
Towards a Unified Framework for Sequential Decision Making

Carlos Núñez-Molina, Pablo Mesejo, Juan Fernández-Olivares
Universidad de Granada

ccaarlos@ugr.es, pmesejo@ugr.es, faro@decsai.ugr.es

Abstract

In recent years, the integration of Automated Planning (AP)
and Reinforcement Learning (RL) has seen a surge of in-
terest. To perform this integration, a general framework for
Sequential Decision Making (SDM) would prove immensely
useful, as it would help us understand how AP and RL fit to-
gether. In this preliminary work, we attempt to provide such
a framework, suitable for any method ranging from Classical
Planning to Deep RL, by drawing on concepts from Proba-
bility Theory and Bayesian inference. We formulate an SDM
task as a set of training and test Markov Decision Processes
(MDPs), to account for generalization. We provide a gen-
eral algorithm for SDM which we hypothesize every SDM
method is based on. According to it, every SDM algorithm
can be seen as a procedure that iteratively improves its solu-
tion estimate by leveraging the task knowledge available. Fi-
nally, we derive a set of formulas and algorithms for calculat-
ing interesting properties of SDM tasks and methods, which
make possible their empirical evaluation and comparison.

Introduction
Throughout the years, two main approaches have been ap-
plied to solve Sequential Decision Making (SDM) (Littman
1996) problems: Automated Planning (AP) (Ghallab, Nau,
and Traverso 2016) and Reinforcement Learning (RL) (Sut-
ton and Barto 2018). Even though AP and RL have histori-
cally followed separate paths, in recent years there has been
a surge of interest in reconciling both approaches.

Despite this interest, the field currently lacks a compre-
hensive framework for SDM that suits all existing methods,
from Classical Planning to Deep RL. This framework would
lay the foundations for a unified theory of SDM, providing a
deep understanding of SDM and how the different methods
fit together, thus helping in the integration of AP and RL.
Additionally, it would facilitate the empirical evaluation and
comparison of the existing SDM algorithms and tasks.

In this preliminary work, we give the first steps towards
this unified framework for SDM, one that suits AP, RL and
hybrid methods such as model-based RL (Moerland et al.
2023). In order to provide such framework, we draw on con-
cepts from Probability Theory and Bayesian inference. The
main contributions of this framework are the following:

• A formulation of SDM tasks, based on the notion of
Markov Decision Processes (MDPs) (Sutton and Barto

2018), which works for both AP and RL and takes into
account generalization to different MDPs. This is useful
for answering questions such as ‘Given an AP and an
RL task, which elements are similar for both tasks and
which ones are different?’ and ‘What type of generaliza-
tion (e.g., across goals) is needed to solve a given task?’.

• A widely applicable definition of the difficulty of an
SDM task and distance between MDPs. This makes pos-
sible to answer questions such as ‘Given an AP and an
RL task, which one is harder to solve?’ and ‘How differ-
ent are two particular MDPs?’.

• A general algorithm for SDM, based on Bayesian in-
ference. The main hypothesis of this work is that every
SDM method, from both AP and RL, is based on this
general algorithm and can be seen as a procedure that
iteratively improves its current estimate of the task so-
lution. If our hypothesis is correct, this algorithm would
serve as a template for creating SDM methods and result
useful for answering questions such as ‘Given an AP and
an RL algorithm, what are their main similarities and
differences?’, thus providing valuable insight into SDM.

• The definitions of several important properties of SDM
algorithms: the amount of task knowledge they leverage,
how efficiently they solve the task and the quality of the
solution found. This allows to answer questions such as
‘How much knowledge does a particular algorithm re-
quire to solve a task?’ and ‘Given an AP and an RL al-
gorithm, which one works better for a particular task?’.

To the best of our knowledge, the only other work
that provides a unified framework for SDM is (Moerland,
Broekens, and Jonker 2020). The framework proposed in
this work, called FRAP, identifies a series of decisions ev-
ery AP and RL algorithm must make, and provides a com-
prehensive list of alternatives they can choose from. On the
other hand, our framework formulates SDM from the lens of
Probability Theory, based on which it provides a general al-
gorithm for SDM, composed of a sequence of abstract steps
that we hypothesize every SDM method follows. Nonethe-
less, we do not focus on the specific way each algorithm im-
plements (adapts) these steps. Additionally, our framework
also provides a novel formulation of SDM tasks and a set
of algorithms for calculating interesting properties of SDM
tasks and methods, whereas FRAP only focuses on the de-

scription of algorithms. Finally, FRAP does not cover meth-
ods that employ a symbolic knowledge representation (e.g.,
Classical Planning), while our framework does.

It is also important to note the difference between our
framework and Bayesian RL (Ghavamzadeh et al. 2015).
This sub-field of RL is composed of methods that explic-
itly encode their prior knowledge and parameter uncertainty
in the form of probability distributions. On the other hand,
we propose a general framework in which every SDM algo-
rithm, not only those belonging to Bayesian RL, is formu-
lated as a process which iteratively updates its probabilistic
estimate of the solution, either explicitly or implicitly.

Characterization of SDM tasks
In this section, we propose a general formulation of SDM
tasks, suitable for both AP and RL. We draw on concepts
from Probability Theory and derive formulas and algorithms
to calculate interesting properties and measures, such as the
distance between two MDPs and the difficulty of a task.

MDP formulation
We base our formulation on Stochastic Shortest Path
Markov Decision Processes (SSP-MDPs) (Kolobov 2012),
a general MDP formulation suitable for both AP and RL,
as it encompasses the finite-horizon and infinite-horizon
reward-based MDPs usually employed in RL. In many tasks,
there exist some restrictions which the solution must satisfy
(e.g., the maximum amount of fuel each vehicle can con-
sume in a logistics task). Therefore, we augment the SSP-
MDP description with a set of constraints, following the
ideas introduced by Contrained MDPs (Altman 1999). We
give the name Constrained Stochastic Shortest Path MDP
(CSSP-MDP) to this hybrid MDP formulation. A CSSP-
MDP (which we will simply abbreviate as MDP from now
on) contains the following elements:

• State space S, the set of states of the MDP. We define the
set of reachable states SR as the set of states which can
be reached by executing a sequence of applicable actions
from the initial state of the MDP (see definitions below).

• Action space A, the set of actions available to the agent.
We define the set of applicable actions App(s) ⊂ A as
the subset of actions the agent can execute in some s ∈ S.

• Transition function T : S × A × S → [0, 1], a partial
function describing the environment dynamics, by speci-
fying the probability T (s, a, s′) of the environment tran-
sitioning from state s to s′ after the agent executes an
applicable action a in s.

• Cost function C : S×A×S → [0,∞), a partial function
which gives a cost c(s, a, s′) ≥ 0 every time the agent
executes an applicable action a in state s and the MDP
transitions to state s′.

• Initial state si ∈ S, the state the agent always starts from
at the beginning of the task.

• Goal state sg ∈ S, the state the agent must reach. This
state is terminal, meaning that once the agent is in sg
it cannot get to any other state and no longer incurs in

additional cost. Therefore, we can assume the task ends
as soon as the agent reaches sg .

• Constraint costs function: D : S × A × S → RK , a
partial function which returns a vector (d1, ..., dK) of K
real numbers every time the agent executes an applicable
action a in state s and the MDP transitions to state s′.

• Constraint values vector V ∈ RK , containing a list of
K real values, each one associated with a different con-
straint that must be satisfied by the MDP solution.

A policy π : S × A → [0, 1] is a partial function
which maps states s to probabilities over applicable actions
App(s). A policy is called proper if it always reaches sg ,
given a sufficiently large number of time-steps. In many
SDM formulations, a policy is said to solve an MDP only
if it is optimal, i.e., the expected total cost E[[Σc]] it needs to
reach sg is minimal. Nonetheless, in some SDM tasks (e.g.,
satisficing planning) the policy is not required to be optimal
in order to be considered a solution. Therefore, in our CSSP-
MDP formulation, we consider a policy a solution as long as
it is proper and it satisfies the K MDP constraints, i.e., for
each constraint index i ∈ [1,K] the expected total constraint
cost E[[Σdi]] obtained by the policy is less or equal than its
corresponding constraint value vi. Additionally, we assign to
each solution policy a quality value q equal to the inverse of
its expected total cost: q = E[[Σc]]−1. A policy which does
not solve the MDP has a q of 0. These quality values allow
us to rank the different solution policies: given two policies
π1, π2 which solve an MDP m and have qualities q1, q2, if
q1 > q2 then π1 is said to be a better solution of m than π2.

After defining when a policy solves an MDP, we now do
the opposite and define what the solution of a given MDP is.
A first approach could be to consider that the solution of an
MDP is simply the set of all policies that solve it. Nonethe-
less, this definition completely disregards policy quality q
so, given two MDPs m1,m2 which are solved by the same
set Π∗ of policies, the solutions of m1 and m2 would be
considered equal even if policies π ∈ Π∗ obtain different
qualities qm1 , qm2 for m1 and m2. To avoid this, we pro-
pose a different definition. Let Π be the set of all policies,
regardless of whether they solve the MDP or not, which are
deterministic, i.e., for every state s ∈ S they assign a proba-
bility of one to some action a ∈ App(s) and zero to the rest.
We can construct a probability distribution P ∗(Π) which as-
signs to each policy πi ∈ Π a probability equal to its quality
value qi.1 We consider this probability distribution P ∗(Π) to
be the solution of the MDP and thus call it solution probabil-
ity distribution. This formulation has two main advantages.
Firstly, it provides a compact description of an MDP solu-
tion which takes into account policy quality q. Secondly, by
formulating the MDP solution as a probability distribution,
we can draw on concepts from Probability Theory to char-
acterize SDM tasks and algorithms. Finally, we provide in
the Appendix an example where a Classical Planning task

1Throughout the paper, we assume P ∗(πi) = qi but, for this to
be true, qi must first be normalized by a constant so that all policy
qualities add up to one, i.e.,

∑
πi∈Π qi = 1. Therefore, P ∗(πi) is

actually equal to the normalized quality of πi.

is adapted to the scenarios of optimal, satisficing and agile
planning by selecting a suitable CSSP-MDP encoding.

SDM task formulation
Most SDM setups define an SDM task in terms of a single
MDP. However, we may be interested in solving not one but
a set of similar MDPs, e.g., a set of AP problems belong-
ing to the same planning domain (which may have different
si, sg, S and A2) or an RL task where a robot is trained in
a simulation and then deployed to the real world, where the
dynamics T (and other elements) may be different to those
of the simulation. If the set of MDPs to solve is very large
(or even infinite), it is not feasible to obtain a different policy
for each MDP. In this case, we need to obtain a policy which
generalizes across different MDPs. Following this idea, we
formulate an SDM task as a tuple made up of a set of train-
ing MDPs Mtrain and a set of test MDPs Mtest. The goal
of an SDM algorithm is to obtain a policy which solves the
MDPs in Mtrain and generalizes to similar MDPs, like the
ones in Mtest, which are used to evaluate the generalization
ability of the policy.

We previously defined a policy π as a (partial) function
that receives as input the current MDP state s and outputs a
probability distribution over actions a ∈ App(s). Nonethe-
less, if our goal is to obtain a policy that generalizes across
different MDPs, it may be necessary to provide additional
information to the policy. For instance, it seems unlikely that
a policy π is able to generalize to MDPs with different goals
sg unless it knows what the goal sg of the current MDP to
solve is. Therefore, in this case, π should receive sg as input
in addition to s.

To account for this extra input information, we propose to
use a novel type of policy which we name Context-Aware
(CA) policy. Given an MDP m, a CA-policy (just policy
from this point onwards) receives as inputs the current state
s of m (or an observation of s, if the MDP is partially ob-
servable), the set of applicable actions App(s) and, option-
ally, some extra information about m which we refer to as
the MDP context µ. Then, it outputs a probability distribu-
tion over App(s). The MDP context µ contains information
about the MDP elements of m, i.e., about S, A, T , C, si, sg ,
D and/or V , and allows the policy to effectively generalize
across MDPs which differ for some of these elements. For
instance, the policy in our previous example, which received
information about sg in addition to s, corresponded to a CA-
policy where µ = {sg}. This specific type of CA-policies
are known in the literature as goal-conditioned/generalized
policies (Schaul et al. 2015). The SDM task must determine
the specific MDP context µ to use, i.e., it must decide what
information (about MDP elements) policies will have access
to when deciding the next action to execute. For example, in
a particular SDM task, the goal may be to find a standard
policy π(s) (i.e., µ = {}) that solves Mtrain whereas, in a
task where policies must generalize across MDPs with dif-
ferent dynamics T , the goal may be to find a CA-policy of

2The state space S and set A of (ground) actions for a given
planning problem depend on the problem objects, which may vary
across different problems of the same domain.

the form π(s, T), where µ = {T}.
There remains the issue of how to encode the information

about s, App(s) and µ. Different policies may require dif-
ferent encodings of the same MDPs. For example, in RL,
a policy may correspond to a convolutional neural network
which requires inputs s,App(s), µ to be provided as images,
whereas a policy in AP may require a First-Order-Logic
(FOL) representation. To solve this issue, we take inspira-
tion from the division between problem-space and agent-
space proposed in (Konidaris and Barto 2006). We allow
each task MDP to represent its information as it sees fit.
Conversely, each policy must employ an encoding for its in-
puts (s,App(s), µ) and outputs (action probabilities) that is
shared among all MDPs. Then, the SDM task must provide a
set of functions to translate policy inputs s,App(s), µ from
the knowledge representation employed by each MDP to the
representation of each policy, and another set of functions to
translate policy outputs from each policy representation to
each MDP representation. We call the former set of func-
tions perceptual interface and, the latter, actional interface.

Difficulty of SDM tasks
The most important property of an SDM task is arguably its
difficulty. We define the difficulty of a task as the sum of
its computational effort, i.e., how hard it is to find a policy
π that solves Mtrain, and its generalization effort, i.e., how
hard is for π to generalize to Mtest. Additionally, we provide
a set of formulas and algorithms to calculate this difficulty,
which makes possible to compare a set of tasks to determine
which one results more challenging for SDM algorithms.

Firstly, we must define the solution of a set of MDPs.
Intuitively, a policy solves a set of MDPs if and only if
it solves every single MDP in the set. Therefore, we can
consider that the overall quality qM obtained by a policy
π on a set of MDPs M = {m1, ...,mn} is equal to the
product of the qualities qm1 , ..., qmn obtained by π on each
MDP m1, ...,mn separately. We can then associate a solu-
tion probability distribution P ∗

M (Π) to M given by the fol-
lowing formula: P ∗

M (Π) =
∏n

i=1 P
∗
mi

(Π).3
After defining the solution P ∗

M (Π) of a set M of MDPs,
we can now define their difficulty DM . Intuitively, DM mea-
sures how hard it is to solve M , i.e., to find a solution pol-
icy π ∈ Π with good quality qM . The easiest case would
be when every single policy π ∈ Π is optimal. In this
case, P ∗

M (Π) would correspond to a uniform distribution
U(Π) that assigns the same probability (and quality) to ev-
ery π ∈ Π. Building on this fact, we can measure the dif-
ficulty DM of M as how different its solution distribution
P ∗
M (Π) is from the solution distribution U(Π) correspond-

ing to the easiest case, i.e., as the distance between P ∗
M (Π)

and U(Π). By employing the total variation distance (TV)
(Gibbs and Su 2002) as our distance metric, we obtain the
following formula: DM = TV (U(Π), P ∗

M (Π)).
We can also rely on our probabilistic formulation to

measure distances among MDPs. We define the distance
d(M1,M2) between two sets M1,M2 of MDPs as the dis-
tance between their solution distributions P ∗

M1
(Π), P ∗

M2
(Π):

3Probabilities must be normalized so that
∑

πi∈Π P ∗
M (πi) = 1.

d(M1,M2) = TV (P ∗
M1

(Π), P ∗
M2

(Π)). Intuitively, this
means we consider that M1 and M2 are different if they are
solved in a different way, i.e., policies which obtain high
quality on M1 exhibit low quality on M2 and vice versa.

Finally, we can calculate the difficulty DT of an SDM task
T = (Mtrain,Mtest) as the sum of its computational effort,
which is equal to the difficulty DMtrain

of Mtrain, and its
generalization effort, which is equal to the distance between
Mtrain and Mtest. The formula is as follows:

DT = DMtrain
+ d(Mtrain,Mtest) =

TV (U(Π), P ∗
Mtrain

(Π)) + TV (P ∗
Mtrain

(Π), P ∗
Mtest

(Π))
(1)

In order to use Equation 1 to obtain the difficulty DT of a
task T , we need to be able to compute distances (TV) be-
tween probabilities distributions, which may be computa-
tionally intractable. Nonetheless, we can approximate these
distances. The first distance, TV (U(Π), P ∗

Mtrain
(Π)), mea-

sures how different U(Π) and P ∗
Mtrain

(Π) are. If this dis-
tance is small, then P ∗

Mtrain
(Π) is similar to U(Π), which

means that P ∗
Mtrain

(Π) distributes qualities evenly across
policies, i.e., most policies π ∈ Π have near-optimal qual-
ity. If this distance is high, then P ∗

Mtrain
(Π) is different

to U(Π) and distributes qualities unevenly across policies,
i.e., a few policies have high quality while the rest have
zero or near-zero quality. Therefore, as the distance between
P ∗
Mtrain

(Π) and U(Π) becomes larger, the average quality
qtrain obtained by policies on Mtrain decreases, when com-
pared to the quality of the optimal policy. The second dis-
tance, TV (P ∗

Mtrain
(Π), P ∗

Mtest
(Π)), measures how differ-

ent P ∗
Mtrain

(Π) and P ∗
Mtest

(Π) are. If this distance is small,
then the solution distributions of Mtrain and Mtest are sim-
ilar, meaning that policies π ∈ Π tend to obtain similar qual-
ities qtrain, qtest on both MDP sets. If this distance is high,
then the solution distributions of Mtrain and Mtest are dif-
ferent, so most policies π ∈ Π obtain different qtrain and
qtest. Based on these ideas, we propose an algorithm based
on Monte Carlo sampling (Metropolis and Ulam 1949) to
estimate DT :

1. Uniformly sample a large number n of policies
π1, ..., πn ∼ U(Π). This is equivalent to, for each sam-
pled policy πi, executing a random action a ∈ App(s) in
each MDP state s, while making sure πi always selects
the same action a for the same policy inputs s,App(s), µ
(since policies π ∈ Π are deterministic).

2. For each sampled policy πi, estimate its quality values
qtraini and qtesti . The quality qmt

i of πi on some training
MDP mt ∈ Mtrain can be obtained by executing πi on
mt and then estimating its total expected cost E[[Σc]] and,
for each constraint index i, its total expected constraint
cost E[[Σdi]] as the average of the total costs Σc and total
constraint costs Σdi obtained on mt. E[[Σc]] and E[[Σdi]]
are then used to obtain qmt

i . Lastly, qtraini is obtained as
the product of the qualities qmt

i obtained by πi on each
mt ∈ Mtrain. To estimate qtesti , we employ the same
method but on Mtest.

3. DT can be estimated using the following formula:

DT ≈
(1

n
·

n∑
i=1

qtraini

)−1

+
(1

n
·

n∑
i=1

(qtraini −qtesti)2
)
,

(2)

where the first term of the sum is an estimate of DMtrain

and the second term an estimate of d(Mtrain,Mtest).

The formula above estimates the difficulty DT of a task
T based on the qualities (qtrain and qtest) obtained by poli-
cies π ∼ U(Π) on T . Therefore, if we want to compare the
difficulties DT1 , DT2 of two tasks T1, T2, we must make
sure qualities have the same scale on both tasks. To ensure
this, we can rescale qualities qm separately for each MDP
m in each task T , e.g., by dividing every qm by the maxi-
mum obtainable quality in m. Additionally, it is important
to note that the number n of policies that need to be sampled
in order to obtain a good estimate of DT may be very large.
In the Appendix, we propose an approach for improving the
estimation of DT without increasing n.

Characterization of SDM algorithms
In this section, we propose a general formulation of SDM al-
gorithms which suits both AP and RL, in addition to hybrid
methods such as model-based RL. We hypothesize all SDM
algorithms share some common elements, and use these ele-
ments to formulate an abstract, general algorithm for SDM.
Finally, we propose a set of properties which can be used to
evaluate and compare SDM algorithms, no matter how dif-
ferent, providing formulas and methods for their calculation.

SDM algorithm formulation
The goal of an SDM algorithm is to solve an SDM Task
T = (Mtrain,Mtest). In its most abstract form, an SDM al-
gorithm is a procedure that receives some knowledge about
the training MDPs Mtrain

4 of the task and outputs an es-
timate of the solution P ∗

Mtrain
(Π) (simply abbreviated as

P ∗(Π) during this section) of Mtrain, corresponding to a
(possibly stochastic) policy we hope generalizes to Mtest.

The type of estimate of P ∗(Π) depends on the particu-
lar algorithm employed. In some cases, the algorithm re-
turns as the estimate of P ∗(Π) a probability distribution
which assigns a probability of 1 to some deterministic pol-
icy π ∈ Π, usually the policy with the best quality qtrain

found by the algorithm, and 0 to the rest. Therefore, the out-
put is a deterministic policy. Some examples of this are Q-
learning (Watkins and Dayan 1992) and Classical Planning
algorithms such as FastForward (Hoffmann 2001). In other
cases, the SDM algorithm outputs as an estimate of P ∗(Π)
a probability distribution which assigns non-zero probabil-
ities to more than one policy. Therefore, the output in this
case is a stochastic policy, since probability distributions

4The SDM algorithm has no information whatsoever about the
test MDPs Mtest, since they are only used to evaluate the general-
ization ability of the solution (policy) obtained by the algorithm.

over deterministic policies can be associated with stochas-
tic policies.5 Some examples of this can be found in Prob-
abilistic Planning algorithms such as ProbPRP (Camacho,
Muise, and McIlraith 2016) and RL algorithms such as RE-
INFORCE (Williams 1992). An interesting example is given
by Maximum-Entropy (MaxEnt) RL (Haarnoja et al. 2018),
which tries to optimize both the reward obtained by a policy
and its entropy. Hence, MaxEnt-RL algorithms try to esti-
mate P ∗(Π) as closely as possible, since P ∗(Π) represents
the stochastic policy which optimizes both reward (cost C
in our CSSP-MDP framework) and entropy, i.e., it is the op-
timal policy under the MaxEnt-RL framework.6

Every SDM algorithm requires some knowledge about
Mtrain in order to estimate P ∗(Π). The more knowledge
the algorithm employs, the more efficient this estimation
will be. This knowledge can be classified according to its
source (i.e., which MDP element it refers to), quantity (i.e.,
how much knowledge there is available) and representation
(i.e., how this knowledge is encoded). Given an SDM task,
different algorithms can be applied to solve it by adapting
the source, quantity and representation of the task knowl-
edge provided. For example, most AP algorithms require a
planning domain (which encodes knowledge about S, A, T ,
C and possibly other sources) and problem (which encodes
knowledge about S, si and sg), both represented in FOL (di-
mension representation). In the case of (model-free) RL, the
task knowledge is given in the form of an environment, cor-
responding to either a virtual simulator (e.g., a video game)
or the real world (which can be perceived through sensors).
At each time step, it provides the current state s ∈ S of the
world, along with App(s). Then, the policy inputs the se-
lected action a ∈ App(s) into the environment, making it
transition from s to some other state s′, which is returned
alongside the reward r. Therefore, the environment provides
knowledge about S, A, T , C (and possibly other sources).
Intuitively, the quantity of knowledge from each source is
smaller than in AP. For this reason, the domain-independent
heuristics employed in AP cannot be computed in RL, as
the quantity of knowledge provided is not enough. We later
show how this value can be estimated.

Given the task knowledge available, how is it leveraged to
estimate P ∗(Π)? The answer depends on the specific algo-
rithm employed. For example, AP methods perform a search
and reasoning process over the knowledge encoded in the
planning domain and problem, whereas RL methods learn
from the feedback obtained by interacting with an environ-
ment. Nonetheless, despite how diverse SDM algorithms
may be, we believe all of them can be formulated as an it-
erative process which leverages task knowledge in order to

5With our formulation, in order to sample actions from a
stochastic policy we first need to sample a deterministic policy and,
then, use this policy to select the action a ∈ App(s) to execute in
the current state s.

6The optimal policy in MaxEnt-RL actually depends on the
tradeoff between policy reward and entropy. Nonetheless, we can
raise P ∗(Π) by some constant in order to adapt it to a different
tradeoff. For example, the solution distribution P ∗

Mtrain
(Π)2 gives

more weight to reward than entropy, whereas P ∗
Mtrain

(Π)0.5 gives
more weight to entropy.

repeatedly improve its current estimate P̂ (Π) of the solution
P ∗(Π). Building on this idea, we propose a general algo-
rithm for SDM, composed of a sequence of abstract steps
which we hypothesize every SDM algorithm follows.

A general algorithm for SDM
This general, abstract algorithm is composed of four main
steps: 1) Initialization to prior distribution, 2) Policy sam-
pling and evaluation, 3) Policy probability update and 4)
Update propagation. We now describe these steps in detail.

1) Initialization to prior distribution. As previously
stated, an SDM algorithm can be seen as a process that iter-
atively improves its current estimate P̂ (Π) of P ∗(Π). This
estimate P̂ (Π) must be initialized to some probability dis-
tribution when the algorithm starts. We call this distribution
the prior solution probability distribution P 0(Π).

Some algorithms start with no prior knowledge about the
solution, so P̂ (Π) is initialized to U(Π) (i.e., P 0(Π) =
U(Π)). This means that, initially, these algorithms estimate
the same solution probability P ∗(π) (and quality) for every
policy π ∈ Π. A classical example is Q-Learning, which ini-
tializes every Q-value Q(s, a) to the same constant value. As
a result, initially every action a ∈ App(s) is equally likely
to be sampled for each state s ∈ S, thus making every policy
π ∈ Π have the same probability P 0(π) = U(π).

However, other algorithms start with some prior knowl-
edge about the solution, in the form of an initial estimate
P 0(Π) ̸= U(Π) of P ∗(Π). This initial estimate may be
used to discard some policies (those π ∈ Π for which
P 0(π) = 0), which will not be considered by the SDM al-
gorithm, and to decide which policies look more promising
(those π ∈ Π with high P 0(π)), i.e., more likely to exhibit
high quality qtrain (simply abbreviated as q throughout this
section). In Deep RL, P 0(Π) is mainly determined by the in-
ductive bias (Goyal and Bengio 2022) and hyperparameters
(e.g., number of layers) used. These two elements limit the
expressivity of the neural network employed, meaning that
there exist some policies π ∈ Π which it simply cannot rep-
resent. These unlearnable policies π are implicitly assigned
a prior probability P 0(π) of 0. Therefore, the policy space
Π to search over is reduced, which often results in more ef-
ficient learning of P ∗

Mtrain
(Π) and better generalization to

P ∗
Mtest

(Π). In AP, P 0(Π) is often encoded by the heuristic
function h(s). Plans (policies) π that traverse states s ∈ S
with good (low) heuristic value h(s) are prioritized during
the search, meaning that they are implicitly assigned high
P 0(π). For example, Greedy Best-First-Search expands at
each step the node in the open list whose associated state s
has lowest h(s).

2) Policy sampling and evaluation. After initializing
P̂ (Π) to P 0(Π), the SDM algorithm samples a policy π ∼
P̂ (Π), according to a probability given by P̂ (π), and then
evaluates it. Therefore, P̂ (Π) controls how the search ef-
fort is directed. One possibility is to assign high probability
P̂ (π) to a few policies π ∈ Π and low probability to the rest.
In this case, the SDM algorithm focuses all its search effort

on a few promising policies, i.e., those for which it estimates
high quality q. Alternatively, the probabilities in P̂ (Π) can
be distributed more evenly among all policies π ∈ Π, so
that even less promising policies have a chance of being
sampled. The problem of balancing between these two al-
ternative sampling strategies is known in RL by the name of
exploration-exploitation tradeoff.

Once a policy π ∼ P̂ (Π) has been sampled, the SDM al-
gorithm evaluates it in order to obtain its quality q. Nonethe-
less, in many cases only an estimate q̂ of the actual policy
quality q can be obtained. A typical example is when the
MDP is stochastic and the algorithm does not have access to
the transition probabilities T (s, a, s′). In order to differenti-
ate between a particular estimate q̂ of the quality q of some
policy π and the current belief (estimate) P̂ (π) of q by the
SDM algorithm, we will call q̂ a score of π. We assume there
exists a scoring function score(π) which receives as input a
policy π and outputs a score q̂ according to some conditional
probability P (q̂|π). SDM algorithms implement this scoring
function in two main ways:

• Monte Carlo sampling. Given a policy π, the algorithm
samples a number n ≥ 1 of full trajectories (i.e., trajec-
tories from si to sg). Then, it estimates the total expected
cost E[[Σc]] and, for each constraint index i, the total ex-
pected constraint cost E[[Σdi]] as the average of the total
costs Σc and total constraint costs Σdi obtained in the
trajectories. E[[Σc]] and E[[Σdi]] are then used to calcu-
late a score q̂ of π. An example method is REINFORCE,
which requires full trajectories before estimating the total
reward associated with the current policy.

• Bootstrapping methods. These methods estimate the
quality q of a policy π by leveraging other estimates.
In RL, this approach receives the name of Temporal-
Difference (TD) Learning. An example RL method in
this category is Q-Learning, where Q-value estimates
Q(s, a) are updated based on other estimates Q(s′, a′).
The AP algorithm known as A* (Russell 2010) also
utilizes bootstrapping, since the evaluation f(np) =
g(np) + h(np) of a node np can be recursively improved
by using the heuristic estimate h(n∗

c) of the best child
node n∗

c of np: f ′(np) = g(np) + c(np, n
∗
c) + h(n∗

c),
where c(np, n

∗
c) is the cost of going from np to n∗

c .

3) Policy probability update. Once the SDM algorithm
has evaluated a policy π ∼ P̂ (Π) and obtained a score q̂,
it needs to use this value to update its estimated solution
probability P̂ (π). This probability can be updated by using
Bayes Theorem:

P̂ (π|q̂) = P (q̂|π) · P̂ (π)

P (q̂)
(3)

The elements in Equation 3 have the following meaning:

• P̂ (π): current belief (estimate) of the quality q of policy
π by the algorithm.

• P (q̂): how likely is q̂ over all policies in Π.

• P̂ (π|q̂): assuming that the algorithm has obtained a score
equal to q̂ for π, what should the new estimate P̂ (π) of
the quality q of π be?

• P (q̂|π): assuming that π has been sampled from the so-
lution distribution P ∗(Π), how likely is the algorithm to
obtain a score of q̂ for π? We know, by definition, that the
solution probability P ∗(π) of a policy π is equal to its
quality q (multiplied by a constant). Then, if we assume
π has been sampled from P ∗(Π), π is likely to have high
quality q, as policies with high q are more likely to be
sampled. We also know that the score q̂ corresponds to an
estimate of q and, thus, should be directly proportional to
q (otherwise, q̂ would be misleading). As a consequence
of all of this, P (q̂|π) is directly proportional to q̂.

If we assume all score probabilities are very similar, i.e.,
P (q̂) ≈ p ∀q̂, where p is a constant, we can ignore the P (q̂)
term in Equation 3. Then, we can simplify it to obtain the
following new equation:

P̂ (π|q̂) ∝ q̂ · P̂ (π) (4)

This equation tells us that, given a policy π with a score
equal to q̂, we should increase its estimated solution prob-
ability P̂ (π) if q̂ is high and decrease it if q̂ is low. This is
something every SDM algorithm does. In AP, search effort
focuses around promising regions of the state space S so,
when a region turns out not to be as promising as initially
estimated (i.e., it seems unlikely to lead into a solution), the
algorithm directs the search to a different part of S. In RL,
when the policy π executes an action a in a state s which re-
sults in high total reward, the algorithm increases the proba-
bility of π executing a in s again.

4) Update propagation. We have just explained how the
score q̂ of a policy π can be used to update its estimated solu-
tion probability P̂ (π). However, Π may contain a very large
(or even infinite) number of policies. Therefore, sampling
and updating the probability of a single policy π at once is
very inefficient. In order to overcome this issue, we can har-
ness the information provided by q̂ to update not only the
probability of a single policy πi, but the probabilities of all
policies π1, . . . , πn ∈ Π that are similar to πi.

We assume there exists a similarity function
similarity(πi, πj) used to compute the distance/simi-
larity between two policies πi, πj . If the probability P̂ (πi)

of πi is updated by some quantity u, the probability P̂ (πj)
of another policy πj will be updated by a quantity equal
to u ∗ similarity(πi, πj), directly proportional to how
similar πi and πj are. For example, if P̂ (πi) is increased
(or decreased) by 0.1 and similarity(πi, πj) = 0.5, then
P̂ (πj) will be increased (or decreased) by 0.05.

In order to calculate this similarity function, many
SDM algorithms factorize policies π into several elements
e1, . . . , en, which are then used to measure policy simi-
larity. This means that, in order to assess if two policies
πi = (ei1, . . . , ein) and πj = (ej1, ..., ejm) are similar, their
elements are compared and similarity(πi, πj) is calculated
as the number of elements which appear in both policies,

normalized to lie in the [0, 1] range. For example, assume
an SDM algorithm has obtained a score q̂ for a policy πi

and wants to use q̂ to update not only the probability P̂ (πi)
of πi but of several policies. A deterministic policy π (with
empty MDP context µ) is a function that maps every state
s ∈ S to some action a ∈ App(s). Therefore, we can obtain
a possible factorization of πi where elements correspond to
pairs of the form (s, πi(s) = a), i.e., a state s ∈ S and
the action a ∈ App(s) selected by πi in s. Then, another
policy πj will be similar to πi if, for many states s ∈ S, it
selects the same action a as πi. Therefore, when updating
P̂ (πi), any other policy πj ∈ Π with at least one element
in common with πi (i.e., which selects the same action as
πi for at least one state) will also see its probability P̂ (πj)
updated, where the modulus (strength) of the update will be
directly proportional to the number of elements in common
with πi. In RL, this is often done implicitly. Whenever the
current policy πi executes an action a in a state s which re-
sults in high total reward, the probability of executing a in
s again gets increased. When that happens, all policies πj

whose factorization contains the element (s, a) (i.e., which
select action a in state s) also see their probability P̂ (πj)
increased, including πi.

Finally, the four steps explained above give rise to the fol-
lowing general algorithm for SDM:

1. Initialize the solution estimate P̂ (Π) to some prior esti-
mate P 0(Π) of the task solution P ∗(Π).

2. Sample a policy π ∼ P̂ (Π) and evaluate it, by using
score(π) to obtain a score q̂ of π.

3. Use q̂ to update P̂ (π). A possible way of performing this
update is by using Bayes Theorem, according to which
P̂ (π) should increase if q̂ is high and decrease if q̂ is low.

4. Also update the probability of all policies π1, ..., πn ∈ Π
which are similar to π, according to similarity(πi, πj),
in an amount proportional to their similarity value.

5. Repeat steps 2 to 4 until P̂ (Π) becomes a good estimate
of P ∗(Π), and then output P̂ (Π) as the solution of the
SDM task.

The main hypothesis of this work is that every SDM
method is based on this general algorithm and implements
steps 1 to 5 either explicitly or implicitly.

Properties of SDM algorithms
We believe SDM algorithms can be characterized accord-
ing to three main properties: the quantity of knowledge they
leverage to solve the task, how efficiently they solve it and
the quality of the solution obtained. In this section, we de-
scribe these three properties and provide several formulas
and algorithms to calculate them. By doing this, we hope to
provide a set of tools to evaluate and compare different SDM
algorithms (e.g., from AP and RL) in a fair manner, in order
to assess which one works better for a particular task.

Quantity of knowledge. Given an SDM algorithm, we
may wonder how much knowledge it requires to solve a
task. Our hypothesis is that all the task knowledge employed

by the algorithm is split into three elements: the prior solu-
tion distribution P 0(Π), the scoring function score(π) and
the similarity function similarity(πi, πj). If our hypothe-
sis is correct, by measuring the quantity Q of knowledge
encoded in these elements, it should be possible to calculate
how much task knowledge the algorithm employs.

In order to calculate the quantity of knowledge QP 0(Π)

contained in the prior solution distribution P 0(Π), we can
rely on the formula provided in the previous section for cal-
culating the difficulty DM of a set M of MDPs: DM =
TV (U(Π), P ∗

M (Π)). According to this formula, DM mea-
sures how difficult it is for an SDM algorithm to perfectly
estimate P ∗

M (Π), i.e., reach a situation where it has perfect
knowledge about the solution and P̂ (Π) = P ∗

M (Π), assum-
ing there exists no prior knowledge about the solution, i.e.,
P 0(Π) = U(Π). Nonetheless, in many SDM algorithms
there exists a prior solution estimation, i.e., P 0(Π) ̸= U(Π).
Consequently, we can adapt the previous formula to calcu-
late the difficulty DM,P 0(Π) of M in the presence of some
P 0(Π): DM,P 0(Π) = TV (P 0(Π), P ∗

M (Π)). Intuitively, this
formula tells us that the prior solution distribution P 0(Π)
decreases the difficulty of M (DM,P 0(Π) < DM), by reduc-
ing the existing knowledge gap between the initial situation
of the SDM algorithm, where P̂ (Π) = P 0(Π), and the final
situation of the SDM algorithm, where P̂ (Π) ≈ P ∗

M (Π),
thus reducing the effort required to estimate P ∗

M (Π).
Given an SDM Task T = (Mtrain,Mtest), we can cal-

culate the quantity of knowledge QP 0(Π) encoded in the
prior distribution P 0(Π) of some algorithm by measuring to
what extent P 0(Π) reduces the difficulty DMtrain,P 0(Π) of
Mtrain. In other words, QP 0(Π) is inversely proportional to
DMtrain,P 0(Π) and, thus, we can use it to estimate QP 0(Π).
A possible algorithm for estimating DMtrain,P 0(Π), based
on Monte Carlo sampling, is the following:

1. Sample a large number n of policies π1, ..., πn ∼ P 0(Π)
from the prior distribution P 0(Π).

2. For each sampled policy πi, estimate its quality qi on
Mtrain.

3. DMtrain,P 0(Π) can be estimated using the following for-
mula:

DMtrain,P 0(Π) ≈
(1

n
·

n∑
i=1

qi

)−1

(5)

Given two algorithms algi and algj with prior distribu-
tions P 0

i (Π) and P 0
j (Π), respectively, if DMtrain,P 0

i (Π) >
DMtrain,P 0

j (Π) then QP 0
j (Π) > QP 0

i (Π).
We now describe a method for calculating the quantity of

knowledge Qscore encoded in the scoring function score(π)
of some algorithm. If score provides good estimates q̂ of
policy quality q, then it should preserve the quality order
across policies. This means that, given two policies πi, πj ∈
Π with qualities qi, qj and scores q̂i, q̂j , if qi > qj then q̂i >
q̂j . Building on this idea, a possible algorithm for estimating
Qscore is the following:

1. Uniformly sample a large number n of policy pairs
(π11, π12), ..., (πn1, πn2), where πij ∼ U(Π) ∀i, j.

2. For each policy pair (πi1, πi2), estimate their qualities
qi1, qi2 on Mtrain and use score(π) to obtain their scores
q̂i1, q̂i2. For this algorithm to work, the method used to
obtain qi1 and qi2 must provide much better estimates of
policy quality than score(π).

3. Qscore can be estimated using the following formula:

Qscore ≈
(1

n
·

n∑
i=1

∣∣∣qi1 − qi2
qi1 + qi2

− q̂i1 − q̂i2
q̂i1 + q̂i2

∣∣∣)−1

(6)

Intuitively, Equation 6 compares, for each pair of poli-
cies πi1, πi2, their relative difference in quality q (first term
of the substraction) with their relative difference in score q̂
(second term of the substraction). If both terms are similar
for all policies, that means score(π) returns good quality
estimates q̂ and, therefore, Qscore is large. Lastly, Qscore

should be normalized by the time score(π) spends to evalu-
ate a policy on average. Otherwise, scoring functions which
obtain good quality estimates q̂ at the expense of high com-
putational time will have an unfair advantage.

Finally, the quantity of knowledge Qsim encoded in the
similarity function similarity(πi, πj) can be estimated in
an analogous way to Qscore. If similarity(πi, πj) provides
good estimates of policy similarity, then policies with sim-
ilar quality q should be assigned high similarity, whereas
policies with different q should be assigned low similarity.
Therefore, a possible algorithm for estimating Qsim is the
following:
1. Uniformly sample a large number n of policy pairs

(π11, π12), ..., (πn1, πn2), where πij ∼ U(Π) ∀i, j.
2. For each policy pair (πi1, πi2), estimate their

qualities qi1, qi2 on Mtrain and similarity value
similarity(πi1, πi2).

3. Qsim can be estimated using the following formula:

Qsim ≈
(1

n
·

n∑
i=1

∣∣∣|qi1 − qi2|−

(
1− similarity(πi1, πi2)

)∣∣∣)−1

(7)

Efficiency. The efficiency of an SDM algorithm measures
the computational resources it needed to solve the task. We
propose to measure efficiency in terms of time and space
(i.e., memory), as this is the most widely adopted approach
in Computer Science. In RL, nonetheless, it is common to
measure the efficiency of algorithms in terms of the amount
of data they required to learn the policy, what is known as
data-efficiency. However, this data-efficiency measure can
be decomposed into several elements. Firstly, the quantity
of task knowledge Q that is necessary to obtain such data
in the first place. For example, in order to obtain samples of
the form (s, a, r, s′), an environment (e.g., a simulator) with
information about S, A, T and C is required. Secondly, the
time and space complexity (efficiency) of the algorithm. For
this reason, we believe our proposed method for measuring
efficiency suits every SDM algorithm, including RL.

Additionally, we propose to differentiate between the
offline and online efficiency of algorithms. Offline effi-
ciency measures the computational effort needed to estimate

P ∗(Π), i.e., to find a policy π ∈ Π that solves the training
MDPs Mtrain. On the other hand, online efficiency mea-
sures the efficiency of the computations required to sample
an action a ∈ App(s) from the policy π, given the cur-
rent MDP state s ∈ S. Offline and online efficiency are
associated with the Machine Learning concepts of training
and inference time, respectively. For example, in AP, offline
efficiency would normally measure the time and memory
needed to carry out the search for a plan from si to sg . In this
case, online efficiency would measure the memory needed
to store the plan, which is linear in plan length, and time
needed to return the next action in the plan, which is O(1). In
Deep RL, offline efficiency would mostly correspond to the
size of the neural network in memory and the time spent on
the backpropagation operations. Similarly, online efficiency
would mostly correspond to the size of the neural network
in memory and the time needed to perform a forward pass
through the network.

Quality. Once the SDM algorithm has finished, it outputs
its final estimate of P ∗

Mtrain
(Π) in the form of a (determin-

istic or stochastic) policy πf = P̂ (Π). Then, πf must be
evaluated. As previously commented, we propose to obtain
the quality qtestf of πf on the test MDPs Mtest, in order to
evaluate its generalization ability. In most situations (e.g.,
when Mtest contains stochastic MDPs with unknown dy-
namics T) qtestf will need to be estimated. To perform this
estimation, we resort once again to Monte Carlo sampling.

In order to estimate the quality qmt

f of πf on a single test
MDP mt ∈ Mtest, we sample several trajectories with πf

on mt. Then, we estimate the total expected cost E[[Σc]] and,
for each constraint index i, the total expected constraint cost
E[[Σdi]] as the average of the total costs Σc and total con-
straint costs Σdi obtained in the trajectories. If πf failed
to reach the goal state sf of mt in some trajectory (given
a maximum allowed number of time steps) or some MDP
constraint is not satisfied, i.e., ∃i E[[Σdi]] > vi, then qmt

f is
equal to 0. Otherwise, qmt

f = E[[Σc]]−1. Finally, the overall
quality qtestf of the policy πf can be obtained as the product
of the qualities qmt

f on all test MDPs mt ∈ Mtest.

Conclusions
In this preliminary work, we have attempted to provide the
first fundamentals and intuitions of a unified framework for
SDM, suitable for both AP and RL. We have proposed a for-
mulation of SDM tasks in terms of training and test MDPs
that accounts for generalization, and formulated SDM algo-
rithms as procedures that iteratively improve their current
estimate of the solution by leveraging the task knowledge
available. In addition, we derived a set of formulas and al-
gorithms for calculating interesting properties of SDM tasks
and methods, in order to evaluate and compare them.

In future work, we plan to explore how different tasks and
algorithms fit into our framework. In addition, we plan to use
the formulas described throughout this work to empirically
evaluate and compare these tasks and algorithms, opening
the door to hybrid competitions where AP and RL methods
compete with each other to solve the same tasks.

Acknowledgements
This work is being partially funded by the Andalusian
Regional Projects PYC20-RE-049-UGR and B-TIC-668-
UGR20 with FEDER funds, and the Andalusian Regional
predoctoral grant no. 21-111-PREDOC-0039.

References
Altman, E. 1999. Constrained Markov decision processes:
stochastic modeling. Routledge.
Camacho, A.; Muise, C.; and McIlraith, S. 2016. From
FOND to robust probabilistic planning: Computing compact
policies that bypass avoidable deadends. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 26, 65–69.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
planning and acting. Cambridge University Press.
Ghavamzadeh, M.; Mannor, S.; Pineau, J.; Tamar, A.; et al.
2015. Bayesian reinforcement learning: A survey. Founda-
tions and Trends® in Machine Learning, 8(5-6): 359–483.
Gibbs, A. L.; and Su, F. E. 2002. On choosing and bounding
probability metrics. International statistical review, 70(3):
419–435.
Goyal, A.; and Bengio, Y. 2022. Inductive biases for deep
learning of higher-level cognition. Proceedings of the Royal
Society A, 478(2266): 20210068.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In International
conference on machine learning, 1861–1870. PMLR.
Hoffmann, J. 2001. FF: The fast-forward planning system.
AI magazine, 22(3): 57–57.
Kolobov, A. 2012. Planning with Markov decision pro-
cesses: An AI perspective. Synthesis Lectures on Artificial
Intelligence and Machine Learning.
Konidaris, G.; and Barto, A. 2006. Autonomous shaping:
Knowledge transfer in reinforcement learning. In Proceed-
ings of the 23rd international conference on Machine learn-
ing, 489–496.
Littman, M. L. 1996. Algorithms for sequential decision-
making. Brown University.
Metropolis, N.; and Ulam, S. 1949. The Monte Carlo
Method. Journal of the American Statistical Association,
44(247): 335–341.
Moerland, T. M.; Broekens, J.; and Jonker, C. M. 2020. A
framework for reinforcement learning and planning. arXiv
preprint arXiv:2006.15009, 127.
Moerland, T. M.; Broekens, J.; Plaat, A.; Jonker, C. M.; et al.
2023. Model-based reinforcement learning: A survey. Foun-
dations and Trends® in Machine Learning, 16(1): 1–118.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invari-
ance under reward transformations: Theory and application
to reward shaping. In Icml, volume 99, 278–287. Citeseer.
Russell, S. J. 2010. Artificial intelligence a modern ap-
proach. Pearson Education, Inc.

Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015. Uni-
versal value function approximators. In International con-
ference on machine learning.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning, 8: 279–292.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Rein-
forcement learning, 5–32.

CSSP-MDPs for optimal, satisficing and agile
planning

Let us assume we have a Classical Planning task and want to
obtain its CSSP-MDP formulation in three different settings:
optimal planning (where plans are required to be optimal),
satisficing planning (where plan length is desired but plans
are not required to be optimal) and agile planning (where
plan length is completely disregarded). We can do this the
following way. Firstly, the three CSSP-MDPs share the fol-
lowing elements: S,A, T, si, sg .

To obtain a CSSP-MDP for optimal planning, we assign
a cost of 1 (assuming actions have unitary costs) to every
transition (s, a, s′) where s ̸= sg . The constraint costs func-
tion D is identical to C and there exists a single constraint
whose value v1 is equal to the length of the optimal plan
from si to sg . This means that, in order for a policy (plan)
to be a solution of this MDP, it must be proper and its ex-
pected total constraint cost E[[Σd1]] (equivalent in this case
to the plan length) must be less or equal than v1, i.e., less
or equal than the optimal plan length. In other words, only
plans of optimal length are solutions of this MDP, as it is the
case in optimal planning. The solution distribution P ∗(Π) of
this MDP assigns a probability of 1 to the optimal policy or
policies and 0 to the rest.

For satisficing planning, we formulate an CSSP-MDP
identical to the one previously used but with no constraints.
Now, policies (plans) are required to be proper but not opti-
mal in order to be considered solutions. Additionally, since
every transition has been assigned a cost of 1, the quality
q of each solution policy is equal to the inverse of its plan
length. This means that, even though plans are not required
to be optimal, shorter plans are considered better than large
plans, as it is the case in satisficing planning. The solution
distribution P ∗(Π) of this MDP assigns a probability of 0 to
improper policies and a probability inversely proportional to
their total cost (plan length) to proper policies.

Lastly, for agile planning, we can reuse the previous
CSSP-MDP formulation and only need to change C. We
now assign a cost of 1 to those transitions (s, a, sg) which
go from any state to the goal state, and assign a cost of 0 to
any other transition. With this cost function, all proper poli-
cies have the same quality q = 1. This means that, as long as
a plan reaches sg , we do not care about its plan length, as it is
the case in agile planning. The solution distribution P ∗(Π)
of this MDP assigns a probability of 0 to improper policies
and the same constant probability p to all proper policies.

Efficient estimation of properties of SDM tasks
and algorithms

Throughout this work, we have derived several algorithms
(see Equations 2, 5, 6, 7) which sample a number n of
policies (either uniformly or from some prior distribution
P 0(Π)) and then leverage their qualities q to estimate differ-
ent properties of SDM tasks and methods.

In order to perform such an estimation, these algorithms
rely on policy quality q being informative, i.e., on it being
useful to discern between the different policies in Π. If q is
not very informative, this means that most policies π ∈ Π
have similar or identical quality q, with only a few policies
exhibiting radically different q. This is the case for difficult
tasks T (i.e., those with high DT), where most policies π ∈
Π either do not solve the task (obtain q = 0) or obtain a
very small and similar quality q, and then a small fraction of
policies obtain extremely high quality q. Conversely, when
q is very informative quality values distribute more evenly
across all policies in Π. Then, given two policies πi, πj ∼
U(Π), the probability that πi and πj have different qualities
qi, qj is high.

The quality of the estimation performed by these algo-
rithms is directly proportional to how informative policy
quality q is. Therefore, in cases where q is not very infor-
mative, e.g., in difficult tasks, a large number n of policies
will need to be sampled in order to obtain a good estimate.
For example, let us suppose we want to employ Equation 2
to compare the difficulties of two tasks T1, T2, where Mtrain

equals Mtest in each task. In T1, one in a million policies ob-
tains qtrain = 1, while the rest obtain qtrain = 0. In T2, one
in a billion policies obtains qtrain = 1, while the rest ob-
tain qtrain = 0. We can see that T2 is much harder to solve
than T1 (actually, 1000 times harder). Nonetheless, if we ap-
ply our equation to this case by sampling n = 1000 policies
π ∼ U(Π), the probability that none of the sampled policies
obtains qtrain = 1 is equal to 0.999 for T1 and 0.999999
for T2. In other words, our method will almost surely con-
clude that DT1 = DT2 = ∞, which is wrong. Due to how
uninformative q is for both T1 and T2, our method would
need to sample and evaluate an extremely large number n of
policies (e.g., one million) in order to confidently claim that
T2 is more difficulty than T1, which may be computationally
intractable in many situations.

We now propose an alternative approach for improving
the quality of the estimates returned by our algorithms with-
out increasing the number n of policies that need to be sam-
pled. Let M be the set of MDPs for which we are calculating
policy quality q. We can transform the solution distribution
P ∗(Π) associated with M in order to obtain another distri-
bution P̃ ∗(Π) that is smoother, i.e., which distributes qual-
ities more evenly across policies π ∈ Π than P ∗(Π). Then,
we can calculate policy quality q̃ according to P̃ ∗(Π) instead
of P ∗(Π). These new qualities q̃ will be more informative
than the old qualities q, thus reducing the number n of poli-
cies that our algorithms need to sample in order to obtain a
good estimate.

This transformation from P ∗(Π) to P̃ ∗(Π) must preserve
the ordering between policies π ∈ Π according to their qual-

ity. This means that, given two policies πi, πj ∈ Π, if πi

is better than πj according to P ∗(Π) (i.e., qi > qj) then
πi must also be better than πj according to P̃ ∗(Π) (i.e.,
q̃i > q̃j). This quality transformation that preserves policy
ordering is analogous to the RL technique known as reward
shaping (Ng, Harada, and Russell 1999). Therefore, in order
to obtain P̃ ∗(Π) from P ∗(Π), we can employ some reward
shaping method to modify the cost function C of the MDPs
m ∈ M . Then, we can use this modified cost function C̃ to
obtain the shaped quality q̃ of any policy π ∈ Π. For exam-
ple, let us suppose an MDP m where an agent must go from
point A to point B. Any policy which reaches B receives
q = 1, whereas policies which do not reach B obtain q = 0.
We can resort to reward shaping to modify the cost function
C of m so that, now, policies which do not reach B but get
close to it obtain a quality 0 < q̃ < 1 inversely proportional
to their final distance from B. This new quality q̃ is more
informative than the previous quality q.

Lastly, it is important to note that, in case we want to
compare the estimates obtained on different sets of MDPs
(e.g., on Mtrain and Mtest) or SDM tasks, we need to ap-
ply the same quality transformation (e.g., the same reward
shaping method) to every single MDP set or task. An ex-
ample is when we utilize Equation 2 to compare the dif-
ficulties DT1

, DT2
of two tasks T1, T2. A quality transfor-

mation modifies the solution distributions (P ∗
Mtrain

(Π) and
P ∗
Mtest

(Π)) of a task T and, hence, its difficulty DT . There-
fore, it could happen that T1 is more difficulty than T2 but,
after applying a different quality transformation to each task,
T2 becomes more difficulty than T1. To avoid this, we must
apply the same quality transformation to T1 and T2 so that
the difficulty ratio DT1

/DT2
remains the same before and

after the transformation.

