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ABSTRACT

Distributed stochastic optimization and learning is gaining increasing traction due
to its ability to enable large-scale data processing and model training across mul-
tiple agents without the need for centralized coordination. However, existing dis-
tributed stochastic optimization and learning approaches, such as distributed SGD
and their variants, generally face a dilemma in stepsize selection: a small stepsize
leads to low convergence speed, whereas a large stepsize often incurs pronounced
steady-state oscillations, which prevents the algorithm from achieving stable con-
vergence accuracy. In this paper, we propose an adaptive stepsize approach for
distributed stochastic optimization and learning that can eliminate steady-state os-
cillations and ensure fast convergence. Such guarantees are unattained by existing
adaptive stepsize approaches, even in centralized optimization and learning. We
prove that our proposed algorithm achieves linear convergence with respect to the
iteration number, and that the convergence error decays sublinearly with the batch
size of sampled data points. In the specific case in terms of deterministic dis-
tributed optimization with exact gradients accessible to agents, we prove that our
proposed algorithm linearly converges to an exact optimal solution. Moreover, we
quantify that the computational complexity of the proposed algorithm is on the
order of O(log(ϵ−1)), which matches the existing results on adaptive stepsize ap-
proaches for centralized optimization/learning. Experimental results on machine
learning benchmarks confirm the effectiveness of our proposed approach.

1 INTRODUCTION

With the advance of the era of big data, distributed stochastic optimization and learning methods
have attracted increasing attention due to their unique ability to leverage the computational power of
multiple devices to accelerate training (Nedic & Ozdaglar, 2009; Yang & Johansson, 2010; Shamir
& Srebro, 2014; Lian et al., 2017; Nedić & Liu, 2018; Yang et al., 2019; Kim et al., 2024; Hu et al.,
2024). Unlike centralized optimization and learning methods (Wang & Elia, 2011; Andrychowicz
et al., 2016; Ruder, 2016) that typically rely on a central server to aggregate local model parameters
or data from all participating agents, distributed methods allow each agent to collaboratively learn a
global model using only its own local dataset and information exchanged with neighboring agents,
without the assistance of any centralized server or aggregator (Scaman et al., 2018; Liu et al., 2020;
Yang et al., 2022).

However, existing distributed stochastic optimization/learning approaches often face a dilemma in
stepsize selection (Jacobs, 1988; Schaul et al., 2013; Wei et al., 2020; Zhuang et al., 2020; Li et al.,
2024a; Huang et al., 2024b; Crawshaw et al., 2025). Specifically, an excessively small stepsize
may lead to an overly low convergence speed (Srivastava & Nedic, 2011; Lin et al., 2023; Shar-
ifnassab et al., 2024), whereas an excessively large stepsize often causes pronounced steady-state
oscillations or overshoot, which prevents the algorithm from achieving stable convergence accu-
racy (Andriushchenko et al., 2023; Huang et al., 2024a). Recently, several adaptive or automatic
stepsize approaches have been proposed for centralized optimization and learning (Fletcher, 2005;
Kingma, 2014; Rolinek & Martius, 2018; Li & Orabona, 2019; Malitsky & Mishchenko, 2019;
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Kavis et al., 2022; Jiang & Stich, 2023; Malitsky & Mishchenko, 2024). However, these approaches
generally rely on a centralized server to coordinate computation that are impractical in a fully dis-
tributed setting where no centralized server/aggregator exists to determine a common stepsize across
all agents (Nedić et al., 2018). Although some works have attempted to extend adaptive stepsize ap-
proaches to distributed optimization and learning (Nazari et al., 2022; Carnevale et al., 2022; Xie
et al., 2022; Ramezani-Kebrya et al., 2023; Chen & Wang, 2024; Kuruzov et al., 2024; Saravanos
et al., 2024), most of them still either require a centralized server to collect local model parame-
ters/stepsizes from all agents (Ramezani-Kebrya et al., 2023; Chen & Wang, 2024; Kuruzov et al.,
2024), or are limited to scenarios where agents must have access to accurate gradients of the ob-
jective functions (Carnevale et al., 2022; Xie et al., 2022; Saravanos et al., 2024) for stepsize ad-
justment. The only exception is the work in Nazari et al. (2022), which achieves adaptive stepsize
adjustments in distributed online learning by normalizing the gradient using an accumulated sum of
historical gradient values. However, this approach leads to a rapidly decaying stepsize, which in turn
results in slow convergence in the later stages of the algorithm (see our experimental results in Fig. 5
in Appendix C.3 for details). To the best of our knowledge, no existing adaptive stepsize approaches
can ensure fast and stable convergence in fully distributed stochastic optimization/learning.

Our contributions are summarized as follows:

1. We propose an adaptive stepsize algorithm for fully distributed stochastic optimization and
learning. This is in stark contrast to existing adaptive stepsize approaches, which either rely
on a centralized server to coordinate a common stepsize across all agents (in, e.g., Ramezani-
Kebrya et al. (2023); Kim et al. (2024); Chen & Wang (2024); Kuruzov et al. (2024)), or re-
quire that agents have access to accurate gradients of the objective functions (Carnevale et al.,
2022; Xie et al., 2022; Saravanos et al., 2024)—which, however, are often hard to obtain in
real-world applications where the randomness in sampled data results in only noisy gradi-
ents being accessible to agents. To the best of our knowledge, this is the first adaptive (non-
monotone decreasing) stepsize approach for fully distributed stochastic optimization/learning,
without the need for accurate gradients or the assistance of any centralized servers.

2. Our adaptive stepsize algorithm can eliminate steady-state oscillations and ensure stable con-
vergence accuracy in the later stages of the algorithm. This is unattained by most existing
adaptive stepsize approaches even in centralized optimization and learning (Fletcher, 2005; Li
& Orabona, 2019; Kavis et al., 2022; Jiang & Stich, 2023). The key enabler is our novel de-
sign of the stepsize update rule, which allows each agent to dynamically adjust its individual
stepsizes based on locally estimated curvature of the global objective function. This provides
each agent with large stepsizes in the early stages to accelerate convergence, and extremely
small stepsizes near the global optimum to ensure stable convergence accuracy (see our ex-
perimental results in Figs. 1(d)-1(f) and Figs. 2(d)-2(f) for details). Furthermore, since stable
convergence accuracy is achieved in the later stages of our algorithm, we can also provide
a clear stopping criterion1 for each agent in distributed optimization and learning, which is
rarely addressed in the state-of-the-art literature.

3. In addition to eliminating steady-state oscillations, we also establish the convergence rate
and computational complexity of our algorithm for both stochastic and deterministic dis-
tributed optimization and learning, which is different from existing adaptive stepsize results in,
e.g., McMahan & Streeter (2014); Yang et al. (2019); Crawshaw et al. (2025) that focus solely
on deterministic cases where accurate gradients of objective functions are accessible to agents.
For distributed stochastic optimization/learning, we prove that our algorithm achieves linear
convergence with respect to the number of algorithm iterations, and that the convergence error
decays sublinearly with the batch size of sampled data points. For the deterministic case, we
prove that our algorithm linearly converges to an exact optimal solution.

4. We systematically quantify that the computational complexity of our algorithm is on the order
of O(log(ϵ−1)) for both stochastic and deterministic cases, which matches the existing results
on adaptive stepsize approaches for centralized optimization and learning in, e.g., (Kavis et al.,
2022; Yang & Ma, 2023).

5. We conduct experimental evaluations using several machine learning benchmark datasets,
including the “MNIST” dataset, the “CIFAR-10” dataset, and the “CIFAR-100” dataset. The

1We use the “stopping criterion” to denote the condition that determines when each agent in a distributed
stochastic optimization and learning algorithm terminates its iterations (Vlachos, 2008; Ding et al., 2025).
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results confirm the effectiveness of our algorithm in terms of both test accuracy and steady-
state convergence performance.

2 RELATED WORK

Distributed stochastic optimization and learning. Distributed stochastic optimization methods
have been widely employed in modern machine learning (Yang, 2013; Xin et al., 2020; Nedic,
2020; Guo et al., 2020; Pu et al., 2020; Allen-Zhu et al., 2020; Khaled & Jin, 2023; Song et al.,
2025). However, most existing methods require all agents to share a common stepsize that is either
fixed (Pu & Nedić, 2021; Koloskova et al., 2021; Nguyen et al., 2023; Song et al., 2024) or dimin-
ishing (Jakovetic et al., 2018; Dieuleveut & Patel, 2019; Li et al., 2024b; Lee et al., 2025). The fixed
stepsize causes pronounced overshoot or oscillations near the global optimal solution (Pu & Nedić,
2021; Koloskova et al., 2021; Nguyen et al., 2023), whereas diminishing stepsizes often lead to an
overly low convergence speed, both of which prevent the algorithm from achieving stable conver-
gence accuracy (as shown in our experimental results in Fig. 1 and Fig. 2). Given these limitations,
designing an adaptive stepsize approach that allows each participating agent to adaptively adjust its
individual stepsizes is a promising direction for improving convergence speed and ensuring stable
learning performance in distributed stochastic optimization and learning.

Adaptive stepsize approaches. Several adaptive stepsize approaches have been proposed for cen-
tralized optimization and learning (Fletcher, 2005; Kingma, 2014; Rolinek & Martius, 2018; Li &
Orabona, 2019; Malitsky & Mishchenko, 2019; Kavis et al., 2022; Jiang & Stich, 2023; Malitsky &
Mishchenko, 2024). However, these methods typically consider a single agent setting where learning
is performed with only one adaptive stepsize adjustment. This makes them inapplicable to fully dis-
tributed stochastic optimization and learning, where multiple agents cooperatively perform learning
and each agent has its own stepsize updates. Moreover, the existing adaptive stepsize approaches of-
ten lead to steady-state oscillations, which prevent stable convergence accuracy in the later stages of
the algorithm and hinder the determination of a clear stopping criterion (as shown in our experimen-
tal results in Fig. 2). Although some efforts have attempted to extend adaptive stepsize approaches
to distributed optimization and learning (Nazari et al., 2022; Carnevale et al., 2022; Xie et al., 2022;
Ramezani-Kebrya et al., 2023; Chen & Wang, 2024; Kuruzov et al., 2024; Saravanos et al., 2024),
most of them still rely on a centralized server to collect local model parameters/stepsizes from all
agents to coordinate a stepsize (Ramezani-Kebrya et al., 2023; Chen & Wang, 2024; Kuruzov et al.,
2024), or are limited to scenarios where accurate gradients of the objective functions must be ac-
cessible to agents (Carnevale et al., 2022; Xie et al., 2022; Saravanos et al., 2024), both of which
are impractical in a fully distributed and stochastic setting. The only exception is the recent work
in Nazari et al. (2022), which achieves stepsize adjustments in distributed stochastic optimization
and learning. However, its approach parallels adaptive gradient methods (e.g., ADAM in Kingma
(2014)), which makes the stepsizes decay rapidly in practical neural-network training, thereby lead-
ing to a low convergence speed in the later stages of the algorithm (as shown in our experimental
results in Fig. 5 in Appendix C.3). To the best of our knowledge, no adaptive stepsize approaches
have been reported for distributed stochastic optimization and learning that can ensure both fast
convergence and stable steady-state performance.

Notations: We use Rn to denote the n-dimensional real Euclidean space and N(N+) to denote the set
of nonnegative (positive) integers. We write 0n and 1n for n-dimensional column vectors of all zeros
and all ones, respectively; in both cases we suppress the dimension when clear from the context. We
use ⟨x, y⟩ to denote the inner product of two vectors and ∥ · ∥ to denote the Euclidean norm of a
vector. We write E[x] for the expected value of a random variable x. We use [a]+ = max{0, a} to
refer to the maximum of 0 and a for any real number a and the convention a

0 = +∞ for any a > 0.
We denote the set of m agents as [m] and add an overbar to a letter to represent the average of m
agents, e.g., x̄ = 1

m

∑m
i=1 xi.

3 PROBLEM FORMULATION

We consider m agents that cooperatively learn a common optimal model parameter x∗ to the fol-
lowing stochastic optimization problem (Sundhar Ram et al., 2010; Lian et al., 2017; Chen & Wang,
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2024):

min
x∈Rn

f(x) =
1

m

m∑
i=1

fi(x), fi(x) = Eξi∼Pi
[l(x, ξi)]. (1)

Here, the local objective function fi(x) : Rn 7→ R represents the mathematical expectation of agent
i’s loss function l(x, ξi), where ξi denotes the agent i’s data sample drawn from distribution Pi.

In real-world applications, since the data distribution Pi is typically unknown to each agent i, it can
only have access to a noisy estimate on the gradient of fi(x) (Pu & Nedić, 2021; Nazari et al., 2022;
Kim et al., 2024). In other words, at each iteration t, each agent i independently and identically
samples |B| data points (also called a batch size of |B|) from its local distribution Pi and computes a
noisy gradient estimate gti(x) =

1
|B|
∑|B|

j=1 ∇l(x, ξtij), where ξtij is the jth sampled data collected by
agent i at iteration t. Based on the gradient estimate gti(x) and communication with its neighbors,
each agent i performs distributed training. We make the following standard assumption about fi(x)
and gti(x):
Assumption 1. For any agent i ∈ [m], its local objective function fi(x) is µ-strongly convex and L-
smooth. The gradient estimate gti(x) is unbiased with bounded variance σ2, i.e., E[gti(x)] = ∇fi(x)
and E[∥gti(x)−∇fi(x)∥2] ≤ σ2 hold for any x ∈ Rn and t ≥ 0.

In Assumption 1, the strong convexity of fi(x) is used to ensure linear convergence, which is com-
monly used in the existing literature (Ivkin et al., 2019; Hou et al., 2021; Akhavan et al., 2021; Wang
et al., 2023; Yang & Ma, 2023; He et al., 2024; Er et al., 2024).

We describe the local interaction among agents using a weight matrix W = {wij} ∈ Rm×m, where
wij > 0 if agent i and agent j can directly communicate with each other, and wij = 0 otherwise.
The neighboring set of agent i is defined as Ni = {j ∈ [m]|wij > 0}, which includes itself.
Furthermore, we make the following assumption on matrix W :
Assumption 2. The matrix W ∈ Rm×m is symmetric and satisfies 1⊤

mW = 1⊤
m, W1m = 1m, and

ρ ≜ ∥W − 1m1⊤
m

m ∥ < 1.

Existing distributed optimization and learning approaches typically require the stepsize to be either
fixed (Pu & Nedić, 2021; Koloskova et al., 2021; Nguyen et al., 2023; Song et al., 2024) or dimin-
ishing (Jakovetic et al., 2018; Dieuleveut & Patel, 2019; Li et al., 2024b; Lee et al., 2025). However,
the use of a fixed stepsize often suffers from error/bias terms proportional to the stepsize (Yuan
et al., 2016), which can cause pronounced overshoot or persistent oscillations near the global opti-
mum, thereby compromising convergence stability in the later stages of the algorithm (as shown in
our experimental results in Fig. 1). Although employing a diminishing stepsize can asymptotically
eliminate such errors and ensure stable steady-state convergence, it often results in an undesirably
low convergence speed, which is problematic for applications requiring fast convergence (Nedic &
Ozdaglar, 2009; Jakovetic et al., 2018; Dieuleveut & Patel, 2019; Lee et al., 2025). Given these lim-
itations, we aim to develop an adaptive stepsize approach for distributed stochastic optimization and
learning, enabling each agent to adaptively adjust its stepsize during algorithm iterations to achieve
both fast convergence and stable steady-state performance.

4 ALGORITHM DESIGN

In this section, we propose an adaptive stepsize approach for distributed stochastic optimization
and learning that ensures both fast convergence and stable steady-state performance. The proposed
approach is summarized in Algorithm 1, which is implemented in a fully distributed manner.

In Algorithm 1, Lines 3-7 execute a consensus-based gradient descent step for agent i. Lines 8,
11, and 14 update yt+1

i,1 to track 1
m

∑m
i=1 g

t
i(x

t+1
i ), which serves to approximate the global gradient

1
m

∑m
i=1 ∇fi(x

t+1
i ). Lines 9, 12, and 14 update an auxiliary variable yti,2 to track 1

m

∑m
i=1 g

t
i(x

t
i),

which serves to approximate the global gradient 1
m

∑m
i=1 ∇fi(x

t
i). With this understanding, we let

each agent i locally estimate the curvature of the global objective function in Line 15. Based on this
estimate, each agent i’s adaptive stepsize update rule is given in Line 15 and Line 16.

The key enabler for us to ensure stable steady-state convergence is our meticulously designed step-
size update rule. More specifically, our stepsize update rule enables each agent to locally estimate
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Algorithm 1 Adaptive stepsize design for distributed stochastic optimization and learning (from
agent i’s perspective)

1: Input: x0
i ∈ Rn, y0i,1 = g−1

i (x0
i ) = g0i (x

0
i ), y

−1
i,2 = g−1

i (x−1
i ) = 0n, η0i > 0, β ∈ (0, 1.36),

r ∈ (0, 1), M ∈ N+, and T ∈ N+.
2: for t = 0, 1, . . . , T do
3: xt+1

i (0) = xt
i − ηtiy

t
i,1

4: for q = 0, 1, . . . ,M − 1 do
5: xt+1

i (q + 1) =
∑

j∈Ni
wijx

t+1
j (q)

6: end for
7: xt+1

i = xt+1
i (M)

8: yt+1
i,1 (0) = yti,1 + gti(x

t+1
i )− gt−1

i (xt
i)

9: yti,2(0) = yt−1
i,2 + gti(x

t
i)− gt−1

i (xt−1
i )

10: for q = 0, 1, . . . ,M − 1 do
11: yt+1

i,1 (q + 1) =
∑

j∈Ni
wijy

t+1
j,1 (q)

12: yti,2(q + 1) =
∑

j∈Ni
wijy

t
j,2(q)

13: end for
14: yt+1

i,1 = yt+1
i,1 (M) and yti,2 = yti,2(M)

15: Lt+1
i =

∥yt+1
i,1 −yt

i,2∥
∥xt+1

i −xt
i∥

16: ηt+1
i = min

{
βηti ,

7
√
r

10
ηt
i√

[(ηt
iL

t+1
i )2−1]+

}
17: end for

the curvature of the global objective function. In this way, each agent’s stepsize can be adapted
to large values in the early stages of the algorithm, and to extremely small values near the global
optimum (as shown in our experimental results in Figs. 1(d)-1(f) and Figs. 2(d)-2(f)). Therefore, our
design avoids the slow convergence caused by small diminishing stepsizes used in, e.g., Jakovetic
et al. (2018); Dieuleveut & Patel (2019); Li et al. (2024b); Lee et al. (2025) and eliminate the os-
cillations arising from fixed stepsizes in e.g., Pu & Nedić (2021); Koloskova et al. (2021); Nguyen
et al. (2023); Song et al. (2024).

It is worth noting that our algorithm is fundamentally different from existing adaptive stepsize meth-
ods in e.g., Malitsky & Mishchenko (2019; 2024); Kim et al. (2024); Chen & Wang (2024), which
explicitly require a centralized server to coordinate stepsize adjustment, which is infeasible in fully
distributed settings in the absence of a centralized server. Furthermore, our design is also differ-
ent from existing adaptive stepsize approaches for deterministic distributed optimization/learning
in Carnevale et al. (2022); Xie et al. (2022); Saravanos et al. (2024), which typically require access
to exact gradients of objective functions—such exact gradients are often unattainable in real-world
applications where only noisy gradient estimates are available to each agent (Lian et al., 2017).

In Algorithm 1, we provide optional inner-consensus-loop iterations for xt
i, y

t
i,1, and yti,2. This de-

sign is intended to accelerate consensus among agents and improve the accuracy of global gradient
tracking, thereby guaranteeing linear convergence (see Theorem 1 for details). In practical machine
learning applications, the number of inner-consensus-loop iterations M can be chosen as any pos-
itive integer. For example, we can simply select M = 1 (in which case Algorithm 1 reduces to a
single-loop algorithm) to minimize the computational and communication costs of our algorithm.
In fact, our experimental results in Fig. 3(c) show that the test accuracy of our algorithm remains
comparable even with M = 1.

5 CONVERGENCE RESULTS

In this section, we prove that Algorithm 1 can ensure linear convergence with respect to the number
of iterations T , and the convergence error decreases sublinearly with the batch size of sampled data.
The results are summarized in Theorem 1, whose proof can be found in Appendix B.2.
Theorem 1. Under Assumptions 1 and 2, for any T ≥ 0 and batch size |B| > 0, if the number
of inner-consensus-loop iterations M satisfies M ≥ M0 with detailed forms of M0 given in equa-
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tion 70 in Appendix B.2, the iterates xt
i generated by Algorithm 1 satisfy

E
[∥∥xT

i − x∗∥∥2] ≤ O
(
γT
)
+O

(
σ2

|B|

)
, (2)

where the convergence rate γ is given by γ = max
{
1− µ2

4L ,
91
92

}
.

Theorem 1 proves that Algorithm 1 linearly converges to an optimal solution to problem 1 with the
optimization error decreasing as the batch size of sampled data |B| increases. It is worth noting that
the bound O

(
σ2

|B|

)
in Theorem 1, caused by finite batch size of sampled data, inherently exists in

all stochastic optimization approaches with finite samples (Yuan et al., 2022; Sharma et al., 2023).
Although variance reduction techniques (Reddi et al., 2016; Fang et al., 2018) and diminishing
stepsize methods (Nedic & Ozdaglar, 2009) can be used to mitigate the influence of this term in
distributed stochastic optimization and learning, their successful implementation heavily relies on
the assumption of a fixed upper bound on the stepsizes, which is hard to satisfy when each agent’s
stepsize is dynamic and adaptive over iterations.

In Theorem 1, we consider a stochastic scenario in which each agent can only access to noisy
gradient estimates (which are computed based on data sampled from an unknown data distribution
Pi). Next, we consider a deterministic scenario in which each agent can access to accurate gradients.
The convergence result of Algorithm 1 in the deterministic scenario is summarized in the following
Theorem 2, whose proof is given in Appendix B.3.
Theorem 2. Under Assumptions 1 and 2, for any T ≥ 0, if the number of inner-consensus-loop
iterations M satisfies M ≥ M0 with detailed forms of M0 given in equation 70 of Appendix B.2,
the iterates xt

i generated by Algorithm 1 with deterministic gradients satisfy

E
[∥∥xT

i − x∗∥∥2] ≤ O
(
γT
)
, (3)

where the convergence rate γ is given by γ = max
{
1− µ2

4L ,
91
92

}
.

Theorem 2 proves that when we consider distributed optimization and learning in a deterministic sce-
nario, Algorithm 1 converges to an exact solution to problem in equation 1 with a linear convergence
rate, which matches existing convergence results on adaptive stepsizes for centralized optimization
and learning (Li & Orabona, 2019; Malitsky & Mishchenko, 2019; Kavis et al., 2022; Malitsky &
Mishchenko, 2024). Moreover, this is also stronger than the convergence results achieved by exist-
ing distributed optimization methods with diminishing stepsizes (Jakovetic et al., 2018; Dieuleveut
& Patel, 2019; Li et al., 2024b; Lee et al., 2025), which guarantee only sublinear convergence rates.

Furthermore, to give a more intuitive description of the computational complexity, we define an
ϵ-solution to problem in equation 1 as follows.
Definition 1 (Lian et al. (2017)). For some integer T > 0, if E[∥xT

i − x∗∥2] ≤ ϵ holds, then we say
that the sequence {xt

i} can reach an ϵ-solution to the problem in equation 1.

Building on Theorem 1 and Theorem 2, we have the following corollary.
Corollary 1. Under Assumptions 1 and 2, for any ϵ > 0, Algorithm 1 with noisy gradient estimates
requires at most O((2|B| + 3M + 3) log(ϵ−1)) gradient evaluation to obtain an ϵ-solution, and
Algorithm 1 with accurate gradients requires at most O((2M +3) log(ϵ−1)) gradient evaluation to
obtain an ϵ-solution.

In Corollary 1, the low bound on the number of inner-consensus-loop iterations M in Algorithm 1 is
a fixed constant, which is different from the existing distributed optimization results in, e.g., Berahas
et al. (2019); Li et al. (2020) which have the inner-loop iteration number increasing with the outer-
loop iterations, and hence have a higher computational complexity of the order of O((log(ϵ−1))2).
Moreover, the computational complexity of our Algorithm 1 matches the adaptive stepsize results
on centralized learning in, e.g., Malitsky & Mishchenko (2019; 2024) and the convergence results
on distributed optimization in, e.g., Chen & Wang (2024); Kuruzov et al. (2024). This is also less
than the convergence results in, e.g., Jakovetic et al. (2018); Dieuleveut & Patel (2019); Li et al.
(2024b) with diminishing stepsizes which have a computation complexity of the order of O(ϵ−1).
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Figure 1: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1, dis-
tributed SGD in Jakovetic et al. (2018), and stochastic GT in Pu & Nedić (2021) on the “MNIST”,
“CIFAR-10”, and “CIFAR-100” datasets, respectively. The 95% confidence intervals were com-
puted from three independent runs with random seeds 42, 1010, and 2024.

6 EXPERIMENTS

In this section, we evaluate the performance of our proposed Algorithm 1 on image classification
tasks using representative benchmark datasets, including the “MNIST” dataset (Deng, 2012), the
“CIFAR-10” dataset (Krizhevsky et al., 2010), and “CIFAR-100” dataset (DeVries & Taylor, 2017).
All these tasks involve nonsmooth and nonconvex objective functions, which are intended to show
the effectiveness of our algorithm beyond the settings of strong convexity or smoothness. Due to the
space limitations, we leave the experimental results on logistic regression with strongly convex and
smooth loss functions to Appendix C.3. In all experiments, we considered five agents connected in
a ring, where each agent communicates only with its two immediate neighbors. For the coupling
matrix W , we set wii = 0.4 for all agent i, wij = 0.3 if agents i and j are neighbors, and wij = 0
otherwise. For each experiment, we considered heterogeneous data distribution, with each agent
i randomly sampling 40% data points from the class i and sampling 60% data points from each
remaining class. We evaluated the performance of our proposed algorithm through the following
three cases: 1) we compared Algorithm 1 with existing distributed stochastic optimization/learning
approaches, including distributed SGD in Jakovetic et al. (2018) with diminishing stepsize and the
stochastic gradient-tracking (called stochastic GT) in Pu & Nedić (2021) with fixed stepsize; 2) we
compared Algorithm 1 with existing adaptive stepsize approaches for centralized learning, includ-
ing the well-known ADAM in Kingma (2014) and the adaptive SGD in Malitsky & Mishchenko
(2024); and 3) to evaluate the effect of the coefficients β and r in the stepsize update rule (i.e., Line
16 in Algorithm 1) and the number of inner-consensus-loop iterations M in Algorithm 1 on con-
vergence accuracy, we test the convergence performance of Algorithm 1 under different β, r, and
M , respectively. The detailed experimental settings are given in Appendix C.1 and Appendix C.2,
and additional experimental results on comparison of Algorithm 1 and distributed ADAM in Nazari
et al. (2022) are provided in Appendix C.3. The code for all experiments is available online2.

Comparison with existing distributed stochastic optimization approaches. We trained convolu-
tional neural networks (CNNs) with two, four, and five layers on the “MNIST”, “CIFAR-10”, and
“CIFAR-100” datasets, respectively. We conducted training for 20 epochs on the “MNIST” dataset

2https://anonymous.4open.science/r/DASGD-71D1/README.md
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Figure 2: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1, ADAM
in Kingma (2014), and adaptive SGD in Malitsky & Mishchenko (2024) on the “MNIST”, “CIFAR-
10”, and “CIFAR-100” datasets, respectively. The 95% confidence intervals were computed from
three independent runs with random seeds 42, 1010, and 2024.

and 80 epochs on the “CIFAR-10” and “CIFAR-100” datasets, using a batch size of 128. The step-
size for distributed SGD was set as ηi = 0.1

(t+1)0.5 and for stochastic GT was set as ηi = 0.1. Both
of them represent the best-performing stepsizes we could find in our comparison. In fact, during our
tuning process, we obverse that setting η = 0.01 for stochastic GT results in overly slow conver-
gence, whereas setting η = 1 leads to divergent behaviors. For Algorithm 1, we set the coefficients
β and r in stepsize update rule as β = 1.3 and r = 0.99, and the number of inner-loop iterations
as M = 10. (The test accuracies of Algorithm 1 under different β, r, and M are provided in
Figs. 3(a), 3(b), and 3(c), respectively.)

Fig. 1(a) to Fig. 1(c) show that our proposed Algorithm 1 achieves the highest test accuracy and a
more stable steady-state convergence compared with distributed SGD in Jakovetic et al. (2018) and
stochastic GT in Pu & Nedić (2021). The early-stage oscillations in test accuracy of Algorithm 1
are mainly attributable to the adaptive process of stepsize adjustments. Compared with distributed
SGD with diminishing stepsizes, stochastic GT with a fixed stepsize achieves faster convergence,
however, it suffers from larger steady-state oscillations. In contrast, our proposed algorithm elim-
inates steady-state oscillations, and hence, ensures fast convergence. This is achieved because our
proposed adaptive stepsize rule allows each agent to take large stepsizes in the early stages of Al-
gorithm 1 and extremely small stepsizes near the global optimum in the later stages, as shown in
Fig. 1(d) to Fig. 1(f). These results further imply a clear stopping criterion for each agent in the
implementation of our Algorithm 1. Specifically, we can preset a constant τ > 0 (e.g., τ = 10−9

in the “MNIST” experiment) for all agents, and once an agent i’s stepsize ηti falls below τ , it can
terminate training, which does not compromise the global learning accuracy.

Comparison with existing adaptive stepsize approaches. Since adaptive stepsize approaches are
rarely reported in a fully distributed setting without a centralized server/aggregator, we compared
the convergence performance of Algorithm 1 with that of existing adaptive stepsize approaches
for centralized learning, including ADAM in Kingma (2014) and the adaptive SGD in Malitsky &
Mishchenko (2019; 2024). This comparison is challenging because centralized methods can perform
training directly on aggregated data, while our approach in Algorithm 1 operates in a fully distributed
manner where each agent can only perform local computations and neighboring communication.

Fig. 2(a) to Fig. 2(c) show that Algorithm 1 has a higher test accuracy than both ADAM and adaptive
SGD, even without the assistance of any centralized server/aggregator. This finding is noteworthy, as
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Figure 3: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1 under
different parameters β, r, and M , respectively.

it empirically demonstrate that our fully distributed learning approach with heterogeneous adaptive
stepsizes among agents can accelerate learning compared with centralized methods with a single
adaptive stepsize. Furthermore, Fig. 2(d) to Fig. 2(f) once again confirm that our adaptive stepsize
approach provides agents with large stepsizes in the early stages and small stepsizes in the conver-
gence stages, thereby facilitating better performance than existing centralized counterparts.

The effects of β, r, and M on convergence accuracy. We evaluate the test accuracies of Algo-
rithm 1 under different coefficients β and r in the stepsize update rule (i.e., Line 16 in Algorithm 1)
and the number of inner-loop iterations M in Algorithm 1, respectively. We ran this experiment on
the “MNIST” dataset over 20 epochs, with a batch size of 128 and a random seed as 42.

Fig. 3(a), Fig. 3(b), Fig. 3(d), and Fig. 3(e) imply that larger β and r lead to faster convergence
and earlier stopping in Algorithm 1. This result is intuitively consistent, as large β and r contribute
to larger stepsizes before convergence stages (as shown in Fig. 3(d) and Fig. 3(e)), which in turn
leads to a higher convergence speed. Furthermore, Fig. 3(c) and Fig. 3(f) show that the number of
inner-consensus-loop iterations M has a negligible effect on convergence accuracy and the stopping
criterion. Hence, in practical machine learning tasks, we can set M = 1 (so that Algorithm 1 reduces
to a single-loop algorithm) to minimize computational and communication costs of Algorithm 1.

7 CONCLUSION

In this paper, we have proposed an adaptive stepsize approach for distributed stochastic optimization
and learning without the assistance of any centralized server/aggregator or the need for accurate gra-
dients. This is nontrivial, because existing adaptive stepsize approaches either rely on a centralized
server to coordinate stepsizes among agents, or are limited to deterministic scenarios where agents
have access to accurate gradients of the objective functions. Moreover, our approach can eliminate
steady-state oscillations, and hence, ensures fast convergence. This stands in stark contrast to most
existing adaptive stepsize approaches that often incur steady-state oscillations near the global op-
timal solution, and thereby preventing the algorithm from achieving stable convergence accuracy.
In addition, we have systematically characterized the convergence rates of our algorithm for both
stochastic and deterministic distributed optimization, and quantified the computational complexities
for gradient evaluations on both cases. Experimental results on image classifications using three
benchmark datasets confirm the advantages of the proposed approach over existing counterparts.
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A NOTATIONS

For the sake of notational simplicity, we introduce some additional notations. We use R+ to denote
the set of positive real numbers and use Xt ≜ col(xt

1, x
t
2, · · · , xt

m) ∈ Rmn to denote the stacked
model parameters of all agents. We also use ⊗ to denote the Kronecker product. We use xt(q) to
denote the average of all agents’ model parameters at the qth inner iteration of the tth outer iteration.
We define Ft ≜ {ξi,s|i = 1, · · · ,m and s = 0, · · · , t}, where ξi,t represents the data point sampled
by agent i at the tth iteration. For further notational simplicity, we define xt = 1

m

∑m
i=1 x

t
i, ηty

t
1 =

1
m

∑m
i=1 η

t
iy

t
1,i, η

t
max = maxi∈[m] η

t
i , ηmax = maxt∈N ηtmax, η̄t = 1

m

∑m
i=1 η

t
i , y

t
1 = 1

m

∑m
i=1 y

t
1,i,

yt2 = 1
m

∑m
i=1 y

t
2,i, x̂

t
i = xt

i − xt, ŷt1,i = yt1,i − yt1, and ŷt2,i = yt2,i − yt2.

B RESULTS OF ALGORITHM 1

B.1 TECHNICAL LEMMAS

We introduce the following three lemmas to characterize the consensus errors of Algorithm 1.
Lemma 1. Under Assumptions 1 and 2, the following inequality holds for Algorithm 1:

E[∥xt+1 − xt∥2] ≤ 45

46
E[∥xt − xt−1∥2]− E[∥xt+1 − xt∥2]

+
125

31β
E[ηt(f(xt−1)− f(xt))] + 2δt3,

(4)

where the constant δt3 is given by

δt3 =
125

124m

(
L2ηmax

a6
+

2β2

a8
+ b1 +

49(1 + a7)

50a7

) m∑
i=1

E[∥x̂t
i∥2]

+
125

124m

(
2β2

a8
+ b1 +

49(1 + a7)

50a7

) m∑
i=1

E[∥x̂t−1
i ∥2}

+
η2max

m

(
187

62
+

125

62a2
+

1

a1

) m∑
i=1

(
E[∥ŷt1,i∥2] + E[∥ŷt−1

2,i ∥2]
)

+
125η2max

124m

(
1

a3
+ 1 +

1

a8
+

2

a2

) m∑
i=1

E[∥ŷt−1
1,i ∥2]

+

((
1− 1

a3

)(
2 + a9 +

1

a9

)
+

1

a6m

)
σ2

|B|
,

(5)

with b1 ≜ 2β2

m (1− a3)(a4 − 1)(1− 1
a5
) + 2β2(1− a3)(1− 1

a4
), a1 ∈ (0, 1

124 ), a2 ∈ R+, a3 ∈ R+,
a4, a5, a6, a7 ∈ (0, 1), a8 = 1−124a1

250 .
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Proof. According to Line 3 in Algorithm 1, we have

xt+1 = xt+1(0) = xt − ηtyt1, (6)

with xt = 1
m

∑m
i=1 x

t
i and ηtyt1 = 1

m

∑m
i=1 η

t
iy

t
1,i. Since ηtyt1 = 1

m2

∑m
i=1 η

t
i

∑m
j=1 y

t
1,j holds, we

obtain the following inequality:

E[∥xt+1 − xt∥2|Ft] = ∥ηtyt1∥2 = ∥ηtyt1 − ηtyt1 + ηtyt1∥2

≤
(
1 +

1

a1

)
∥ηtyt1 − ηtyt1∥2 + (1 + a1)∥ηtyt1∥2

=

(
1 +

1

a1

)
∥ 1

m

m∑
i=1

(ηtiy
t
1,i − ηtiy

t
1)∥2 + (1 + a1)∥ηtyt1∥2

≤
(
1 +

1

a1

)
1

m

m∑
i=1

∥ηtiyt1,i − ηtiy
t
1∥2 + (1 + a1)∥ηtyt1∥2

=

(
1 +

1

a1

)
1

m

m∑
i=1

(ηti)
2∥yt1,i − yt1∥2 + (1 + a1)∥ηtyt1∥2

≤
(
1 +

1

a1

)
1

m

m∑
i=1

η2max∥ŷt1,i∥2 + (1 + a1)∥ηtyt1∥2,

(7)

where Ft = {ξi,s|i = 1, . . . , N ; s = 0, . . . , t} with ξi,t denoting the data point sampled by agent
i at iteration t. Here, we have used the inequality ∥a + b∥2 ≤ (1 + 1

α )∥a∥
2 + (1 + α)∥b∥2 for any

α > 0 and a, b ∈ Rn in the first inequality and the inequality ∥ 1
m

∑m
i=1 ai∥2 ≤ 1

m

∑m
i=1 ∥ai∥2 for

any ai ∈ R, i = 1, · · · ,m in the second inequality. By choosing a1 ∈ (0, 1
124 ) and applying the

relation ∥a∥2 = ∥a− b∥2 − ∥b∥2 + 2⟨a, b⟩ to equation 7, the term ∥ηtyt1∥ can be bounded by

∥ηtyt1∥2 = ∥ηt(yt1 − yt−1
2 )∥2 − ∥ηtyt−1

2 ∥2 + 2⟨ηtyt1, ηtyt−1
2 ⟩. (8)

The first term on the right-hand side of equation 8 satisfies

∥ηt(yt1 − yt−1
2 )∥2 =

∥∥∥∥∥ 1

m

m∑
i=1

ηti(y
t
1 − yt−1

2 )

∥∥∥∥∥
2

≤ 1

m

m∑
i=1

∥ηti(yt1 − yt−1
2 )∥2 =

1

m

m∑
i=1

∥ηti(yt1,i − yt−1
2,i )− ηti(ŷ

t
1,i − ŷt−1

2,i )∥2

≤ 1

m

m∑
i=1

(1 + a2)∥ηti(yt1,i − yt−1
2,i )∥2 + 1

m

m∑
i=1

(
1 +

1

a2

)
∥ηti(ŷt1,i − ŷt−1

2,i )∥2,

(9)

for any a2 ∈ R+. According to Lt
i =

∥yt
1,i−yt−1

2,i ∥
∥xt

i−xt−1
i ∥ and ∥a+ b∥ ≤ 2∥a∥2 + 2∥b∥2, equation 9 can be

rewritten as follows:

E[∥ηt(yt1 − yt−1
2 )∥2]

≤ E

[
1

m

m∑
i=1

(1 + a2)(η
t
iL

t
i)

2∥xt
i − xt−1

i ∥2 + 2

m

m∑
i=1

η2max(1 +
1

a2
)(∥ŷt1,i∥2 + ∥ŷt−1

2,i ∥2)

]

≤ E

[
1

m

m∑
i=1

(1+a2)(1+a7)(η
t
iL

t
i)

2∥xt−xt−1∥2
]
+E

[
2

m

m∑
i=1

η2max

(
1+

1

a2

)
(∥ŷt1,i∥2+∥ŷt−1

2,i ∥2)

]

+
2η2maxL

2

m

m∑
i=1

(1 + a2)

(
1 +

1

a7

)
E
[
∥x̂t

i∥2 + ∥x̂t−1
i ∥2

]
, (10)

for any a7 ∈ R+. Here, we have used the L-smoothness of each fi in the second inequality.
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We proceed to estimate a lower bound on the second term on the right-hand side of equation 8.

∥ηtyt−1
2 ∥2 = (ηt)2∥yt−1

2 ∥2 = (ηt)2∥yt−1
2 − yt−1

1 + yt−1
1 ∥2

≥ (1− a3)(η
t)2∥yt−1

1 ∥2 +
(
1− 1

a3

)
(ηt)2∥yt−1

2 − yt−1
1 ∥2,

(11)

for any a3 ∈ (0, 1), where in the derivation we have used the inequality ∥a+ b∥2 ≥ (1− 1
α )∥a∥

2 +

(1 − α)∥b∥2, for any a ∈ (0, 1). Since the relationship 1 − 1
a3

< 0 holds, the second term on the
right-hand side of equation 11 satisfies(

1− 1

a3

)
(ηt)2∥yt−1

2 − yt−1
1 ∥2

≥
(
1− 1

a3

)
(ηmax)

2∥ 1

m

m∑
i=1

(gt−1
i (xt−1

i )− gt−2
i (xt−1

i ))∥2

≥
(
1− 1

a3

)
(ηmax)

2 1+a9
m

m∑
i=1

∥gt−1
i (xt−1

i )−∇fi(x
t−1
i )∥2

+

(
1− 1

a3

)
(ηmax)

2 a9 + 1

a9m

m∑
i=1

∥∇fi(x
t−1
i )−gt−2

i (xt−1
i )∥2.

(12)

The first term on the right-hand side of equation 12 satisfies

E[∥gt−1
i (xt−1

i )−∇fi(x
t−1
i )∥2}

= E


∥∥∥∥∥∥ 1

m

m∑
j=1

(∇li(x
t−1
i , ξt−1

i,j )−∇fi(x
t−1
i ))

∥∥∥∥∥∥
2


=
1

m2
E

 m∑
j=1

∥∥∇li(x
t−1
i , ξt−1

i,j )−∇fi(x
t−1
i )

∥∥2
=

1

m2

k∑
j=1

σ2

|B|
=

σ2

m|B|
,

(13)

where in the derivation we have used Assumption 1.

The second term on the right-hand side of equation 12 satisfies

E[∥∇fi(x
t−1
i )− gt−2

i (xt−1
i )∥2} ≤ σ2

|B|
. (14)

By using the inequality (
∑n

i=1 ai)
2 ≥

∑n
i=1 a

2
i for any nonnegative constants a1, . . . , an, the first

term on the right-hand side of equation 11 satisfies

E
[
(ηt)2∥yt−1

1 ∥2
]
= E

[(
ηt∥yt−1

1 ∥
)2]

= E

( 1

m

m∑
i=1

ηti∥yt−1
1 ∥

)2


= E

( 1

m

m∑
i=1

ηti∥yt−1
1,i − ŷt−1

1,i ∥

)2


≥ 1

m2

m∑
i=1

E
[
(ηti)

2∥yt−1
1,i − ŷt−1

1,i ∥2
]

≥ 1− a10
m2

m∑
i=1

E
[
(ηti)

2∥yt−1
1,i ∥2

]
+

a10 − 1

a10m2

m∑
i=1

E
[
(ηti)

2∥ŷt−1
1,i ∥2

]
,

(15)

for a10 ∈ (0, 1).
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We estimate a lower bound on the first term on the right-hand side of equation 15 as follows:

m∑
i=1

E
[
(ηti)

2∥yt−1
1,i ∥2

]
=

m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥xt
i(0)− xt−1

i ∥2
]

≥ (1− a4)

m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥xt − xt−1∥2
]

+

(
1− 1

a4

) m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥x̂t
i(0)− x̂t−1

i ∥2
]

≥ (1− a4)(1− a5)

m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥xt − xt−1∥2
]

+ (1− a4)a5

m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥xt − xt−1∥2
]

+ (1− 1

a4
)

m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥x̂t
i(0)− x̂t−1

i ∥2
]
,

(16)

for any a4 ∈ (1,+∞) and a5 ∈ (1,+∞).

We estimate a lower bound on the third term on the right-hand side of equation 16 as follows:

m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥x̂t
i(0)− x̂t−1

i ∥2
]

≥ (1− a11)

m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥x̂t
i(0)∥2

]
+

(
1− 1

a11

) m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥x̂t−1
i ∥2

]

≥ (1− a11)

(
ηmax

ηmin

)2 m∑
i=1

E
[
∥x̂t

i∥2
]
+

(
1− 1

a11

) m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥x̂t−1
i ∥2

]
,

(17)

for any a11 ∈ (0, 1), where we have used the inequality
∑m

i=1 ∥x̂t
i(0)∥2 ≥ ρ2M

∑m
i=1 ∥x̂t

i(0)∥2 ≥∑m
i=1 ∥x̂t

i∥2 in the last inequality. This inequality will be proved in the subsequent Lemma 3.

Finally, using inequalities equation 11 -equation 17, we arrive at

E[∥ηtyt−1
2 ∥2]

≥ (1− a3)(1− a10)(1− a4)(1− a5)
1

m2

m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥xt − xt−1∥2
]

+ (1− a3)(1− a10)(1− a4)a5
1

m2

m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥xt − xt−1∥2
]

+ (1− a3)(1− a10)(1−
1

a4
)(1− a11)

1

m2

m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥x̂t
i∥2
]

+ (1− a3)(1− a10)

(
1− 1

a4

)(
1− 1

a11

)
1

m2

m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥x̂t−1
i ∥2

]

+ (1− a3)

(
1− 1

a10

)
1

m2

m∑
i=1

(ηti)
2E
[
∥ŷt−1

1,i ∥2
]

+

(
1− 1

a3

)(
2 + a9 +

1

a9

)
η2maxσ

2

|B|
.

(18)
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The inequality in equation 18 implies

− E[∥ηtyt−1
2 ∥2} ≤ −(1− a3)(1− a10)(1− a4)(1− a5)

1

m2

m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥xt − xt−1∥2
]

+ (1− a3)(1− a10)(a4 − 1)a5
β2

m2

m∑
i=1

E
[
∥xt − xt−1∥2

]
+

b1
m

m∑
i=1

E
[
∥x̂t

i∥2
]

+
b2
m

m∑
i=1

E
[
∥x̂t−1

i ∥2
]
+

b3η
2
max

m

m∑
i=1

E
[
∥ŷt−1

1,i ∥2}
]
+

b4η
2
maxσ

2

|B|
, (19)

with b1 =
(1−a3)(1−a10)

(
1− 1

a4

)
(1−a11)β

2

m , b2 =
(1−a3)(1−a10)

(
1− 1

a4

)(
1

a11
−1

)
β2

m , b3 =
(1−a3)

(
1

a10
−1

)
m , and b4 = ( 1

a3
− 1)

(
2 + a9 +

1
a9

)
.

Next, we estimate an upper bound for the last term on the right-hand side of equation 8 as follows:

2E
[
⟨ηtyt1, ηtyt−1

2 ⟩
]
=

2

m

m∑
i=1

E
[
⟨ηtyt1, ηti(yt−1

2 − yt−1
1 + yt−1

1 )⟩
]

=
2

m

m∑
i=1

E
[
⟨ηtyt1, ηtiyt−1

1,i ⟩
]
− 2

m

m∑
i=1

E
[
⟨ηtyt1, ηti ŷt−1

1,i ⟩
]
+

2

m

m∑
i=1

E
[
⟨ηtyt1, ηti(yt−1

2 − yt−1
1 )⟩

]
=

2

m

m∑
i=1

E
[
⟨ηtyt1,

ηti
ηt−1
i

(xt−1
i − xt

i(0))⟩
]
− 2

m

m∑
i=1

E
[
⟨ηtyt1, ηti ŷt−1

1,i ⟩
]

+
2

m

m∑
i=1

E
[
⟨ηtyt1, ηti(yt−1

2 − yt−1
1 )⟩

]
≤ 2

m

m∑
i=1

E
[〈

ηtyt1,
ηti

ηt−1
i

(xt−1
i − xt

i(0))

〉]
+ 2a8E

[
∥ηtyt1∥2

]
+

1

m

m∑
i=1

E
[
η2max

a8
∥ŷt−1

1,i ∥2
]

+ E
[
η2max

a8
∥yt−1

2 − yt−1
1 ∥2

]
, (20)

with a8 = 1−124a1

250 > 0, where we have used the inequality 2⟨a, b⟩ ≤ 1
α∥a∥

2 + α∥b∥2 in the last
inequality.

Next, we need to transform the first term on the right-hand side of equation 20.

2E
[〈

ηtyt1,
ηti

ηt−1
i

(xt−1
i − xt

i)

〉]
= 2E

[〈
ηtyt1,

ηti
ηt−1
i

(xt−1 − xt)

〉]
+ 2E

[〈
ηtyt1,

ηti
ηt−1
i

(x̂t−1
i − x̂t

i)

〉]
≤ 2

m

m∑
j=1

E
[〈

ηtjy
t
1,

ηti
ηt−1
i

(xt−1 − xt)

〉]
+ a8E

[
∥ηtyt1∥2

]
+

2β2

a8
E
[
∥x̂t−1

i ∥2
]
+

2β2

a8
E
[
∥x̂t

i∥2
]
.

(21)
Then, we estimate an upper bound on the first term on the right-hand side of equation 21 as follows:

E
[〈

ηtjy
t
1,

ηti
ηt−1
i

(xt−1 − xt)

〉]
= E

[
ηtj

〈
yt1 −∇f(xt),

ηti
ηt−1
i

(xt−1 − xt)

〉]
+ E

[
ηtj

〈
∇f(xt),

ηti
ηt−1
i

(xt−1 − xt)

〉]
≤ E

[
ηtj

〈
yt1 −∇f(xt),

ηti
ηt−1
i

(xt−1 − xt)

〉]
+

1

β
E
[
ηtj(f(x

t−1)− f(xt))
]
, (22)

with ∇f(xt) = 1
m

∑m
i=1 ∇fi(x

t), where we have used the convexity of the function f(x) and the

relationship ηt
i

ηt−1
i

≤ 1
β for any given t in the last inequality.
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The first term on the right-hand side of equation 22 can be bounded by

E
[〈

yt1 −∇f(xt),
ηti

ηt−1
i

(xt−1 − xt)

〉]
≤ 1

2a6
E
[
∥yt1 −∇f(xt)∥2

]
+

a6
2
E

[(
ηti

ηt−1
i

)2

∥xt−1 − xt∥2
]

=
1

2a6
E

∥∥∥∥∥ 1

m

m∑
k=1

(∇fk(x
t
k)−∇fk(x

t))

∥∥∥∥∥
2
+

a6
2
E

[(
ηti

ηt−1
i

)2

∥xt−1 − xt∥2
]
+

σ2

2|B|ma6

≤ 1

2ma6

m∑
k=1

E
[
∥∇fk(x

t
k)−∇fk(x

t)∥2
]
+

a6β
2

2
E
[
∥xt−1 − xt∥2

]
+

σ2

2|B|ma6

≤ L2

2ma6

m∑
k=1

E
[
∥x̂t

k∥2
]
+

a6β
2

2
E
[
∥xt−1 − xt∥2

]
+

σ2

2|B|ma6
, (23)

for any a6 ∈ R+, where L is from the L-smoothness of fi given in Assumption 1. Here, we have
used the inequality ⟨a, b⟩ ≤ 1

2α∥a∥
2 + α

2 ∥b∥
2 for any α > 0 and a, b ∈ Rn in the first inequality,

and the L-smoothness of fi(x) in the last inequality.

Combining equation 20 and equation 23, we obtain the following inequality:

2E
[
⟨ηtyt1, ηtyt−1

1 ⟩
]
≤ 2a8E

[
∥ηtyt1∥2

]
+

η2max

a8m

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]

+
a6β

2

m

m∑
i=1

E
[
ηti∥xt−1 − xt∥2

]
+

2β2

a8m

m∑
i=1

E
[
∥x̂t−1

i ∥2
]

+
1

m

m∑
i=1

(
L2ηmax

a6
+

2β2

a8

)
E
[
∥x̂t

i∥2
]
+

2

mβ

m∑
i=1

E
[
ηti(f(x

t−1)− f(xt))
]
.

(24)

Substituting equation 10, equation 19, and equation 24 into equation 8, we obtain

(1− 2a8)E
[
∥ηtyt1∥2

]
≤ 1

m

m∑
i=1

(1 + a2)E
[
(ηtiL

t
i)

2∥xt
i − xt−1

i ∥2
]
+

a6β
2

m

m∑
i=1

E
[
ηti∥xt−1 − xt∥2

]
+

2β

m

m∑
i=1

E
[
ηti(f(x

t−1)− f(xt))
]

− (1− a3)(1− a4)(1− a5)
1

m2

m∑
i=1

E

[(
ηti

ηt−1
i

)2

∥xt
i − xt−1

i ∥2
]
+ δt1,

(25)

where the constant δt1 is given by

δt1 =
1

m

m∑
i=1

(
L2ηmax

a6
+

2β2

a8
+ b1

)
E
[
∥x̂t

i∥2
]
+

1

m

m∑
i=1

(
2β2

a8
+ b1

)
E
[
∥x̂t−1

i ∥2
]

+
1

m

m∑
i=1

η2max

(
2 +

2

a2

)
E
[
∥ŷt1,i∥2

]
+

1

m

m∑
i=1

(
1

a3
+ 1 +

1

a8
+

2

a2

)
E
[
η2max∥ŷt−1

1,i ∥2
]

+
σ2

2ma6
. (26)

By choosing some appropriate a2, a3, a4, and a5 such that the following inequality holds:

(1 + a2)(η
t
iL

t
i)

2 − (1− a3)(1− a4)(1− a5)
(ηti)

2

m(ηt−1
i )2

≤ 49

100
,
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we have the following relationship:

ηti ≤
7
√
r

10

ηt−1
i√

[(ηt−1
i Lt

i)
2 − 1]+

. (27)

Based on the above analysis, we can rewrite equation 25 as follows:

(1− 2a8)E
[
∥ηtyt1∥2

]
≤ 49

100m

m∑
i=1

E
[
∥xt

i − xt−1
i ∥2

]
+

a6β
2

m

m∑
i=1

E
[
ηti∥xt−1 − xt∥2

]
+

2β

m

m∑
i=1

E
[
ηti(f(x

t−1)− f(xt))
]
+ δt1. (28)

By using the inequality ∥a+ b∥2 ≤ (1 + 1
α )∥a∥

2 + (1 + α)∥b∥2 for any α > 0 and a, b ∈ Rn, and
the equation xt

i = xt + x̂t
i, we can rewrite equation 28 as follows:

(1− 2a8)E
[
∥ηtyt1∥2

]
≤

(
49(1 + a7)

100
+

a6β
2

m

m∑
i=1

ηti

)
E
[
∥xt − xt−1∥2

]
+

2

mβ

m∑
i=1

E
[
ηti(f(x

t−1)− f(xt))
]
+ δt1 +

49(1 + a7)

100ma7

m∑
i=1

E
[
∥x̂t

i − x̂t−1
i ∥2

]
≤
(
49(1 + a7)

100
+ a6β

2ηmax

)
E
[
∥xt − xt−1∥2

]
+

2

mβ

m∑
i=1

E
[
ηti(f(x

t−1)− f(xt))
]
+ δt2,

(29)

for any a7 ∈ R+, where the constant δt2 is given by δt2 = δt1+
49(1+a7)
50ma7

∑m
i=1 E

[
∥x̂t

i∥2 + ∥x̂t−1
i ∥2

]
.

By substituting equation 29 into equation 7, we obtain

E
[
∥xt+1 − xt∥2

]
≤ c1E

[
∥xt − xt−1∥2

]
+

2(1 + a1)

mβ(1− 2a8)

m∑
i=1

E
[
ηti(f(x

t−1)− f(xt))
]
+ δt3,

(30)

with δt3 = 1+a1

1−2a8
δt2 + (1 + 1

a1
) 1
m

∑m
i=1 η

2
max∥ŷt1,i∥2 and c1 = 1+a1

1−2a8
( 49(1+a7)

100 + a6β
2ηmax). To

ensure that c1 < 1
2 , we select sufficiently small a6, a7, and a8 such that the following relations hold:

49(1 + a7)

100
+ a6β

2ηmax =
495

1000
,

a8 =
1− 124a1

250
> 0,

(31)

where a8 exists due to a1 < 1
124 given in the lemma statement. Then, we have

c1 ≤ 495

1000
× 1 + a1

1− 2a8
<

1

2
, (32)

where we have used the relationship 495(1+a1)
500 < 1− 2a8.

Substituting the second equation in equation 31 and equation 32 into equation 30, we obtain

E
[
∥xt+1 − xt∥2

]
≤ 495

496× 2
E
[
∥xt − xt−1∥2

]
+

125

62mβ

m∑
i=1

E
[
ηti(f(x

t−1)− f(xt))
]
+ δt3.

(33)

Multiplying both sides of equation 33 by C = 2 leads to

E
[
∥xt+1 − xt∥2

]
≤ 45

46
E
[
∥xt − xt−1∥2

]
− E

[
∥xt+1 − xt∥2

]
+

125

31β
E
[
ηt(f(xt−1)− f(xt))

]
+ 2δt3,

(34)

which implies Lemma 1.
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Lemma 2. Under Assumptions 1 and 2, the following inequality holds for Algorithm 1:

E[∥xt+1 − x∗∥2}+ E[∥xt+1 − xt∥2}+
(
2 +

125β

31

)
ηtE[f(xt)− f(x∗)}

≤
(
1− µηmin

2
+ a9µηmax

)
E[∥xt − x∗∥2}+ 45

46
E
[
∥xt − xt−1∥2

]
+ γ

(
2 +

125β

31

)
E
[
ηt−1(f(xt−1)− f(x∗))

]
+ δt5,

(35)

for any γ ∈ (0, 1), where the constant δt5 is given by

δt5 =
125

62m

(
L2ηmax

a6
+

2β2

a8
+ b1 +

49(1 + a7)

50a7
+

124L2ηmax

125a9µ

) m∑
i=1

E[∥x̂t
i∥2}

+
125

62m

(
2β2

a8
+ b1 +

49(1 + a7)

50a7

) m∑
i=1

E[∥x̂t−1
i ∥2}

+
η2max

m

(
187

31
+

125

31a2
+

2

a1
+

4

µηmin

) m∑
i=1

(
E[∥ŷt1,i∥2 + E[∥ŷt−1

2,i ∥2}
)

+
125η2max

62m

(
1

a3
+ 1 +

1

a8
+

2

a2

) m∑
i=1

E[∥ŷt−1
1,i ∥2}+ 2ηmaxL

2σ2

a9µ

+ 2

((
1− 1

a3

)(
2 +

2ηmax

ηmin
+

ηmin

2ηmax

)
+

1

a6m

)
σ2

|B|
.

(36)

Proof. According to the dynamics of xt
i in Algorithm 1, we have

E
[
∥xt+1 − x∗∥2

]
= E

[
∥xt − ηtyt − x∗∥2

]
= E

[
∥xt − x∗∥2

]
+ E

[
∥ηtyt∥2

]
− 2E

[
⟨xt − x∗, ηtyt⟩

]
= E

[
∥xt − x∗∥2

]
+ E

[
∥xt+1 − xt∥2

]
− 2E

[
⟨xt − x∗, ηtyt⟩

]
,

(37)

with ηtyt := 1
N

∑N
i=1 η

t
iy

t
1,i.

The third term on the right-hand side of equation 37 satisfies:

2E
[
⟨xt − x∗, ηtyt⟩

]
= −2⟨xt − x∗,

1

m

m∑
i=1

ηtiy
t
1,i⟩

≤ −2E
[
ηt(f(xt)− f(x∗))− µηmin∥xt − x∗∥2

]
− 2E

[〈
xt − x∗,

1

m

m∑
i=1

ηti(y
t
1,i −∇f(xt))

〉]
,

(38)

where in the derivation we have used the µ-strong convexity of f(x) and ηmin = mini∈[m],t∈N+ ηti .
Furthermore, since the function f is L-smoothness, the minimum of the stepsizes exists.

By using the Cauchy–Schwarz inequality, the third term on the right-hand side of inequality equa-
tion 38 satisfies

− 2E

[〈
xt − x∗,

1

m

m∑
i=1

ηti(y
t
1,i −∇f(xt))

〉]

= − 2

m

m∑
i=1

E
[〈√

ηti(x
t − x∗),

√
ηti(y

t
1,i −∇f(xt))

〉]

≤ 2

m

√√√√( m∑
i=1

E

[∥∥∥∥√ηti(x
t − x∗)

∥∥∥∥2
])(

m∑
i=1

E

[∥∥∥∥√ηti(y
t
1,i −∇f(xt)

∥∥∥∥2
)]

.
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By applying the inequality 2⟨a, b⟩ ≤ α∥a∥2 + 1
α∥b∥

2 for any α > 0 and a, b ∈ Rn to equation 39,
we obtain

− 2E

[〈
xt − x∗,

1

m

m∑
i=1

ηti(y
t
1,i −∇f(xt))

〉]

≤ a9µ

m

m∑
i=1

E
[
ηti∥xt − x∗∥2

]
+

1

ma9µ

m∑
i=1

E
[
ηti∥yt1,i −∇f(xt)∥2

]
≤ a9µηmaxE

[
∥xt − x∗∥2

]
+

ηmax

ma9µ

m∑
i=1

E
[
∥yt1,i −∇f(xt)∥2

]
.

The second term on the right-hand side of equation 39 satisfies

ηmax

ma9µ

m∑
i=1

E
[
∥yt1,i −∇f(xt)∥2

]
=

ηmax

ma9µ

m∑
i=1

E
[
∥yt1,i − yt1 + yt1 −∇f(xt)∥2

]
≤ 2ηmax

ma9µ

m∑
i=1

E
[
∥yt1,i − yt1∥2

]
+

2ηmax

ma9µ

m∑
i=1

E
[
∥yt1 −∇f(xt)∥2

]
.

(39)

By using the Lipschitz continuity of ∇f from Assulption 1, we have
m∑
i=1

E
[
∥yt1 −∇f(xt)∥2

]
≤ 1

m

m∑
i=1

E
[
∥gti(xt

i)−∇fi(x
t)∥2

]
=

σ2

B
+

1

m

m∑
i=1

E
[
∥∇f t

i (x
t
i)−∇fi(x

t)∥2
]
≤ σ2

|B|
+

L2

m

m∑
i=1

E
[
∥x̂t

i∥2
]
.

Substituting equation 40 into equation 39 leads to

ηmax

ma9µ

m∑
i=1

E
[
∥yt1,i −∇f(xt)∥2

]
≤ 2ηmax

ma9µ

m∑
i=1

E
[
∥ŷt1,i∥2

]
+

2ηmaxL
2

ma9µ

m∑
i=1

E
[
∥x̂t

i∥2
]
+

2ηmaxL
2σ2

|B|a9µ
.

(40)

By substituting equation 38 to equation 40 into equation 37, we obtain

E
[
∥xt+1 − x∗∥2

]
≤ (1− µηmin + a9µηmax)E

[
∥xt − x∗∥2

]
+ E

[
∥xt+1 − xt∥2

]
− 2E

[
ηt(f(xt)− f(x∗))

]
+ δt4,

(41)

with δt4 = 2ηmax

ma9µ

∑m
i=1 E

[
∥ŷt1,i∥2

]
+ 2ηmaxL

2

ma9µ

∑m
i=1 E

[
∥x̂t

i∥2
]
+ 2ηmaxL

2σ2

|B|a9µ
.

By adding both sides of equation 4 in Lemma 1 and equation 41, we obtain

E
[
∥xt+1 − x∗∥2

]
+ E

[
∥xt+1 − xt∥2

]
+

(
2 +

125β

31

)
E
[
ηt(f(xt)− f(x∗))

]
≤ (1− µηmin + a9µηmax)E

[
∥xt − x∗∥2

]
+

45

46
E
[
∥xt − xt−1∥2

]
+

125β

31
E
[
ηt(f(xt−1)− f(x∗))

]
+ δt5,

(42)

with δt5 = δt4 + 2δt3.

By setting β ∈ (1, 1.36) and using Line 16 in Algorithm 1, we have 125β
31 ηt ≤ 125β2

31 ηt−1 =

γ1

(
2 + 125β

31

)
ηt−1 for some γ1 ∈

(
0, 91

92

)
, which implies the following inequality:

125β

31
ηt ≤ γ1

(
2 +

125β

31

)
ηt−1 and

125β2

31
≤ γ1

(
2 +

125β

31

)
. (43)
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By letting a9 = ηmin

2ηmax
, we have

E
[
∥xt+1 − x∗∥2

]
+ E

[
∥xt+1 − xt∥2

]
+

(
2 +

125β

31

)
E
[
ηt(f(xt)− f(x∗))

]
≤
(
1− µηmin

2

)
E
[
∥xt − x∗∥2

]
+

45

46
E
[
∥xt − xt−1∥2

]
+ E

[
γ1

(
2 +

125β

31

)
ηt−1(f(xt−1)− f(x∗))

]
+ δt5,

(44)

which proves Lemma 2.

Lemma 3. Under Assumptions 1 and 2, the following inequality holds for Algorithm 1:
m∑
i=1

E
[
x̂t
i∥2
]
≤ ρ2M

(
12η2max

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]
+ (24η2maxL

2 + 3)

m∑
i=1

E
[
∥x̂t−1

i ∥2
]

+ 48mη2maxL
2E
[
∥xt − x∗∥2

]
+ 48mη2maxL

2E
[
∥xt − xt−1∥2

]
+

12η2maxσ
2

|B|

)
, (45)

m∑
i=1

E
[
∥ŷt1,i∥2

]
≤ ρ2M

(
18L2

m∑
i=1

E
[
∥x̂t

i∥2
]
+ 18L2

m∑
i=1

E
[
∥x̂t−1

i ∥2
]
+ 3

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]

+ 18mL2E
[
∥xt − xt−1∥2

]
+

36mσ2

|B|

)
, (46)

m∑
i=1

E
[
∥ŷt2,i∥2

]
≤ ρ2M

(
18L2

m∑
i=1

E
[
∥x̂t

i∥2
]
+ 18L2

m∑
i=1

E
[
∥x̂t−1

i ∥2
]
+ 3

m∑
i=1

E
[
∥ŷt−1

2,i ∥2
]

+ 18mL2E
[
∥xt − xt−1∥2

]
+

36mσ2

|B|

)
, (47)

where ρ < 1 is from Assumption 2 and M is the number of inner-consensus-loop iterations from
Algorithm 1.

Proof. According to Line 5 in Algorithm 1, we have

Xt(q + 1) = (W ⊗ In)X
t(q), q = 0, 1, . . . ,M − 1, (48)

where W ∈ Rm×m is the adjacency matrix given in Assumption 2. Since the relationship x̄t(q) =
1
m

∑m
i=1 x

t
i(q) holds, we have

xt(q + 1) =
1

m

m∑
i=1

xt
i(q + 1) =

1

m

m∑
i=1

m∑
j=1

wijx
t
j(q) =

1

m

m∑
j=1

xt
j(q) = xt(q), (49)

where we have used Assumption 2 in the derivation.

By using the definition X̄t = col(xt, · · · , xt) ∈ Rmn and equation 49, we have

X̄t = (W ⊗ In)X̄
t. (50)

By defining ∆t(q) ≜ Xt(q)− X̄t and subtracting equation 50 from equation 48, we obtain

∆t(q + 1) = Xt(q + 1)−Xt
1 = (W ⊗ In)∆

t(q)

∆t(q + 1) = (W ⊗ In)∆
t(q).

Since W is a doubly stochastic matrix, there must exist an orthogonal matrix Φ ∈ Rm×m such that
W satisfies the following transformation:

Φ⊤WΦ = diag{1, λ2, . . . , λm}, (51)

with |λi| < 1, i = 2, . . . ,m. The first column of Φ is given by 1√
m
1n, which corresponds to the

eigenvalue 1 of W . By further considering the following transformation:

∆t
1(q) = (Φ⊤ ⊗ In)∆

t(q), (52)
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with ∆t
1(q) = [σt

1(q);σ
t
2(q); . . . ;σ

t
m(q)] ∈ Rmn, we have

σt
i(q) =

m∑
j=1

Φ⊤
ij(x

t
j(q)− xt), (53)

where Φ⊤
ij denotes the element in the ith row and jth column of the matrix Φ⊤. By using σt

1(q) =
1√
m

∑m
j=1(x

t
j(q)− xt) = 0, equation 51 can be rewritten as follows:

∆t
1(q + 1) = (diag{1, λ2, . . . , λm} ⊗ In)∆

t
1(q). (54)

Since the relationship σt
1(q) = 0 holds, equation 54 implies

σt
i(q + 1) = λiσ

t
i(q) ≤ ρσt

i(q) ≤ ρq+1σt
i(0), (55)

with ρ = max{|λ2|, · · · , |λm|} < 1. According to equation 55, we have

∥∆t(M)∥2 ≤ ρ2M∥∆t(0)∥2, (56)

which further implies
m∑
i=1

∥xt
i − xt∥2 ≤ ρ2M

m∑
i=1

∥xt
i(0)− xt∥2. (57)

By using an argument similar to the derivation of equation 57, we obtain
m∑
i=1

∥yt1,i − yt1∥2 ≤ ρ2M
m∑
i=1

∥yt1,i(0)− yt1∥2,

m∑
i=1

∥yt2,i − yt2∥2 ≤ ρ2M
m∑
i=1

∥yt2,i(0)− yt2∥2.
(58)

Using equation 57, we have
m∑
i=1

∥xt
i − xt∥2 ≤ ρ2M

m∑
i=1

∥xt
i(0)− xt∥2

= ρ2M
m∑
i=1

∥xt
i(0)− xt−1

i + xt−1
i − xt−1 + xt−1 − xt∥2

≤ 3ρ2M (

m∑
i=1

∥xt
i(0)− xt−1

i ∥2 +
m∑
i=1

∥xt−1
i − xt−1∥2 +

m∑
i=1

∥xt−1 − xt∥2)

= 3ρ2M

(
m∑
i=1

∥xt
i(0)− xt−1

i ∥2 +
m∑
i=1

∥x̂t−1
i ∥2 +m∥xt − xt−1∥2

)
,

(59)

where we have used the relationship ∥a+b+c∥2 ≤ 3∥a∥2+3∥b∥2+3∥c∥2 in the second inequality.

We estimate an upper bound on the first term on the right-hand side of equation 59 as follows:
m∑
i=1

∥xt
i(0)− xt−1

i ∥2 =

m∑
i=1

∥ηt−1
i yt−1

1,i ∥2 ≤ 2

m∑
i=1

∥ηt−1
i ŷt−1

1,i ∥2 + 2

m∑
i=1

∥ηt−1
i yt−1

1 ∥2

= 2η2max

m∑
i=1

∥ŷt−1
1,i ∥2 + 2mη2max

∥∥∥∥∥ 1

m

m∑
i=1

(gt−1
i (xt−1

i )−∇f(x∗))

∥∥∥∥∥
2

.

(60)

By using the following inequality and equation 60

E

∥∥∥∥∥ 1

m

m∑
i=1

(gt−1
i (xt−1

i )−∇f(x∗))

∥∥∥∥∥
2
 ≤ σ2

|B|m
+

1

m
E

∥∥∥∥∥
m∑
i=1

(∇fi(x
t−1
i )−∇fi(x

∗))

∥∥∥∥∥
2


≤ σ2

|B|m
+

L2

m

m∑
i=1

E
[
∥xt−1

i − x∗∥2
]
,
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we obtain the following relationship:

m∑
i=1

E
[
∥xt

i(0)− xt−1
i ∥2

]
≤ 2η2max

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]
+ 2η2maxL

2
m∑
i=1

E
[
∥xt−1

i − x∗∥2
]
+ 2η2maxσ

2

≤ 2η2max

m∑
i=1

∥ŷt−1
1,i ∥2 + 4η2maxL

2
m∑
i=1

E
[
∥x̂t−1

i ∥2
]

+ 4mη2maxL
2E
[
∥xt−1 − x∗∥2

]
+ 2η2maxσ

2

≤ 2η2max

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]
+ 4η2maxL

2
m∑
i=1

E
[
∥x̂t−1

i ∥2
]
+ 8mη2maxL

2(E
[
∥xt − xt−1∥2

]
+ E

[
∥xt − x∗∥2

]
) +

2η2maxσ
2

|B|
.

(61)

The third term on the right-hand side of equation 59 satisfies

m∥xt−1 − xt∥2

= m∥ηt−1yt−1∥2 = m∥ 1

m

m∑
i=1

ηt−1
i yt−1

i ∥2

≤
m∑
i=1

∥ηt−1
i yt−1

i ∥2 ≤ η2max

m∑
i=1

∥yt−1
i ∥2 ≤ 2η2max

m∑
i=1

∥ŷt−1
1,i ∥2 + 2mη2max∥yt−1

1 ∥2

= 2η2max

 m∑
i=1

∥ŷt−1
1,i ∥2 +m

∥∥∥∥∥ 1

m

m∑
i=1

(gt−1
i (xt−1

i )− f(x∗))

∥∥∥∥∥
2
 ,

(62)

with ηt−1yt−1 = 1
m

∑m
i=1 η

t−1
i yt−1

1,i . Substituting equation 60 into equation 63 leads to

mE
[
∥xt−1 − xt∥2

]
≤ 2η2max

(
m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]
+ L2

m∑
i=1

E
[
∥xt−1

i − x∗∥2
])

+ 2η2maxσ
2

≤ 2η2max

m∑
i=1

E
[
∥ŷt−1

1,i ∥2
]
+ 4η2maxL

2
m∑
i=1

E
[
∥x̂t−1

i ∥2
]

+ 8mη2maxL
2
(
E
[
∥xt − xt−1∥2

]
+ E

[
∥xt − x∗∥2

] )
+

2η2maxσ
2

|B|
.

(63)

By substituting equation 61 and equation 63 into equation 59, we arrive at equation 45.

By using equation 58, we have

m∑
i=1

∥yt1,i − yt1∥2

≤ ρ2M
m∑
i=1

∥yt1,i(0)− yt1∥2

= ρ2M
m∑
i=1

∥yt1,i(0)− yt−1
1,i + yt−1

1,i − yt−1
1 + yt−1

1 − yt1∥2

≤ 3ρ2M

(
m∑
i=1

∥yt1,i(0)− yt−1
1,i ∥2 +

m∑
i=1

∥ŷt−1
1,i ∥2 +m∥yt1 − yt−1

1 ∥2
)
.

(64)
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The first term on the right-hand side of equation 64 satisfies

m∑
i=1

E
[
∥yt1,i(0)− yt−1

1,i ∥2
]
=

m∑
i=1

E
[
∥gt−1

i (xt
i)− gt−2

i (xt−1
i )∥2

]
≤

m∑
i=1

E
[
∥∇fi(x

t
i)−∇fi(x

t−1
i )∥2

]
+

2mσ2

|B|

≤ L2
m∑
i=1

E
[
∥xt

i − xt−1
i ∥2

]
+

2mσ2

|B|

= L2
m∑
i=1

E
[
∥xt

i − xt + xt − xt−1 + xt−1 − xt−1
i ∥2

]
+

2mσ2

|B|

≤ 3L2

(
m∑
i=1

E
[
∥x̂t

i∥2
]
+mE

[
∥xt − xt−1∥2

]
+

m∑
i=1

E
[
∥x̂t−1

i ∥2
])

+
2mσ2

|B|
.

(65)

The third term on the right-hand side of inequality equation 64 satisfies

mE
[
∥yt1 − yt−1

1 ∥2
]
= mE

∥∥∥∥∥ 1

m

m∑
i=1

(gt−1
i (xt

i)− gt−2
i (xt−1

i ))

∥∥∥∥∥
2


= mE

∥∥∥∥∥ 1

m

m∑
i=1

(∇fi(x
t
i)−∇fi(x

t−1
i ))

∥∥∥∥∥
2
+

2σ2

|B|
≤ L2

m∑
i=1

E
[
∥xt

i − xt−1
i ∥2

]
+

2σ2

|B|

≤ 3L2

(
m∑
i=1

E
[
∥x̂t

i∥2
]
+mE

[
∥xt − xt−1∥2

]
+

m∑
i=1

E
[
∥x̂t−1

i ∥2)
])

+
2σ2

|B|
.

By substituting equation 65 and equation 66 into equation 64, we arrive at equation 46.

The proof of equation 47 is similar to the derivation of equation 46, and thus is omitted here.

B.2 PROOF OF THEOREM 1

Proof of theorem 1: By setting α1 = 1 − µηmin

2 , α2 = 45
46 , α3 = 125

62m (L
2ηmax

a6
+ 2β2

a8
+ b1 +

49(1+a7)
50a7

+ 124L2ηmax

125a9µ
), α4 = 125

62m ( 2β
2

a8
+ b1 +

49(1+a7)
50a7

), α5 =
η2
max

m ( 18731 + 125
31a2

+ 2
a1

+ 2
a9µηmax

),

α6 =
125η2

max

62m ( 1
a3
+1+ 1

a8
+ 2

a2
), and α7 := 2

((
1− 1

a3

)(
2 + 2ηmax

ηmin
+ ηmin

2ηmax

)
+ 1

a6m

)
+ 2ηmaxL

2

a9µ
,

equation 35 can be rewritten as follows:

E[∥xt+1 − x∗∥2}+ E[∥xt+1 − xt∥2}+
(
2 +

125β

31

)
E[ηt(f(xt)− f(x∗))}

≤ α1E[∥xt − x∗∥2}+ α2E[∥xt − xt−1∥2}+ γ

(
2 +

125β

31

)
E[ηt−1(f(xt−1)− f(x∗))]

+ α3

m∑
i=1

E[∥x̂t
i∥2] + α4

m∑
i=1

E[∥x̂t−1
i ∥2] + α5

m∑
i=1

(
E[∥ŷt1,i∥2] + E[∥ŷt−1

2,i ∥2]
)

+ α6

m∑
i=1

E[∥ŷt−1
1,i ∥2] + α7σ

2

|B|
.

(66)
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By using an argument similar to the derivation of equation 66, equation 45 and equation 46 can be
rewritten as follows:

m∑
i=1

E[∥x̂t
i∥2} ≤ ρ2M

(
α8

m∑
i=1

E[∥ŷt−1
1,i ∥2] + α9

m∑
i=1

E[∥x̂t−1
i ∥2]

+ α10E[∥xt − x∗∥2}+ α10E[∥xt − xt−1∥2] + α8σ
2

|B|

)
, (67)

m∑
i=1

(
E[∥ŷt1,i∥2}+ E[∥ŷt2,i∥2]

)
≤ ρ2M (α11

m∑
i=1

E[∥x̂t
i∥2] + α11

m∑
i=1

E[∥x̂t−1
i ∥2]

+ α12

m∑
i=1

(
E[∥ŷt−1

1,i ∥2}+ E[∥ŷt−1
2,i ∥2]

)
+ α13E[∥xt − xt−1∥2] + α14σ

2

|B|
, (68)

with α8 = 12η2max, α9 = 24η2maxL
2 + 3, α10 = 48mη2maxL

2, α11 = 18L2, α12 = 3, α13 =
18mL2 > 0, and α14 = 72m.

Multiplying inequalities equation 67 and equation 68 by K and then using equation 66 lead to

E[∥xt+1 − x∗∥2] + E[∥xt+1 − xt∥2] +
(
2 +

125β

31

)
E[ηt(f(xt)− f(x∗))]

+ (K − α3 − ρ2Mα10K)

m∑
i=1

E[∥x̂t
i∥2] + (K − α5)

m∑
i=1

(
E[∥ŷt1,i∥2] + E[∥ŷt2,i∥2]

)
≤
(
α1 + ρ2Mα9K

)
E[∥xt − x∗∥2] + (α2 + ρ2MK(α9 + α12))E[∥xt − xt−1∥2]

+ γ(2 +
125β

31
)E[ηt−1(f(xt−1)− f(x∗))] +

(
α4 + ρ2MK(α8 + α10)

) m∑
i=1

E[∥x̂t−1
i ∥2]

+
(
α6 + ρ2MK(α7 + α11)

) m∑
i=1

(
E[∥ŷt−1

1,i ∥2] + E[∥ŷt−1
2,i ∥2]

)
+ (α7 +Kα14 +Kα8)

σ2

|B|
.

(69)

By choosing sufficiently large K and M satisfying

K ≥ max

{
2(92α4 + 91α3)

91
,
2(92α5 + 91α6)

91

}
,

M ≥ max

{
ln(1/2)− ln(α8 + 2α10)

2 ln(ρ)
,
ln(1/2)− ln(α7 + α11)

2 ln(ρ)
,

ln(1− α1)− ln(2)− ln(α9K)

2 ln(ρ)
,
ln(1− α2)− ln(2)− ln((α9 + α12)K)

2 ln(ρ)

}
≜ M0,

(70)

the following inequalities always hold:

α1 + ρ2Mα9K ≤ 1 + α1

2
< 1,

α2 + ρ2MK(α9 + α12) ≤
1 + α2

2
< 1,

α4 + ρ2MK(α8 + α10) <
91

92

(
K − α3 − ρ2Mα10K

)
,

α6 + ρ2MK(α7 + α11) <
91

92
(K − α5).

(71)

According to the definition γ = max
{
1− µ2

4L ,
91
92

}
in the theorem statement, we define an auxiliary

function V (t+ 1) as follows:

V (t+ 1) = E[∥xt+1 − x∗∥2 + ∥xt+1 − xt∥2}+
(
2 +

125β

31

)
E[ηt(f(xt)− f(x∗))]

+ (K − α3 − ρ2Mα10K)

m∑
i=1

E[∥x̂t
i∥2}+ (K − α5)

(
m∑
i=1

E[∥ŷt1,i∥2] + E[∥ŷt−1
2,i ∥2]

)
.

(72)
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Using equation 71, we obtain the following inequality:

V (t+ 1) ≤ γV (t) + (α7 +Kα14 +Kα8)
σ2

|B|
,

which is equivalent to(
V (t+ 1)− (α7 +Kα14 +Kα8)σ

2

(1− γ)|B|

)
≤ γ

(
V (t)− (α7 +Kα14 +Kα8)σ

2

(1− γ)|B|

)
. (73)

Therefore, by using equation 73, we arrive at

V (t) ≤ γtV (0) +
(α7 +Kα14 +Kα8)σ

2

(1− γ)|B|
. (74)

Moreover, since the relations η−1 = 0,
∑m

i=1 ∥x̂
−1
i ∥2 = 0 and

∑m
i=1 ∥ŷ

−1
1,i ∥2 = 0 hold, we have

V (0) = ∥x0 − x∗∥2 + ∥x0∥2.

Furthermore, according to the definition of V (t) in equation 72, we arrive at

E[∥xt
i − x∗∥2} = E[∥xt

i − xt + xt − x∗∥2} ≤ 2E[∥x̂t
i∥2}+ 2E[∥xt − x∗∥2}

≤ max

{
2

K1 − α3 − ρ2M2α10K1
, 2

]
V (t)

≤ max

{
2V (0)

K1 − α3 − ρ2M2α10K1
, 2V (0)

]
γt

+

(
(α7 +Kα14 +Kα8)

1− γ
max

{
2

K1 − α3 − ρ2M2α10K1
, 2

])
σ2

|B|
,

(75)

which implies E
[
∥xt

i − x∗∥2
]
≤ O (γt) +O

(
σ2

|B|

)
and Theorem 1.

B.3 PROOF OF THEOREM 2

When accurate gradients are accessible to agents, Algorithm 1 reduces to the following algorithm.

Algorithm 2 Deterministic version of Algorithm 1 (from agent i’s perspective)

1: Input: x0
i ∈ Rn, y0i = ∇fi(x

0
i ), η

0
i > 0, β ∈ (0, 1.36), r ∈ (0, 1), M ∈ N+, and T ∈ N+.

2: for t = 0, 1, . . . , T do
3: xt+1

i (0) = xt
i − ηtiy

t
i

4: for q = 0, 1, . . . ,M − 1 do
5: xt+1

i (q + 1) =
∑

j∈Ni
wijx

t+1
j (q)

6: end for
7: xt+1

i = xt+1
i (M)

8: yt+1
i (0) = yti +∇fi(x

t+1
i )−∇fi(x

t
i)

9: for q = 0, 1, . . . ,M − 1 do
10: yt+1

i (q + 1) =
∑

j∈Ni
wijy

t+1
j (q)

11: end for
12: yt+1

i = yt+1
i (M)

13: Lt+1
i =

∥yt+1
i −yt

i∥
∥xt+1

i −xt
i∥

14: ηt+1
i = min

{
βηti ,

7
√
r

10
ηt
i√

[(ηt
iL

t+1
i )2−1]+

}
15: end for

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Proof of Theorem 2: By using an argument similar to the derivation of equation 35, we obtain

∥xt+1 − x∗∥2 + ∥xt+1 − xt∥2 +
(
2 +

125β

31

)
ηtf(xt)− f(x∗)

≤ (1− µηmin + a9µηmax)∥xt − x∗∥2 + 45

46
∥xt − xt−1∥2

+ γ

(
2 +

125β

31

)
ηt−1(f(xt−1)− f(x∗)) + δt5, (76)

for γ ∈ (0, 1), where the constant and δt5 is given by

δt5 =
125

62m
(
L2ηmax

a6
+

2β2

a8
+ b1 +

49(1 + a7)

50a7
+

124L2ηmax

125a9µ
)

m∑
i=1

∥x̂t
i∥2

+
125

62m

(
2β2

a8
+ b1 +

49(1 + a7)

50a7

) m∑
i=1

∥x̂t−1
i ∥2

+
η2max

m

(
187

31
+

125

31a2
+

2

a1
+

2

a9µηmax

) m∑
i=1

∥ŷti∥2

+
125η2max

62m

(
1

a3
+ 1 +

1

a8
+

2

a2

) m∑
i=1

∥ŷt−1
i ∥2. (77)

By using an argument similar to the derivations of equation 45 and equation 46, we have
m∑
i=1

∥x̂t
i∥2 ≤ρ2M

(
12η2max

m∑
i=1

∥ŷt−1
i ∥2 + (24η2maxL

2 + 3)

m∑
i=1

∥x̂t−1
i ∥2

+ 48mη2maxL
2∥xt − x∗∥2 + 48mη2maxL

2∥xt − xt−1∥2
)
, (78)

m∑
i=1

∥ŷt1,i∥2 ≤ρ2M

(
18L2

m∑
i=1

∥x̂t
i∥2 + 18L2

m∑
i=1

∥x̂t−1
i ∥2 + 3

m∑
i=1

∥ŷt−1
1,i ∥2

+ 18mL2∥xt − xt−1∥2
)
. (79)

By using an argument similar to the derivation of equation 74 and constructing the following func-
tion:

V (t+ 1) =∥xt+1 − x∗∥2 + ∥xt+1 − xt∥2 +
(
2 +

125β

31

)
ηt(f(xt)− f(x∗))

+ (K − α3 − ρ2Mα10K)

m∑
i=1

∥x̂t
i∥2 + (K − α5)

m∑
i=1

∥ŷti∥2,
(80)

we obtain the following relationship:

V (t+ 1) ≤ γV (t), (81)

which implies V (t) ≤ γtV (0). Then, following an argument similar to the derivations of equa-
tion 75, we arrive at ∥xt

i − x∗∥2 ≤ O (γt), which proves Theorem 2.

B.4 PROOF OF COROLLARY 1

According to Theorem 1, the convergence rate of Algorithm 1 is O
(
γT
)
+O

(
δ2

|B|

)
. Hence, to find

an ϵ-optimal solution, the number of outer-loop iterations T needs to satisfy T = O(log(ϵ−1)). At
each outer-loop iteration, Algorithm 1 requires |B| gradient evaluations at both gti(x

t+1
i ) and gti(x

t
i),

resulting in a total of 2|B| evaluations. Meanwhile, Lines 3, 8, and 9 in Algorithm 1 require M
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gradient evaluations at xt+1
i,1 (0), yt+1

i,1 (0), and yti,2(0), Lines 5, 11, and 12 in Algorithm 1 require
M gradient evaluations at xt+1

i (q), yt+1
i,1 (q), and yti,2(q); and Lines 15 and 16 in Algorithm 1 each

require one gradient evaluation at Lt+1
i and ηt+1

i , respectively. Based on the above discussion, we
have that Algorithm 1 requires at most 2|B|+ 3M + 3 gradient evaluations per outer-loop iteration
t, leading to a computational complexity of O((2|B| + 3M + 3) log(ϵ−1)) over T iterations. In
the deterministic setting, Algorithm 1 reduces to Algorithm 2, which requires at most 2M + 3
gradient evaluations per outer-loop iteration t, and thus has a computational complexity of O((2M+
3) log(ϵ−1)) over T iterations.

C EXPERIMENTAL SETUPS AND ADDITIONAL EXPERIMENTAL RESULTS

C.1 BENCHMARK DATASETS

MNIST. The “MNIST” dataset is a benchmark dataset widely used in machine learning and com-
puter vision (Deng, 2012). It typically consists of 70, 000 grayscale images of handwritten digits
(i.e., 0–9), with 60, 000 used for training and 10, 000 for testing. Each image has a size of 28 × 28
pixels, with the digit centered in the frame.

CIFAR-10. The “CIFAR-10” dataset consists of 60, 000 color images of size 32 × 32 pixels in
10 classes, with 6, 000 images per class (Krizhevsky et al., 2010). Among them, 50, 000 images
are used for training and 10, 000 for testing. The dataset covers a diverse set of object categories,
including airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Compared
with the “MNIST” dataset, the “CIFAR-10” dataset poses a greater challenge due to its colored and
natural images with larger intra-class variability.

CIFAR-100. The “CIFAR-100” dataset is a natural extension of the “CIFAR-10” dataset (DeVries
& Taylor, 2017). It contains 60, 000 color images of size 32 × 32 pixels, and spreads across 100
classes with 600 images per class. The 50, 000 images are used for training and 10, 000 for testing.
However, due to its larger number of categories and the fine-grained nature of many classes, the
“CIFAR-100” dataset is regarded as the most challenging dataset within the CIFAR series.

Mushrooms. The “Mushrooms” dataset is a classic benchmark dataset from the UCI Machine
Learning Repository (Tutuncu et al., 2022). It contains 8, 124 instances of gilled mushrooms, each
described by 22 categorical attributes, such as cap shape, surface, and color. The prediction task
is to classify each mushroom as either edible or poisonous. In this paper, we focus on l2-logistic
regression on the “Mushrooms” dataset, as the task naturally fits into a binary classification problem.

C.2 EXPERIMENTAL SETUPS

Convolutional neural network (CNN) training. For the “MNIST” dataset, we trained a two-layer
CNN. The first convolutional layer has 64 output channels with 3× 3 kernels, stride 1, and padding
1, followed by batch normalization, LeakyReLU activation, and 2 × 2 max pooling. The second
convolutional layer has 128 output channels with the same kernel configuration. The feature maps
are then passed through adaptive average pooling to a 1× 1 representation, flattened, and fed into a
fully connected layer to produce the output classes. The model was trained with a batch size of 128
using the cross-entropy loss.

For the “CIFAR-10” dataset, we trained a four-layer CNN consisting of four convolutional layers
with progressively increasing channel sizes of 32, 64, 128, and 256. Each convolution uses a 3× 3
kernel with stride 1 and padding 1. To stabilize training and reduce spatial resolution, we employed
batch normalization, a LeakyReLU activation, and 2×2 max pooling after every convolutional block.
The resulting feature maps are aggregated by adaptive average pooling to a 1 × 1 representation,
which is then flattened and passed to a fully connected layer to produce the final class predictions.
The model was trained with a batch size of 128 using the cross-entropy loss.

For the “CIFAR-100” dataset, we trained a five-layer CNN with residual connections to enhance
feature extraction. The network begins with a 32-channel convolutional layer (3 × 3 kernels, stride
1, padding 1), followed by batch normalization, LeakyReLU activation, and 2×2 max pooling. The
subsequent convolutional blocks progressively increase the channels to 64, 128, 256, and 512. To
enhance feature extraction, we introduced residual paths: one from the raw input through a 2 × 2
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convolution with stride 2, another from the second block via a 2 × 2 convolution, and a direct path
from the raw input via an 8× 8 convolution. The model was trained with a batch size of 128 using
the cross-entropy loss.

Logistic regression. For the logistic regression task using the “Mushrooms” dataset, we employed
a single-layer linear model, which directly maps the 22 input features to two output logits corre-
sponding to the classes. Training was conducted using the loss function given in equation 82.

C.3 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide two additional experimental results: 1) the performance evaluation of
Algorithm 1 on logistic regression with strongly convex and smooth loss functions; and 2) the com-
parison of Algorithm 1 and distributed ADAM in Nazari et al. (2022).

Logistic regression using the “Mushrooms” dataset. We evaluate the effectiveness of Algorithm 1
by using an l2-logistic regression classification problem on the “Mushrooms” dataset (Tutuncu et al.,
2022). To ensure heterogeneous data distribution, we spread data samples among five agents accord-
ing to their target values. Specifically, agents 1, 2, and 3 have samples with the target value of 0,
while agents 4 and 5 have samples with the target value of 1. All agents cooperatively learn an
optimal model parameter x∗ to problem 1, in which the loss function of agent i is given by

l(x, ξi) =
1

|B|

|B|∑
j=1

(
−(1− bij) ln

(
ex1aij

ex1aij + ex2aij

)
− bij ln

(
ex2aij

ex1aij + ex2aij

)
+

L2

2
∥x∥2

)
,

(82)
where |B| represents the number of sampled data points per iteration. In this experiment, we used a
full batch setting, i.e., |B| = |Di| with Di denoting the local dataset of agent i. Here, x = [x1, x2]

⊤

is the model parameter and the positive constant L2 is a regularization parameter. It is clear that the
loss function in equation 82 is strongly convex and smooth.

In this experiment, we compared the test accuracies of Algorithm 1 with existing distributed opti-
mization algorithms, including distributed GD in Nedic & Ozdaglar (2009) and deterministic GT
in Nedić et al. (2017). The stepsizes for distributed GD and deterministic GT are the same as those
employed in our “MNIST” experiment in the main text (i.e., ηti = 0.1

(1+t)0.5 for distributed GD and
ηi = 0.1 for deterministic GT). The training process spanned 250 iterations.
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Figure 4: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1, dis-
tributed GD in Nedic & Ozdaglar (2009), and deterministic GT in Nedić et al. (2017). The 95%
confidence intervals were computed from three independent runs with seeds 42, 1010, and 2024.

Fig. 4(a) shows that Algorithm 1 achieves the highest test accuracy and convergence speed com-
pared with distributed GD and deterministic GT. This is because larger stepsizes is allowed in the
early stages of Algorithm 1 than distributed GD and deterministic GT (as shown in Fig. 4(b)). Fur-
thermore, Fig. 4 shows that Algorithm 1 exhibits stable convergence accuracy after 200 iterations.
This result implies a clear stopping criterion for our algorithm, that is, by setting τ = 10−3, each
agent i can stop training once |ηti | < τ .
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Comparison of Algorithm 1 and distributed ADAM in Nazari et al. (2022). To compare the
convergence accuracy of Algorithm 1 with the existing adaptive stepsize approach for distributed
(online) learning, i.e., distributed ADAM in Nazari et al. (2022), we conducted additional experi-
ments by comparing their test accuracies on image classification using the “CIFAR-10” dataset.
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Figure 5: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm 1 and
distributed ADAM (Nazari et al., 2022). The 95% confidence intervals were computed from three
independent runs with random seeds 42, 1010, and 2024.

Fig. 5(a) shows that our Algorithm 1 outperforms distributed ADAM in terms of both test accu-
racy and steady-state performance. Furthermore, Fig. 5(b) indicates that the stepsize in distributed
ADAM decays rapidly, which leads to a low convergence speed in the later stages of the algorithm.
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