furthermore, Fig. 2(d) to Fig. 2(f) once again confirm that our adaptive stepsize approach provides agents with large stepsizes in the early stages and small stepsizes in the convergence stages, thereby facilitating better performance than existing centralized counterparts.

The effects of β , r , and M on convergence accuracy. We evaluate the test accuracies of Algorithm 1 under different coefficients β and r in the stepsize update rule (i.e., Line 16 in Algorithm 1) and the number of inner-loop iterations M in Algorithm 1, respectively. We ran this experiment on the “CIFAR-10” dataset over 100 epochs, with a batch size of 64 and a random seed as 1010.

Fig. 3(a), Fig. 3(b), Fig. 3(d), and Fig. 3(e) imply that larger β and r lead to faster convergence and earlier stopping in Algorithm 1. This result is intuitively consistent, as large β and r contribute to larger stepsizes before convergence stages (as shown in Fig. 3(d) and Fig. 3(e)), which in turn leads to a higher convergence speed. Furthermore, Fig. 3(c) and Fig. 3(f) show that the number of inner-consensus-loop iterations M has a negligible effect on convergence accuracy and the stopping criterion. Hence, in practical machine learning tasks, we can set $M = 1$ (so that Algorithm 1 reduces to a single-loop algorithm) to minimize the communication cost of Algorithm 1. In addition, the experimental results in Fig. 3 also suggest a default parameter configuration $(\beta, r, M) = (1.35, 0.99, 1)$ for Algorithm 1, which helps ease the tuning effort in real-world applications.

The effect of network size m on convergence accuracy. We also evaluate the test accuracies of Algorithm 1 under different network sizes $m = 10$, $m = 15$, and $m = 20$, respectively. This experiment is conducted on the “CIFAR-10” dataset over 100 epochs with a batch size of 64 and a fixed random seed of 42. The remaining parameter settings are the same as those presented in the subsection “Comparison with existing distributed stochastic optimization approaches.”

Fig. 4 shows that Algorithm 1 achieves higher test accuracy and more stable steady-state convergence than distributed SGD and stochastic GT, regardless of the network size m . Furthermore, we observe that a larger network size (i.e., a larger number of agents) leads to lower convergence accuracy under a fixed number of epochs. This is because increasing the network size reduces the number of training samples held by each agent. With a fixed batch size of 128, this reduction in local training samples decreases the number of iterations performed by each agent in each epoch, and consequently results in lower convergence accuracy within 100 epochs.

Figure 4: Test-accuracy evolutions of Algorithm 1, distributed SGD in Jakovetic et al. (2018), and stochastic GT in Pu & Nedić (2021) under different network sizes $m = 10$, $m = 15$, and $m = 20$, respectively, on the ‘‘CIFAR-10’’ dataset.

Figure 5: Test-accuracy evolutions of Algorithm 1, distributed SGD in Jakovetic et al. (2018), and stochastic GT in Pu & Nedić (2021) under different Dirichlet-distribution parameter $\alpha = 0.1$, $\alpha = 0.5$, and $\alpha = 10$, respectively, on the ‘‘CIFAR-10’’ dataset.

The effect of data heterogeneity across agents on convergence accuracy. Furthermore, to evaluate the convergence performance of our algorithm under different data distributions across agents, we conduct experiments on the ‘‘CIFAR-10’’ dataset using the Dirichlet partitioning scheme with parameters $\alpha = 0.1$, $\alpha = 0.5$, and $\alpha = 10$ (note that a smaller α corresponds to a higher level of data heterogeneity among agents). The remaining experimental settings follow those presented in previous subsection ‘‘The effect of network size m on convergence accuracy.’’

Fig. 5 shows that Algorithm 1 maintains higher test accuracy and more stable steady-state convergence than both distributed SGD and stochastic GT under all levels of data heterogeneity among agents. In addition, it can be seen that a larger α (i.e., a lower level of data heterogeneity across agents) leads to higher convergence accuracy.

7 CONCLUSION

In this paper, we have proposed an adaptive stepsize approach for distributed stochastic optimization and learning without the assistance of any centralized server/aggregator or the need for accurate gradients. This is nontrivial, because existing adaptive stepsize approaches either rely on a centralized server to coordinate stepsizes among agents, or are limited to deterministic scenarios where agents have access to accurate gradients of the objective functions. Moreover, our approach can eliminate steady-state oscillations, and hence, ensures fast convergence. This stands in stark contrast to most existing adaptive stepsize approaches that often incur steady-state oscillations near the global optimal solution, and thereby preventing the algorithm from achieving stable convergence accuracy. In addition, we have systematically characterized the convergence rates of our algorithm for both stochastic and deterministic distributed optimization, and quantified the computational complexities for gradient evaluations on both cases. Experimental results on image classifications using three benchmark datasets confirm the advantages of the proposed approach over existing counterparts.

540 **Ethics statement.** All authors declare no conflicts of interest and no ethical issues in this work.
 541

542 **Reproducibility statement.** All authors confirm the reproducibility of both the theoretical and
 543 experimental results. The code for all experiments is available online at <https://anonymous.4open.science/r/DASGD-71D1/README.md>. Detailed descriptions of the experimental
 544 settings and implementation details are provided in the main text and Appendix. Theoretical as-
 545 sumptions are clearly stated, and complete proofs of all results are included in the Appendix.
 546

548 **REFERENCES**
 549

550 Arya Akhavan, Massimiliano Pontil, and Alexandre Tsybakov. Distributed zero-order optimization
 551 under adversarial noise. *Advances in Neural Information Processing Systems*, 34:10209–10220,
 552 2021.

553 Zeyuan Allen-Zhu, Faeze Ebrahimiaghazani, Jerry Li, and Dan Alistarh. Byzantine-resilient non-
 554 convex stochastic gradient descent. In *International Conference on Learning Representations*,
 555 2020.

556 Maksym Andriushchenko, Aditya Vardhan Varre, Loucas Pillaud-Vivien, and Nicolas Flammarion.
 557 SGD with large step sizes learns sparse features. In *International Conference on Machine Learn-
 558 ing*, pp. 903–925. PMLR, 2023.

559 Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
 560 Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
 561 descent. *Advances in Neural Information Processing Systems*, 29, 2016.

562 Albert S. Berahas, Raghu Bollapragada, Nitish Shirish Keskar, and Ermin Wei. Balancing commu-
 563 nication and computation in distributed optimization. *IEEE Transactions on Automatic Control*,
 564 64(8):3141–3155, 2019.

565 B. Bollobás. *Combinatorics: Set Systems, Hypergraphs, Families of Vectors, and Combinato-
 566 rial Probability*. Cambridge University Press, 1986. ISBN 9780521337038. URL <https://books.google.com.hk/books?id=psqFNlNgZDcC>.

567 Guido Carnevale, Francesco Farina, Ivano Notarnicola, and Giuseppe Notarstefano. GTAdam: Gra-
 568 dient tracking with adaptive momentum for distributed online optimization. *IEEE Transactions
 569 on Control of Network Systems*, 10(3):1436–1448, 2022.

570 Ziqin Chen and Yongqiang Wang. Locally differentially private distributed online learning with
 571 guaranteed optimality. *IEEE Transactions on Automatic Control*, 2024.

572 Michael Crawshaw, Blake Woodworth, and Mingrui Liu. Constant stepsize local GD for logistic
 573 regression: Acceleration by instability. In *International Conference on Machine Learning*, 2025.

574 Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
 575 web]. *IEEE Signal Processing Magazine*, 29(6):141–142, 2012.

576 Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
 577 with cutout. *arXiv preprint arXiv:1708.04552*, 2017.

578 Aymeric Dieuleveut and Kumar Kshitij Patel. Communication trade-offs for local-SGD with large
 579 step size. *Advances in Neural Information Processing Systems*, 32, 2019.

580 Xuhui Ding, Yuchen Xu, Gaoyang Li, Kai Yang, Jinhong Yuan, and Jianping An. Design and per-
 581 formance evaluation for BILCM-ID system with improved stopping criterion. *IEEE Transactions
 582 on Vehicular Technology*, 74(4):6779–6784, 2025.

583 Guner Dilsad Er, Sebastian Trimpe, and Michael Muehlebach. Distributed event-based learning via
 584 ADMM. In *International Conference on Machine Learning*, 2024.

585 Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
 586 optimization via stochastic path-integrated differential estimator. *Advances in Neural Information
 587 Processing Systems*, 31, 2018.

594 Roger Fletcher. On the barzilai-borwein method. In *Optimization and Control with Applications*,
 595 pp. 235–256. Springer, 2005.

596

597 Zhishuai Guo, Mingrui Liu, Zhuoning Yuan, Li Shen, Wei Liu, and Tianbao Yang. Communication-
 598 efficient distributed stochastic auc maximization with deep neural networks. In *International
 599 Conference on Machine Learning*, pp. 3864–3874. PMLR, 2020.

600 Yutong He, Jie Hu, Xinxing Huang, Songtao Lu, Bin Wang, and Kun Yuan. Distributed bilevel op-
 601 timization with communication compression. In *International Conference on Machine Learning*,
 602 2024.

603 Charlie Hou, Kiran K Thekumparampil, Giulia Fanti, and Sewoong Oh. FeDChain: Chained algo-
 604 rithms for near-optimal communication cost in federated learning. In *International Conference
 605 on Learning Representations*, 2021.

606

607 Jie Hu, Vishwaraj Doshi, et al. Accelerating distributed stochastic optimization via self-repellent
 608 random walks. In *International Conference on Learning Representations*, 2024.

609 Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Booster: Tackling
 610 harmful fine-tuning for large language models via attenuating harmful perturbation. In *Interna-
 611 tional Conference on Learning Representations*, 2024a.

612

613 Yan Huang, Xiang Li, Yipeng Shen, Niao He, and Jinming Xu. Achieving near-optimal convergence
 614 for distributed minimax optimization with adaptive stepsizes. *Advances in Neural Information
 615 Processing Systems*, 37:19740–19782, 2024b.

616 Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Ion Stoica, Raman Arora, et al. Communication-
 617 efficient distributed SGD with sketching. *Advances in Neural Information Processing Systems*,
 618 32, 2019.

619 Robert A Jacobs. Increased rates of convergence through learning rate adaptation. *Neural Networks*,
 620 1(4):295–307, 1988.

621

622 Dusan Jakovetic, Dragana Bajovic, Anit Kumar Sahu, and Soummya Kar. Convergence rates for
 623 distributed stochastic optimization over random networks. In *IEEE Conference on Decision and
 624 Control*, pp. 4238–4245. IEEE, 2018.

625 Xiaowen Jiang and Sebastian U Stich. Adaptive SGD with polyak stepsize and line-search: Robust
 626 convergence and variance reduction. *Advances in Neural Information Processing Systems*, 36:
 627 26396–26424, 2023.

628

629 Ali Kavis, Kfir Yehuda Levy, and Volkan Cevher. High probability bounds for a class of nonconvex
 630 algorithms with AdaGrad stepsize. In *International Conference on Learning Representations*,
 631 2022.

632 Ahmed Khaled and Chi Jin. Faster federated optimization under second-order similarity. In *Inter-
 633 national Conference on Learning Representations*, 2023.

634 Junhyung Lyle Kim, Mohammad Taha Toghani, César A Uribe, and Anastasios Kyrillidis. Adaptive
 635 federated learning with auto-tuned clients. In *International Conference on Learning Representa-
 636 tions*, 2024.

637 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 638 2014.

639

640 Anastasiia Koloskova, Tao Lin, and Sebastian U Stich. An improved analysis of gradient tracking
 641 for decentralized machine learning. *Advances in Neural Information Processing Systems*, 34:
 642 11422–11435, 2021.

643

644 Alex Krizhevsky, Geoff Hinton, et al. Convolutional deep belief networks on CIFAR-10. *Unpub-
 645 lished Manuscript*, 40(7):1–9, 2010.

646 Ilya Kuruzov, Gesualdo Scutari, and Alexander Gasnikov. Achieving linear convergence with
 647 parameter-free algorithms in decentralized optimization. *Advances in Neural Information Pro-
 648 cessing Systems*, 37:96011–96044, 2024.

648 Su Hyeong Lee, Manzil Zaheer, and Tian Li. Efficient distributed optimization under heavy-tailed
 649 noise. In *International Conference on Learning Representations*, 2025.

650

651 Hanmin Li, Avetik Karagulyan, and Peter Richtarik. Det-CGD: Compressed gradient descent with
 652 matrix stepsizes for non-convex optimization. In *International Conference on Learning Representations*, 2024a.

653

654 Huan Li, Cong Fang, Wotao Yin, and Zhouchen Lin. Decentralized accelerated gradient methods
 655 with increasing penalty parameters. *IEEE Transactions on Signal Processing*, 68:4855–4870,
 656 2020.

657

658 Junyi Li, Feihu Huang, and Heng Huang. FedDA: Faster adaptive gradient methods for federated
 659 constrained optimization. In *International Conference on Learning Representations*, 2024b.

660

661 Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adap-
 662 tive stepsizes. In *International Conference on Artificial Intelligence and Statistics*, pp. 983–992.
 663 PMLR, 2019.

664

665 Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
 666 algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic
 667 gradient descent. *Advances in Neural Information Processing Systems*, 30, 2017.

668

669 Jihao Andreas Lin, Shreyas Padhy, Javier Antorán, Austin Tripp, Alexander Terenin, Csaba
 670 Szepesvári, José Miguel Hernández-Lobato, and David Janz. Stochastic gradient descent for
 671 gaussian processes done right. In *International Conference on Learning Representations*, 2023.

672

673 Xiaorui Liu, Yao Li, Rongrong Wang, Jiliang Tang, and Ming Yan. Linear convergent decentralized
 674 optimization with compression. In *International Conference on Learning Representations*, 2020.

675

676 Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. *arXiv*
 677 preprint *arXiv:1910.09529*, 2019.

678

679 Yura Malitsky and Konstantin Mishchenko. Adaptive proximal gradient method for convex opti-
 680 mization. *Advances in Neural Information Processing Systems*, 37:100670–100697, 2024.

681

682 Brendan McMahan and Matthew Streeter. Delay-tolerant algorithms for asynchronous distributed
 683 online learning. *Advances in Neural Information Processing Systems*, 27, 2014.

684

685 Parvin Nazari, Davoud Ataei Tarzanagh, and George Michailidis. Dadam: A consensus-based
 686 distributed adaptive gradient method for online optimization. *IEEE Transactions on Signal Pro-
 687 cessing*, 70:6065–6079, 2022.

688

689 Angelia Nedic. Distributed gradient methods for convex machine learning problems in networks:
 690 Distributed optimization. *IEEE Signal Processing Magazine*, 37(3):92–101, 2020.

691

692 Angelia Nedić and Ji Liu. Distributed optimization for control. *Annual Review of Control, Robotics,
 693 and Autonomous Systems*, 1(1):77–103, 2018.

694

695 Angelia Nedić and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
 696 tion. *IEEE Transactions on Automatic Control*, 54(1):48–61, 2009.

697

698 Angelia Nedić, Alex Olshevsky, Wei Shi, and César A Uribe. Geometrically convergent distributed
 699 optimization with uncoordinated step-sizes. In *American Control Conference*, pp. 3950–3955.
 700 IEEE, 2017.

701

702 Angelia Nedić, Alex Olshevsky, and Michael G Rabbat. Network topology and communication-
 703 computation tradeoffs in decentralized optimization. *Proceedings of the IEEE*, 106(5):953–976,
 704 2018.

705

706 Edward Duc Hien Nguyen, Sulaiman A Alghunaim, Kun Yuan, and César A Uribe. On the perfor-
 707 mance of gradient tracking with local updates. In *IEEE Conference on Decision and Control*, pp.
 708 4309–4313. IEEE, 2023.

709

710 Shi Pu and Angelia Nedić. Distributed stochastic gradient tracking methods. *Mathematical Pro-
 711 gramming*, 187(1):409–457, 2021.

702 Shi Pu, Alex Olshevsky, and Ioannis Ch Paschalidis. Asymptotic network independence in dis-
 703 tributed stochastic optimization for machine learning: Examining distributed and centralized
 704 stochastic gradient descent. *IEEE Signal Processing Magazine*, 37(3):114–122, 2020.

705

706 Ali Ramezani-Kebrya, Kimon Antonakopoulos, Igor Krawczuk, Justin Deschenaux, and Volkan
 707 Cevher. Distributed extra-gradient with optimal complexity and communication guarantees. In
 708 *International Conference on Learning Representations*, 2023.

709 Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance
 710 reduction for nonconvex optimization. In *International Conference on Machine Learning*, pp.
 711 314–323. PMLR, 2016.

712 Michal Rolinek and Georg Martius. L4: Practical loss-based stepsize adaptation for deep learning.
 713 *Advances in Neural Information Processing Systems*, 31, 2018.

714

715 Sebastian Ruder. An overview of gradient descent optimization algorithms. *arXiv preprint*
 716 *arXiv:1609.04747*, 2016.

717

718 Augustinos D Saravacos, Hunter Kuperman, Alex Oshin, Arshiya Taj Abdul, Vincent Pacelli, and
 719 Evangelos A Theodorou. Deep distributed optimization for large-scale quadratic programming.
 720 In *International Conference on Learning Representations*, 2024.

721 Kevin Scaman, Francis Bach, Sébastien Bubeck, Laurent Massoulié, and Yin Tat Lee. Optimal
 722 algorithms for non-smooth distributed optimization in networks. *Advances in Neural Information*
 723 *Processing Systems*, 31, 2018.

724 Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In *International Con-
 725 ference on Machine Learning*, 2013.

726

727 Ohad Shamir and Nathan Srebro. Distributed stochastic optimization and learning. In *Annual*
 728 *Allerton Conference on Communication, Control, and Computing*, pp. 850–857. IEEE, 2014.

729

730 Arsalan Sharifnassab, Saber Salehkaleybar, and Richard Sutton. Metaoptimize: A framework for
 731 optimizing step sizes and other meta-parameters. In *International Conference on Machine Learn-
 732 ing*, 2024.

733 Rohan Sharma, Kaiyi Ji, and Changyou Chen. AUC-CL: A batchsize-robust framework for self-
 734 supervised contrastive representation learning. In *International Conference on Learning Repre-
 735 sentations*, 2023.

736 Yilong Song, Peijin Li, Bin Gao, and Kun Yuan. Distributed retraction-free and communica-
 737 tion-efficient optimization on the stiefel manifold. In *International Conference on Machine Learning*,
 738 2025.

739

740 Zhuoqing Song, Lei Shi, Shi Pu, and Ming Yan. Optimal gradient tracking for decentralized opti-
 741 mization. *Mathematical Programming*, 207(1):1–53, 2024.

742

743 Kunal Srivastava and Angelia Nedic. Distributed asynchronous constrained stochastic optimization.
 744 *IEEE Journal of Selected Topics in Signal Processing*, 5(4):772–790, 2011.

745

746 S Sundhar Ram, Angelia Nedić, and Venugopal V Veeravalli. Distributed stochastic subgradient
 747 projection algorithms for convex optimization. *Journal of Optimization Theory and Applications*,
 147(3):516–545, 2010.

748

749 Kemal Tutuncu, Ilkay Cinar, Ramazan Kursun, and Murat Koklu. Edible and poisonous mushrooms
 750 classification by machine learning algorithms. In *Mediterranean Conference on Embedded Com-
 751 puting*, pp. 1–4. IEEE, 2022.

752

753 Andreas Vlachos. A stopping criterion for active learning. *Computer Speech and Language*, 22(3):
 295–312, 2008. ISSN 0885-2308.

754

755 Jing Wang and Nicola Elia. A control perspective for centralized and distributed convex optimiza-
 756 tion. In *IEEE Conference on Decision and Control and European Control*, pp. 3800–3805. IEEE,
 2011.

756 Xiaoyu Wang, Mikael Johansson, and Tong Zhang. Generalized polyak step size for first order
 757 optimization with momentum. In *International Conference on Machine Learning*, pp. 35836–
 758 35863. PMLR, 2023.

759

760 Kaixuan Wei, Angelica Aviles-Rivero, Jingwei Liang, Ying Fu, Carola-Bibiane Schönlieb, and Hua
 761 Huang. Tuning-free plug-and-play proximal algorithm for inverse imaging problems. In *Interna-*
 762 *tional Conference on Machine Learning*, pp. 10158–10169. PMLR, 2020.

763 Siyu Xie, Masoud H Nazari, George Yin, et al. Adaptive step size selection in distributed optimiza-
 764 tion with observation noise and unknown stochastic target variation. *Automatica*, 135:109940,
 765 2022.

766

767 Ran Xin, Soummya Kar, and Usman A Khan. Decentralized stochastic optimization and machine
 768 learning: Aa unified variance-reduction framework for robust performance and fast convergence.
 769 *IEEE Signal Processing Magazine*, 37(3):102–113, 2020.

770 Bo Yang and Mikael Johansson. Distributed optimization and games: A tutorial overview. *Net-
 771 worked Control Systems*, pp. 109–148, 2010.

772

773 Shuguang Yang, Xuezhou Zhang, and Mengdi Wang. Decentralized gossip-based stochastic bilevel
 774 optimization over communication networks. *Advances in Neural Information Processing Systems*,
 775 35:238–252, 2022.

776 Tao Yang, Xinlei Yi, Junfeng Wu, Ye Yuan, Di Wu, Ziyang Meng, Yiguang Hong, Hong Wang,
 777 Zongli Lin, and Karl H Johansson. A survey of distributed optimization. *Annual Reviews in
 778 Control*, 47:278–305, 2019.

779 Tianbao Yang. Trading computation for communication: Ddistributed stochastic dual coordinate
 780 ascent. *Advances in Neural Information Processing Systems*, 26, 2013.

781

782 Zhuang Yang and Li Ma. Adaptive step size rules for stochastic optimization in large-scale learning.
 783 *Statistics and Computing*, 33(2):45, 2023.

784

785 Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent. *SIAM
 786 Journal on Optimization*, 26(3):1835–1854, 2016.

787

788 Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou, and Tianbao
 789 Yang. Provable stochastic optimization for global contrastive learning: Small batch does not
 790 harm performance. In *International Conference on Machine Learning*, pp. 25760–25782. PMLR,
 791 2022.

792

793 Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
 794 pademetris, and James Duncan. Adabelief optimizer: Aadapting stepsizes by the belief in ob-
 795 served gradients. *Advances in Neural Information Processing Systems*, 33:18795–18806, 2020.

796

797

798

799

800

801

802

803

804

805

806

807

808

809

APPENDIX

- Section A: Notations
- Section B: Results of Algorithm 1
 - B.1 Technical lemmas
 - B.2 Proof of Theorem 1
 - B.3 Proof of Theorem 2
 - B.4 Proof of Corollary 1
- Section C: Experimental setups and additional experimental results
 - C.1 Benchmark datasets
 - C.2 Experimental setups
 - C.3 Additional experimental results

A NOTATIONS

For the sake of notational simplicity, we introduce some additional notations. We use \mathbb{R}^+ to denote the set of positive real numbers and use $\mathbf{X}^t \triangleq \text{col}(x_1^t, x_2^t, \dots, x_m^t) \in \mathbb{R}^{mn}$ to denote the stacked model parameters of all agents. We also use \otimes to denote the Kronecker product. We use $\bar{x}^t(q)$ to denote the average of all agents' model parameters at the q th inner iteration of the t th outer iteration. We define $\mathcal{F}_t \triangleq \{\xi_{i,s} | i = 1, \dots, m \text{ and } s = 0, \dots, t\}$, where $\xi_{i,t}$ represents the data point sampled by agent i at the t th iteration. For further notational simplicity, we define $\bar{x}^t = \frac{1}{m} \sum_{i=1}^m x_i^t$, $\bar{\eta}^t y_1^t = \frac{1}{m} \sum_{i=1}^m \eta_i^t y_{1,i}^t$, $\eta_{\max}^t = \max_{i \in [m]} \eta_i^t$, $\eta_{\max} = \max_{t \in \mathbb{N}} \eta_{\max}^t$, $\bar{\eta}^t = \frac{1}{m} \sum_{i=1}^m \eta_i^t$, $\bar{y}_1^t = \frac{1}{m} \sum_{i=1}^m y_{1,i}^t$, $\bar{y}_2^t = \frac{1}{m} \sum_{i=1}^m y_{2,i}^t$, $\hat{x}_i^t = x_i^t - \bar{x}^t$, $\hat{y}_{1,i}^t = y_{1,i}^t - \bar{y}_1^t$, and $\hat{y}_{2,i}^t = y_{2,i}^t - \bar{y}_2^t$.

B RESULTS OF ALGORITHM 1

B.1 TECHNICAL LEMMAS

We introduce the following three lemmas to characterize the consensus errors of Algorithm 1.

Lemma 1. *Under Assumptions 1 and 2, the following inequality holds for Algorithm 1:*

$$\begin{aligned} \mathbb{E}[\|\bar{x}^{t+1} - \bar{x}^t\|^2] &\leq \frac{45}{46} \mathbb{E}[\|\bar{x}^t - \bar{x}^{t-1}\|^2] - \mathbb{E}[\|\bar{x}^{t+1} - \bar{x}^t\|^2] \\ &\quad + \frac{125}{31\beta} \mathbb{E}[\bar{\eta}^t (f(\bar{x}^{t-1}) - f(\bar{x}^t))] + 2\delta_2^t, \end{aligned} \tag{4}$$

where the constant δ_3^t is given by

$$\begin{aligned} \delta_2^t &= \frac{b_{\hat{x},1}}{m} \sum_{i=1}^m \mathbb{E}[\|\hat{x}_i^t\|^2] + \frac{b_{\hat{x},2}}{m} \sum_{i=1}^m \mathbb{E}[\|\hat{x}_i^{t-1}\|^2] + \frac{b_{\hat{x},2}}{m} \sum_{i=1}^m \mathbb{E}[\|\hat{x}_i^t(0)\|^2] + \frac{b_{\hat{y},1}}{m} \sum_{i=1}^m \mathbb{E}[\|\hat{y}_{1,i}^t\|^2] \\ &\quad + \frac{b_{\hat{y},2}}{m} \sum_{i=1}^m \mathbb{E}[\|\hat{y}_{1,i}^{t-1}\|^2] + \frac{b_{\hat{y},3}}{m} \sum_{i=1}^m \mathbb{E}[\|\hat{y}_{2,i}^{t-1}\|^2] + \frac{b_\sigma \sigma^2}{|\mathcal{B}|}, \end{aligned} \tag{5}$$

where $b_{\hat{x},1} = \frac{125}{124} \left(\frac{L^2 \eta_{\max}}{a_8} + \frac{2\beta^2}{a_7} \right) + 4\beta^2 + 2$, $b_{\hat{x},2} = 2(1 - a_4)(1 - a_5) \left(1 - \frac{1}{a_6} \right) \beta^2 + 4\beta^2 + 2$, $b_{\hat{y},1} = 4\eta_{\max}^2 \left(1 + \frac{1}{a_2} \right)$, $b_{\hat{y},2} = 2(1 - a_5) \left(1 - \frac{1}{a_6} \right) \eta_{\max}^2$, $b_{\hat{y},3} = 4\eta_{\max}^2 \left(1 + \frac{1}{a_2} \right)$, and $b_\sigma = 4 \left(1 - \frac{1}{a_4} \right) \eta_{\max}^2$.

Proof. According to Line 3 in Algorithm 1, we have

$$\bar{x}^{t+1} = \bar{x}^{t+1}(0) = \bar{x}^t - \bar{\eta}^t y_1^t, \tag{6}$$

864 with $\bar{x}^t = \frac{1}{m} \sum_{i=1}^m x_i^t$ and $\bar{\eta}^t y_1^t = \frac{1}{m} \sum_{i=1}^m \eta_i^t y_{1,i}^t$. Since $\bar{\eta}^t \bar{y}_1^t = \frac{1}{m^2} \sum_{i=1}^m \eta_i^t \sum_{j=1}^m y_{1,j}^t$ holds, we
865 obtain the following inequality:
866

$$\begin{aligned}
867 \mathbb{E}[\|\bar{x}^{t+1} - \bar{x}^t\|^2 | \mathcal{F}_t] &= \|\bar{\eta}^t y_1^t\|^2 = \|\bar{\eta}^t y_1^t - \bar{\eta}^t \bar{y}_1^t + \bar{\eta}^t \bar{y}_1^t\|^2 \\
868 &\leq \left(1 + \frac{1}{a_1}\right) \|\bar{\eta}^t y_1^t - \bar{\eta}^t \bar{y}_1^t\|^2 + (1 + a_1) \|\bar{\eta}^t \bar{y}_1^t\|^2 \\
869 &= \left(1 + \frac{1}{a_1}\right) \left\| \frac{1}{m} \sum_{i=1}^m (\eta_i^t y_{1,i}^t - \eta_i^t \bar{y}_1^t) \right\|^2 + (1 + a_1) \|\bar{\eta}^t \bar{y}_1^t\|^2 \\
870 &\leq \left(1 + \frac{1}{a_1}\right) \frac{1}{m} \sum_{i=1}^m (\eta_i^t)^2 \|y_{1,i}^t - \bar{y}_1^t\|^2 + (1 + a_1) \|\bar{\eta}^t \bar{y}_1^t\|^2 \\
871 &\leq \left(1 + \frac{1}{a_1}\right) \frac{1}{m} \sum_{i=1}^m \eta_{\max}^2 \|\hat{y}_{1,i}^t\|^2 + (1 + a_1) \|\bar{\eta}^t \bar{y}_1^t\|^2, \\
872 &\leq \left(1 + \frac{1}{a_1}\right) \frac{1}{m} \sum_{i=1}^m \eta_{\max}^2 \|\hat{y}_{1,i}^t\|^2 + (1 + a_1) \|\bar{\eta}^t \bar{y}_1^t\|^2,
\end{aligned} \tag{7}$$

873 where $\mathcal{F}_t = \{\xi_{i,s} | i = 1, \dots, N; s = 0, \dots, t\}$ with $\xi_{i,t}$ denoting the data point sampled by agent
874 i at iteration t . Here, we have used the inequality $\|a + b\|^2 \leq (1 + \frac{1}{\alpha})\|a\|^2 + (1 + \alpha)\|b\|^2$ for any
875 $\alpha > 0$ and $a, b \in \mathbb{R}^n$ in the first inequality and the inequality $\|\frac{1}{m} \sum_{i=1}^m a_i\|^2 \leq \frac{1}{m} \sum_{i=1}^m \|a_i\|^2$ for
876 any $a_i \in \mathbb{R}^n$, $i = 1, \dots, m$ in the second inequality. By choosing $a_1 \in (0, \frac{1}{124})$ and applying the
877 relation $\|a\|^2 = \|a - b\|^2 - \|b\|^2 + 2\langle a, b \rangle$ to equation 7, the term $\|\bar{\eta}^t y_1^t\|$ can be bounded by
878

$$\|\bar{\eta}^t y_1^t\|^2 = \|\bar{\eta}^t (\bar{y}_1^t - \bar{y}_2^{t-1})\|^2 - \|\bar{\eta}^t \bar{y}_2^{t-1}\|^2 + 2\langle \bar{\eta}^t \bar{y}_1^t, \bar{\eta}^t \bar{y}_2^{t-1} \rangle. \tag{8}$$

879 The first term on the right-hand side of equation 8 satisfies
880

$$\begin{aligned}
881 \|\bar{\eta}^t (\bar{y}_1^t - \bar{y}_2^{t-1})\|^2 &= \left\| \frac{1}{m} \sum_{i=1}^m \eta_i^t (\bar{y}_1^t - \bar{y}_2^{t-1}) \right\|^2 = \left\| \frac{1}{m} \sum_{i=1}^m \eta_i^t (y_{1,i}^t - y_{2,i}^{t-1}) - \eta_i^t (\hat{y}_{1,i}^t - \hat{y}_{2,i}^{t-1}) \right\|^2 \\
882 &\leq \left\| \frac{1}{m} \sum_{i=1}^m (1 + a_2) \eta_i^t (y_{1,i}^t - y_{2,i}^{t-1}) \right\|^2 + \frac{1}{m} \sum_{i=1}^m \left(1 + \frac{1}{a_2}\right) \|\eta_i^t (\hat{y}_{1,i}^t - \hat{y}_{2,i}^{t-1})\|^2, \\
883 &\leq \left\| \frac{1}{m} \sum_{i=1}^m (1 + a_2) \eta_i^t L_i^t (x_i^t - x_i^{t-1}) \right\|^2 + \frac{1}{m} \sum_{i=1}^m \left(1 + \frac{1}{a_2}\right) \|\eta_i^t (\hat{y}_{1,i}^t - \hat{y}_{2,i}^{t-1})\|^2,
\end{aligned} \tag{9}$$

884 for any $a_2 \in \mathbb{R}^+$.
885

886 Consider the second term on the right-hand side of equation 9.
887

$$\mathbb{E} \left[\frac{1}{m} \sum_{i=1}^m \left(1 + \frac{1}{a_2}\right) \|\eta_i^t (\hat{y}_{1,i}^t - \hat{y}_{2,i}^{t-1})\|^2 \right] \leq \frac{2}{m} \sum_{i=1}^m \eta_{\max}^2 \left(1 + \frac{1}{a_2}\right) \mathbb{E} [\|\hat{y}_{1,i}^t\|^2 + \|\hat{y}_{2,i}^{t-1}\|^2]. \tag{10}$$

888 Substituting equation 10 into equation 9 yields
889

$$\begin{aligned}
890 \mathbb{E} [\|\bar{\eta}^t (\bar{y}_1^t - \bar{y}_2^{t-1})\|^2] &\leq \mathbb{E} \left[\left\| \frac{1}{m} \sum_{i=1}^m (1 + a_2) \eta_i^t L_i^t (x_i^t - x_i^{t-1}) \right\|^2 \right] \\
891 &\quad + \frac{2}{m} \sum_{i=1}^m \eta_{\max}^2 \left(1 + \frac{1}{a_2}\right) \mathbb{E} [\|\hat{y}_{1,i}^t\|^2 + \|\hat{y}_{2,i}^{t-1}\|^2].
\end{aligned} \tag{11}$$

892 We proceed to estimate a lower bound on the second term on the right-hand side of equation 8.
893

$$\begin{aligned}
894 \|\bar{\eta}^t \bar{y}_2^{t-1}\|^2 &= (\bar{\eta}^t)^2 \|\bar{y}_2^{t-1}\|^2 = (\bar{\eta}^t)^2 \|\bar{y}_2^{t-1} - \bar{y}_1^{t-1} + \bar{y}_1^{t-1}\|^2 \\
895 &\geq (1 - a_3) (\bar{\eta}^t)^2 \|\bar{y}_1^{t-1}\|^2 + \left(1 - \frac{1}{a_3}\right) (\bar{\eta}^t)^2 \|\bar{y}_2^{t-1} - \bar{y}_1^{t-1}\|^2,
\end{aligned} \tag{12}$$

896 for any $a_3 \in (0, 1)$, where in the derivation we have used the inequality $\|a + b\|^2 \geq (1 - \frac{1}{\alpha})\|a\|^2 +$
897 $(1 - \alpha)\|b\|^2$, for any $a \in (0, 1)$.
898

918 Since the relationship $1 - \frac{1}{a_4} < 0$ holds, the second term on the right-hand side of equation 12
 919 satisfies
 920

$$\begin{aligned} 921 \quad & \left(1 - \frac{1}{a_4}\right) \mathbb{E} [(\bar{\eta}^t)^2 \|\bar{y}_2^{t-1} - \bar{y}_1^{t-1}\|^2] \\ 922 \quad & \geq \left(1 - \frac{1}{a_4}\right) (\eta_{\max})^2 \frac{1}{m} \sum_{i=1}^m \mathbb{E} [\|(g_i^{t-1}(x_i^{t-1}) - g_i^{t-2}(x_i^{t-1}))\|^2] \geq 2 \left(1 - \frac{1}{a_4}\right) \frac{\eta_{\max}^2 \sigma^2}{|\mathcal{B}|}. \end{aligned} \quad (13)$$

927 By using the inequality $\sum_{i=1}^n a_i^2 \leq (\sum_{i=1}^n a_i)^2 \leq n \sum_{i=1}^n a_i^2$ for any nonnegative constants
 928 a_1, \dots, a_n , the first term on the right-hand side of equation 12 satisfies
 929

$$\begin{aligned} 930 \quad & \mathbb{E} [(\bar{\eta}^t)^2 \|\bar{y}_1^{t-1}\|^2] = \mathbb{E} [(\|\bar{\eta}^t \bar{y}_1^{t-1}\|)^2] = \mathbb{E} \left[\left(\frac{1}{m} \sum_{i=1}^m \|\eta_i^t \bar{y}_1^{t-1}\| \right)^2 \right] \\ 931 \quad & = \mathbb{E} \left[\left(\frac{1}{m} \sum_{i=1}^m \eta_i^t \|y_{1,i}^{t-1} - \hat{y}_{1,i}^{t-1}\| \right)^2 \right] \\ 932 \quad & \geq (1 - a_5) \mathbb{E} \left[\left\| \frac{1}{m} \sum_{i=1}^m \eta_i^t y_{1,i}^{t-1} \right\|^2 \right] + \left(1 - \frac{1}{a_5}\right) \frac{\eta_{\max}^2}{m} \mathbb{E} [\|\hat{y}_{1,i}^{t-1}\|^2], \end{aligned} \quad (14)$$

940 holds for any $a_5 \in (0, 1)$.
 941

942 We estimate a lower bound on the first term on the right-hand side of equation 14 as follows:

$$\begin{aligned} 943 \quad & \mathbb{E} \left[\left\| \frac{1}{m} \sum_{i=1}^m \eta_i^t y_{1,i}^{t-1} \right\|^2 \right] = \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{\eta_i^t}{\eta_i^{t-1}} \|x_i^t(0) - x_i^{t-1}\| \right)^2 \right] \\ 944 \quad & \geq (1 - a_6) \mathbb{E} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{\eta_i^t}{\eta_i^{t-1}} \|\bar{x}^t - \bar{x}^{t-1}\| \right)^2 \right] \\ 945 \quad & + \left(1 - \frac{1}{a_6}\right) \sum_{i=1}^m \mathbb{E} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{\eta_i^t}{\eta_i^{t-1}} \|\hat{x}_i^t(0) - \hat{x}_i^{t-1}\| \right)^2 \right], \end{aligned} \quad (15)$$

946 for any $a_6 \in (0, 1)$.
 947

948 By the inequality $\rho^{2M} \sum_{i=1}^m \|\hat{x}_i^t(0)\|^2 \geq \sum_{i=1}^m \|\hat{x}_i^t\|^2$, which will be proved in the subsequent
 949 Lemma 3, we have
 950

$$951 \quad \sum_{i=1}^m \mathbb{E} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{\eta_i^t}{\eta_i^{t-1}} \|\hat{x}_i^t(0) - \hat{x}_i^{t-1}\| \right)^2 \right] \leq \beta^2 \frac{1}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t(0)\|^2 + \rho^{2M} \|\hat{x}_i^{t-1}(0)\|^2]. \quad (16)$$

952 Finally, using inequalities equation 12 -equation 16, we arrive at
 953

$$\begin{aligned} 954 \quad & \mathbb{E} [\|\bar{\eta}^t \bar{y}_2^{t-1}\|^2] \geq (1 - a_4)(1 - a_5)(1 - a_6) \mathbb{E} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{\eta_i^t}{\eta_i^{t-1}} \|\bar{x}^t - \bar{x}^{t-1}\| \right)^2 \right] \\ 955 \quad & + 2 \left(1 - \frac{1}{a_4}\right) \frac{\eta_{\max}^2 \sigma^2}{|\mathcal{B}|} + (1 - a_4) \left(1 - \frac{1}{a_5}\right) \frac{\eta_{\max}^2}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^{t-1}\|^2] \\ 956 \quad & + (1 - a_4)(1 - a_5) \left(1 - \frac{1}{a_6}\right) \beta^2 \frac{1}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t(0)\|^2 + \rho^{2M} \|\hat{x}_i^{t-1}(0)\|^2]. \end{aligned} \quad (17)$$

972 Next, we estimate an upper bound for the last term on the right-hand side of equation 8 as follows:
973

$$\begin{aligned}
974 \quad 2\mathbb{E} [\langle \bar{\eta}^t \bar{y}_1^t, \bar{\eta}^t \bar{y}_2^{t-1} \rangle] &= \frac{2}{m} \sum_{i=1}^m \mathbb{E} [\langle \bar{\eta}^t \bar{y}_1^t, \eta_i^t (\bar{y}_2^{t-1} - \bar{y}_1^{t-1} + \bar{y}_1^{t-1}) \rangle] \\
975 \\
976 \quad &= \frac{2}{m} \sum_{i=1}^m \mathbb{E} [\langle \bar{\eta}^t \bar{y}_1^t, \eta_i^t y_{1,i}^{t-1} \rangle] - \frac{2}{m} \sum_{i=1}^m \mathbb{E} [\langle \bar{\eta}^t \bar{y}_1^t, \eta_i^t \hat{y}_{1,i}^{t-1} \rangle] + \frac{2}{m} \sum_{i=1}^m \mathbb{E} [\langle \bar{\eta}^t \bar{y}_1^t, \eta_i^t (\bar{y}_2^{t-1} - \bar{y}_1^{t-1}) \rangle] \\
977 \\
978 \quad &= \frac{2}{m} \sum_{i=1}^m \mathbb{E} \left[\left\langle \bar{\eta}^t \bar{y}_1^t, \frac{\eta_i^t}{\eta_i^{t-1}} (x_i^{t-1} - x_i^t(0)) \right\rangle \right] - \frac{2}{m} \sum_{i=1}^m \mathbb{E} [\langle \bar{\eta}^t \bar{y}_1^t, \eta_i^t \hat{y}_{1,i}^{t-1} \rangle] \\
979 \\
980 \quad &\quad + \frac{2}{m} \sum_{i=1}^m \mathbb{E} [\langle \bar{\eta}^t \bar{y}_1^t, \eta_i^t (\bar{y}_2^{t-1} - \bar{y}_1^{t-1}) \rangle] \\
981 \\
982 \quad &\leq \frac{2}{m} \sum_{i=1}^m \mathbb{E} \left[\left\langle \bar{\eta}^t \bar{y}_1^t, \frac{\eta_i^t}{\eta_i^{t-1}} (x_i^{t-1} - x_i^t(0)) \right\rangle \right] + 2a_7 \mathbb{E} [\|\bar{\eta}^t \bar{y}_1^t\|^2] + \frac{1}{m} \sum_{i=1}^m \mathbb{E} \left[\frac{\eta_{\max}^2}{a_7} \|\hat{y}_{1,i}^{t-1}\|^2 \right] \\
983 \\
984 \quad &\quad + \mathbb{E} \left[\frac{\eta_{\max}^2}{a_7} \|\bar{y}_2^{t-1} - \bar{y}_1^{t-1}\|^2 \right], \tag{18}
\end{aligned}$$

990 with $a_7 = \frac{1-124a_1}{250} > 0$, where we have used the inequality $2\langle a, b \rangle \leq \frac{1}{\alpha} \|a\|^2 + \alpha \|b\|^2$ in the last
991 inequality.
992

993 Next, we need to transform the first term on the right-hand side of equation 18.

$$\begin{aligned}
994 \quad 2\mathbb{E} \left[\left\langle \bar{\eta}^t \bar{y}_1^t, \frac{\eta_i^t}{\eta_i^{t-1}} (x_i^{t-1} - x_i^t) \right\rangle \right] \\
995 \\
996 \quad = 2\mathbb{E} \left[\left\langle \bar{\eta}^t \bar{y}_1^t, \frac{\eta_i^t}{\eta_i^{t-1}} (\bar{x}^{t-1} - \bar{x}^t) \right\rangle \right] + 2\mathbb{E} \left[\left\langle \bar{\eta}^t \bar{y}_1^t, \frac{\eta_i^t}{\eta_i^{t-1}} (\hat{x}_i^{t-1} - \hat{x}_i^t) \right\rangle \right] \\
997 \\
998 \quad \leq \frac{2}{m} \sum_{j=1}^m \mathbb{E} \left[\left\langle \eta_j^t \bar{y}_1^t, \frac{\eta_i^t}{\eta_i^{t-1}} (\bar{x}^{t-1} - \bar{x}^t) \right\rangle \right] + a_7 \mathbb{E} [\|\bar{\eta}^t \bar{y}_1^t\|^2] + \frac{2\beta^2}{a_7} \mathbb{E} [\|\hat{x}_i^{t-1}\|^2] + \frac{2\beta^2}{a_7} \mathbb{E} [\|\hat{x}_i^t\|^2]. \tag{19}
\end{aligned}$$

1003 Then, we estimate an upper bound on the first term on the right-hand side of equation 19 as follows:

$$\begin{aligned}
1004 \quad \mathbb{E} \left[\left\langle \eta_j^t \bar{y}_1^t, \frac{\eta_i^t}{\eta_i^{t-1}} (\bar{x}^{t-1} - \bar{x}^t) \right\rangle \right] &= \mathbb{E} \left[\eta_j^t \left\langle \bar{y}_1^t - \nabla f(\bar{x}^t), \frac{\eta_i^t}{\eta_i^{t-1}} (\bar{x}^{t-1} - \bar{x}^t) \right\rangle \right] \\
1005 \\
1006 \quad &\quad + \mathbb{E} \left[\eta_j^t \left\langle \nabla f(\bar{x}^t), \frac{\eta_i^t}{\eta_i^{t-1}} (\bar{x}^{t-1} - \bar{x}^t) \right\rangle \right] \\
1007 \\
1008 \quad &\leq \mathbb{E} \left[\eta_j^t \left\langle \bar{y}_1^t - \nabla f(\bar{x}^t), \frac{\eta_i^t}{\eta_i^{t-1}} (\bar{x}^{t-1} - \bar{x}^t) \right\rangle \right] + \frac{1}{\beta} \mathbb{E} [\eta_j^t (f(\bar{x}^{t-1}) - f(\bar{x}^t))], \tag{20}
\end{aligned}$$

1012 with $\nabla f(\bar{x}^t) = \frac{1}{m} \sum_{i=1}^m \nabla f_i(\bar{x}^t)$, where we have used the convexity of the function $f(x)$ and the
1013 relationship $\frac{\eta_i^t}{\eta_i^{t-1}} \leq \frac{1}{\beta}$ for any given t in the last inequality.
1014

1015 The first term on the right-hand side of equation 20 can be bounded by
1016

$$\begin{aligned}
1017 \quad \frac{1}{m} \sum_{i=1}^m \mathbb{E} \left[\left\langle \bar{y}_1^t - \nabla f(\bar{x}^t), \frac{\eta_i^t}{\eta_i^{t-1}} (\bar{x}^{t-1} - \bar{x}^t) \right\rangle \right] \\
1018 \\
1019 \quad \leq \frac{1}{2a_8} \mathbb{E} [\|\bar{y}_1^t - \nabla f(\bar{x}^t)\|^2] + \frac{a_8}{2} \mathbb{E} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{\eta_i^t}{\eta_i^{t-1}} \right)^2 \|\bar{x}^{t-1} - \bar{x}^t\|^2 \right], \tag{21}
\end{aligned}$$

1023 Since the random variables $g_i^{t-1}(x_i^t) - \nabla f_i(x_i^t)$, $i = 1, \dots, m$, are mutually independent,
1024 and $\mathbb{E} [g_i^{t-1}(x_i^t) - \nabla f_i(x_i^t)] = 0$, we have $\mathbb{E} \left[\left\| \frac{1}{m} \sum_{j=1}^m (g_j^{t-1}(x_j^t) - \nabla f_j(x_j^t)) \right\|^2 \right] =$
1025

1026 $\frac{1}{m^2} \sum_{i=1}^m \mathbb{E} \left[\|g_i^{t-1}(x_i^t) - \nabla f_i(x_i^t)\|^2 \right] = \frac{\sigma^2}{|B| m}$. Using the L -smoothness of f_j , the relationship
1027 $\bar{y}_1^t = \frac{1}{m} \sum_{j=1}^m g_j^{t-1}(x_j^t)$, and the inequality $\left\| \frac{1}{m} \sum_{i=1}^m a_i \right\|^2 \leq \frac{1}{m} \sum_{i=1}^m \|a_i\|^2$ for any $a_1, \dots, a_m \in$
1028 \mathbb{R}^n , we have

$$\begin{aligned}
& \mathbb{E} [\|\bar{y}_1^t - \nabla f(\bar{x}^t)\|^2] \\
&= \mathbb{E} \left[\left\| \frac{1}{m} \sum_{i=1}^m g_i^{t-1}(x_i^t) - \frac{1}{m} \sum_{i=1}^m \nabla f_i(\bar{x}^t) \right\|^2 \right] \\
&\leq 2\mathbb{E} \left[\left\| \frac{1}{m} \sum_{i=1}^m (g_i^{t-1}(x_i^t) - \nabla f_i(x_i^t)) \right\|^2 \right] + 2\mathbb{E} \left[\left\| \frac{1}{m} \sum_{i=1}^m (\nabla f_i(\bar{x}^t) - \nabla f_i(x_i^t)) \right\|^2 \right] \\
&\leq \frac{2}{m^2} \sum_{j=1}^m \mathbb{E} [\|g_j^{t-1}(x_j^t) - \nabla f_j(x_j^t)\|^2] + \frac{2}{m} \sum_{i=1}^m \mathbb{E} [\|\nabla f_i(\bar{x}^t) - \nabla f_i(x_i^t)\|^2] \\
&\leq \frac{2L^2}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t\|^2] + \frac{2\sigma^2}{|\mathcal{B}|m}.
\end{aligned} \tag{22}$$

Substituting equation 22 into equation 21 yields

$$\begin{aligned}
& \frac{1}{m} \sum_{i=1}^m \mathbb{E} \left[\left\langle \bar{y}_1^t - \nabla f(\bar{x}^t), \frac{\eta_i^t}{\eta_i^{t-1}} (\bar{x}^{t-1} - \bar{x}^t) \right\rangle \right] \\
& \leq \frac{L^2}{ma_8} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t\|^2] + \frac{a_8}{2} \mathbb{E} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{\eta_i^t}{\eta_i^{t-1}} \right)^2 \|\bar{x}^{t-1} - \bar{x}^t\|^2 \right] + \frac{\sigma^2}{|\mathcal{B}|ma_8}, \quad (23)
\end{aligned}$$

Combining equation 18 and equation 23, we obtain the following inequality:

$$\begin{aligned}
& 2\mathbb{E} [\langle \bar{\eta}^t \bar{y}_1^t, \bar{\eta}^t \bar{y}_1^{t-1} \rangle] \leq 2a_7 \mathbb{E} [\|\bar{\eta}^t \bar{y}_1^t\|^2] + \frac{\eta_{\max}^2}{a_7 m} \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^{t-1}\|^2] \\
& + a_8 \mathbb{E} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{\eta_i^t}{\eta_i^{t-1}} \right)^2 \|\bar{x}^{t-1} - \bar{x}^t\|^2 \right] + \frac{2\beta^2}{a_7 m} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^{t-1}\|^2] + \frac{2\sigma^2}{|\mathcal{B}| m a_8} \\
& + \frac{1}{m} \sum_{i=1}^m \left(\frac{L^2 \eta_{\max}}{a_7} + \frac{2\beta^2}{a_7} + \frac{2L^2}{a_8} \right) \mathbb{E} [\|\hat{x}_i^t\|^2] + \frac{2}{m\beta} \sum_{i=1}^m \mathbb{E} [\eta_i^t (f(\bar{x}^{t-1}) - f(\bar{x}^t))]. \tag{24}
\end{aligned}$$

Substituting equation 11, equation 17, and equation 24 into equation 8, we obtain

$$\begin{aligned}
& (1 - 2a_7)\mathbb{E} [\|\bar{\eta}^t \bar{y}_1^t\|^2] \leq (1 + a_2)\mathbb{E} \left[\left\| \frac{1}{m} \sum_{i=1}^m \eta_i^t L_i^t (x_i^t - x_i^{t-1}) \right\|^2 \right] \\
& - ((1 - a_5)(1 - a_6)(1 - a_7) - a_8) \mathbb{E} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{\eta_i^t}{\eta_i^{t-1}} \|\bar{x}^t - \bar{x}^{t-1}\| \right)^2 \right] \\
& + \frac{2\beta}{m} \sum_{i=1}^m \mathbb{E} [\eta_i^t (f(\bar{x}^{t-1}) - f(\bar{x}^t))] + \delta_1^t,
\end{aligned} \tag{25}$$

1080 where the constant δ_1^t is given by
1081
1082
$$\delta_1^t = \frac{1}{m} \sum_{i=1}^m \left(\frac{L^2 \eta_{\max}}{a_7} + \frac{2\beta^2}{a_7} + \frac{2L^2}{a_8} \right) \mathbb{E} [\|\hat{x}_i^t\|^2] + \frac{2\beta^2}{a_7 m} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^{t-1}\|^2] + \frac{2\sigma^2}{|\mathcal{B}| m a_8}$$

1083
1084
$$+ \frac{\eta_{\max}^2}{a_7 m} \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^{t-1}\|^2] + 2 \left(1 - \frac{1}{a_4}\right) \frac{\eta_{\max}^2 \sigma^2}{|\mathcal{B}|} + (1 - a_5) \left(1 - \frac{1}{a_6}\right) \frac{\eta_{\max}^2}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^{t-1}\|^2]$$

1085
1086
$$+ (1 - a_4)(1 - a_5) \left(1 - \frac{1}{a_6}\right) \beta^2 \frac{1}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t(0)\|^2 + \rho^{2M} \|\hat{x}_i^{t-1}(0)\|^2]$$

1087
1088
$$+ \frac{2}{m} \sum_{i=1}^m \eta_{\max}^2 \left(1 + \frac{1}{a_2}\right) \mathbb{E} [\|\hat{y}_{1,i}^t\|^2 + \|\hat{y}_{2,i}^{t-1}\|^2].$$
 (26)
1089

1093 By Step 14 in Algorithm 1, we have
1094

$$\eta_i^t \leq \frac{7\sqrt{r}}{10} \frac{\eta_i^{t-1}}{\sqrt{[m(\eta_i^{t-1} L_i^t)^2 - 1]_+}}. \quad (27)$$

1098 When $m(\eta_i^{t-1} L_i^t)^2 \leq 1$,

$$(\eta_i^t L_i^t)^2 - \frac{(\eta_i^t)^2}{m(\eta_i^{t-1})^2} = (\eta_i^t)^2 \left((L_i^t)^2 - \frac{1}{m(\eta_i^{t-1})^2} \right) \leq 0 \leq \frac{49r}{100}. \quad (28)$$

1102 When $m(\eta_i^{t-1} L_i^t)^2 > 1$, equation 27 can be rewritten as
1103

$$\eta_i^t \leq \frac{7\sqrt{r}}{10} \frac{\eta_i^{t-1}}{\sqrt{m(\eta_i^{t-1} L_i^t)^2 - 1}}. \quad (29)$$

1107 It implies that

$$(\eta_i^t L_i^t)^2 - \frac{(\eta_i^t)^2}{m(\eta_i^{t-1})^2} \leq \frac{49r}{100m} \leq \frac{49r}{100}. \quad (30)$$

1110 According to equation 28 and equation 30, we always have
1111

$$(\eta_i^t L_i^t)^2 - \frac{(\eta_i^t)^2}{m(\eta_i^{t-1})^2} \leq \frac{49r}{100}. \quad (31)$$

1114 Choose a_2, a_5, a_6, a_7 , and a_8 such that the
1115

$$a_2 \leq \frac{1-r}{4\beta^2}, \max\{a_5, a_6, a_7, a_8\} \leq \frac{47(1-r)}{1600\beta^2}. \quad (32)$$

1118 Then we have

$$\begin{aligned} & (1 + a_2)(\eta_i^t L_i^t)^2 - ((1 - a_5)(1 - a_6)(1 - a_7) - a_8) \frac{(\eta_i^t)^2}{m(\eta_i^{t-1})^2} \\ & \leq (1 + a_2) \left((\eta_i^t L_i^t)^2 - \frac{((1 - a_5)(1 - a_6)(1 - a_7) - a_8) \frac{(\eta_i^t)^2}{m(\eta_i^{t-1})^2}}{1 + a_2} \right) \\ & \leq (1 + a_2) \left((\eta_i^t L_i^t)^2 - \frac{(\eta_i^t)^2}{m(\eta_i^{t-1})^2} \right) + ((1 + a_2) - (1 - a_5)(1 - a_6)(1 - a_7) + a_8) \beta^2 \\ & \leq \frac{49}{100} \left(1 - \frac{3(1-r)}{4} \right) + \frac{147(1-r)}{400} \leq \frac{49}{100}, \end{aligned} \quad (33)$$

1129 where we use the relationship $\frac{(\eta_i^t)^2}{m(\eta_i^{t-1})^2} \leq \beta^2$, $(1 + a_2) \frac{49r}{100} = \frac{49}{100} r (1 + \frac{1-r}{4}) \leq \frac{49}{100} \left(1 - \frac{3(1-r)}{4} \right)$,
1130 and

$$\begin{aligned} & (1 + a_2) - (1 - a_5)(1 - a_6)(1 - a_7) + a_8 \leq a_2 + a_5 + a_6 + a_7 + a_8 \\ & \leq \frac{1-r}{4\beta^2} + \frac{47(1-r)}{400\beta^2} \leq \frac{147(1-r)}{400\beta^2}. \end{aligned}$$

1134 Since $\frac{\eta_i^t}{\eta_i^{t-1}} \leq \beta$, it follows from equation 33 that
 1135

$$1136 \eta_i^t L_i^t \leq \frac{1}{1+a_2} \left(((1-a_5)(1-a_6)(1-a_7) - a_8) \frac{(\eta_i^t)^2}{m(\eta_i^{t-1})^2} + \frac{49}{100} \right) < \frac{1}{1+a_2} \left(\beta^2 + \frac{1}{2} \right). \quad (34)$$

1139
 1140 Hence, it follows from equation 27 that
 1141

$$1142 (1+a_2)\mathbb{E} \left[\left\| \eta_i^t L_i^t (\bar{x}^t - \bar{x}^{t-1}) \right\|^2 \right] - \frac{(1-a_5)(1-a_6)(1-a_7) - a_8}{m} \mathbb{E} \left[\left(\frac{\eta_i^t}{\eta_i^{t-1}} \|\bar{x}^t - \bar{x}^{t-1}\| \right)^2 \right] \\ 1143 \\ 1144 \leq \frac{49}{100} \mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2]. \quad (35)$$

1145 Applying the fact if $\|a_i\|^2 \leq \frac{1}{m} \|b_i\|^2 + \|c\|^2$ for all $i = 1, \dots, m$, then $\|\bar{a}\|^2 \leq \|\bar{b}\|^2 + \|c\|^2$, where
 1146
 1147 a_i, b_i , and c are positive constants, $\bar{a} = \frac{1}{m} \sum_{i=1}^m a_i$, $\bar{b} = \frac{1}{m} \sum_{i=1}^m b_i$, we have
 1148

$$1149 \\ 1150 (1+a_2)\mathbb{E} \left[\left\| \frac{1}{m} \sum_{i=1}^m \eta_i^t L_i^t (x_i^t - x_i^{t-1}) \right\|^2 \right] \\ 1151 \\ 1152 - ((1-a_5)(1-a_6)(1-a_7) - a_8) \mathbb{E} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{\eta_i^t}{\eta_i^{t-1}} \|\bar{x}^t - \bar{x}^{t-1}\| \right)^2 \right] \quad (36) \\ 1153 \\ 1154 \leq \frac{24}{50} \mathbb{E} \left[\left\| \frac{1}{m} \sum_{i=1}^m (\bar{x}^t - \bar{x}^{t-1}) \right\|^2 \right] + 48(1+a_2) \frac{1}{m} \sum_{i=1}^m \mathbb{E} \left[\left\| \eta_i^t L_i^t (\hat{x}_i^t - \hat{x}_i^{t-1}) \right\|^2 \right]. \\ 1155 \\ 1156 \\ 1157 \\ 1158 \\ 1159$$

1160 By equation 34, we have
 1161

$$1162 (1+a_2)\mathbb{E} \left[\left\| \eta_i^t L_i^t (\hat{x}_i^t - \hat{x}_i^{t-1}) \right\|^2 \right] \leq (2\beta^2 + 1) \mathbb{E} \left[\left\| \hat{x}_i^t \right\|^2 + \left\| \hat{x}_i^{t-1} \right\|^2 \right]. \quad (37)$$

1164 Based on the above analysis, we can rewrite equation 36 as follows:
 1165

$$1166 (1-2a_8)\mathbb{E} [\|\bar{\eta}^t \bar{y}_1^t\|^2] \leq \frac{24}{50} \mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2] + \frac{2\beta^2 + 1}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t\|^2 + \|\hat{x}_i^{t-1}\|^2] \\ 1167 \\ 1168 + \frac{2\beta}{m} \sum_{i=1}^m \mathbb{E} [\eta_i^t (f(\bar{x}^{t-1}) - f(\bar{x}^t))] + \delta_1^t. \quad (38)$$

1172 By substituting equation 38 into equation 7, we obtain
 1173

$$1174 \mathbb{E} [\|\bar{x}^{t+1} - \bar{x}^t\|^2] \\ 1175 \leq c_1 \mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2] + \frac{2(1+a_1)}{m\beta(1-2a_8)} \sum_{i=1}^m \mathbb{E} [\eta_i^t (f(\bar{x}^{t-1}) - f(\bar{x}^t))] + \delta_3^t, \quad (39)$$

1179 with $\delta_2^t = \frac{1+a_1}{1-2a_8} \left(\delta_1^t + \frac{2\beta^2 + 1}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t\|^2 + \|\hat{x}_i^{t-1}\|^2] \right) + (1 + \frac{1}{a_1}) \frac{1}{m} \sum_{i=1}^m \eta_{\max}^2 \|\hat{y}_{1,i}^t\|^2$ and
 1180
 1181 $c_1 = \frac{1+a_1}{1-2a_8} \left(\frac{24(1+a_7)}{50} \right)$. Choose a_8 as
 1182

$$1183 a_8 = \frac{1-124a_1}{250} > 0, \quad (40)$$

1185 where a_8 exists due to $a_1 < \frac{1}{124}$ given in the lemma statement. Then we have
 1186

$$1187 c_1 = \frac{24}{50} \times \frac{1+a_1}{1-2a_8} < \frac{1}{2}. \quad (41)$$

1188 Substituting the second equation in equation 40 and equation 41 into equation 39, we obtain
 1189

$$\begin{aligned} 1190 \mathbb{E} [\|\bar{x}^{t+1} - \bar{x}^t\|^2] \\ 1191 &\leq c_1 \mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2] + \frac{125}{62m\beta} \sum_{i=1}^m \mathbb{E} [\eta_i^t (f(\bar{x}^{t-1}) - f(\bar{x}^t))] + \delta_3^t. \end{aligned} \quad (42)$$

1194 Multiplying both sides of equation 42 by 2 leads to
 1195

$$\begin{aligned} 1196 \mathbb{E} [\|\bar{x}^{t+1} - \bar{x}^t\|^2] &\leq 2c_1 \mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2] - \mathbb{E} [\|\bar{x}^{t+1} - \bar{x}^t\|^2] \\ 1197 &\quad + \frac{125}{31\beta} \mathbb{E} [\bar{\eta}^t (f(\bar{x}^{t-1}) - f(\bar{x}^t))] + 2\delta_3^t, \end{aligned} \quad (43)$$

1199 which implies Lemma 1. \square
 1200

1201 **Lemma 2.** *Under Assumptions 1 and 2, the following inequality holds for Algorithm 1:*
 1202

$$\begin{aligned} 1203 \mathbb{E} [\|\bar{x}^{t+1} - x^*\|^2] &+ \mathbb{E} [\|\bar{x}^{t+1} - \bar{x}^t\|^2] + \left(2 + \frac{125\beta}{31}\right) \bar{\eta}^t \mathbb{E} [f(\bar{x}^t) - f(x^*)] \\ 1204 &\leq \left(1 - \frac{\mu}{2L} + a_9\mu\eta_{\max}\right) \mathbb{E} [\|\bar{x}^t - x^*\|^2] + \frac{45}{46} \mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2] \\ 1205 &\quad + \gamma \left(2 + \frac{125\beta}{31}\right) \mathbb{E} [\bar{\eta}^{t-1} (f(\bar{x}^{t-1}) - f(x^*))] + \delta_5^t, \end{aligned} \quad (44)$$

1210 for any $\gamma \in (0, 1)$, where the constant δ_5^t is given by
 1211

$$\begin{aligned} 1212 \delta_5^t &= \frac{2\bar{b}_{\hat{x},1}}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t\|^2] + \frac{\bar{b}_{\hat{x},2}}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^{t-1}\|^2] + \frac{\bar{b}_{\hat{x},2}}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t(0)\|^2] + \frac{\bar{b}_{\hat{y},1}}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^t\|^2] \\ 1213 &\quad + \frac{\bar{b}_{\hat{y},2}}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^{t-1}\|^2] + \frac{\bar{b}_{\hat{y},3}}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{2,i}^{t-1}\|^2] + \frac{\bar{b}_\sigma \sigma^2}{|\mathcal{B}|}, \end{aligned} \quad (45)$$

1218 where $\bar{b}_{\hat{x},1} = 2b_{\hat{x},1} + \frac{2\eta_{\max}L^2}{a_9\mu}$, $\bar{b}_{\hat{x},2} = 2b_{\hat{x},2}$, $\bar{b}_{\hat{y},1} = 2b_{\hat{y},1} + \frac{2\eta_{\max}L^2}{a_9\mu}$, $\bar{b}_{\hat{y},2} = 2b_{\hat{y},2}$, $\bar{b}_{\hat{y},3} = 2b_{\hat{y},3}$,
 1219 and $\bar{b}_\sigma = 2b_\sigma + \frac{2\eta_{\max}L^2}{a_9\mu}$.
 1220

1222 *Proof.* According to the dynamics of x_i^t in Algorithm 1, we have
 1223

$$\begin{aligned} 1224 \mathbb{E} [\|\bar{x}^{t+1} - x^*\|^2] &= \mathbb{E} [\|\bar{x}^t - \bar{\eta}^t y^t - x^*\|^2] \\ 1225 &= \mathbb{E} [\|\bar{x}^t - x^*\|^2] + \mathbb{E} [\|\bar{\eta}^t y^t\|^2] - 2\mathbb{E} [\langle \bar{x}^t - x^*, \bar{\eta}^t y^t \rangle] \\ 1226 &= \mathbb{E} [\|\bar{x}^t - x^*\|^2] + \mathbb{E} [\|\bar{x}^{t+1} - \bar{x}^t\|^2] - 2\mathbb{E} [\langle \bar{x}^t - x^*, \bar{\eta}^t y^t \rangle], \end{aligned} \quad (46)$$

1230 with $\bar{\eta}^t y^t := \frac{1}{N} \sum_{i=1}^N \eta_i^t y_{1,i}^t$.
 1231

1232 The third term on the right-hand side of equation 46 satisfies:
 1233

$$\begin{aligned} 1234 2\mathbb{E} [\langle \bar{x}^t - x^*, \bar{\eta}^t y^t \rangle] &= -2\langle \bar{x}^t - x^*, \frac{1}{m} \sum_{i=1}^m \eta_i^t y_{1,i}^t \rangle \\ 1235 &\leq -2\mathbb{E} [\bar{\eta}^t (f(\bar{x}^t) - f(x^*)) - \mu\eta_{\min} \|\bar{x}^t - x^*\|^2] \\ 1236 &\quad - 2\mathbb{E} \left[\left\langle \bar{x}^t - x^*, \frac{1}{m} \sum_{i=1}^m \eta_i^t (y_{1,i}^t - \nabla f(\bar{x}^t)) \right\rangle \right], \end{aligned} \quad (47)$$

1238 where in the derivation we have used the μ -strong convexity of $f(x)$ and $\eta_{\min} = \min_{i \in [m], t \in \mathbb{N}^+} \eta_i^t$.
 1239 Furthermore, since the function f is L-smoothness, the minimum of the stepsizes exists.
 1240

1242 By using the Cauchy–Schwarz inequality, the third term on the right-hand side of inequality equation 47 satisfies
1243
1244

$$\begin{aligned}
& -2\mathbb{E} \left[\left\langle \bar{x}^t - x^*, \frac{1}{m} \sum_{i=1}^m \eta_i^t (y_{1,i}^t - \nabla f(\bar{x}^t)) \right\rangle \right] \\
& = -\frac{2}{m} \sum_{i=1}^m \mathbb{E} \left[\left\langle \sqrt{\eta_i^t} (\bar{x}^t - x^*), \sqrt{\eta_i^t} (y_{1,i}^t - \nabla f(\bar{x}^t)) \right\rangle \right] \\
& \leq \frac{2}{m} \sqrt{\left(\sum_{i=1}^m \mathbb{E} \left[\left\| \sqrt{\eta_i^t} (\bar{x}^t - x^*) \right\|^2 \right] \right) \left(\sum_{i=1}^m \mathbb{E} \left[\left\| \sqrt{\eta_i^t} (y_{1,i}^t - \nabla f(\bar{x}^t)) \right\|^2 \right] \right)}.
\end{aligned}$$

1250
1251
1252
1253
1254 By applying the inequality $2\langle a, b \rangle \leq \alpha \|a\|^2 + \frac{1}{\alpha} \|b\|^2$ for any $\alpha > 0$ and $a, b \in \mathbb{R}^n$ to equation 48, we obtain
1255

$$\begin{aligned}
& -2\mathbb{E} \left[\left\langle \bar{x}^t - x^*, \frac{1}{m} \sum_{i=1}^m \eta_i^t (y_{1,i}^t - \nabla f(\bar{x}^t)) \right\rangle \right] \\
& \leq \frac{a_9 \mu}{m} \sum_{i=1}^m \mathbb{E} [\eta_i^t \|\bar{x}^t - x^*\|^2] + \frac{1}{m a_9 \mu} \sum_{i=1}^m \mathbb{E} [\eta_i^t \|y_{1,i}^t - \nabla f(\bar{x}^t)\|^2] \\
& \leq a_9 \mu \eta_{\max} \mathbb{E} [\|\bar{x}^t - x^*\|^2] + \frac{\eta_{\max}}{m a_9 \mu} \sum_{i=1}^m \mathbb{E} [\|y_{1,i}^t - \nabla f(\bar{x}^t)\|^2]
\end{aligned}$$

1256 for any positive a_9 .
1257

1258 The second term on the right-hand side of equation 48 satisfies
1259

$$\begin{aligned}
& \frac{\eta_{\max}}{m a_9 \mu} \sum_{i=1}^m \mathbb{E} [\|y_{1,i}^t - \nabla f(\bar{x}^t)\|^2] = \frac{\eta_{\max}}{m a_9 \mu} \sum_{i=1}^m \mathbb{E} [\|y_{1,i}^t - \bar{y}_1^t + \bar{y}_1^t - \nabla f(\bar{x}^t)\|^2] \\
& \leq \frac{2\eta_{\max}}{m a_9 \mu} \sum_{i=1}^m \mathbb{E} [\|y_{1,i}^t - \bar{y}_1^t\|^2] + \frac{2\eta_{\max}}{m a_9 \mu} \sum_{i=1}^m \mathbb{E} [\|\bar{y}_1^t - \nabla f(\bar{x}^t)\|^2].
\end{aligned} \tag{48}$$

1274 By using the Lipschitz continuity of ∇f from Assumption 1, we have
1275

$$\begin{aligned}
& \sum_{i=1}^m \mathbb{E} [\|\bar{y}_1^t - \nabla f(\bar{x}^t)\|^2] \leq \frac{1}{m} \sum_{i=1}^m \mathbb{E} [\|g_i^t(x_i^t) - \nabla f_i(\bar{x}^t)\|^2] \\
& = \frac{\sigma^2}{B} + \frac{1}{m} \sum_{i=1}^m \mathbb{E} [\|\nabla f_i^t(x_i^t) - \nabla f_i(\bar{x}^t)\|^2] \leq \frac{\sigma^2}{|\mathcal{B}|} + \frac{L^2}{m} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t\|^2].
\end{aligned}$$

1282 Substituting equation 49 into equation 48 leads to
1283

$$\begin{aligned}
& \frac{\eta_{\max}}{m a_9 \mu} \sum_{i=1}^m \mathbb{E} [\|y_{1,i}^t - \nabla f(\bar{x}^t)\|^2] \\
& \leq \frac{2\eta_{\max}}{m a_9 \mu} \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^t\|^2] + \frac{2\eta_{\max} L^2}{m a_9 \mu} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t\|^2] + \frac{2\eta_{\max} L^2 \sigma^2}{|\mathcal{B}| a_9 \mu}.
\end{aligned} \tag{49}$$

1290 By substituting equation 47 to equation 49 into equation 46, we obtain
1291

$$\begin{aligned}
& \mathbb{E} [\|\bar{x}^{t+1} - x^*\|^2] \leq (1 - \mu \eta_{\min} + a_9 \mu \eta_{\max}) \mathbb{E} [\|\bar{x}^t - x^*\|^2] \\
& + \mathbb{E} [\|\bar{x}^{t+1} - \bar{x}^t\|^2] - 2\mathbb{E} [\eta^t (f(\bar{x}^t) - f(x^*))] + \delta_4^t,
\end{aligned} \tag{50}$$

1292 with $\delta_4^t = \frac{2\eta_{\max}}{m a_9 \mu} \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^t\|^2] + \frac{2\eta_{\max} L^2}{m a_9 \mu} \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t\|^2] + \frac{2\eta_{\max} L^2 \sigma^2}{|\mathcal{B}| a_9 \mu}$.
1293

1296 By adding both sides of equation 4 in Lemma 1 and equation 50, we obtain
1297

$$\begin{aligned} & \mathbb{E} [\|\bar{x}^{t+1} - x^*\|^2] + \mathbb{E} [\|\bar{x}^{t+1} - \bar{x}^t\|^2] + \left(2 + \frac{125\beta}{31}\right) \mathbb{E} [\bar{\eta}^t (f(\bar{x}^t) - f(x^*))] \\ & \leq (1 - \mu\eta_{\min} + a_9\mu\eta_{\max}) \mathbb{E} [\|\bar{x}^t - x^*\|^2] + \frac{45}{46} \mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2] \\ & \quad + \frac{125\beta}{31} \mathbb{E} [\bar{\eta}^t (f(\bar{x}^{t-1}) - f(x^*))] + \delta_5^t, \end{aligned} \quad (51)$$

1304 with $\delta_5^t = \delta_4^t + 2\delta_3^t$.
1305

1306 By setting $\beta \in (1, 1.36)$ and using Line 16 in Algorithm 1, we have $\frac{125\beta}{31}\bar{\eta}^t \leq \frac{125\beta^2}{31}\bar{\eta}^{t-1} =$
1307 $\gamma_1 \left(2 + \frac{125\beta}{31}\right) \bar{\eta}^{t-1}$ for some $\gamma_1 \in (0, \frac{91}{92})$, which implies the following inequality:
1308

$$\frac{125\beta}{31}\bar{\eta}^t \leq \gamma_1 \left(2 + \frac{125\beta}{31}\right) \bar{\eta}^{t-1} \quad \text{and} \quad \frac{125\beta^2}{31} \leq \gamma_1 \left(2 + \frac{125\beta}{31}\right). \quad (52)$$

1312 By letting $a_9 = \frac{\eta_{\min}}{2\eta_{\max}}$, we have
1313

$$\begin{aligned} & \mathbb{E} [\|\bar{x}^{t+1} - x^*\|^2] + \mathbb{E} [\|\bar{x}^{t+1} - \bar{x}^t\|^2] + \left(2 + \frac{125\beta}{31}\right) \mathbb{E} [\bar{\eta}^t (f(\bar{x}^t) - f(x^*))] \\ & \leq \left(1 - \frac{\mu\eta_{\min}}{2}\right) \mathbb{E} [\|\bar{x}^t - x^*\|^2] + \frac{45}{46} \mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2] \\ & \quad + \mathbb{E} \left[\gamma_1 \left(2 + \frac{125\beta}{31}\right) \bar{\eta}^{t-1} (f(\bar{x}^{t-1}) - f(x^*)) \right] + \delta_5^t, \end{aligned} \quad (53)$$

1321 which proves Lemma 2. \square

1322 **Lemma 3.** *Under Assumptions 1 and 2, the following inequality holds for Algorithm 1:*

$$\begin{aligned} & \sum_{i=1}^m \mathbb{E} [\hat{x}_i^t]^2 \leq \rho^{2M} \left(12\eta_{\max}^2 \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^{t-1}\|^2] + (24\eta_{\max}^2 L^2 + 3) \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^{t-1}\|^2] \right. \\ & \quad \left. + 48m\eta_{\max}^2 L^2 \mathbb{E} [\|\bar{x}^t - x^*\|^2] + 48m\eta_{\max}^2 L^2 \mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2] + \frac{12\eta_{\max}^2 \sigma^2}{|\mathcal{B}|} \right), \end{aligned} \quad (54)$$

$$\begin{aligned} & \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^t\|^2] \leq \rho^{2M} \left(18L^2 \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t\|^2] + 18L^2 \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^{t-1}\|^2] + 3 \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^{t-1}\|^2] \right. \\ & \quad \left. + 18mL^2 \mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2] + \frac{36m\sigma^2}{|\mathcal{B}|} \right), \end{aligned} \quad (55)$$

$$\begin{aligned} & \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{2,i}^t\|^2] \leq \rho^{2M} \left(18L^2 \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t\|^2] + 18L^2 \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^{t-1}\|^2] + 3 \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{2,i}^{t-1}\|^2] \right. \\ & \quad \left. + 18mL^2 \mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2] + \frac{36m\sigma^2}{|\mathcal{B}|} \right), \end{aligned} \quad (56)$$

1339 where $\rho < 1$ is from Assumption 2 and M is the number of inner-consensus-loop iterations from
1340 Algorithm 1.

1342 *Proof.* According to Line 5 in Algorithm 1, we have
1343

$$\mathbf{X}^t(q+1) = (W \otimes I_n) \mathbf{X}^t(q), \quad q = 0, 1, \dots, M-1, \quad (57)$$

1345 where $W \in \mathbb{R}^{m \times m}$ is the adjacency matrix given in Assumption 2. Since the relationship $\bar{x}^t(q) =$
1346 $\frac{1}{m} \sum_{i=1}^m x_i^t(q)$ holds, we have

$$\bar{x}^t(q+1) = \frac{1}{m} \sum_{i=1}^m x_i^t(q+1) = \frac{1}{m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} x_j^t(q) = \frac{1}{m} \sum_{j=1}^m x_j^t(q) = \bar{x}^t(q), \quad (58)$$

1350 where we have used Assumption 2 in the derivation.
 1351

1352 By using the definition $\bar{\mathbf{X}}^t = \text{col}(\bar{x}^t, \dots, \bar{x}^t) \in \mathbb{R}^{mn}$ and equation 58, we have
 1353

$$\bar{\mathbf{X}}^t = (W \otimes I_n) \bar{\mathbf{X}}^t. \quad (59)$$

1355 By defining $\Delta^t(q) \triangleq \mathbf{X}^t(q) - \bar{\mathbf{X}}^t$ and subtracting equation 59 from equation 57, we obtain
 1356

$$\begin{aligned} \Delta^t(q+1) &= \mathbf{X}^t(q+1) - \mathbf{X}_1^t = (W \otimes I_n) \Delta^t(q) \\ \Delta^t(q+1) &= (W \otimes I_n) \Delta^t(q). \end{aligned}$$

1359 Since W is a doubly stochastic matrix, there must exist an orthogonal matrix $\Phi \in \mathbb{R}^{m \times m}$ such that
 1360 W satisfies the following transformation:
 1361

$$\Phi^\top W \Phi = \text{diag}\{1, \lambda_2, \dots, \lambda_m\}, \quad (60)$$

1363 with $|\lambda_i| < 1$, $i = 2, \dots, m$. The first column of Φ is given by $\frac{1}{\sqrt{m}} \mathbf{1}_n$, which corresponds to the
 1364 eigenvalue 1 of W . By further considering the following transformation:
 1365

$$\Delta_1^t(q) = (\Phi^\top \otimes I_n) \Delta^t(q), \quad (61)$$

1367 with $\Delta_1^t(q) = [\sigma_1^t(q); \sigma_2^t(q); \dots; \sigma_m^t(q)] \in \mathbb{R}^{mn}$, we have
 1368

$$\sigma_i^t(q) = \sum_{j=1}^m \Phi_{ij}^\top (x_j^t(q) - \bar{x}^t), \quad (62)$$

1372 where Φ_{ij}^\top denotes the element in the i th row and j th column of the matrix Φ^\top . By using $\sigma_1^t(q) =$
 1373 $\frac{1}{\sqrt{m}} \sum_{j=1}^m (x_j^t(q) - \bar{x}^t) = \mathbf{0}$, equation 60 can be rewritten as follows:
 1374

$$\Delta_1^t(q+1) = (\text{diag}\{1, \lambda_2, \dots, \lambda_m\} \otimes I_n) \Delta_1^t(q). \quad (63)$$

1376 Since the relationship $\sigma_1^t(q) = 0$ holds, equation 63 implies
 1377

$$\sigma_i^t(q+1) = \lambda_i \sigma_i^t(q) \leq \rho \sigma_i^t(q) \leq \rho^{q+1} \sigma_i^t(0), \quad (64)$$

1379 with $\rho = \max\{|\lambda_2|, \dots, |\lambda_m|\} < 1$. According to equation 64, we have
 1380

$$\|\Delta^t(M)\|^2 \leq \rho^{2M} \|\Delta^t(0)\|^2, \quad (65)$$

1382 which further implies
 1383

$$\sum_{i=1}^m \|x_i^t - \bar{x}^t\|^2 \leq \rho^{2M} \sum_{i=1}^m \|x_i^t(0) - \bar{x}^t\|^2. \quad (66)$$

1385 By using an argument similar to the derivation of equation 66, we obtain
 1386

$$\begin{aligned} \sum_{i=1}^m \|y_{1,i}^t - \bar{y}_1^t\|^2 &\leq \rho^{2M} \sum_{i=1}^m \|y_{1,i}^t(0) - \bar{y}_1^t\|^2, \\ \sum_{i=1}^m \|y_{2,i}^t - \bar{y}_2^t\|^2 &\leq \rho^{2M} \sum_{i=1}^m \|y_{2,i}^t(0) - \bar{y}_2^t\|^2. \end{aligned} \quad (67)$$

1392 Using equation 66, we have
 1393

$$\begin{aligned} \sum_{i=1}^m \|x_i^t - \bar{x}^t\|^2 &\leq \rho^{2M} \sum_{i=1}^m \|x_i^t(0) - \bar{x}^t\|^2 \\ &= \rho^{2M} \sum_{i=1}^m \|x_i^t(0) - x_i^{t-1} + x_i^{t-1} - \bar{x}^{t-1} + \bar{x}^{t-1} - \bar{x}^t\|^2 \\ &\leq 3\rho^{2M} (\sum_{i=1}^m \|x_i^t(0) - x_i^{t-1}\|^2 + \sum_{i=1}^m \|x_i^{t-1} - \bar{x}^{t-1}\|^2 + \sum_{i=1}^m \|\bar{x}^{t-1} - \bar{x}^t\|^2) \\ &= 3\rho^{2M} \left(\sum_{i=1}^m \|x_i^t(0) - x_i^{t-1}\|^2 + \sum_{i=1}^m \|\hat{x}_i^{t-1}\|^2 + m \|\bar{x}^t - \bar{x}^{t-1}\|^2 \right), \end{aligned} \quad (68)$$

1404 where we have used the relationship $\|a+b+c\|^2 \leq 3\|a\|^2 + 3\|b\|^2 + 3\|c\|^2$ in the second inequality.
 1405

1406 We estimate an upper bound on the first term on the right-hand side of equation 68 as follows:

$$\begin{aligned} 1407 \sum_{i=1}^m \|x_i^t(0) - x_i^{t-1}\|^2 &= \sum_{i=1}^m \|\eta_i^{t-1} y_{1,i}^{t-1}\|^2 \leq 2 \sum_{i=1}^m \|\eta_i^{t-1} \hat{y}_{1,i}^{t-1}\|^2 + 2 \sum_{i=1}^m \|\eta_i^{t-1} \bar{y}_1^{t-1}\|^2 \\ 1408 &= 2\eta_{\max}^2 \sum_{i=1}^m \|\hat{y}_{1,i}^{t-1}\|^2 + 2m\eta_{\max}^2 \left\| \frac{1}{m} \sum_{i=1}^m (g_i^{t-1}(x_i^{t-1}) - \nabla f(x^*)) \right\|^2. \\ 1409 \\ 1410 \\ 1411 \\ 1412 \end{aligned} \tag{69}$$

1413 By using the following inequality and equation 69

$$\begin{aligned} 1414 \mathbb{E} \left[\left\| \frac{1}{m} \sum_{i=1}^m (g_i^{t-1}(x_i^{t-1}) - \nabla f(x^*)) \right\|^2 \right] &\leq \frac{\sigma^2}{|\mathcal{B}|m} + \frac{1}{m} \mathbb{E} \left[\left\| \sum_{i=1}^m (\nabla f_i(x_i^{t-1}) - \nabla f_i(x^*)) \right\|^2 \right] \\ 1415 &\leq \frac{\sigma^2}{|\mathcal{B}|m} + \frac{L^2}{m} \sum_{i=1}^m \mathbb{E} [\|x_i^{t-1} - x^*\|^2], \\ 1416 \\ 1417 \\ 1418 \\ 1419 \end{aligned}$$

1420 we obtain the following relationship:
 1421

$$\begin{aligned} 1422 \sum_{i=1}^m \mathbb{E} [\|x_i^t(0) - x_i^{t-1}\|^2] & \\ 1423 &\leq 2\eta_{\max}^2 \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^{t-1}\|^2] + 2\eta_{\max}^2 L^2 \sum_{i=1}^m \mathbb{E} [\|x_i^{t-1} - x^*\|^2] + 2\eta_{\max}^2 \sigma^2 \\ 1424 &\leq 2\eta_{\max}^2 \sum_{i=1}^m \|\hat{y}_{1,i}^{t-1}\|^2 + 4\eta_{\max}^2 L^2 \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^{t-1}\|^2] \\ 1425 &\quad + 4m\eta_{\max}^2 L^2 \mathbb{E} [\|\bar{x}^{t-1} - x^*\|^2] + 2\eta_{\max}^2 \sigma^2 \\ 1426 &\leq 2\eta_{\max}^2 \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^{t-1}\|^2] + 4\eta_{\max}^2 L^2 \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^{t-1}\|^2] + 8m\eta_{\max}^2 L^2 (\mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2] \\ 1427 &\quad + \mathbb{E} [\|\bar{x}^t - x^*\|^2]) + \frac{2\eta_{\max}^2 \sigma^2}{|\mathcal{B}|}. \\ 1428 \\ 1429 \\ 1430 \\ 1431 \\ 1432 \\ 1433 \\ 1434 \\ 1435 \\ 1436 \end{aligned} \tag{70}$$

1437 The third term on the right-hand side of equation 68 satisfies

$$\begin{aligned} 1438 m \|\bar{x}^{t-1} - \bar{x}^t\|^2 & \\ 1439 &= m \|\bar{\eta}^{t-1} \bar{y}^{t-1}\|^2 = m \left\| \frac{1}{m} \sum_{i=1}^m \eta_i^{t-1} y_i^{t-1} \right\|^2 \\ 1440 &\leq \sum_{i=1}^m \|\eta_i^{t-1} y_i^{t-1}\|^2 \leq \eta_{\max}^2 \sum_{i=1}^m \|y_i^{t-1}\|^2 \leq 2\eta_{\max}^2 \sum_{i=1}^m \|\hat{y}_{1,i}^{t-1}\|^2 + 2m\eta_{\max}^2 \|\bar{y}_1^{t-1}\|^2 \\ 1441 &\leq 2\eta_{\max}^2 \left(\sum_{i=1}^m \|\hat{y}_{1,i}^{t-1}\|^2 + m \left\| \frac{1}{m} \sum_{i=1}^m (g_i^{t-1}(x_i^{t-1}) - f(x^*)) \right\|^2 \right), \\ 1442 \\ 1443 \\ 1444 \\ 1445 \\ 1446 \\ 1447 \end{aligned} \tag{71}$$

1448 with $\bar{\eta}^{t-1} \bar{y}^{t-1} = \frac{1}{m} \sum_{i=1}^m \eta_i^{t-1} y_{1,i}^{t-1}$. Substituting equation 69 into equation 72 leads to
 1449

$$\begin{aligned} 1450 m \mathbb{E} [\|\bar{x}^{t-1} - \bar{x}^t\|^2] & \\ 1451 &\leq 2\eta_{\max}^2 \left(\sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^{t-1}\|^2] + L^2 \sum_{i=1}^m \mathbb{E} [\|x_i^{t-1} - x^*\|^2] \right) + 2\eta_{\max}^2 \sigma^2 \\ 1452 &\leq 2\eta_{\max}^2 \sum_{i=1}^m \mathbb{E} [\|\hat{y}_{1,i}^{t-1}\|^2] + 4\eta_{\max}^2 L^2 \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^{t-1}\|^2] \\ 1453 &\quad + 8m\eta_{\max}^2 L^2 (\mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2] + \mathbb{E} [\|\bar{x}^t - x^*\|^2]) + \frac{2\eta_{\max}^2 \sigma^2}{|\mathcal{B}|}. \\ 1454 \\ 1455 \\ 1456 \\ 1457 \end{aligned} \tag{72}$$

1458 By substituting equation 70 and equation 72 into equation 68, we arrive at equation 54.
 1459

1460 By using equation 67, we have

$$\begin{aligned}
 1461 \quad & \sum_{i=1}^m \|y_{1,i}^t - \bar{y}_1^t\|^2 \\
 1462 \quad & \leq \rho^{2M} \sum_{i=1}^m \|y_{1,i}^t(0) - \bar{y}_1^t\|^2 \\
 1463 \quad & = \rho^{2M} \sum_{i=1}^m \|y_{1,i}^t(0) - y_{1,i}^{t-1} + y_{1,i}^{t-1} - \bar{y}_1^{t-1} + \bar{y}_1^{t-1} - \bar{y}_1^t\|^2 \\
 1464 \quad & \leq 3\rho^{2M} \left(\sum_{i=1}^m \|y_{1,i}^t(0) - y_{1,i}^{t-1}\|^2 + \sum_{i=1}^m \|\hat{y}_{1,i}^{t-1}\|^2 + m\|\bar{y}_1^t - \bar{y}_1^{t-1}\|^2 \right). \tag{73}
 \end{aligned}$$

1473 The first term on the right-hand side of equation 73 satisfies
 1474

$$\begin{aligned}
 1475 \quad & \sum_{i=1}^m \mathbb{E} [\|y_{1,i}^t(0) - y_{1,i}^{t-1}\|^2] = \sum_{i=1}^m \mathbb{E} [\|g_i^{t-1}(x_i^t) - g_i^{t-2}(x_i^{t-1})\|^2] \\
 1476 \quad & \leq \sum_{i=1}^m \mathbb{E} [\|\nabla f_i(x_i^t) - \nabla f_i(x_i^{t-1})\|^2] + \frac{2m\sigma^2}{|\mathcal{B}|} \\
 1477 \quad & \leq L^2 \sum_{i=1}^m \mathbb{E} [\|x_i^t - x_i^{t-1}\|^2] + \frac{2m\sigma^2}{|\mathcal{B}|} \\
 1478 \quad & = L^2 \sum_{i=1}^m \mathbb{E} [\|x_i^t - \bar{x}^t + \bar{x}^t - \bar{x}^{t-1} + \bar{x}^{t-1} - x_i^{t-1}\|^2] + \frac{2m\sigma^2}{|\mathcal{B}|} \\
 1479 \quad & \leq 3L^2 \left(\sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t\|^2] + m\mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2] + \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^{t-1}\|^2] \right) + \frac{2m\sigma^2}{|\mathcal{B}|}. \tag{74}
 \end{aligned}$$

1480 The third term on the right-hand side of inequality equation 73 satisfies
 1481

$$\begin{aligned}
 1482 \quad & m\mathbb{E} [\|\bar{y}_1^t - \bar{y}_1^{t-1}\|^2] = m\mathbb{E} \left[\left\| \frac{1}{m} \sum_{i=1}^m (g_i^{t-1}(x_i^t) - g_i^{t-2}(x_i^{t-1})) \right\|^2 \right] \\
 1483 \quad & = m\mathbb{E} \left[\left\| \frac{1}{m} \sum_{i=1}^m (\nabla f_i(x_i^t) - \nabla f_i(x_i^{t-1})) \right\|^2 \right] + \frac{2\sigma^2}{|\mathcal{B}|} \leq L^2 \sum_{i=1}^m \mathbb{E} [\|x_i^t - x_i^{t-1}\|^2] + \frac{2\sigma^2}{|\mathcal{B}|} \\
 1484 \quad & \leq 3L^2 \left(\sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^t\|^2] + m\mathbb{E} [\|\bar{x}^t - \bar{x}^{t-1}\|^2] + \sum_{i=1}^m \mathbb{E} [\|\hat{x}_i^{t-1}\|^2] \right) + \frac{2\sigma^2}{|\mathcal{B}|}.
 \end{aligned}$$

1485 By substituting equation 74 and equation 75 into equation 73, we arrive at equation 55.
 1486

1487 The proof of equation 56 is similar to the derivation of equation 55, and thus is omitted here. \square
 1488

1489 B.2 PROOF OF THEOREM 1

1490 *Proof of theorem 1:* By setting $\alpha_1 = 1 - \frac{\mu}{2L}$, $\alpha_2 = \min \left\{ \frac{45}{46}, \frac{1-r}{4\beta^2} \right\}$, $\alpha_3 = \frac{125}{62m} \left(\frac{L^2 \eta_{\max}}{a_6} + \frac{2\beta^2}{a_8} + b_1 + \frac{49(1+a_7)}{50a_7} + \frac{124L^2 \eta_{\max}}{125a_9\mu} \right)$, $\alpha_4 = \frac{125}{62m} \left(\frac{2\beta^2}{a_8} + b_1 + \frac{49(1+a_7)}{50a_7} \right)$, $\alpha_5 = \frac{\eta_{\max}^2}{m} \left(\frac{187}{31} + \frac{125}{31a_2} + \frac{2}{a_1} + \frac{2}{a_9\mu\eta_{\max}} \right)$, $\alpha_6 = \frac{125\eta_{\max}^2}{62m} \left(\frac{1}{a_3} + 1 + \frac{1}{a_8} + \frac{2}{a_2} \right)$, and $\alpha_7 := 2 \left(\left(1 - \frac{1}{a_3} \right) \left(2 + \frac{2\eta_{\max}}{\eta_{\min}} + \frac{\eta_{\min}}{2\eta_{\max}} \right) + \frac{1}{a_6 m} \right) + \frac{2\eta_{\max}L^2}{a_9\mu}$,

equation 44 can be rewritten as follows:

$$\begin{aligned}
& \mathbb{E}[\|\bar{x}^{t+1} - x^*\|^2] + \mathbb{E}[\|\bar{x}^{t+1} - \bar{x}^t\|^2] + \left(2 + \frac{125\beta}{31}\right) \mathbb{E}[\bar{\eta}^t(f(\bar{x}^t) - f(x^*))] \\
& \leq \alpha_1 \mathbb{E}[\|\bar{x}^t - x^*\|^2] + \alpha_2 \mathbb{E}[\|\bar{x}^t - \bar{x}^{t-1}\|^2] + \gamma \left(2 + \frac{125\beta}{31}\right) \mathbb{E}[\bar{\eta}^{t-1}(f(\bar{x}^{t-1}) - f(x^*))] \\
& + \alpha_3 \sum_{i=1}^m \mathbb{E}[\|\hat{x}_i^t\|^2] + \alpha_4 \sum_{i=1}^m \mathbb{E}[\|\hat{x}_i^{t-1}\|^2] + \alpha_5 \sum_{i=1}^m (\mathbb{E}[\|\hat{y}_{1,i}^t\|^2] + \mathbb{E}[\|\hat{y}_{2,i}^{t-1}\|^2]) \\
& + \alpha_6 \sum_{i=1}^m \mathbb{E}[\|\hat{y}_{1,i}^{t-1}\|^2] + \frac{\alpha_7 \sigma^2}{|\mathcal{B}|}.
\end{aligned} \tag{75}$$

By using an argument similar to the derivation of equation 75, equation 54 and equation 55 can be rewritten as follows:

$$\begin{aligned}
\mathbb{E}[\|\hat{x}_i^t\|^2] & \leq \rho^{2M} \left(\alpha_8 \sum_{i=1}^m \mathbb{E}[\|\hat{y}_{1,i}^{t-1}\|^2] + \alpha_9 \sum_{i=1}^m \mathbb{E}[\|\hat{x}_i^{t-1}\|^2] \right. \\
& \quad \left. + \alpha_{10} \mathbb{E}[\|\bar{x}^t - x^*\|^2] + \alpha_{10} \mathbb{E}[\|\bar{x}^t - \bar{x}^{t-1}\|^2] + \frac{\alpha_8 \sigma^2}{|\mathcal{B}|} \right), \tag{76}
\end{aligned}$$

$$\begin{aligned}
\sum_{i=1}^m (\mathbb{E}[\|\hat{y}_{1,i}^t\|^2] + \mathbb{E}[\|\hat{y}_{2,i}^t\|^2]) & \leq \rho^{2M} (\alpha_{11} \sum_{i=1}^m \mathbb{E}[\|\hat{x}_i^t\|^2] + \alpha_{11} \sum_{i=1}^m \mathbb{E}[\|\hat{x}_i^{t-1}\|^2] \\
& + \alpha_{12} \sum_{i=1}^m (\mathbb{E}[\|\hat{y}_{1,i}^{t-1}\|^2] + \mathbb{E}[\|\hat{y}_{2,i}^{t-1}\|^2]) + \alpha_{13} \mathbb{E}[\|\bar{x}^t - \bar{x}^{t-1}\|^2] + \frac{\alpha_{14} \sigma^2}{|\mathcal{B}|}), \tag{77}
\end{aligned}$$

with $\alpha_8 = 12\eta_{\max}^2$, $\alpha_9 = 24\eta_{\max}^2 L^2 + 3$, $\alpha_{10} = 48m\eta_{\max}^2 L^2$, $\alpha_{11} = 18L^2$, $\alpha_{12} = 3$, $\alpha_{13} = 18mL^2 > 0$, and $\alpha_{14} = 72m$.

Multiplying inequalities equation 76 and equation 77 by K and then using equation 75 lead to

$$\begin{aligned}
& \mathbb{E}[\|\bar{x}^{t+1} - x^*\|^2] + \mathbb{E}[\|\bar{x}^{t+1} - \bar{x}^t\|^2] + \left(2 + \frac{125\beta}{31}\right) \mathbb{E}[\bar{\eta}^t(f(\bar{x}^t) - f(x^*))] \\
& + (K - \alpha_3 - \rho^{2M} \alpha_{10} K) \sum_{i=1}^m \mathbb{E}[\|\hat{x}_i^t\|^2] + (K - \alpha_5) \sum_{i=1}^m (\mathbb{E}[\|\hat{y}_{1,i}^t\|^2] + \mathbb{E}[\|\hat{y}_{2,i}^t\|^2]) \\
& \leq (\alpha_1 + \rho^{2M} \alpha_9 K) \mathbb{E}[\|\bar{x}^t - x^*\|^2] + (\alpha_2 + \rho^{2M} K (\alpha_9 + \alpha_{12})) \mathbb{E}[\|\bar{x}^t - \bar{x}^{t-1}\|^2] \\
& + \gamma \left(2 + \frac{125\beta}{31}\right) \mathbb{E}[\bar{\eta}^{t-1}(f(\bar{x}^{t-1}) - f(x^*))] + (\alpha_4 + \rho^{2M} K (\alpha_8 + \alpha_{10})) \sum_{i=1}^m \mathbb{E}[\|\hat{x}_i^{t-1}\|^2] \\
& + (\alpha_6 + \rho^{2M} K (\alpha_7 + \alpha_{11})) \sum_{i=1}^m (\mathbb{E}[\|\hat{y}_{1,i}^{t-1}\|^2] + \mathbb{E}[\|\hat{y}_{2,i}^{t-1}\|^2]) + (\alpha_7 + K\alpha_{14} + K\alpha_8) \frac{\sigma^2}{|\mathcal{B}|}. \tag{78}
\end{aligned}$$

By choosing sufficiently large K and M satisfying

$$\begin{aligned}
K & \geq \max \left\{ \frac{2(92\alpha_4 + 91\alpha_3)}{91}, \frac{2(92\alpha_5 + 91\alpha_6)}{91} \right\}, \\
M & \geq \max \left\{ \frac{\ln(1/2) - \ln(\alpha_8 + 2\alpha_{10})}{2 \ln(\rho)}, \frac{\ln(1/2) - \ln(\alpha_7 + \alpha_{11})}{2 \ln(\rho)}, \right. \\
& \quad \left. \frac{\ln(1 - \alpha_1) - \ln(2) - \ln(\alpha_9 K)}{2 \ln(\rho)}, \frac{\ln(1 - \alpha_2) - \ln(2) - \ln((\alpha_9 + \alpha_{12}) K)}{2 \ln(\rho)} \right\} \triangleq M_0,
\end{aligned} \tag{79}$$

1566 the following inequalities always hold:
 1567

$$\begin{aligned}
 1568 \quad \alpha_1 + \rho^{2M} \alpha_9 K &\leq \frac{1 + \alpha_1}{2} < 1, \\
 1569 \quad \alpha_2 + \rho^{2M} K(\alpha_9 + \alpha_{12}) &\leq \frac{1 + \alpha_2}{2} < 1, \\
 1570 \quad \alpha_4 + \rho^{2M} K(\alpha_8 + \alpha_{10}) &< \frac{91}{92} (K - \alpha_3 - \rho^{2M} \alpha_{10} K), \\
 1571 \quad \alpha_6 + \rho^{2M} K(\alpha_7 + \alpha_{11}) &< \frac{91}{92} (K - \alpha_5).
 \end{aligned} \tag{80}$$

1576 Define an auxiliary function $V(t + 1)$ as follows:
 1577

$$\begin{aligned}
 1578 \quad V(t + 1) &= \mathbb{E}[\|\bar{x}^{t+1} - x^*\|^2 + \|\bar{x}^{t+1} - \bar{x}^t\|^2] + \left(2 + \frac{125\beta}{31}\right) \mathbb{E}[\bar{\eta}^t(f(\bar{x}^t) - f(x^*))] \\
 1579 \quad &+ (K - \alpha_3 - \rho^{2M} \alpha_{10} K) \sum_{i=1}^m \mathbb{E}[\|\hat{x}_i^t\|^2] + (K - \alpha_5) \left(\sum_{i=1}^m \mathbb{E}[\|\hat{y}_{1,i}^t\|^2] + \mathbb{E}[\|\hat{y}_{2,i}^{t-1}\|^2] \right).
 \end{aligned} \tag{81}$$

1584 Set $\gamma = \max\{1 - \frac{\mu}{4L}, \frac{91}{92}\}$. Since $\alpha_1 = 1 - \frac{\mu}{2L}$, $\alpha_2 = \min\left\{\frac{45}{46}, \frac{1-r}{4\beta^2}\right\}$, and $\frac{1-r}{4\beta^2} < \frac{1}{4}$, we have
 1585

$$\max\left\{\frac{1 + \alpha_1}{2}, \frac{1 + \alpha_2}{2}, \frac{91}{92}\right\} \leq \max\left\{1 - \frac{\mu}{4L}, \frac{91}{92}\right\} = \gamma. \tag{82}$$

1589 It follows from equation 80 that
 1590

$$V(t + 1) \leq \gamma V(t) + (\alpha_7 + K\alpha_{14} + K\alpha_8) \frac{\sigma^2}{|\mathcal{B}|},$$

1594 which is equivalent to
 1595

$$\left(V(t + 1) - \frac{(\alpha_7 + K\alpha_{14} + K\alpha_8)\sigma^2}{(1 - \gamma)|\mathcal{B}|}\right) \leq \gamma \left(V(t) - \frac{(\alpha_7 + K\alpha_{14} + K\alpha_8)\sigma^2}{(1 - \gamma)|\mathcal{B}|}\right). \tag{83}$$

1598 Therefore, by using equation 83, we arrive at
 1599

$$V(t) \leq \gamma^t V(0) + \frac{(\alpha_7 + K\alpha_{14} + K\alpha_8)\sigma^2}{(1 - \gamma)|\mathcal{B}|}. \tag{84}$$

1602 Moreover, since the relations $\bar{\eta}^{-1} = 0$, $\sum_{i=1}^m \|\hat{x}_i^{-1}\|^2 = 0$ and $\sum_{i=1}^m \|\hat{y}_{1,i}^{-1}\|^2 = 0$ hold, we have
 1603 $V(0) = \|\bar{x}^0 - x^*\|^2 + \|\bar{x}^0\|^2$.
 1604

1605 Furthermore, according to the definition of $V(t)$ in equation 81, we arrive at
 1606

$$\begin{aligned}
 1607 \quad \mathbb{E}[\|x_i^t - x^*\|^2] &= \mathbb{E}[\|x_i^t - \bar{x}^t + \bar{x}^t - x^*\|^2] \leq 2\mathbb{E}[\|\hat{x}_i^t\|^2] + 2\mathbb{E}[\|\bar{x}^t - x^*\|^2] \\
 1608 \quad &\leq \max\left\{\frac{2}{K_1 - \alpha_3 - \rho^{2M_2} \alpha_{10} K_1}, 2\right\} V(t) \\
 1609 \quad &\leq \max\left\{\frac{2V(0)}{K_1 - \alpha_3 - \rho^{2M_2} \alpha_{10} K_1}, 2V(0)\right\} \gamma^t \\
 1610 \quad &\quad + \left(\frac{(\alpha_7 + K\alpha_{14} + K\alpha_8)}{1 - \gamma} \max\left\{\frac{2}{K_1 - \alpha_3 - \rho^{2M_2} \alpha_{10} K_1}, 2\right\}\right) \frac{\sigma^2}{|\mathcal{B}|},
 \end{aligned} \tag{85}$$

1615 which implies $\mathbb{E}[\|x_i^t - x^*\|^2] \leq \mathcal{O}(\gamma^t) + \mathcal{O}\left(\frac{\sigma^2}{|\mathcal{B}|}\right)$ and Theorem 1.
 1616

1618 B.3 PROOF OF THEOREM 2

1619 When accurate gradients are accessible to agents, Algorithm 1 reduces to the following algorithm.

1620 **Algorithm 2** Deterministic version of Algorithm 1 (from agent i 's perspective)

1621 1: **Input:** $x_i^0 \in \mathbb{R}^n$, $y_i^0 = \nabla f_i(x_i^0)$, $\eta_i^0 > 0$, $\beta \in (0, 1.36)$, $r \in (0, 1)$, $M \in \mathbb{N}^+$, and $T \in \mathbb{N}^+$.

1622 2: **for** $t = 0, 1, \dots, T$ **do**

1623 3: $x_i^{t+1}(0) = x_i^t - \eta_i^t y_i^t$

1624 4: **for** $q = 0, 1, \dots, M - 1$ **do**

1625 5: $x_i^{t+1}(q+1) = \sum_{j \in \mathcal{N}_i} w_{ij} x_j^{t+1}(q)$

1626 6: **end for**

1627 7: $x_i^{t+1} = x_i^{t+1}(M)$

1628 8: $y_i^{t+1}(0) = y_i^t + \nabla f_i(x_i^{t+1}) - \nabla f_i(x_i^t)$

1629 9: **for** $q = 0, 1, \dots, M - 1$ **do**

1630 10: $y_i^{t+1}(q+1) = \sum_{j \in \mathcal{N}_i} w_{ij} y_j^{t+1}(q)$

1631 11: **end for**

1632 12: $y_i^{t+1} = y_i^{t+1}(M)$

1633 13: $L_i^{t+1} = \frac{\|y_{i,1}^{t+1} - y_{i,2}^t\|}{\|x_i^{t+1} - x_i^t\|}$ if $x_i^{t+1} \neq x_i^t$; otherwise, $L_i^{t+1} = 1$

1634 14: $\eta_i^{t+1} = \min \left\{ \beta \eta_i^t, \frac{7\sqrt{r}}{10} \frac{\eta_i^t}{\sqrt{[(\eta_i^t L_i^{t+1})^2 - 1]_+}} \right\}$

1635 15: **end for**

1636
1637
1638
1639
1640 *Proof of Theorem 2:* By using an argument similar to the derivation of equation 44, we obtain

1641
1642
1643
1644
1645
1646
1647

$$\begin{aligned} & \|\bar{x}^{t+1} - x^*\|^2 + \|\bar{x}^{t+1} - \bar{x}^t\|^2 + \left(2 + \frac{125\beta}{31}\right) \bar{\eta}^t f(\bar{x}^t) - f(x^*) \\ & \leq (1 - \mu\eta_{\min} + a_9\mu\eta_{\max}) \|\bar{x}^t - x^*\|^2 + \frac{45}{46} \|\bar{x}^t - \bar{x}^{t-1}\|^2 \\ & \quad + \gamma \left(2 + \frac{125\beta}{31}\right) \bar{\eta}^{t-1} (f(\bar{x}^{t-1}) - f(x^*)) + \delta_5^t, \end{aligned} \quad (86)$$

1648 for $\gamma \in (0, 1)$, where the constant and δ_5^t is given by

1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660

$$\begin{aligned} \delta_5^t &= \frac{125}{62m} \left(\frac{L^2 \eta_{\max}}{a_6} + \frac{2\beta^2}{a_8} + b_1 + \frac{49(1+a_7)}{50a_7} + \frac{124L^2 \eta_{\max}}{125a_9\mu} \right) \sum_{i=1}^m \|\hat{x}_i^t\|^2 \\ & \quad + \frac{125}{62m} \left(\frac{2\beta^2}{a_8} + b_1 + \frac{49(1+a_7)}{50a_7} \right) \sum_{i=1}^m \|\hat{x}_i^{t-1}\|^2 \\ & \quad + \frac{\eta_{\max}^2}{m} \left(\frac{187}{31} + \frac{125}{31a_2} + \frac{2}{a_1} + \frac{2}{a_9\mu\eta_{\max}} \right) \sum_{i=1}^m \|\hat{y}_i^t\|^2 \\ & \quad + \frac{125\eta_{\max}^2}{62m} \left(\frac{1}{a_3} + 1 + \frac{1}{a_8} + \frac{2}{a_2} \right) \sum_{i=1}^m \|\hat{y}_i^{t-1}\|^2. \end{aligned} \quad (87)$$

1661
1662 By using an argument similar to the derivations of equation 54 and equation 55, we have

1663
1664
1665
1666
1667
1668

$$\begin{aligned} \sum_{i=1}^m \|\hat{x}_i^t\|^2 &\leq \rho^{2M} \left(12\eta_{\max}^2 \sum_{i=1}^m \|\hat{y}_i^{t-1}\|^2 + (24\eta_{\max}^2 L^2 + 3) \sum_{i=1}^m \|\hat{x}_i^{t-1}\|^2 \right. \\ & \quad \left. + 48m\eta_{\max}^2 L^2 \|\bar{x}^t - x^*\|^2 + 48m\eta_{\max}^2 L^2 \|\bar{x}^t - \bar{x}^{t-1}\|^2 \right), \end{aligned} \quad (88)$$

1669
1670
1671
1672
1673

$$\begin{aligned} \sum_{i=1}^m \|\hat{y}_{1,i}^t\|^2 &\leq \rho^{2M} \left(18L^2 \sum_{i=1}^m \|\hat{x}_i^t\|^2 + 18L^2 \sum_{i=1}^m \|\hat{x}_i^{t-1}\|^2 + 3 \sum_{i=1}^m \|\hat{y}_{1,i}^{t-1}\|^2 \right. \\ & \quad \left. + 18mL^2 \|\bar{x}^t - \bar{x}^{t-1}\|^2 \right). \end{aligned} \quad (89)$$

1674 By using an argument similar to the derivation of equation 84 and constructing the following function:
 1675

$$1676 \quad V(t+1) = \|\bar{x}^{t+1} - x^*\|^2 + \|\bar{x}^{t+1} - \bar{x}^t\|^2 + \left(2 + \frac{125\beta}{31}\right) \bar{\eta}^t (f(\bar{x}^t) - f(x^*)) \\ 1677 \quad + (K - \alpha_3 - \rho^{2M} \alpha_{10} K) \sum_{i=1}^m \|\hat{x}_i^t\|^2 + (K - \alpha_5) \sum_{i=1}^m \|\hat{y}_i^t\|^2, \quad (90)$$

$$1678$$

$$1679$$

$$1680$$

1681 we obtain the following relationship:
 1682

$$1683 \quad V(t+1) \leq \gamma V(t), \quad (91)$$

$$1684$$

$$1685$$

1686 which implies $V(t) \leq \gamma^t V(0)$. Then, following an argument similar to the derivations of equation 85, we arrive at $\|x_i^t - x^*\|^2 \leq \mathcal{O}(\gamma^t)$, which proves Theorem 2.
 1687

1688 B.4 PROOF OF COROLLARY 1

1689 According to Theorem 1, the convergence rate of Algorithm 1 is $\mathcal{O}(\gamma^T) + \mathcal{O}\left(\frac{\delta^2}{|\mathcal{B}|}\right)$. Hence, to find
 1690 an ϵ -optimal solution, the number of outer-loop iterations T needs to satisfy $T = \mathcal{O}(\log(\epsilon^{-1}))$. At
 1691 each outer-loop iteration, Algorithm 1 requires $|\mathcal{B}|$ gradient evaluations at both $g_i^t(x_i^{t+1})$ and $g_i^t(x_i^t)$,
 1692 resulting in a total of $2|\mathcal{B}|$ evaluations. Meanwhile, Lines 3, 8, and 9 in Algorithm 1 require M
 1693 gradient evaluations at $x_{i,1}^{t+1}(0)$, $y_{i,1}^{t+1}(0)$, and $y_{i,2}^{t+1}(0)$, Lines 5, 11, and 12 in Algorithm 1 require
 1694 M gradient evaluations at $x_i^{t+1}(q)$, $y_{i,1}^{t+1}(q)$, and $y_{i,2}^{t+1}(q)$; and Lines 15 and 16 in Algorithm 1 each
 1695 require one gradient evaluation at L_i^{t+1} and η_i^{t+1} , respectively. Based on the above discussion, we
 1696 have that Algorithm 1 requires at most $2|\mathcal{B}| + 3M + 3$ gradient evaluations per outer-loop iteration
 1697 t , leading to a computational complexity of $\mathcal{O}((2|\mathcal{B}| + 3M + 3) \log(\epsilon^{-1}))$ over T iterations. In
 1698 the deterministic setting, Algorithm 1 reduces to Algorithm 2, which requires at most $2M + 3$
 1699 gradient evaluations per outer-loop iteration t , and thus has a computational complexity of $\mathcal{O}((2M +$
 1700 $3) \log(\epsilon^{-1}))$ over T iterations.
 1701

1702 C EXPERIMENTAL SETUPS AND ADDITIONAL EXPERIMENTAL RESULTS

1703 C.1 BENCHMARK DATASETS

1704 **MNIST.** The “MNIST” dataset is a benchmark dataset widely used in machine learning and
 1705 computer vision (Deng, 2012). It typically consists of 70,000 grayscale images of handwritten digits
 1706 (i.e., 0–9), with 60,000 used for training and 10,000 for testing. Each image has a size of 28×28
 1707 pixels, with the digit centered in the frame.
 1708

1709 **CIFAR-10.** The “CIFAR-10” dataset consists of 60,000 color images of size 32×32 pixels in
 1710 10 classes, with 6,000 images per class (Krizhevsky et al., 2010). Among them, 50,000 images
 1711 are used for training and 10,000 for testing. The dataset covers a diverse set of object categories,
 1712 including airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Compared
 1713 with the “MNIST” dataset, the “CIFAR-10” dataset poses a greater challenge due to its colored and
 1714 natural images with larger intra-class variability.
 1715

1716 **CIFAR-100.** The “CIFAR-100” dataset is a natural extension of the “CIFAR-10” dataset (DeVries
 1717 & Taylor, 2017). It contains 60,000 color images of size 32×32 pixels, and spreads across 100
 1718 classes with 600 images per class. The 50,000 images are used for training and 10,000 for testing.
 1719 However, due to its larger number of categories and the fine-grained nature of many classes, the
 1720 “CIFAR-100” dataset is regarded as the most challenging dataset within the CIFAR series.
 1721

1722 **Mushrooms.** The “Mushrooms” dataset is a classic benchmark dataset from the UCI Machine
 1723 Learning Repository (Tutuncu et al., 2022). It contains 8,124 instances of gilled mushrooms, each
 1724 described by 22 categorical attributes, such as cap shape, surface, and color. The prediction task
 1725 is to classify each mushroom as either edible or poisonous. In this paper, we focus on l_2 -logistic
 1726 regression on the “Mushrooms” dataset, as the task naturally fits into a binary classification problem.
 1727

1728 **Shakespeare.** The “Shakespeare” dataset contains 3,829,611 training samples and 1,646,425 test
 1729 samples. Each sample consists of a sequence of 80 characters and the subsequent character to be
 1730

predicted. The dataset is derived from the lines of various characters in Shakespeare’s plays. Due to the diversity of characters and scenes, the next character to appear often varies significantly. This dataset is regarded as a highly challenging benchmark.

C.2 EXPERIMENTAL SETUPS

Convolutional neural network (CNN) training. For the “MNIST” dataset, we trained a two-layer CNN. The first convolutional layer has 64 output channels with 3×3 kernels, stride 1, and padding 1, followed by batch normalization, LeakyReLU activation, and 2×2 max pooling. The second convolutional layer has 128 output channels with the same kernel configuration. The feature maps are then passed through adaptive average pooling to a 1×1 representation, flattened, and fed into a fully connected layer to produce the output classes. The model was trained with a batch size of 128 using the cross-entropy loss.

For the “CIFAR-10” dataset, we trained a four-layer CNN consisting of four convolutional layers with progressively increasing channel sizes of 32, 64, 128, and 256. Each convolution uses a 3×3 kernel with stride 1 and padding 1. To stabilize training and reduce spatial resolution, we employed batch normalization, a LeakyReLU activation, and 2×2 max pooling after every convolutional block. The resulting feature maps are aggregated by adaptive average pooling to a 1×1 representation, which is then flattened and passed to a fully connected layer to produce the final class predictions. The model was trained with a batch size of 128 using the cross-entropy loss.

For the “CIFAR-100” dataset, we trained a five-layer CNN with residual connections to enhance feature extraction. The network begins with a 32-channel convolutional layer (3×3 kernels, stride 1, padding 1), followed by batch normalization, LeakyReLU activation, and 2×2 max pooling. The subsequent convolutional blocks progressively increase the channels to 64, 128, 256, and 512. To enhance feature extraction, we introduced residual paths: one from the raw input through a 2×2 convolution with stride 2, another from the second block via a 2×2 convolution, and a direct path from the raw input via an 8×8 convolution. The model was trained with a batch size of 128 using the cross-entropy loss.

Logistic regression. For the logistic regression task using the “Mushrooms” dataset, we employed a single-layer linear model, which directly maps the 22 input features to two output logits corresponding to the classes. Training was conducted using the loss function given in equation 92.

Recurrent neural network (RNN) training. For the “Shakespeare” dataset, we trained an LSTM-based recurrent neural network. The model first maps each input token to a dense vector through an embedding layer with an embedding dimension of 8. The embedded sequence is then fed into a single-layer LSTM with a hidden size of 128 and batch-first input formatting. Finally, the representation is passed through a fully connected layer to project it back to the vocabulary space, producing logits for the next-character prediction.

C.3 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide five additional experimental results: (1) the performance evaluation of Algorithm 1 on logistic regression with strongly convex and smooth loss functions; (2) the performance evaluation of Algorithm 1 on next-characterize prediction tasks using the “Shakespeare” dataset; (3) the comparison of Algorithm 1 and distributed ADAM in Nazari et al. (2022); (4) the performance evaluation of Algorithm 1 under different β , r , and M , respectively, on the “MNIST” dataset; and (5) the performance evaluation of Algorithm 1 under various network topologies.

(1) Logistic regression using the “Mushrooms” dataset. We evaluate the effectiveness of Algorithm 1 by using an l_2 -logistic regression classification problem on the “Mushrooms” dataset (Tuncu et al., 2022). To ensure heterogeneous data distribution, we spread data samples among five agents according to their target values. Specifically, agents 1, 2, and 3 have samples with the target value of 0, while agents 4 and 5 have samples with the target value of 1. All agents cooperatively learn an optimal model parameter x^* to problem 1, in which the loss function of agent i is given by

$$l(x, \xi_i) = \frac{1}{|\mathcal{B}|} \sum_{j=1}^{|\mathcal{B}|} \left(-(1 - b_{ij}) \ln \left(\frac{e^{x_1 a_{ij}}}{e^{x_1 a_{ij}} + e^{x_2 a_{ij}}} \right) - b_{ij} \ln \left(\frac{e^{x_2 a_{ij}}}{e^{x_1 a_{ij}} + e^{x_2 a_{ij}}} \right) + \frac{L_2}{2} \|x\|^2 \right), \quad (92)$$

1782 where $|\mathcal{B}|$ represents the number of sampled data points per iteration. In this experiment, we used a
 1783 full batch setting, i.e., $|\mathcal{B}| = |\mathcal{D}_i|$ with \mathcal{D}_i denoting the local dataset of agent i . Here, $x = [x_1, x_2]^\top$
 1784 is the model parameter and the positive constant L_2 is a regularization parameter. It is clear that the
 1785 loss function in equation 92 is strongly convex and smooth.

1786 In this experiment, we compared the test accuracies of Algorithm 1 with existing distributed opti-
 1787 mization algorithms, including distributed GD in Nedic & Ozdaglar (2009) and deterministic GT
 1788 in Nedić et al. (2017). The stepsizes for distributed GD and deterministic GT are the same as those
 1789 employed in our ‘‘MNIST’’ experiment in the main text (i.e., $\eta_i^t = \frac{0.1}{(1+t)^{0.5}}$ for distributed GD and
 1790 $\eta_i = 0.1$ for deterministic GT). The training process spanned 250 iterations.
 1791

1805 Figure 6: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1, dis-
 1806 tributed GD in Nedic & Ozdaglar (2009), and deterministic GT in Nedić et al. (2017). The 95%
 1807 confidence intervals were computed from three independent runs with seeds 42, 1010, and 2024.
 1808

1809 Fig. 6(a) shows that Algorithm 1 achieves the highest test accuracy and convergence speed com-
 1810 pared with distributed GD and deterministic GT. This is because larger stepsizes is allowed in the
 1811 early stages of Algorithm 1 than distributed GD and deterministic GT (as shown in Fig. 6(b)). Fur-
 1812 thermore, Fig. 6 shows that Algorithm 1 exhibits stable convergence accuracy after 200 iterations.
 1813 This result implies a clear stopping criterion for our algorithm, that is, by setting $\tau = 10^{-3}$, each
 1814 agent i can stop training once $|\eta_i^t| < \tau$.
 1815

(2) Next-characterize prediction using the ‘‘Shakespeare’’ dataset. We evaluate the learning
 1816 accuracy of Algorithm 1 using a next-characterize prediction task on the ‘‘Shakespeare’’ dataset. To
 1817 ensure heterogeneous data distribution, we spread data samples among five agents according to a
 1818 Dirichlet distribution with parameter $\alpha = 0.5$.
 1819

1820 In this experiment, we compared the test accuracies of Algorithm 1 with existing distributed stochas-
 1821 tic optimization algorithms, including distributed SGD in Jakovetic et al. (2018) and stochastic GT
 1822 in Pu & Nedić (2021). The stepsize for distributed SGD was set to $\eta_{i,t} = \frac{10}{(1+t)^{0.5}}$ while the stepsize
 1823 for stochastic GT was set to $\eta = 0.5$. The training process spanned 200 epochs.
 1824

Fig. 7(a) shows that Algorithm 1 outperforms both distributed SGD and stochastic GT in test accu-
 1825 racy. This improvement can be attributed to the larger stepsizes allowed by our adaptive stepsize
 1826 approach, as evidenced by Fig. 7(b).
 1827

(3) Comparison of Algorithm 1 and distributed ADAM in Nazari et al. (2022). To compare the
 1828 convergence accuracy of Algorithm 1 with the existing adaptive stepsize approach for distributed
 1829 (online) learning, i.e., distributed ADAM in Nazari et al. (2022), we conducted additional experi-
 1830 ments by comparing their test accuracies on image classification using the ‘‘CIFAR-10’’ dataset.
 1831

Fig. 8(a) shows that our Algorithm 1 outperforms distributed ADAM in terms of both test accu-
 1832 racy and steady-state performance. Furthermore, Fig. 8(b) indicates that the stepsize in distributed
 1833 ADAM decays rapidly, which leads to a low convergence speed in the later stages of the algorithm.
 1834

(4) The effects of β , r , and M on convergence accuracy with respect to the ‘‘MNIST’’ dataset.
 1835 We evaluate the test accuracies of Algorithm 1 under different coefficients β and r in the stepsize

Figure 7: Test-accuracy and average-stepsize (across ten agents) evolutions of Algorithm 1, distributed SGD in Jakovetic et al. (2018), and stochastic GT in Pu & Nedić (2021). The 95% confidence intervals were computed from three independent runs with seeds 42, 1010, and 2024.

Figure 8: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1 and distributed ADAM (Nazari et al., 2022). The 95% confidence intervals were computed from three independent runs with random seeds 42, 1010, and 2024.

1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

update rule (i.e., Line 16 in Algorithm 1) and the number of inner-loop iterations M in Algorithm 1, respectively. We ran this experiment on the “MNIST” dataset over 20 epochs, with a batch size of 128 and a random seed as 42.

Fig. 9(a), Fig. 9(b), Fig. 9(d), and Fig. 9(e) imply that larger β and r lead to faster convergence and earlier stopping in Algorithm 1. This result is intuitively consistent, as large β and r contribute to larger stepsizes before convergence stages (as shown in Fig. 9(d) and Fig. 9(e)), which in turn leads to a higher convergence speed. Furthermore, Fig. 9(c) and Fig. 9(f) show that the number of inner-consensus-loop iterations M has a negligible effect on convergence accuracy and the stopping criterion. Hence, in practical machine learning tasks, we can set $M = 1$ (so that Algorithm 1 reduces to a single-loop algorithm) to minimize the communication cost of Algorithm 1. The experimental results in Fig. 9 further confirm the default parameter configuration $(\beta, r, M) = (1.35, 0.99, 1)$ for our algorithm, which align with the discussion in the subsection “The effects of β , r , and M on convergence accuracy” (with respect to the “CIFAR-10” dataset) in the main text.

(5) Performance evaluation of Algorithm 1 under various network topologies. We conducted experiments to evaluate the efficacy of our Algorithm 1 under different network topologies. We considered a network of $m = 10$ agents, with the interaction graph being a ring network and random d -regular graph Bollobás (1986) with d (called “Degree” in Fig. 10) set to 2, 3, 5, and 8. We used the same parameters as those employed in subsection “Comparison with existing distributed stochastic optimization approaches” in our main text. The experimental results are shown in Fig. 10.

The experimental results in Fig. 10(a) and Fig. 10(b) show that the impact of network topologies on the convergence accuracy of our algorithms is slight when Assumption 2 is satisfied.

Figure 10: Test-accuracy and average-stepsize (across ten agents) evolutions of Algorithm 1 under different network topologies.