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ABSTRACT

Distributed stochastic optimization and learning is gaining increasing traction due
to its ability to enable large-scale data processing and model training across mul-
tiple agents without the need for centralized coordination. However, existing dis-
tributed stochastic optimization and learning approaches, such as distributed SGD
and their variants, generally face a dilemma in stepsize selection: a small stepsize
leads to low convergence speed, whereas a large stepsize often incurs pronounced
steady-state oscillations, which prevents the algorithm from achieving stable con-
vergence accuracy. In this paper, we propose an adaptive stepsize approach for
distributed stochastic optimization and learning that can eliminate steady-state os-
cillations and ensure fast convergence. Such guarantees are unattained by existing
adaptive stepsize approaches, even in centralized optimization and learning. We
prove that our proposed algorithm achieves linear convergence with respect to the
iteration number, and that the convergence error decays sublinearly with the batch
size of sampled data points. In the specific case in terms of deterministic dis-
tributed optimization with exact gradients accessible to agents, we prove that our
proposed algorithm linearly converges to an exact optimal solution. Moreover, we
quantify that the computational complexity of the proposed algorithm is on the
order of O(log(e~1)), which matches the existing results on adaptive stepsize ap-
proaches for centralized optimization/learning. Experimental results on machine
learning benchmarks confirm the effectiveness of our proposed approach.

1 INTRODUCTION

With the advance of the era of big data, distributed stochastic optimization and learning methods
have attracted increasing attention due to their unique ability to leverage the computational power of
multiple devices to accelerate training (Nedic & Ozdaglar, |2009; | Yang & Johansson, 2010j |Shamir
& Srebro, |2014; |Lian et al., [2017; Nedi¢ & Liu, 2018} |Yang et al., 2019; Kim et al., [2024}; |Hu et al.,
2024). Unlike centralized optimization and learning methods (Wang & Elial 2011; |Andrychowicz
et al.|[2016; Ruder, |2016) that typically rely on a central server to aggregate local model parameters
or data from all participating agents, distributed methods allow each agent to collaboratively learn a
global model using only its own local dataset and information exchanged with neighboring agents,
without the assistance of any centralized server or aggregator (Scaman et al.,[2018;; [Liu et al., 2020;
Yang et al.| 2022).

However, existing distributed stochastic optimization/learning approaches often face a dilemma in
stepsize selection (Jacobs|, (1988 [Schaul et al.,|2013; Wei et al., |2020; Zhuang et al., [2020; Li et al.}
2024a; [Huang et al., 2024b}, (Crawshaw et al.| 2025). Specifically, an excessively small stepsize
may lead to an overly low convergence speed (Srivastava & Nedicl 2011} [Lin et al., 2023} [Shar-
ifnassab et al.| [2024), whereas an excessively large stepsize often causes pronounced steady-state
oscillations or overshoot, which prevents the algorithm from achieving stable convergence accu-
racy (Andriushchenko et al.| [2023; Huang et al.l 2024a). Recently, several adaptive or automatic
stepsize approaches have been proposed for centralized optimization and learning (Fletcher, |2005;
Kingmal 2014; Rolinek & Martius|, 2018} |Li & Orabonal [2019; Malitsky & Mishchenko} 2019;
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Kavis et al., 2022} Jiang & Stichl [2023; Malitsky & Mishchenko, 2024). However, these approaches
generally rely on a centralized server to coordinate computation that are impractical in a fully dis-
tributed setting where no centralized server/aggregator exists to determine a common stepsize across
all agents (Nedic et al., 2018)). Although some works have attempted to extend adaptive stepsize ap-
proaches to distributed optimization and learning (Nazari et al., [2022} (Carnevale et al., 2022} [Xie
et al.| [2022; Ramezani-Kebrya et al., 2023; |Chen & Wang, 2024; |Kuruzov et al., |2024; [Saravanos
et al.| |2024), most of them still either require a centralized server to collect local model parame-
ters/stepsizes from all agents (Ramezani-Kebrya et al.| 2023} |Chen & Wang, [2024}; Kuruzov et al.,
2024), or are limited to scenarios where agents must have access to accurate gradients of the ob-
jective functions (Carnevale et al.l 2022} Xie et al., 2022} [Saravanos et al., [2024) for stepsize ad-
justment. The only exception is the work in |[Nazari et al.| (2022), which achieves adaptive stepsize
adjustments in distributed online learning by normalizing the gradient using an accumulated sum of
historical gradient values. However, this approach leads to a rapidly decaying stepsize, which in turn
results in slow convergence in the later stages of the algorithm (see our experimental results in Fig. 5]
in Appendix|[C.3|for details). To the best of our knowledge, no existing adaptive stepsize approaches
can ensure fast and stable convergence in fully distributed stochastic optimization/learning.

Our contributions are summarized as follows:

1. We propose an adaptive stepsize algorithm for fully distributed stochastic optimization and
learning. This is in stark contrast to existing adaptive stepsize approaches, which either rely
on a centralized server to coordinate a common stepsize across all agents (in, e.g., Ramezani-
Kebrya et al.[(2023)); Kim et al.| (2024); (Chen & Wang| (2024)); [Kuruzov et al.| (2024))), or re-
quire that agents have access to accurate gradients of the objective functions (Carnevale et al.,
2022} Xie et al., 2022; |[Saravanos et al.l 2024)—which, however, are often hard to obtain in
real-world applications where the randomness in sampled data results in only noisy gradi-
ents being accessible to agents. To the best of our knowledge, this is the first adaptive (non-
monotone decreasing) stepsize approach for fully distributed stochastic optimization/learning,
without the need for accurate gradients or the assistance of any centralized servers.

2. Our adaptive stepsize algorithm can eliminate steady-state oscillations and ensure stable con-
vergence accuracy in the later stages of the algorithm. This is unattained by most existing
adaptive stepsize approaches even in centralized optimization and learning (Fletcher, 2005; Li
& Orabona, |2019; Kavis et al.| 2022; Jiang & Stich, 2023). The key enabler is our novel de-
sign of the stepsize update rule, which allows each agent to dynamically adjust its individual
stepsizes based on locally estimated curvature of the global objective function. This provides
each agent with large stepsizes in the early stages to accelerate convergence, and extremely
small stepsizes near the global optimum to ensure stable convergence accuracy (see our ex-
perimental results in Figs. [1(d) and Figs. for details). Furthermore, since stable
convergence accuracy is achieved in the later stages of our algorithm, we can also provide
a clear stopping criterio{] for each agent in distributed optimization and learning, which is
rarely addressed in the state-of-the-art literature.

3. In addition to eliminating steady-state oscillations, we also establish the convergence rate
and computational complexity of our algorithm for both stochastic and deterministic dis-
tributed optimization and learning, which is different from existing adaptive stepsize results in,
e.g.,McMahan & Streeter|(2014); Yang et al.[(2019);/Crawshaw et al.|(2025) that focus solely
on deterministic cases where accurate gradients of objective functions are accessible to agents.
For distributed stochastic optimization/learning, we prove that our algorithm achieves linear
convergence with respect to the number of algorithm iterations, and that the convergence error
decays sublinearly with the batch size of sampled data points. For the deterministic case, we
prove that our algorithm linearly converges to an exact optimal solution.

4. We systematically quantify that the computational complexity of our algorithm is on the order
of O(log(e~1)) for both stochastic and deterministic cases, which matches the existing results
on adaptive stepsize approaches for centralized optimization and learning in, e.g., (Kavis et al.,
2022; | Yang & Ma, [2023)).

5. We conduct experimental evaluations using several machine learning benchmark datasets,
including the “MNIST” dataset, the “CIFAR-10" dataset, and the “CIFAR-100" dataset. The

"We use the “stopping criterion” to denote the condition that determines when each agent in a distributed
stochastic optimization and learning algorithm terminates its iterations (Vlachos, [2008}; |Ding et al.| [2025)).
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results confirm the effectiveness of our algorithm in terms of both test accuracy and steady-
state convergence performance.

2 RELATED WORK

Distributed stochastic optimization and learning. Distributed stochastic optimization methods
have been widely employed in modern machine learning (Yang, 2013} Xin et al., 2020; Nedic,
2020; |Guo et al.| [2020; Pu et al., [2020; Allen-Zhu et all 2020; [Khaled & Jin, [2023; [Song et al.,
2025). However, most existing methods require all agents to share a common stepsize that is either
fixed (Pu & Nedic,|2021}; [Koloskova et al.,[2021; Nguyen et al., 2023 Song et al., [2024) or dimin-
ishing (Jakovetic et al., 2018} [Dieuleveut & Patel, 2019; |Li et al.| [2024b} [Lee et al.,|[2025). The fixed
stepsize causes pronounced overshoot or oscillations near the global optimal solution (Pu & Nedic,
2021} [Koloskova et al., [2021; Nguyen et al., 2023), whereas diminishing stepsizes often lead to an
overly low convergence speed, both of which prevent the algorithm from achieving stable conver-
gence accuracy (as shown in our experimental results in Fig. [I|and Fig.[2). Given these limitations,
designing an adaptive stepsize approach that allows each participating agent to adaptively adjust its
individual stepsizes is a promising direction for improving convergence speed and ensuring stable
learning performance in distributed stochastic optimization and learning.

Adaptive stepsize approaches. Several adaptive stepsize approaches have been proposed for cen-
tralized optimization and learning (Fletcher, [2005; Kingmal 2014} Rolinek & Martius| [2018; |Li &
Orabonal 2019; Malitsky & Mishchenko) 2019; Kavis et al., 2022} Jiang & Stich} 2023; Malitsky &
Mishchenko, 2024). However, these methods typically consider a single agent setting where learning
is performed with only one adaptive stepsize adjustment. This makes them inapplicable to fully dis-
tributed stochastic optimization and learning, where multiple agents cooperatively perform learning
and each agent has its own stepsize updates. Moreover, the existing adaptive stepsize approaches of-
ten lead to steady-state oscillations, which prevent stable convergence accuracy in the later stages of
the algorithm and hinder the determination of a clear stopping criterion (as shown in our experimen-
tal results in Fig.[2)). Although some efforts have attempted to extend adaptive stepsize approaches
to distributed optimization and learning (Nazari et al., 2022} Carnevale et al., 2022} [Xie et al., 2022}
Ramezani-Kebrya et al., 2023} (Chen & Wang, [2024; Kuruzov et al.| 2024} |Saravanos et al., |[2024),
most of them still rely on a centralized server to collect local model parameters/stepsizes from all
agents to coordinate a stepsize (Ramezani-Kebrya et al.; 2023} |(Chen & Wang|, 2024; |[Kuruzov et al.,
2024]), or are limited to scenarios where accurate gradients of the objective functions must be ac-
cessible to agents (Carnevale et al., 2022} Xie et al.| 2022} [Saravanos et al., [2024), both of which
are impractical in a fully distributed and stochastic setting. The only exception is the recent work
in |[Nazari et al.| (2022), which achieves stepsize adjustments in distributed stochastic optimization
and learning. However, its approach parallels adaptive gradient methods (e.g., ADAM in [Kingma
(2014)), which makes the stepsizes decay rapidly in practical neural-network training, thereby lead-
ing to a low convergence speed in the later stages of the algorithm (as shown in our experimental
results in Fig. []in Appendix [C.3). To the best of our knowledge, no adaptive stepsize approaches
have been reported for distributed stochastic optimization and learning that can ensure both fast
convergence and stable steady-state performance.

Notations: We use R"™ to denote the n-dimensional real Euclidean space and N(NT) to denote the set
of nonnegative (positive) integers. We write 0,, and 1,, for n-dimensional column vectors of all zeros
and all ones, respectively; in both cases we suppress the dimension when clear from the context. We
use (x,y) to denote the inner product of two vectors and || - || to denote the Euclidean norm of a
vector. We write E[z] for the expected value of a random variable 2. We use [a]+ = max{0,a} to
refer to the maximum of 0 and a for any real number a and the convention § = +oo for any a > 0.
We denote the set of m agents as [m] and add an overbar to a letter to represent the average of m
agents, e.g., T = =~ > " x;.

3 PROBLEM FORMULATION

We consider m agents that cooperatively learn a common optimal model parameter z* to the fol-
lowing stochastic optimization problem (Sundhar Ram et al.,|2010; Lian et al.,|2017;/Chen & Wang],
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2024):

min f(2) = 3" fi(@), file) = Eep, (26 m

reR™ .
=1

Here, the local objective function f;(z) : R™ — R represents the mathematical expectation of agent
i’s loss function I(z, &;), where &; denotes the agent ’s data sample drawn from distribution P;.

In real-world applications, since the data distribution P; is typically unknown to each agent ¢, it can
only have access to a noisy estimate on the gradient of f;(z) (Pu & Nedic, 2021; Nazari et al., 2022;
Kim et al., [2024). In other words, at each iteration ¢, each agent 7 independently and identically
samples || data points (also called a batch size of \B |) from its local distribution P; and computes a

noisy gradient estimate g (z) = 18] B‘ ZlB‘ Vi(z,&f;), where £ is the jth sampled data collected by

agent 7 at iteration ¢. Based on the gradient estimate g!(x) and communication with its neighbors,
each agent 7 performs distributed training. We make the following standard assumption about f; ()

and g!(x):
Assumption 1. For any agent i € [m], its local objective function f;(x) is p-strongly convex and L-
smooth. The gradient estimate g ( ) is unbiased with bounded variance o2, i.e., E[gl(z)] = V fi(x)

and E[||gt(x) — V fi(2)]|?] < iy hold for any x € R™ and t > 0.

In Assumption the strong convexity of f;(z) is used to ensure linear convergence, which is com-
monly used in the existing literature (Ivkin et al., 2019;|Hou et al.|[2021};|/Akhavan et al.,2021; Wang
et al.,[2023; |Yang & Ma, 2023} |He et al., |2024; [Er et al., [2024).

We describe the local interaction among agents using a weight matrix W = {w;;} € R”*™, where
w;; > 0 if agent ¢ and agent j can directly communicate with each other, and w;; = 0 otherwise.
The neighboring set of agent ¢ is defined as N; = {j € [m]|w;; > 0}, which includes itself.
Furthermore, we make the following assumption on matrix W:

Assumption 2. The matrix W € R™*™ is symmetric and satisfies lnTQW = 1;, W1, =1,,, and
A 17n1m
p= (W — [ <1

Existing distributed optimization and learning approaches typically require the stepsize to be either
fixed (Pu & Nedic| 2021} [Koloskova et al., [2021; Nguyen et al., [2023; |Song et al., [2024) or dimin-
ishing (Jakovetic et al., 2018 |Dieuleveut & Patel, |2019;|Li1 et al., [2024b; [Lee et al., 2025). However,
the use of a fixed stepsize often suffers from error/bias terms proportional to the stepsize (Yuan
et al.| [2016), which can cause pronounced overshoot or persistent oscillations near the global opti-
mum, thereby compromising convergence stability in the later stages of the algorithm (as shown in
our experimental results in Fig. [I). Although employing a diminishing stepsize can asymptotically
eliminate such errors and ensure stable steady-state convergence, it often results in an undesirably
low convergence speed, which is problematic for applications requiring fast convergence (Nedic &
Ozdaglar, 2009; Jakovetic et al., | 2018}; |Dieuleveut & Patell 2019;|Lee et al.,|2025). Given these lim-
itations, we aim to develop an adaptive stepsize approach for distributed stochastic optimization and
learning, enabling each agent to adaptively adjust its stepsize during algorithm iterations to achieve
both fast convergence and stable steady-state performance.

4 ALGORITHM DESIGN

In this section, we propose an adaptive stepsize approach for distributed stochastic optimization
and learning that ensures both fast convergence and stable steady-state performance. The proposed
approach is summarized in Algorithm [T} which is implemented in a fully distributed manner.

In Algorithm [T} Lines 3-7 execute a consensus-based gradient descent step for agent i. Lines 8§,
11 and 14 update ythrl to track + Zm e t+1) which serves to approximate the global gradient

7 1 %

LS Vfi(zi™). Lines 9, 12 and 14 update an auxiliary variable y! , to track = >~ | gf(x}),
wh1ch serves to approximate the global gradlent S, Vii(xt). With this understandlng, we let
each agent 7 locally estimate the curvature of the global objectlve function in Line 15. Based on this
estimate, each agent ¢’s adaptive stepsize update rule is given in Line 15 and Line 16.
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Algorithm 1 Adaptive stepsize design for distributed stochastic optimization and learning (from
agent 7’s perspective)
I: Input: o € R™, 0y = g7 (27) = g0(af). yip = g7 '(27") = On. ) > 0. 5 € (1,1.36),
re (0,1), M e N*,and T € N*.

2: fort =0,1,...,7T do
t+1
3 xi+ (0) = = — 7752/5,1
4. forq=0,1,...,.M —1do
5: a:f“(q +1)= ZjeM wijx§+1(q)
6: end for
7. altt =2t (M)
8y 1N0) =yt + gl () — g ()

9 ylo(0) =yin' +gi(al) — g (@i
10 forq=0,1,...,.M —1do

i+1 t+1
11 Yin (@+1) =X en, wigyi (9)
12: Yia(a+1) = 2 cn, wij¥52(q)
13:  end for
i1 1

14: ydt =yt (M) and yt, =yl o (M)

) 1 i vl e . . 1
15: L7 = M if ;7 # x!; otherwise, L, =1

. 1o t TJT ni
16: n; = min 57% 10 [m(nfo+1)2—l]+}

17: end for

The key enabler for us to ensure stable steady-state convergence is our meticulously designed step-
size update rule. More specifically, our stepsize update rule enables each agent to locally estimate
the curvature of the global objective function. In this way, each agent’s stepsize can be adapted
to large values in the early stages of the algorithm, and to extremely small values near the global
optimum (as shown in our experimental results in Figs.[I(d}{I(P)]and Figs. 2Z(d}2(D). Therefore, our
design avoids the slow convergence caused by small diminishing stepsizes used in, e.g., Jakovetic
et al.| (2018); Dieuleveut & Patel| (2019); [Li et al.| (2024b); [Lee et al.| (2025) and eliminate the os-
cillations arising from fixed stepsizes in e.g.,|Pu & Nedi¢| (2021)); Koloskova et al.[(2021); Nguyen
et al.| (2023)); Song et al.|(2024)).

It is worth noting that our algorithm is fundamentally different from existing adaptive stepsize meth-
ods in e.g., Malitsky & Mishchenko| (2019} 2024); Kim et al.| (2024); |Chen & Wang| (2024), which
explicitly require a centralized server to coordinate stepsize adjustment, which is infeasible in fully
distributed settings in the absence of a centralized server. Furthermore, our design is also differ-
ent from existing adaptive stepsize approaches for deterministic distributed optimization/learning
in (Carnevale et al.|(2022)); Xie et al.| (2022); Saravanos et al.| (2024}, which typically require access
to exact gradients of objective functions—such exact gradients are often unattainable in real-world
applications where only noisy gradient estimates are available to each agent (Lian et al., 2017).

In Algorithm , we provide optional inner-consensus-loop iterations for z£, yf}l, and yfz This de-
sign is intended to accelerate consensus among agents and improve the accuracy of global gradient
tracking, thereby guaranteeing linear convergence (see Theorem |l|for details). In practical machine
learning applications, the number of inner-consensus-loop iterations M can be chosen as any pos-
itive integer. For example, we can simply select M = 1 (in which case Algorithm [T] reduces to a
single-loop algorithm) to minimize the computational and communication costs of our algorithm.
In fact, our experimental results in Fig. show that the test accuracy of our algorithm remains
comparable even with M = 1.

5 CONVERGENCE RESULTS

In this section, we prove that Algorithm [I|can ensure linear convergence with respect to the number
of iterations 7', and the convergence error decreases sublinearly with the batch size of sampled data.
The results are summarized in Theorem I} whose proof can be found in Appendix
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Theorem 1. Under Assumptions |I| and [Z] for any T > 0 and batch size |B| > 0, if the number
of inner—consensus—l?ﬁ iterations M satisfies M > My with detailed forms of My given in equa-

tion|79|in Appendix the iterates x} generated by Algorithm|l|satisfy
T |2 T o’
E[Hxl—x }S(’)(v)—i—@ @ , 2)
where the convergence rate vy is given by v = max {1 - 47, % .

Theorem | proves that Algorithm [I|linearly converges to an optimal solution to problem [I| with the
optimization error decreasing as the batch size of sampled data | B| increases. It is worth noting that
the bound O (%) in Theorem caused by finite batch size of sampled data, inherently exists in
all stochastic optimization approaches with finite samples (Yuan et al., [2022; Sharma et al., [2023).
Although variance reduction techniques (Reddi et al., |2016; Fang et al., 2018) and diminishing
stepsize methods (Nedic & Ozdaglarl |2009) can be used to mitigate the influence of this term in
distributed stochastic optimization and learning, their successful implementation heavily relies on
the assumption of a fixed upper bound on the stepsizes, which is hard to satisfy when each agent’s
stepsize is dynamic and adaptive over iterations.

In Theorem (I} we consider a stochastic scenario in which each agent can only access to noisy
gradient estimates (which are computed based on data sampled from an unknown data distribution
P;). Next, we consider a deterministic scenario in which each agent can access to accurate gradients.
The convergence result of Algorithm [I]in the deterministic scenario is summarized in the following
Theorem 2] whose proof is given in Appendix [B.3]

Theorem 2. Under Assumptions[I)and 2] for any T > 0, if the number of inner-consensus-loop
iterations M satisfies M > My with detailed forms of My given in equation [79 of Appendix [B.2]
the iterates xt generated by Algorithm|l|with deterministic gradients satisfy

.12
E[HJJ?—CU } §(’)(7T), 3)
where the convergence rate ~y is given by v = max {1 — 4 % .

Theorem[Z|proves that when we consider distributed optimization and learning in a deterministic sce-
nario, Algorithm[I|converges to an exact solution to problem in equation[I|with a linear convergence
rate, which matches existing convergence results on adaptive stepsizes for centralized optimization
and learning (Li & Orabona, |2019; Malitsky & Mishchenko, 2019; Kavis et al., [2022; [Malitsky &
Mishchenko, |2024). Moreover, this is also stronger than the convergence results achieved by exist-
ing distributed optimization methods with diminishing stepsizes (Jakovetic et al.l 2018}; |Dieuleveut
& Patel, 20195 |Li et al.} 2024b; |Lee et al.,2025)), which guarantee only sublinear convergence rates.

Furthermore, to give a more intuitive description of the computational complexity, we define an
e-solution to problem in equation [T]as follows.

Definition 1 (Lian et al. (2017)). For some integer T > 0, if E[||x] — x*||?] < € holds, then we say
that the sequence {x%} can reach an e-solution to the problem in equation

Building on Theorem|[I]and Theorem [2] we have the following corollary.
Corollary 1. Under Assumptions[Ijand[2] for any € > 0, Algorithm[I|with noisy gradient estimates
requires at most O((2|B|+3M +3) log(e~1)) gradient evaluation to obtain an e+ O(f—;l)-solution,

and Algorithm|l|with accurate gradients requires at most O((2M +3) log(e ™)) gradient evaluation
to obtain an e-solution.

In Corollary I] the low bound on the number of inner-consensus-loop iterations M in Algorithm|T]is
a fixed constant, which is different from the existing distributed optimization results in, e.g.,/Berahas
et al. (2019); |L1 et al.| (2020) which have the inner-loop iteration number increasing with the outer-
loop iterations, and hence have a higher computational complexity of the order of O((log(e~1))?).
Moreover, the computational complexity of our Algorithm [T| matches the adaptive stepsize results
on centralized learning in, e.g., Malitsky & Mishchenko| (2019;|2024) and the convergence results
on distributed optimization in, e.g.,|Chen & Wang| (2024); Kuruzov et al.| (2024). This is also less
than the convergence results in, e.g., Jakovetic et al.| (2018)); [Dieuleveut & Patell (2019); |Li et al.
(2024b) with diminishing stepsizes which have a computation complexity of the order of O(e~1).
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Figure 1: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm (1} dis-
tributed SGD in Jakovetic et al.|(2018)), and stochastic GT in [Pu & Nedic|(2021) on the “MNIST”,
“CIFAR-10”, and “CIFAR-100" datasets, respectively. The 95% confidence intervals were com-
puted from three independent runs with random seeds 42, 1010, and 2024.

6 EXPERIMENTS

In this section, we evaluate the performance of our proposed Algorithm [T] on image classification
tasks using representative benchmark datasets, including the “MNIST” dataset (Deng, 2012), the
“CIFAR-10” dataset (Krizhevsky et al.,|2010), and “CIFAR-100" dataset (DeVries & Taylor, | 2017).
All these tasks involve nonsmooth and nonconvex objective functions, which are intended to show
the effectiveness of our algorithm beyond the settings of strong convexity or smoothness. Due to the
space limitations, we leave the experimental results on logistic regression with strongly convex and
smooth loss functions to Appendix [C.3] In all experiments, we considered five agents connected in
a ring, where each agent communicates only with its two immediate neighbors. For the coupling
matrix W, we set w;; = 0.4 for all agent 7, w;; = 0.3 if agents 7 and j are neighbors, and w;; = 0
otherwise. For each experiment, we considered heterogeneous data distribution, with each agent
¢ randomly sampling 40% data points from the class 7 and sampling 60% data points from each
remaining class. We evaluated the performance of our proposed algorithm through the following
three cases: 1) we compared Algorithm [T| with existing distributed stochastic optimization/learning
approaches, including distributed SGD in Jakovetic et al.[(2018)) with diminishing stepsize and the
stochastic gradient-tracking (called stochastic GT) in|Pu & Nedic|(2021)) with fixed stepsize; 2) we
compared Algorithm [I] with existing adaptive stepsize approaches for centralized learning, includ-
ing the well-known ADAM in [Kingmal (2014) and the adaptive SGD in Malitsky & Mishchenko
(2024)); and 3) to evaluate the effect of the coefficients 5 and r in the stepsize update rule (i.e., Line
16 in Algorithm [I)) and the number of inner-consensus-loop iterations A/ in Algorithm [I] on con-
vergence accuracy, we test the convergence performance of Algorithm [I| under different 3, r, and
M, respectively. The detailed experimental settings are given in Appendix [C.I] and Appendix [C.2]
and additional experimental results on comparison of Algorithm[T]Jand distributed ADAM inNazari
et al.| (2022) are provided in Appendix The code for all experiments is available onlineﬂ

Comparison with existing distributed stochastic optimization approaches. We trained convolu-
tional neural networks (CNNs) with two, four, and five layers on the “MNIST”, “CIFAR-10", and
“CIFAR-100” datasets, respectively. We conducted training for 20 epochs on the “MNIST” dataset

https://anonymous.4open.science/r/DASGD-71D1/README . md
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Figure 2: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm ADAM
in|Kingma, (2014]), and adaptive SGD in|Malitsky & Mishchenko| (2024)) on the “MNIST”, “CIFAR-
107, and “CIFAR-100" datasets, respectively. The 95% confidence intervals were computed from
three independent runs with random seeds 42, 1010, and 2024.

and 80 epochs on the “CIFAR-10" and “CIFAR-100" datasets, using a batch size of 128. The step-
size for distributed SGD was set as 1; = % and for stochastic GT was set as 1; = 0.1. Both

of them represent the best-performing stepsizes we could find in our comparison. In fact, during our
tuning process, we obverse that setting 7 = 0.01 for stochastic GT results in overly slow conver-
gence, whereas setting 7 = 1 leads to divergent behaviors. For Algorithm|[I] we set the coefficients
£ and r in stepsize update rule as 5 = 1.3 and r = 0.99, and the number of inner-loop iterations
as M = 10. (The test accuracies of Algorithm |I| under different 3, r, and M are provided in

Figs. B(a)l B(b)l and respectively.)

Fig. to Fig. show that our proposed Algorithm [T] achieves the highest test accuracy and a
more stable steady-state convergence compared with distributed SGD in Jakovetic et al.{(2018]) and
stochastic GT in [Pu & Nedi¢ (2021). The early-stage oscillations in test accuracy of Algorithm I]
are mainly attributable to the adaptive process of stepsize adjustments. Compared with distributed
SGD with diminishing stepsizes, stochastic GT with a fixed stepsize achieves faster convergence,
however, it suffers from larger steady-state oscillations. In contrast, our proposed algorithm elim-
inates steady-state oscillations, and hence, ensures fast convergence. This is achieved because our
proposed adaptive stepsize rule allows each agent to take large stepsizes in the early stages of Al-
gorithm I and extremely small stepsizes near the global optimum in the later stages, as shown in
Fig. @o Fig.[I(f)] These results further imply a clear stopping criterion for each agent in the
implementation of our Algorithm Specifically, we can preset a constant 7 > 0 (e.g., 7 = 107
in the “MNIST” experiment) for all agents, and once an agent i’s stepsize 7! falls below 7, it can
terminate training, which does not compromise the global learning accuracy.

Comparison with existing adaptive stepsize approaches. Since adaptive stepsize approaches are
rarely reported in a fully distributed setting without a centralized server/aggregator, we compared
the convergence performance of Algorithm [I] with that of existing adaptive stepsize approaches
for centralized learning, including ADAM in Kingma| (2014) and the adaptive SGD in Malitsky &
Mishchenko|(2019;2024). This comparison is challenging because centralized methods can perform
training directly on aggregated data, while our approach in Algorithm|T|operates in a fully distributed
manner where each agent can only perform local computations and neighboring communication.

Fig.[2(a)]to Fig. 2(c)|show that Algorithm[T|has a higher test accuracy than both ADAM and adaptive
SGD, even without the assistance of any centralized server/aggregator. This finding is noteworthy, as
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Figure 3: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm [I| under
different parameters 3, r, and M, respectively, on the “CIFAR-10" dataset.

it empirically demonstrate that our fully distributed learning approach with heterogeneous adaptive
stepsizes among agents can accelerate learning compared with centralized methods with a single
adaptive stepsize. Furthermore, Fig. 2(d)| to Fig. 2() once again confirm that our adaptive stepsize
approach provides agents with large stepsizes in the early stages and small stepsizes in the conver-
gence stages, thereby facilitating better performance than existing centralized counterparts.

The effects of 3, r, and M on convergence accuracy. We evaluate the test accuracies of Algo-
rithm [T under different coefficients 5 and r in the stepsize update rule (i.e., Line 16 in Algorithm [I])
and the number of inner-loop iterations M in Algorithm [T} respectively. We ran this experiment on
the “CIFAR-10" dataset over 100 epochs, with a batch size of 64 and a random seed as 1010.

Fig.[3(a)] Fig.[3(b)] Fig.[3(d)] and Fig.[3(e) imply that larger 3 and r lead to faster convergence and
earlier stopping in Algorithm [I| This result is intuitively consistent, as large 3 and r contribute to
larger stepsizes before convergence stages (as shown in Fig. %d Fig.[3(e)), which in turn leads
to a higher convergence speed. Furthermore, Fig. and Fig. 3(f)| show that the number of inner-
consensus-loop iterations M has a negligible effect on convergence accuracy and the stopping crite-
rion. Hence, in practical machine learning tasks, we can set M = 1 (so that Algorithm [I]reduces to
a single-loop algorithm) to minimize the communication cost of Algorithm[I] In addition, the exper-
imental results in Fig. [3|also suggest a default parameter configuration (3, r, M) = (1.35,0.99,1)
for Algorithm[I} which helps ease the tuning effort in real-world applications.

The effect of network size m on convergence accuracy. We also evaluate the test accuracies of
Algorithm |I| under different network sizes m = 10, m = 15, and m = 20, respectively. This
experiment is conducted on the “CIFAR-10" dataset over 100 epochs with a batch size of 64 and a
fixed random seed of 42. The remaining parameter settings are the same as those presented in the
subsection “Comparison with existing distributed stochastic optimization approaches.”

Fig. ] shows that Algorithm [I] achieves higher test accuracy and more stable steady-state conver-
gence than distributed SGD and stochastic GT, regardless of the network size m. Furthermore, we
observe that a larger network size (i.e., a larger number of agents) leads to lower convergence ac-
curacy under a fixed number of epochs. This is because increasing the network size reduces the
number of training samples held by each agent. With a fixed batch size of 128, this reduction in
local training samples decreases the number of iterations performed by each agent in each epoch,
and consequently results in lower convergence accuracy within 100 epochs.
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Figure 4: Test-accuracy evolutions of Algorithm [1| distributed SGD in Jakovetic et al.| (2018), and
stochastic GT in|[Pu & Nedic¢|(2021) under different network sizes m = 10, m = 15, and m = 20,
respectively, on the “CIFAR-10" dataset.
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Figure 5: Test-accuracy evolutions of Algorithm [1] distributed SGD in [Jakovetic et al. (2018)), and
stochastic GT in|Pu & Nedi¢ (2021) under different Dirichlet-distribution parameter o = 0.1, a =
0.5, and o« = 10, respectively, on the “CIFAR-10" dataset.

The effect of data heterogeneity across agents on convergence accuracy. Furthermore, to eval-
uate the convergence performance of our algorithm under different data distributions across agents,
we conduct experiments on the “CIFAR-10" dataset using the Dirichlet partitioning scheme with
parameters a = 0.1, « = 0.5, and a = 10 (note that a smaller v corresponds to a higher level of
data heterogeneity among agents). The remaining experimental settings follow those presented in
previous subsection “The effect of network size m on convergence accuracy.”

Fig. [B] shows that Algorithm [T] maintains higher test accuracy and more stable steady-state conver-
gence than both distributed SGD and stochastic GT under all levels of data heterogeneity among
agents. In addition, it can be seen that a larger « (i.e., a lower level of data heterogeneity across
agents) leads to higher convergence accuracy.

7 CONCLUSION

In this paper, we have proposed an adaptive stepsize approach for distributed stochastic optimization
and learning without the assistance of any centralized server/aggregator or the need for accurate gra-
dients. This is nontrivial, because existing adaptive stepsize approaches either rely on a centralized
server to coordinate stepsizes among agents, or are limited to deterministic scenarios where agents
have access to accurate gradients of the objective functions. Moreover, our approach can eliminate
steady-state oscillations, and hence, ensures fast convergence. This stands in stark contrast to most
existing adaptive stepsize approaches that often incur steady-state oscillations near the global op-
timal solution, and thereby preventing the algorithm from achieving stable convergence accuracy.
In addition, we have systematically characterized the convergence rates of our algorithm for both
stochastic and deterministic distributed optimization, and quantified the computational complexities
for gradient evaluations on both cases. Experimental results on image classifications using three
benchmark datasets confirm the advantages of the proposed approach over existing counterparts.
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A NOTATIONS

For the sake of notational simplicity, we introduce some additional notations. We use RT to denote
the set of positive real numbers and use X* £ col(z}, x5, -+ ,2!,) € R™ to denote the stacked
model parameters of all agents. We also use ® to denote the Kronecker product. We use Z*(q) to
denote the average of all agents’ model parameters at the gth inner iteration of the ¢th outer iteration.

We define F; £ {&; 5|i = 1,--- ,mand s =0, ,t}, where & ; represents the data point sampled

by agent i at the tth iteration. For further notational simplicity, we define & = i Yo ak ntyl =

1 m t,,t t _ t _ t =t _ 1 t =t _ 1 m t
o 2oiet TiY1 60 Minax = MaXie[mn] 75 Mmax = MAXLEN Minaxs 1 = 7 Zz 115 U1 = 7 21 Yo

4_1 mot sttt oot ot =t ct ot

Yz = 21:1 Yo in T =2 =T, 01, =Y, —Y.and g5, = y5, — b

B RESULTS OF ALGORITHM I

B.1 TECHNICAL LEMMAS

We introduce the following three lemmas to characterize the consensus errors of Algorithm T}
Lemma 1. Under Assumptions[I|and[2} the following inequality holds for Algorithm|I}

45
E[lz" - 7'|") < Ellz" -7 17 - B[z - )
“4)
125 ., ., _
+ @E[nt(f(xt Y = f@)] + 203,

where the constant 6% is given by

=50 S R[] + 222 Y Bt + bf,’fZ 41 + 252 3 Bt

=1 =1
“ZEW : Li i+ o
1,0 m Pt |B| ’

where by 1 = % (L 2‘8‘“" + 2 ) +48% +2 bzo =2(1 —ay)(1 — as) (1 — i) B2+ 482 + 2,

byt = D (14 ) g2 = 200 = a5) (1= ) ne bs = 0 (14 L), and by =
1 2
4 (1 - a) max-

o)

Proof. According to Line 3 in Algorithm[I} we have

T =7TH0) =7 — 'y, (©)
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with 7* = L 377 ot and 0y} = 5 Y2 mlyl . Since YL = o YL 0k Yo, i holds, we
obtain the following inequality:

E(|z " — 2" °| 7] = |Intytl® = In'yt — 'Y, + 0'7}
< (1+

)
oe2)
o)

(2

12

Intyt — 771112 + (1 + a) 771
m

Z iyt = m)lI” + 1+ ay) 77112
=1
(

_|_
S @‘H

1
m

(7

M3~

)2yt = ill* + (1 + ay) 7712

3
-

n

1 1
< 1 il — 2 1 —t—t |12
< (14 5,) 0 Do el atal? + (14 )l

=

where F; = {&sli = 1,...,N; s = 0,...,t} with &, denoting the data point sampled by agent
i at iteration ¢. Here, we have used the inequality [|a + b]|? < (1 + 2)|a||® + (1 + «)||b|* for any
o > 0and a, b € R™ in the first inequality and the inequality || Y™ a;(|? < L 3™ [|a;||? for

m

any a; € R™, ¢ = 1,--- ,m in the second inequality. By choosing a; € (0, 1§4) and applying the
relation ||al|? = |ja — b||2 [[6]|2 + 2(a, b) to equation[7} the term |77} || can be bounded by
75301 = 17" (75 — 75 DI = "5 1” + 2095, 795 ). ®)

The first term on the right-hand side of equation [§]satisfies

2
_ _ _ 1 & _ X
'@ -5 DI* = m 7-7 ) — nf(yii—yé,il)—nﬁ(y — 9534
m
1 m 1 m
< |2 300 + anmivts — ) Z( )|n§< IR
m “ m
=1 =1
m 1 m
LS (b agf Lt - ot mz( ) I - 5.0,
=1 =1
)

for any ay € RT.

Consider the second term on the right-hand side of equation[9]

1 & ] 2 & 1
E|=— 1 ~t—1Y112 < = 2 1 —\E ~to2 ~t—1 .
[mg( b Y = 3501 £ 23 0 (14 ) E 1L + 13571
) (10)
Substituting equation [I0]into equation 9] yields
r 2
bt 1 — -
E (7@ - 75717 < ‘m2<1+a2mv( 2i7)
L i=1 (11)
m
oS e (1 0 B 0L 13531
We proceed to estimate a lower bound on the second term on the right-hand side of equation [§]
a5 1P = @) 17 = @' )?llge ' -5 + 5P
12)

N2t T\ i2at-1 -
> (- a) Pl P+ (1 o) @R - o,
for any a3 € (0,1), where in the derivation we have used the inequality |la + b||? > (1 — 1)||a[/* +

(1 — a)||b]|?, for any a € (0,1).

17
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Since the relationship 1 — i < 0 holds, the second term on the right-hand side of equation

satisfies

b i e
(-3

(1 _ 1) D)2~ ZE o~ @) = g 2@ )| = 2 (1 - a14> nn]%

. . . 2 .
By using the inequality > ", a? < (31 ,a;)° < n) ., a? for any nonnegative constants

K2

ai, .- ., ay, the first term on the right-hand side of equation @ satisfies

E @) 17 1P = E [(I'7,1)*] = E (;Zmyl 1||>

i=1
1 & ’
(mZvﬁllyi, —yﬁll) (14)
i=1

1 — ? 1 n2
t,t— 1 ‘Imax At 1

holds for any a5 € (0,1).

We estimate a lower bound on the first term on the right-hand side of equation [I4]as follows:

1 m 77 2
- (m sl 0) - :cz—1||>
=1

anyi Zl

1 & 77’-f ?
> (1—ag)E (mz tilllxt—x“> (15)
i=1 'l
m m /]’]t 2
(1—%)21@ (Znthlliﬁ@)—f‘lll) ,
i=1 'li

for any ag € (0,1).

By the inequality p*M Y7 [|2¢(0)[|2 > Y-, ||£¢]%, which will be proved in the subsequent
Lemma 3] we have

m

o\

i=1

@§<o>—iln> < B S E[IEO) + Va0 a6)
i=1

Finally, using inequalities equation[I2]-equation [I6] we arrive at

2
B 1 m 7]: B L
E[li7'75 2] = (1 - ag)(1 - as)(1 - ao)E (mZnH T -7 1|>

i=1

1\ 2,02 n Z 1
2(1— max 1— 1— ‘Imax E (17)
+ ( a4) |B| +( ) ( CL5> |y1 N H

i=1

+(1—a4)(1—a5)( >ﬁ21 ZE (5 0)11* + p* 1257 (0)]1%] -
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Next, we estimate an upper bound for the last term on the right-hand side of equation [§]as follows:

2 m
2E (95,775 D)) = =D B[ v i@ -m +u )
=1
2 m m 2 m
== E[@ 7t - Z (@ nio] + = D B[ i@ -5 )]
=1 Z:1 =1

(2

2 & nt 2 —

“ ]E —t—t 7 f 17 tO = ]E tat—1

m; [<n v T (zi ™t —z{(0)) m; Ty mio ]
m

+ =D B[ @ -m )]
=1

2 — 0 _ e 1 nZ .
< = E [ 1%1_ tO 2a-F t—t (|2 = E JImax t— 1 2
<23 (79 et - at(o)) | + 2B (7] + 1 D [Tt

- i i=1

|:77max ||7t 1 7t 1||2:| (18)
with a7 = 1=23% > 0, where we have used the inequality 2(a,b) < 1|la]|? + «|b]|? in the last
inequality.

Next, we need to transform the first term on the right-hand side of equation [I§]

771? t—1
2E Kntyi, T (t xﬁ)ﬂ
;
nt‘ 1 77 t—1
=9E Kntyi,til(xt —:ct)>} +2E [<nty§, A (a —£§)>]
n; m;
2 — ot e o\ e 28% e 28%
<->E <77§-y7iat1(xt 1—xt)> + arE |77 %] + o E [[12¢72(1?] + o E IERE

19)
Then, we estimate an upper bound on the first term on the right-hand side of equation[I9]as follows:

[ i\ | ¢ Ui p—— t
B | (it e =) | =B (71 - V@), e )

7

t
7

+ | (Vi) e - )|

<[ (st - Vi )ngt1<z“—x>>}+;ﬂa[n]<f<t1) i@, e

with Vf(z') = L 3™ Vf,;(Z"), where we have used the convexity of the function f(z) and the

i < % for any given ¢ in the last inequality.

The first term on the right-hand side of equation 20]can be bounded by

1 «— ¢
—~> E [<yi - V@), n?il (@ —:cf>>]
i=1 7
L > —t 1 7tH2 , (21)

1 B . m
< E[I7t - V@I + 5 ( >
as i=1
Since the random variables ¢! '(zt) — Vf;(z}), = 1,...,m, are mutually indepen-
dent, and E [/ '(2!) — Vfi(z!)] = 0, we have E [Hn{b S (g (=) = Vi H }
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m2 Z; 1 E [Hg (a}) = Vfi(x H ] = \é’fm- Using the L-smoothness of f;, the relationship
— m 2 m
7= T}L ZJ 1 ] ( j),andthemequahty H% Doing ai” < %21:1 |la;||? forany a1, - - ,a., €
R” we have
E (|7 - V(@]
1 — 1 «— ’
=K — . — Vi fd
R Z e
<2E Z ~Vhi@ED)|| | +28 HmZ (VAE) = VEED)| | o
i—1 i=1
=1
< ZE o~ = v+ 308 (1956 - Vi ]
2L2 % 20?
< = N E[||2Y?
= P [szH } + |B|m
Substituting equation 22]into equation 21]yields
L3 e [( - vie, e - 3)
mi3 !
L2 m 1 m t 2 2
< E 112112 %]E L i —t—1 _ —t)2 g 23
< DB+ T\ (230 ) I =2 |+ . 09
Combining equation [I8]and equation[23] we obtain the following inequality:
nm x
2F (075, 190 )] < 204 [||[7'yh 7] + o ZE 1357 17]
vas | (L35 ) s e +2—/32 B 5t + 4
8 m ni~! arm g |B|masg

w3 (B 22 B g ety + 2SRt - 1)

i=1

Substituting equation[T1] equation[I7] and equation [24]into equation [8] we obtain

2
(1—2an)E [|[7'711%] < (1 + a2)E H ZmLt wf— ;)

3=
<
i
Il
=

—((1—as)(1—ag)(1 —ar) —as)E ( Z ¢i1 Izt — xt—ln) (25)
+ N R @ - @) + 5
i=1
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where the constant &% is given by

1m L2max 22 . 2 m e 22
55—2("+57+) [at1P] + 22 SR [1a!11P) + o

P |Blmasg

nmax ~t— 1 1 nrznax02 nmax ~t— 1
IE 1-— 1-— 1—— IE
§j ) +2 (1= ) T 1) (1- ? B[l

(1= as)(1 - as) (1‘%)52 ZE 12O + 22M 34 (O]

2 & 2 1 ot 12 At—1
— 1+ — | E ; . 26
Dt (1 ) B P + 1 26)
By Step 14 in Algorithm[I] we have
7 t—1
nt < 1\0[ i . 27)
\/ (i1 LE? = 1]
When m(n! ' Lt)? <
)2 1 49r
tpey2 () V- )<o< 2T, 28
(m; L3) (1) = (m))*( (L}) mo2) <0< 100 (28)
When m(n! ' LE)? > 1, equationcan be rewritten as
t—1
g (29)
m(n; ' LE)? —
It implies that
)2 49r 49r
e - )7 <—. 30
(i) m(ni~1)2 = 100m ~ 100 (30)
According to equation[28|and equation [30] we always have
)2 49r
epnye ()" 49r 31
(miL3) w2 = 100 31)
Choose as, as, ag, a7, and ag such that the
1—r 47(1 —r)
az < PER max{as, ag, a7, ag} < 160082 (32)
Then we have
t1t\2 (m;)*
(L+a2)(n;Li)” — (1 —as)(1 —ag)(1 — ar) — as) — =+
m(n; )
1—as)(1 — ag)(1 — ar) — )2
< (1 +a2) (nfo)2 _ (( a5)( aﬁ)( a7) as (77?1
I+ a o 2 .
)2
< (a2 - m((g))) (14 a2) — (1 — as)(1 — ag)(1 — ar) + as) 5
JA9 (3= M) 19
100 4 400 100
where we use the relationship ((f oF < B2 (1 +az )‘1186 = 100 (1 + = r) < 14090 (1 — w)

and
(I4+az) — (1 —as)(1 —ae)(l —ar) +as < az + a5+ ag + a7 + as
1—r 47(1—7r) - 147(1 —r)
S T 40087 4002
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Since , < B, it follows from equation that

i

)2 49 1 1
ntLt < 1—as)(1 —ag)(1 — —,L— 24 2.
2 < s (0= 0~ a1 = an) =) B ) < o (24
(34)
Hence, it follows from equation @that
(1—as)(1 —ag)(l —ay)—a ¢ )
(1—|—a2)]E ||nltL§(jt || 5)( 6)( 7) SE 1711 ||§3t —jft 1”
m ;i
49
' m st=1)12]
< TRz — 7))
~ (35
Applying the fact if [|a;||* < L[|b;]|*> + ||c||? forall i = 1,...,m, then [|@||* < ||b]|* + ||c||?, where
a;, b;, and c are positive constants, @ = = > a;, b= L 1 ZZ L bi, , we have
1 ’
1 Elll= LLt(pt — pt1
( +a’2) Hm;nz 1(x1 Ty )
1 ’
—((1—a5)(1—ae)(l —a7) —as)E (mznm [z — t1||> (36)
i=1
1 ’ 1
—t— 1 L3 At—14]|2
_50 E;xfx +48(1+G2)E; [HnL @t - Z; )H]
By equation 34} we have
(1+a2)E [[fLi(at - #7N[°] < (2682 + DE [J|at])” + [l217"] . 37)
Based on the above analysis, we can rewrite equation 36 as follows:
12 2ﬁ+1’” 3 12
=20 5] = B ot~ 2]+ 2 S+ ]
% - E t =t—1\ _ gt 6t 38
+ D EfET) - f@)] + o (38)
i=1
By substituting equation [38]into equation[7} we obtain
“|—t+1 t||2]
P 2(14aq) _ (39)
<al [z’ -7 + > Z Y = f@))] +

mﬂ 1—2&8 -

~t—1112
:Ef 1” }) + (1 + ail)% Zz 1nmax||y1 1”2 and

with 8§ = e (51 + 2251 2 [t

1—2ag

1+a; (24(14a7)
i 2 (=55 ). Choose ag as

c1 =

1 — 124a;
a8 550 O (40)

where ag exists due to a; < ﬁ given in the lemma statement. Then we have

24 1+a;
<

1
= - 41)
50 1—2as 2

C1 =
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Substituting the second equation in equation 0]and equation ] into equation[39] we obtain

E [z —7'|?]
S (42)

125
< a7 =7 + ggp DB - S@)] + 8

Multiplying both sides of equation[d2]by 2 leads to

[||:L,t+1 t”ﬂ < 2¢,E [Hft . ft71||2] [thJrl 7t||2]

125 . _ (43)
+ B[ - £@)] + 255
which implies LemmalT] O
Lemma 2. Under Assumptions[I|and[2} the following inequality holds for Algorithm|I}
125
Elle — o |} + B - 7|7} + (2 + 200) 7wl - 1))
W 112
<(1-* 44
< (1= &+ cotumas ) Bll7* — 2712} + DB [ — 77 (44)
125 _ it *
w9 (24 ZDV R0 - )] + 6,
forany v € (O, 1), where the constant 8t is given by
2b3,1 . bi2 e bi2 . b1 .
t t =12 : troy 112 9, 2
5y =T Y BRI + P S B S Bl O]+ P Bl
by .2 . “ byo?
- Z 91317 + Z (11955 11%] + B
1= =1
(45)

where br 1= be 1+ M, bm 2 = QbI 2, by 1= 2by71 + 4+ UmaxL by 92 = 2by 2, by 3 = Qb%g,

agp lagp

and b, = 2b, + ZmaxL” L

lagp
Proof. According to the dynamics of z! in Algorithm we have
E [ - 2*|?) = E |7 - 'y’ - 2|1
=E[|z" - 2" |*] + E [ Iify|?] - 2E [(@ - 2", 77y)] (46)
—E[Ja" —2*|?] +E [ - 7'|]*] - 2B [ @' — 2", 05" ,

T N
with ntyt .= % Zi:1 ﬂfyi,i~
The third term on the right-hand side of equation 4] satisfies:

o [@t—x*,Wﬂ (@ — o Zmyu
< —2E [ﬁt(f(ft) - f(l‘ ) — Mnminnft - x*HQ] 47

<xt an Vi@ )>>],

where in the derivation we have used the yi-strong convexity of f(x) and fmin = Mine (] ren+ 7
Furthermore, since the function f is L-smoothness, the minimum of the stepsizes exists.

—2E
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By using the Cauchy—Schwarz inequality, the third term on the right-hand side of inequality equa-
tion [47] satisfies

—2E

<mt an Vi@ )>>
23 [<ﬁ - ik - vIE) )

N e [ )

By applying the inequality 2(a,b) < a|a||? + L ||b]|? for any o > O and a, b € R" to equation

we obtain
affr s

a9t ~— * T
<SS [l -0+ i 3 e - VS
i=1 =1
m

T]m'IX —
< agpiimaxE [||Z° — z*||] ZE lyt,i — VF(@)|?]

for any positive ag.

The second term on the right-hand side of equation [48]satisfies

Nmax ¢ —t\(12 Nimax N t ot —tN\ (|2
Jhmax N |yt =V = e NPyt o gt -V
o ;:1 [y, = VFE)IF] masis E [y =75 + 71 — VE)I?]

m (48)
2"7maux t 7t 277max
< Hmax NPyt E[
= sy ; [”?11 y1 Z || )” ]
By using the Lipschitz continuity of V f from Assulption[I] we have
D_E (7 - V@) < D B [lgi () = V@)
i=1 i=1
o 1 _ o? L2 - .
= 5+ Y E[IVAE) - VAE)IP] < o E [||z]°]
B miz | | i=1
Substituting equation [d9]into equation [48]leads to
TImax S t —t\(|2
E — Vf(
a3 E [~ VS
Com 12 (49)
21 max N 27]max ot Qnmax g’
< Zlhmax , E| .
< e 3R [19]1°] Z 7] + P
By substituting equation 7] to equation #9]into equation 46 we obtain
—t+1 * |12 —t * (|2
—x < (1 — uNmin + aoNmax)E |||T° — x
E[|z 1] < (1 = pn 91max ) E [ %] 50)

+E [ - 7')?) - 2B [7'(f(@") — f ()] + &,

with 6 = Sl ST B [198,017) + el S B (1917 + g

mag Tmagu |Blagp
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By adding both sides of equation[d]in Lemma|T]and equation[50] we obtain

E (7% — 2*|?] + E [z - wﬂ+(wP%?)EMUhﬂ—fWﬂﬂ

< (1 i+ o) [[7 — 27 2] + 0 [ — 712 &)
125
+ 20 () — )] + %,

with ¢ = &% + 26%.

By setting 8 € (1,1.36) and using Line 16 in Algorithml we have 1§51>B77t < 1235132 7l =

(2 + 1258 ) 7t~ for some 1 € (0, 23), which implies the following inequality:
125ﬁ7t 1258\ 12552 1255
—_— 2 24+ ——. 2
31 | = ( oy ) ad g 3 (52)
By letting ag = 2’7‘“‘“ we have
N _ _ 12553 . _ N
B [l — ot ] + B [J7t+ 1P + (24 00 ) E 7@ - 1)
min — 45 — —t—
< (1 _ ) E (|7 —2*|?] + =E [|[2* — "] (53)
2 46
125 B .
+E [ (24 22 )T - )|+
which proves Lemma 2] O

Lemma 3. Under Assumptions[I|and[2} the following inequality holds for Algorithm|I}

ZE[@?HZ]@?M(M@MZE 1965712 + @ar2acl? +3) S E [ ]
=1

i=1 i=1

A8 B ([ = 2 )+ dsm o LB [ — 27+ ) s
iE[H@MIIQ] <pM (18L2ZE (112 ]+18L2ZE [l 111°) +SZE [91:H11%)
=1 =1 i=1

+18mL7E [|[z* — 1] + 36&2"72), (55)
SOE (557 < 2M<18L22E [1124)1%] +18LQZE 4] + 3 E (145117
=1 =1 =1

+18mL%E |7t — 7% + 36(;'0' ) (56)

where p < 1 is from Assumption [2and M is the number of inner-consensus-loop iterations from
Algorithml[]]

Proof. According to Line 5 in Algorithmm we have
Xig+1) =W)X (q), ¢q=0,1,...,M —1, (57)

where W € R™*™ is the adjacency matrix given in Assumptlonl Since the relationship z¢(q) =
L5 #t(q) holds, we have

Pt =Y et ) =3 Y wte) = - el =7 @), 69

i=1 j=1 =1
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where we have used Assumption[2]in the derivation.
By using the definition X* = col(Z?, --- ,@') € R™" and equation 58] we have
Xt = (W ® I,)X" (59)

By defining A?(q) £ X*(q) — X* and subtracting equationfrom equation |57, we obtain
Al(g+1) =X'(q+1) = Xj = (W& I,)A'q)
Al(g+1) = (W @ I,)AYq).

Since W is a doubly stochastic matrix, there must exist an orthogonal matrix & € R™*" such that
W satisfies the following transformation:

OTWd = diag{1, X2, ..., A\ }, (60)

with |[A\;] < 1,4 = 2,...,m. The first column of ® is given by ﬁln, which corresponds to the
eigenvalue 1 of W. By further considering the following transformation:

Af(g) = (@7 ® I,)A'(q), (61)
with Af(q) = [01(q); 05(q); - - -3 01, (q)] € R™™, we have
ol(g) =) _@;(zl(q) - 7"), (62)
j=1

where @;rj denotes the element in the ith row and jth column of the matrix ® . By using atq) =
= (z(q) —T) =0, equationcan be rewritten as follows:

Jm
Af(g+1) = (diag{1, Aa, ..., A} ® L) Al (g). (63)
Since the relationship of (¢) = 0 holds, equation [63]implies
at(g+1) = Niat(q) < poi(q) < p™*'o}(0), (64)
with p = max{|Az], -, [Am|} < 1. According to equation[64] we have
[AYD)]* < p* M AN (0)]1%, (65)
which further implies
Dollat =27 < pPM Yt (0) - 77 (66)
i=1 i=1

By using an argument similar to the derivation of equation [66] we obtain

m m
Dollyi =77 < oMY Nyt (0) - Bl
i=1 i=1

m m (67)
D s =1 < 2P llyh i (0) — 1%
i=1 i=1
Using equation[66] we have
m m
D llat =zt < MY |lb(0) — 7|
i=1 i=1
m
= MY b(0) 2t 4t - P
= (68)

m m m
<3pPM (Y b)) =2l TP Y et =T P 4 YT -7
i=1 i=1 i=1
m m
=3p*" (Z I2£(0) — {17+ Y NP+ ma — :c“||2> :
i=1 1=1
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where we have used the relationship ||a+b+c||?> < 3|/a|?> +3]b||> + 3||c||? in the second inequality.

We estimate an upper bound on the first term on the right-hand side of equation [68]as follows:

m m
> ) = = 3 Il 1y§f||2<22\\nf 1yif|\2+22nnt g
=1
- ) (69)
= 2070 D N8P + 2,

_Z = Vi)

By using the following inequality and equation [69]

2 2
1 & o? 1 “
— -V < —R Vi@ = V(2
B || e PN | < i + B || A - VAE)
o? 2 &
< + E th 1 CE*HQ ;
B o 2 [ ]
we obtain the following relationship:
m
ZE [ll5(0) — 27 ~"?]
=1
< 2 Z 1955117 + L DB [1257H1%] 70)

= i=1
+ 4mnr2naxL2E [z =" )?] + 2nfnax ’

<2nmeE 91 117] +4nmeQZE (127117 + 8mnga L2(E [||z — 21|
=1

22 o2
+E[|[z° — 2*||?]) + e
[ ] 5]
The third term on the right-hand side of equation [68]satisfies
-1 _ jt HQ

t—lyt—1||2_mH Znt 1 t 1H2

=m/n

m||zt

m m

N — 71

< Sty 1\|2<nmax2||y ||2s2n§mZ||yif||2+2mnmax|| =4z 0D
=1 1

m

:277r2nax Z 1H2+m

2

=36 Y — 1)

=1

’ m

with nt—lyt—1 = % S 1yi ~!. Substituting equationinto equationleads to
mE [|[z7! = z*||?]

m m
<ot (zE 1)+ 223t - m*nﬂ) pap o

<277maxZE (7331 +477maxL2zlE [l

i=1

(72)

2

2
+ B L2 (E [~ 7] +E 7t o)) ) + 22
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By substituting equation [70]and equation[72]into equation [68] we arrive at equation [54]

By using equation[67] we have
m
Z i —w1l?
i=1
m
<Yyt 0) ~ 74
i=1

m (73)
=M Nt 0) =i i T T P
m
3p2M (Z Iy5.:(0) = 915 ||2+leﬁff\\2+m||?§ —ytf1||2>-
i=1
The first term on the right-hand side of equation[73|satisfies
D E(llyhi(0) — i) Z]E lgi ™ (@) — gi (217 HII?]
i=1
e _ 2mo?
< BVl - VA +
i=1
“ 2mo?
<123 E[lof - o7 + T (74)

@
I
-

2 2
E[|et -7 +7 -2 47 — 2l Tlrl;T

I
%
M

=1

< 32 mE 112 E [l — z-12 - t—1 2mo”®
< 3L D_E (0] + mE 2" =271 + 3B (18717 | + =5
=1

=1

The third term on the right-hand side of inequality equation |/3|satisfies

m 2
mE [|l7 - 7% = Z —gi (i)
1 & 7 ’

< (35w 1at] + e ot -2 + 3w 1t ﬂ) +2;f.

i=1 i=1

By substituting equation [74]and equation[73]into equation[73] we arrive at equation [53}
The proof of equation [56]is similar to the derivation of equation[53} and thus is omitted here. O

B.2 PROOF OF THEOREM/[I]

Proofoftheorem ' By setting oy = 1— 7, az = min { 32, };ET} oz = 612231(L Z;“a" + 2'3 +b1+
49(14a7) | 124L%nmax _ 125 (282 49(1+az) M (187 195
50azr 125a9p ), aa = 62m( ag +b1+ 50a7 ) as = m ( + 31lay +a 2+ agunmax)’
_ 125n§1ax 1 1 o 1 2Nmax Mmin 1 277maxL2
g = —go (a—3+1+£+£),anda7 =2((1— 55 ) (24 Thmex 4 ghoie ) 0 ) 4 Shoean
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equation[d4] can be rewritten as follows:

Blla - o |2} + Bl -7} + (24 00 ) B (@) - £a")
< {7 ~ 27} + 0oElJ7 ~ 7%} + 4 (2 + ) Bl @) - fe))

+aszEllfrtll +a4ZEllwt % +a5z 95071 + Elllgs ' 1°])

- aro?
i=1

By using an argument similar to the derivation of equation [73] equation [54] and equation 53| can be
rewritten as follows:

m

m m
D ElE)*) < oM (as D OENG P + a9 Y E[l2H7)
i=1 =1

i=1
2
+ anoB[[e — *[*} + asoBfla’ — 7 P)+ T ) (76)
> (I3t + Ellgs ) < o anzﬂanxfn +auZE||a:«t I
i=1
- Fis ft—1 t—1 a1g0”
+ a2 3 (BUGE P+ BI85 ) + nsBllet -2+ Sz ()

with ag = 1202, ag = 2402 L* + 3, ayp = 48mn2, L2, a3 = 18L% ajp = 3, auz =
18mL? > 0, and a4 = 72m.

Multiplying inequalities equation [76]and equation[77]by K and then using equation[73]lead to

N _ _ 125 _ N
B[z o*[?] + B[z 7)) + (2 + 200 Bl (@) - )]
m m
+ (K —as — payK) ZE [l111%] —as Z 1914117 + Elll72.:1%1)
i=1
< (a1 + p*MayK) E[||z" — I*ll ]+ (az + p*M K(ag + a1) JE[|z" — 7 71%]
1255 4 ¥ -
+92+ )BT (FE ) = f@)] 4 (aa + oM K (as + a1o)) Y Ell )
i=1
m 2
~ At — g
+ (as + p*M K (a7 + an) Z 93517+ Elllga, 117]) + (ar + Kana + KO‘8)®-
i=1
(78)
By choosing sufficiently large K and M satisfying
K > max { 2(92ay + 91053)’ 2(92a5 + 91ag) } 7
91 91
M > max In(1/2) — In(ag + 20110)’ In(1/2) — In(ay + 0411)’ (79)
21n(p) 21In(p)
In(l1 —a;) —In(2) = In(agK) In(1 —az) —In(2) —In((ag + a12)K) | A
P = MO)
21n(p) 21n(p)
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the following inequalities always hold:

1
a1+p2Moz9K§ +2a1 <1,
1
as + MK (g + agp) < + o <1,
2
91 (80)
as+ MK (ag + ajg) < 92 (K —ag — pzMozng) ,
91
g + pQMK(cw + Cvll) < @(K — 045).
Define an auxiliary function V(¢ 4 1) as follows:
tHL k2 (] =t )2 1250 —t x
V(t+1) = B[ — 2P + 77 =2} + ( 2+ = | B (F@) = f(@)]
m (81)
+ (K —az — p™Mai0K) Y E[|#]*} + (K — as) (Z]E 195,117 + Elllg2" I ]) -
i=1
Set v = max{l — £, 51} Since ay =1 — 45, 0 = mm{jg, 1152} and 1 7 < 1, we have
1+a1 14+as 91 no91
— < 1——, —3=n. 82
max{ 2 2 ’92}—max{ 4L’92} 7 (82)
It follows from equation [0hat
2
V(t+1) <AV + (a7 + Koy + Kag) Iifl
which is equivalent to
(a7+Ka14+Ka8)02> (a7 + Kayg + Kag)o?
Vit+1)— <~V(t) - (83)
( (1 =B (1—=)B|
Therefore, by using equation[83] we arrive at
K K 2
V(t) < 4V (0) 4+ QT T E ot Kag)o (84)

- (1—)[B|
Moreover, since the relations 77+ = 0, >/ [|#; '] = 0 and 37", ||9;} [ = 0 hold, we have
V(0) = [[7° — &*|* + [[Z°]*.
Furthermore, according to the definition of V() in equation|81] we arrive at

Eflzf — 2*|*} = Ellla; - 7* + 3" — 2*||*} < 2E[|1{]1*} + 2E[|7* - 2*[|*}

2
< 21 V(t
< alv
217(0) . (85)
< 2V (0
_maX{K}agpzM?Oéle’ ( )]'Y

n ((17+KO&14+K(18) 2 9 o2
max , —
1—v Ky —ag — p?M2040K; |B|

which implies E [|z¢ — 2*[2] < O (+/) + O (I%l) and Theoreml

B.3 PROOF OF THEOREM[2]

When accurate gradients are accessible to agents, Algorithm [T|reduces to the following algorithm.
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Algorithm 2 Deterministic version of Algorithm [I](from agent i’s perspective)

1: Input: 20 € R", y? = V£;(29), 7Y > 0,8 € (0,1.36),r € (0,1), M € N*,and T € NT.
2: fort=0,1,...,7T do

3 2 H0) = o} —nly)

4 forq=0,1,...,M —1do

5: et g +1) = D jen: wisz"'l(q)
6: end for
7.

8

l‘t+1 l’t+1(M)
Dy H0) = gl + Vel = Vfi(al)
9: forqg=0,1,...,M —1do

10: Yyt g+1) = DN wijﬁU;Jrl(CI)
11:  end for

. t+1 _ Hy7 U —viall ot t. : t+1 _
13: Lz = m if €, 7& X5, OtherWISC, LZ =1

14: 7™ = min {b’?ﬂ5 VR m }

V(G A e
15: end for

Proof of Theorem 2} By using an argument similar to the derivation of equation #4] we obtain

|z — 2|2 + |zt — 72+ <2+125ﬂ> 7 f(@) - f(a¥)

< (1 = phmin + agpimax) [T — ™[> + *Ilft -z
125 _ .
+7 (2+31B)77 HfETY = fa") + 05, (86)
for v € (0, 1), where the constant and 6% is given by
125 , L0y, 232 49(1 +ar)  124L%Nmax ,
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2
Mmax @ 125 3 it 2
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By using an argument similar to the derivations of equation[54]and equation 55 we have

> l#” < 2M(12nmx2||“ P+ 24nmL2+3)Z\|At 12
=1

=1

+ A8mnp o L2 T — ¥ + 48mnp LP|[T — 7! ||2> , (88)

Dol <o (18L2 Dl +18L2 Y P +3 Y Igns P
i=1 =1 i=1 i=1

+18mL? ||zt — 7't 2). (89)
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By using an argument similar to the derivation of equation [84] and constructing the following func-
tion:

125
e e i A (2 + 3)1”3) 7 (f(@) - (7))
m m (90)
+ (K —as = pMaw k) Y IIEP + (K —as) Y1137,
i=1 i=1
we obtain the following relationship:
V(t+1) <AV(t), oD

which implies V' (¢) < 4'V(0). Then, following an argument similar to the derivations of equa-
tion[85] we arrive at ||z — 2*||> < O (y*), which proves Theorem[2}

B.4 PROOF OF COROLLARYI]

According to Theorem the convergence rate of Algorithmis @) (fyT) +0 (%) . Hence, to find

an e-optimal solution, the number of outer-loop iterations 7" needs to satisfy 7' = O(log(e~1)). At
each outer-loop iteration, Algorithmrequires |B| gradient evaluations at both gf (") and g} (x!),
resulting in a total of 2|B| evaluations. Meanwhile, Lines 3, 8, and 9 in Algorithm |1| require M
gradient evaluations at xﬁl(O) ny{l(O) and y ,(0), Lines 5, 11, and 12 in Algorithm |1| require
M gradient evaluations at =11 (g), yfjl(q), and y; ,(q); and Lines 15 and 16 in Algorithmeach

require one gradient evaluation at L!** and /™!

;" , respectively. Based on the above discussion, we
have that Algorithmrequires at most 2|B| + 3M + 3 gradient evaluations per outer-loop iteration
t, leading to a computational complexity of O((2|B| + 3M + 3)log(e~!)) over T iterations. In
the deterministic setting, Algorithm [I] reduces to Algorithm [2] which requires at most 2M + 3
gradient evaluations per outer-loop iteration ¢, and thus has a computational complexity of O((2M +

3) log(e~1)) over T iterations.

C EXPERIMENTAL SETUPS AND ADDITIONAL EXPERIMENTAL RESULTS

C.1 BENCHMARK DATASETS

MNIST. The “MNIST” dataset is a benchmark dataset widely used in machine learning and com-
puter vision (Deng| 2012). It typically consists of 70,000 grayscale images of handwritten digits
(i.e., 0-9), with 60, 000 used for training and 10, 000 for testing. Each image has a size of 28 x 28
pixels, with the digit centered in the frame.

CIFAR-10. The “CIFAR-10" dataset consists of 60,000 color images of size 32 x 32 pixels in
10 classes, with 6,000 images per class (Krizhevsky et al.| [2010). Among them, 50,000 images
are used for training and 10, 000 for testing. The dataset covers a diverse set of object categories,
including airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Compared
with the “MNIST” dataset, the “CIFAR-10" dataset poses a greater challenge due to its colored and
natural images with larger intra-class variability.

CIFAR-100. The “CIFAR-100” dataset is a natural extension of the “CIFAR-10" dataset (DeVries
& Taylor, 2017). It contains 60,000 color images of size 32 x 32 pixels, and spreads across 100
classes with 600 images per class. The 50, 000 images are used for training and 10, 000 for testing.
However, due to its larger number of categories and the fine-grained nature of many classes, the
“CIFAR-100” dataset is regarded as the most challenging dataset within the CIFAR series.

Mushrooms. The “Mushrooms” dataset is a classic benchmark dataset from the UCI Machine
Learning Repository (Tutuncu et al.,|2022). It contains 8, 124 instances of gilled mushrooms, each
described by 22 categorical attributes, such as cap shape, surface, and color. The prediction task
is to classify each mushroom as either edible or poisonous. In this paper, we focus on l5-logistic
regression on the “Mushrooms” dataset, as the task naturally fits into a binary classification problem.

Shakespeare. The “Shakespeare” dataset contains 3, 829, 611 training samples and 1, 646, 425 test
samples. Each sample consists of a sequence of 80 characters and the subsequent character to be
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predicted. The dataset is derived from the lines of various characters in Shakespeare’s plays. Due
to the diversity of characters and scenes, the next character to appear often varies significantly. This
dataset is regarded as a highly challenging benchmark.

C.2 EXPERIMENTAL SETUPS

Convolutional neural network (CNN) training. For the “MNIST” dataset, we trained a two-layer
CNN. The first convolutional layer has 64 output channels with 3 x 3 kernels, stride 1, and padding
1, followed by batch normalization, LeakyReLU activation, and 2 x 2 max pooling. The second
convolutional layer has 128 output channels with the same kernel configuration. The feature maps
are then passed through adaptive average pooling to a 1 x 1 representation, flattened, and fed into a
fully connected layer to produce the output classes. The model was trained with a batch size of 128
using the cross-entropy loss.

For the “CIFAR-10" dataset, we trained a four-layer CNN consisting of four convolutional layers
with progressively increasing channel sizes of 32, 64, 128, and 256. Each convolution uses a 3 x 3
kernel with stride 1 and padding 1. To stabilize training and reduce spatial resolution, we employed
batch normalization, a LeakyReL. U activation, and 2x 2 max pooling after every convolutional block.
The resulting feature maps are aggregated by adaptive average pooling to a 1 x 1 representation,
which is then flattened and passed to a fully connected layer to produce the final class predictions.
The model was trained with a batch size of 128 using the cross-entropy loss.

For the “CIFAR-100" dataset, we trained a five-layer CNN with residual connections to enhance
feature extraction. The network begins with a 32-channel convolutional layer (3 x 3 kernels, stride
1, padding 1), followed by batch normalization, LeakyReL U activation, and 2 x 2 max pooling. The
subsequent convolutional blocks progressively increase the channels to 64, 128, 256, and 512. To
enhance feature extraction, we introduced residual paths: one from the raw input through a 2 x 2
convolution with stride 2, another from the second block via a 2 x 2 convolution, and a direct path
from the raw input via an 8 x 8 convolution. The model was trained with a batch size of 128 using
the cross-entropy loss.

Logistic regression. For the logistic regression task using the “Mushrooms” dataset, we employed
a single-layer linear model, which directly maps the 22 input features to two output logits corre-
sponding to the classes. Training was conducted using the loss function given in equation[02]

Recurrent neural network (RNN) training. For the “Shakespeare” dataset, we trained an LSTM-
based recurrent neural network. The model first maps each input token to a dense vector through
an embedding layer with an embedding dimension of 8. The embedded sequence is then fed into a
single-layer LSTM with a hidden size of 128 and batch-first input formatting. Finally, the represen-
tation is passed through a fully connected layer to project it back to the vocabulary space, producing
logits for the next-character prediction.

C.3 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide five additional experimental results: (1) the performance evaluation of
Algorithm [T] on logistic regression with strongly convex and smooth loss functions; (2) the per-
formance evaluation of Algorithm [T]on next-characterize prediction tasks using the “Shakespeare”
dataset; (3) the comparison of Algorithm |I| and distributed ADAM in |Nazari et al.| (2022)); (4) the
performance evaluation of Algorithm |I| under different 3, r, and M, respectively, on the “MNIST”
dataset; and (5) the performance evaluation of Algorithm[IJunder various network topologies.

(1) Logistic regression using the “Mushrooms” dataset. We evaluate the effectiveness of Algo-

rithm [T] by using an I>-logistic regression classification problem on the “Mushrooms” dataset (Tu-

tuncu et al., 2022). To ensure heterogeneous data distribution, we spread data samples among five

agents according to their target values. Specifically, agents 1, 2, and 3 have samples with the target

value of 0, while agents 4 and 5 have samples with the target value of 1. All agents cooperatively

learn an optimal model parameter z* to problem ] in which the loss function of agent i is given by
|B]

| e e Ly,

l i:fg —-(1-b;)n|{ — ) - b;jIn | ——— — ,

(, &) |B| = ( ( J) n (el’laij + @wzaij> g (efmai]‘ + ew2aij> T 2 ] >
92)
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where |B| represents the number of sampled data points per iteration. In this experiment, we used a
full batch setting, i.e., |B| = |D;| with D; denoting the local dataset of agent i. Here, z = [x1,z2] "
is the model parameter and the positive constant Lo is a regularization parameter. It is clear that the
loss function in equation[92]is strongly convex and smooth.

In this experiment, we compared the test accuracies of Algorithm [T] with existing distributed opti-
mization algorithms, including distributed GD in [Nedic & Ozdaglar| (2009) and deterministic GT
in|Nedi€ et al.[(2017). The stepsizes for distributed GD and deterministic GT are the same as those
employed in our “MNIST” experiment in the main text (i.e., n! = (14?% for distributed GD and
1; = 0.1 for deterministic GT). The training process spanned 250 iterations.

Mushrooms Mushrooms
0.9 Y 1005
o 100,0
5,08 N
(%) 0 10—05
o 3 ¢
a 0.7 2 10-10 I
® Q1515 x\
10
+— 0.6 ©
w0 =
@ N @ 10720 )
05 —&— Algorithm 1 z s —&— Algorithm 1
distributed GD 10 distributed GD
0.4 —e— deterministic GT 107301 —e— deterministic GT
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Iterations Iterations
(a) Test accuracy (b) Average stepsize across agents

Figure 6: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm (1} dis-
tributed GD in [Nedic & Ozdaglar| (2009), and deterministic GT in [Nedi¢ et al.| (2017). The 95%
confidence intervals were computed from three independent runs with seeds 42, 1010, and 2024.

Fig. [6(a)] shows that Algorithm [T] achieves the highest test accuracy and convergence speed com-
pared with distributed GD and deterministic GT. This is because larger stepsizes is allowed in the
early stages of Algorithm|[I]than distributed GD and deterministic GT (as shown in Fig. [6(b)). Fur-
thermore, Fig. [6] shows that Algorithm [I] exhibits stable convergence accuracy after 200 iterations.
This result implies a clear stopping criterion for our algorithm, that is, by setting 7 = 10~3, each
agent i can stop training once |n}| < 7.

(2) Next-characterize prediction using the “Shakespeare” dataset. We evaluate the learning
accuracy of Algorithm [[Jusing a next-characterize prediction task on the “Shakespeare” dataset. To
ensure heterogeneous data distribution, we spread data samples among five agents according to a
Dirichlet distribution with parameter o = 0.5.

In this experiment, we compared the test accuracies of Algorithm|T]with existing distributed stochas-
tic optimization algorithms, including distributed SGD in [Jakovetic et al.| (2018)) and stochastic GT
in[Pu & Nedi¢|(2021). The stepsize for distributed SGD was set to 1; ; = W while the stepsize
for stochastic GT was set to 7 = 0.5. The training process spanned 200 epochs.

Fig. shows that Algorithm [T] outperforms both distributed SGD and stochastic GT in test ac-
curacy. This improvement can be attributed to the larger stepsizes allowed by our adaptive stepsize
approach, as evidenced by Fig.[7(b)]

(3) Comparison of Algorithm [T and distributed ADAM in Nazari et al](2022). To compare the
convergence accuracy of Algorithm [T] with the existing adaptive stepsize approach for distributed
(online) learning, i.e., distributed ADAM in [Nazari et al.| (2022), we conducted additional experi-
ments by comparing their test accuracies on image classification using the “CIFAR-10” dataset.

Fig. [8(a)] shows that our Algorithm [T] outperforms distributed ADAM in terms of both test accu-
racy and steady-state performance. Furthermore, Fig. indicates that the stepsize in distributed
ADAM decays rapidly, which leads to a low convergence speed in the later stages of the algorithm.

(4) The effects of 3, r, and M on convergence accuracy with respect to the “MNIST” dataset.
We evaluate the test accuracies of Algorithm [Tjunder different coefficients 3 and r in the stepsize
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Shakespeare Shakespeare
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Figure 7: Test-accuracy and average-stepsize (across ten agents) evolutions of Algorithm 1, dis-
tributed SGD in Jakovetic et al.| (2018)), and stochastic GT in [Pu & Nedic (2021). The 95% confi-
dence intervals were computed from three independent runs with seeds 42, 1010, and 2024.
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Figure 8: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithm |If and
distributed ADAM (Nazari et al} [2022). The 95% confidence intervals were computed from three
independent runs with random seeds 42, 1010, and 2024.

update rule (i.e., Line 16 in Algorithm [T and the number of inner-loop iterations M in Algorithm|T]
respectively. We ran this experiment on the “MNIST” dataset over 20 epochs, with a batch size of
128 and a random seed as 42.

Fig. P(a)l Fig. P(b)} Fig. 0(d)} and Fig. P(e)] imply that larger 5 and r lead to faster convergence
and earlier stopping in Algorithm [I] This result is intuitively consistent, as large /3 and r contribute

to larger stepsizes before convergence stages (as shown in Fig. [9(d)] and Fig. @(e)), which in turn
leads to a higher convergence speed. Furthermore, Fig. and Fig. show that the number of
inner-consensus-loop iterations M has a negligible effect on convergence accuracy and the stopping
criterion. Hence, in practical machine learning tasks, we can set M = 1 (so that Algorithm[T|reduces
to a single-loop algorithm) to minimize the communication cost of Algorithm[I] The experimental
results in Fig. El further confirm the default parameter configuration (3, r, M) = (1.35,0.99, 1) for
our algorithm, which align with the discussion in the subsection “The effects of 3, r, and M on
convergence accuracy” (with respect to the “CIFAR-10" dataset) in the main text.

(5) Performance evaluation of Algorithm [I| under various network topologies. We conducted
experiments to evaluate the efficacy of our Algorithm [I] under different network topologies. We
considered a network of m = 10 agents, with the interaction graph being a ring network and random
d-regular graphBollobds| (1986) with d (called “Degree” in Fig.[I0) set to 2, 3, 5, and 8. We used the
same parameters as those employed in subsection “Comparison with existing distributed stochastic
optimization approaches” in our main text. The experimental results are shown in Fig.

The experimental results in Fig.[T0(a)]and Fig. show that the impact of network topologies on
the convergence accuracy of our algorithms is slight when Assumption [2]is satisfied.
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Figure 9: Test-accuracy and average-stepsize (across five agents) evolutions of Algorithmunder
different parameters 3, r, and M, respectively.
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Figure 10: Test-accuracy and average-stepsize (across ten agents) evolutions of Algorithmunder
different network topologies.
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