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Abstract

Learning useful representations for continuous-time dynamic graphs (CTDGs) is challeng-
ing, due to the concurrent need to span long node interaction histories and grasp nuanced
temporal details. In particular, two problems emerge: (1) Encoding longer histories re-
quires more computational resources, making it crucial for CTDG models to maintain low
computational complexity to ensure efficiency; (2) Meanwhile, more powerful models are
needed to identify and select the most critical temporal information within the extended
context provided by longer histories. To address these problems, we propose a CTDG rep-
resentation learning model named DyGMamba, originating from the popular Mamba state
space model (SSM). DyGMamba first leverages a node-level SSM to encode the sequence
of historical node interactions. Another time-level SSM is then employed to exploit the
temporal patterns hidden in the historical graph, where its output is used to dynamically
select the critical information from the interaction history. We validate DyGMamba exper-
imentally on the dynamic link prediction task. The results show that our model achieves
state-of-the-art in most cases. DyGMamba also maintains high efficiency in terms of compu-
tational resources, making it possible to capture long temporal dependencies with a limited
computation budget1.

∗Equal Contribution. Zifeng’s work done during the visit at the University of Oxford.
†Corresponding author.
1We release our code at the following link: https://github.com/ZifengDing/DyGMamba.
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1 Introduction

Dynamic graphs store node interactions in the form of links labeled with timestamps (Kazemi et al., 2020).
In recent years, learning dynamic graphs has gained increasing interest since it can be used to facilitate
various real-world applications. Dynamic graphs can be classified into two types, i.e., discrete-time dynamic
graph (DTDG) and continuous-time dynamic graph (CTDG). A DTDG is represented as a sequence of graph
snapshots that are observed at regular time intervals, where all the edges in a snapshot are taken as existing
simultaneously, while a CTDG consists of a stream of events where each of them is observed individually
with its own timestamp. Previous works (Kazemi et al., 2020; Shirzadkhani et al., 2024) have indicated that
CTDGs have an advantage over DTDGs in preserving temporal details, and therefore, more attention is paid
to developing novel CTDG modeling approaches for dynamic graph representation learning.

Recent effort in CTDG modeling has resulted in a wide range of models. However, most of them are unable to
model long-term temporal dependencies of nodes, despite the existence of abundant historical information.
To solve this problem, Yu et al. (2023) propose a CTDG model DyGFormer that can handle long-term
node interaction histories based on Transformer (Vaswani et al., 2017). Despite its ability in modeling longer
histories, employing a Transformer naturally introduces excessive usage of computational resources due to its
quadratic complexity. Another recent work CTAN (Gravina et al., 2024) tries to capture long-term temporal
dependencies by propagating graph information in a non-dissipative way over time with a graph convolution-
based model. Despite the model’s high efficiency, Gravina et al. (2024) show that CTAN cannot capture very
long histories and is surpassed by DyGFormer on the CTDGs where learning from very far away temporal
information is critical. Based on these observations, we summarize the first challenge in CTDG modeling:
How to develop a model that is scalable in modeling very long-term historical interactions?
Another point worth noting is that as longer histories introduce more temporal information, more powerful
models are needed to identify and select the most critical parts. This reveals another challenge: How to
effectively select critical temporal information with long node interaction histories?

To address the first challenge, we propose to leverage a popular state space model (SSM), i.e., Mamba SSM
(Gu & Dao, 2023) to encode the long sequence of historical node interactions. Since Mamba is proven effective
and efficient in long sequence modeling (Gu & Dao, 2023), it maintains low computational complexity and is
scalable in modeling long-term temporal dependencies. For the second challenge, we address it by learning
temporal patterns of node interactions and dynamically selecting the critical temporal information based on
them. The motivation can be explained by the following example. Consider a CTDG with nodes as people
or songs and edges representing a person playing a song at a specific time. If a person u frequently plays a
hit song v initially but decreases the frequency later on, the time intervals between plays increase. Ignoring
this pattern can lead models to incorrectly predict that u will still play v at future timestamps due to their
high appearances in each other’s historical interactions. If a CTDG model recognizes this pattern, it can
prioritize other temporal information, such as u increasingly listening to a new song v′ before t, instead of
focusing on u, v interactions. Since each pattern corresponds to a specific edge, e.g., (u, v, t), we name these
patterns as edge-specific temporal patterns.

To this end, we propose a new CTDG model named DyGMamba. DyGMamba first leverages a node-level
Mamba SSM to encode historical node interactions. Another time-level Mamba SSM is then employed
to exploit the edge-specific temporal patterns, where its output is used to dynamically select the critical
information from the interaction history. To summarize: (1) We present DyGMamba, the first model
using SSMs for CTDG representation learning; (2) DyGMamba demonstrates high efficiency and strong
effectiveness in modeling long-term temporal dependencies in CTDGs; (3) Experimental results show that
DyGMamba achieves new state-of-the-art on dynamic link prediction over most common CTDG datasets.

2 Related Work and Preliminaries

2.1 Related Work

Dynamic Graph Representation Learning. Dynamic graph representation learning methods can be
categorized into two groups, i.e., DTDG and CTDG methods. DTDG methods (Pareja et al., 2020; Goyal
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et al., 2020; Sankar et al., 2020; You et al., 2022; Li et al., 2024a) can only model DTDGs where each of them
is represented as a sequence of graph snapshots. Modeling a dynamic graph as graph snapshots requires time
discretization and will inevitably cause information loss (Kazemi et al., 2020). To overcome this problem,
recent works focus more on developing CTDG methods that treat a dynamic graph as a stream of events,
where each event has its own unique timestamp. Some works (Trivedi et al., 2019; Chang et al., 2020) model
CTDGs by using temporal point process. Another line of works (Xu et al., 2020; Ma et al., 2020; Wang
et al., 2021b; Gravina et al., 2024) designs advanced temporal graph neural networks for CTDGs. Besides,
some other methods are developed based on memory networks (Rossi et al., 2020; Liu et al., 2022), temporal
random walk (Wang et al., 2021c; Jin et al., 2022) and temporal sequence modeling (Cong et al., 2023; Yu
et al., 2023; Tian et al., 2024). Since some real-world CTDGs heavily rely on long-term temporal information
for effective learning, a number of works start to develop CTDG models that can do long range propagation
of information over time (Yu et al., 2023; Gravina et al., 2024).

State Space Models. Transformer (Vaswani et al., 2017) is a de facto backbone architecture in modern
deep learning. However, its self-attention mechanism results in large space and time complexity, making it
unsuitable for extremely long sequence modeling (Duman Keles et al., 2023). To address this, many works
focus on building structured state space models that scale linearly or near-linearly with input sequence length
(Gu et al., 2021; 2022b;a; Smith et al., 2023; Peng et al., 2023; Ma et al., 2023; Gu & Dao, 2023). Most
structured SSMs exhibit linear time invariance (LTI), meaning their parameters are not input-dependent
and fixed for all time-steps. Gu & Dao (2023) demonstrate that LTI prevents SSMs from effectively selecting
relevant information from the input context, which is problematic for tasks requiring context-aware reasoning.
To solve this issue, Gu & Dao (2023) proposes S6, also known as Mamba, which uses a selection mechanism
to dynamically choose important information from input sequence elements. Selection mechanism involves
learning functions that map input data to SSM’s parameters, making Mamba both efficient and effective in
modeling language, DNA sequences, and audio.

State Space Models for Graphs. Recently, there have been several works employing Mamba SSM
for representation learning on static graphs (Wang et al., 2024; Behrouz & Hashemi, 2024). Wang et al.
(2024) integrate a Mamba SSM into graph transformers, employing input-dependent node selection and
prioritization mechanisms to efficiently capture long-range multi-hop dependencies in static graphs. Behrouz
& Hashemi (2024) adapt Mamba by creating a bidirectional SSM for static graphs, utilizing hierarchical
tokenization and an optional positional encoding mechanism to improve scalability and performance on
diverse graph-based downstream tasks. Both of them aim to efficiently encode long-range multi-hop graph
information. Unlike our work, they do not have dedicated structures to process temporal information and are
thus not suitable for CTDG modeling. There is also another work (Li et al., 2024b) that tries to use Mamba
to model spatial-temporal graphs (STGs). Li et al. (2024b) employ a Spatial-Temporal Selective State Space
Module for adaptive spatial-temporal feature selection and Kalman Filtering Graph Neural Networks to
dynamically integrate and optimize embeddings from various temporal granularities. Although this work
achieves high efficiency and superior forecasting accuracy on STGs, it is not applicable to modeling CTDGs
because (1) STGs are inherently DTDGs, and (2) this model primarily aims at predicting node states in STGs
(e.g., traffic sensor readings) rather than explicitly capturing the continuous and irregular structural evolution
characteristic of CTDGs. In our work, we propose a Mamba-based model to capture evolving graph dynamics
by encoding long-range historical event streams and introducing a specialized module designed explicitly to
encode edge-specific temporal patterns. This approach significantly differs from existing Mamba-based graph
reasoning methods, enabling more effective temporal reasoning on CTDGs.

2.2 Preliminaries

CTDG and Task Formulation. We define CTDG and dynamic link prediction as follows.
Definition 1 (Continuous-Time Dynamic Graph). Let N and T denote a set of nodes and timestamps,
respectively. A CTDG is a sequence of |G| chronological interactions G = {(ui, vi, ti)}|G|

i=1 with 0 ≤ t1 ≤ t2 ≤
... ≤ t|G|, where ui, vi ∈ N are the source and destination node of the i-th interaction happening at ti ∈ T ,
respectively. Each node u ∈ N can be equipped with a node feature xu ∈ RdN , and each interaction (u, v, t)
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can be associated with a link (edge) feature et
u,v ∈ RdE . If G is not attributed, we set node and link features

to zero vectors.
Definition 2 (Dynamic Link Prediction). Given a CTDG G, a source node u ∈ N , a destination node
v ∈ N , a timestamp t ∈ T , and all the interactions before t, i.e., {(ui, vi, ti)|ti < t, (ui, vi, ti) ∈ G}, dynamic
link prediction aims to predict whether the interaction (u, v, t) exists.

S4 and Mamba SSM. S4 and Mamba (Gu et al., 2022b; Gu & Dao, 2023) are inspired by a continuous
system which can be described as z(τ)′ = Az(τ) + Bq(τ) and r(τ) = Cz(τ). q(τ) ∈ R and r(τ) ∈ R are
the 1-dimensional input and output over time τ2, respectively. A ∈ Rd1×d1 , B ∈ Rd1×1, C ∈ R1×d1 are three
parameters deciding the system. Based on it, both S4 and Mamba include a time-scale parameter ∆ ∈ R
and discretize all the parameters to adapt to a discretized system

zτ = Āzτ−1 + B̄pτ , qτ = Czτ ; Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A) − I)∆B. (1)

Here, τ is also discretized to denote the position of a sequence element. Given Eq. 1 , sequence processing
with S4 and Mamba can be written as computing an output sequence with convolution

q = p ∗ K̄SSM, where K̄SSM = [CB̄, CĀB̄, ..., CĀ|p|−1B̄] ∈ R|p|−1. (2)

p ∈ R|p| and q ∈ R|p| are input and output sequences, where |p| is the sequence length of p. ∗ denotes
the element-wise multiplication. When the dimension size of each element pτ in p becomes higher (i.e.,
pτ ∈ Rd2 is a vector and d2 > 1), both S4 and Mamba are in a Single-Input Single-Output (SISO) fashion,
processing each input dimension in parallel with the same set of parameters. We follow Gu & Dao (2023) and
denote the computation in Eq. 2 on the input sequences with vector elements as a function SSMĀ,B̄,C(·)3.
Different from S4 which uses same parameters to process each element, Mamba changes its parameters into
input-dependent by employing several trainable linear layers to map input into B̄, C and ∆. The system is
evolving as it processes different elements in the input sequence, making Mamba time-variant and suitable
for modeling temporal sequences.

3 DyGMamba

Figure 1: Model overview of DyGMamba.

Fig. 1 illustrates the overview of DyGMamba. Given a potential interaction (u, v, t), CTDG models are asked
to predict whether it exists or not. DyGMamba extracts the historical one-hop interactions of node u and v
before timestamp t from the CTDG G and gets two interaction sequences St

u = {(u, u′, t′)|t′ < t, (u, u′, t′) ∈
G}∪{(u′, u, t′)|t′ < t, (u′, u, t′) ∈ G} and St

v = {(v, v′, t′)|t′ < t, (v, v′, t′) ∈ G}∪{(v′, v, t′)|t′ < t, (v′, v, t′) ∈ G}
containing u’s and v’s one-hop temporal neighbors Neitu = {(u′, t′)|(u, u′, t′) or (u′, u, t′) ∈ G, t′ < t} and
Neitv = {(v′, t′)|(v, v′, t′) or (v′, v, t′) ∈ G} (link features are omitted for clarity). Then it encodes the
neighbors in Neitu and Neitv to get two sequences of encoded neighbor representations for u and v. To learn

2We use τ rather than t to indicate time in a continuous system to distinguish from the time in CTDGs.
3Input and output of SSMĀ,B̄,C(·) are matrices where each row is a vector corresponding to an element. See App. H for

more details of SISO and the function.
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the edge-specific temporal pattern of (u, v, t), we find the interactions between u and v before t, compute
the time difference between each pair of neighboring interactions, and build a sequence of time differences
St

u,v. Finally, DyGMamba dynamically selects critical information by assigning different weights to different
encoded neighbors based on the learned temporal pattern, and uses the selected information to achieve link
prediction.

3.1 Learning One-Hop Temporal Neighbors

Encode Neighbor Features. Given one-hop temporal neighbors Neitu of the source node u, we sort them
in the chronological order and append (u, t) at the end to form a sequence of Neitu+1 temporal nodes. We take
their node features from the dataset and stack them into a feature matrix X̃t

u ∈ R(|Neit
u|+1)×dN . Similarly, we

build a link feature matrix Ẽt
u ∈ R(|Neit

u|+1)×dE . To incorporate temporal information, we encode the time
difference between u and each one-hop temporal neighbor (u′, t′) using the time encoding function introduced
in TGAT (Xu et al., 2020):

√
1/dT [cos(ω1(t−t′)+ϕ1), . . . , cos(ωd(t−t′)+ϕdT

)]. dT is the dimension of time
representation. ω1 . . . ωdT

and ϕ1 . . . ϕdT
are trainable parameters. The time feature of u’s temporal neighbors

are denoted as T̃t
u ∈ R(|Neit

u|+1)×dT . We follow the same way to get X̃t
v ∈ R(|Neit

v|+1)×dN , Ẽt
v ∈ R(|Neit

v|+1)×dE

and T̃t
v ∈ R(|Neit

v|+1)×dT for v’s temporal neighbors. Following Tian et al. (2024), we also consider the
historical node interaction frequencies in the interaction sequences St

u and St
v of source u and destination

v. For example, assume the interacted nodes of u and v (arranged in chronological order) are {a, v, a} and
{b, b, u, a}, the appearing frequencies of a, b in u/v’s historical interactions are 2/1, 0/2, respectively. And the
frequency of the interaction involving u and v is 1. Thus, the node interaction frequency features of u and v are
written as F̃ t

u = [[2, 1], [1, 1], [2, 1], [0, 1]]⊤ and F̃ t
v = [[0, 2], [0, 2], [1, 1], [2, 1], [0, 1]]⊤, respectively. Note that

the last elements ([0, 1] and [0, 1]) in F̃ t
u and F̃ t

v correspond to the appended (u, t) and (v, t) not existing in the
observed histories. We initialize them with [0, number of historical interactions between u, v]. An encoding
multilayer perceptron (MLP) f(·) : R → RdF is employed to encode these features into representations:
F̃t

u = f(F̃ t
u[:, 0]) + f(F̃ t

u[:, 1]) ∈ R(|Neit
u|+1)×dF , F̃t

v = f(F̃ t
v [:, 0]) + f(F̃ t

v [:, 1]) ∈ R(|Neit
v|+1)×dF .

Patching Neighbors. We employ the patching technique proposed by (Yu et al., 2023) to save computa-
tional resources when dealing with a large number of temporal neighbors. We treat p temporally adjacent
neighbors as a patch and flatten their features. For example, with patching, X̃t

u ∈ R(|Neit
u|+1)×dN results

in a new patched feature matrix Xt
u ∈ R⌈(|Neit

u|+1)/p⌉×(p·dN ) (we pad X̃t
u with zero-valued features when

|Neitu| + 1 cannot be divided by p). Similarly, we get Et
θ ∈ R⌈(|Neit

θ|+1)/p⌉×(p·dE), Tt
θ ∈ R⌈(|Neit

θ|+1)/p⌉×(p·dT )

and Ft
θ ∈ R⌈(|Neit

θ|+1)/p⌉×(p·dF ) (θ is either u or v). Each row of a feature matrix corresponds to an element of
the input sequence sent into an SSM later. Recall that SSMs process sequences in a recurrent way. Patching
decreases the length of the sequence by roughly p times, making great contribution in saving computational
resources.

Node-Level SSM Block. We first map the padded features of u’s and v’s one-hop temporal neighbors to
the same dimension d, i.e., Xt

θ := fN (Xt
θ), Et

θ := fE(Et
θ), Tt

θ := fT (Tt
θ), Ft

θ := fF (Ft
θ). fN (·) : Rp·dN → Rd,

fE(·) : Rp·dE → Rd, fT (·) : Rp·dT → Rd, fF (·) : Rp·dF → Rd are four MLPs for different types of neighbor
features. We take the concatenation of them as the encoded representations of the temporal neighbors, i.e.,
Ht

θ = Xt
θ∥Et

θ∥Tt
θ∥Ft

θ ∈ R⌈(|Neit
θ|+1)/p⌉×4d. We input Ht

u and Ht
v separately into a node-level SSM block

to learn the temporal dependencies of temporal neighbors. The node-level SSM block consists of lN layers,
where each layer is defined as follows (Eq. 3-4). First, we input Ht

θ into a Mamba SSM

B1 = Ht
θWB1 ∈ R⌈(|Neit

θ|+1)/p⌉×dSSM , C1 = Ht
θWC1 ∈ R⌈(|Neit

θ|+1)/p⌉×dSSM ; (3a)

∆1 = Softplus(Broadcast4d(Ht
θW∆1) + Param∆1) ∈ R⌈(|Neit

θ|+1)/p⌉×4d; (3b)
Ā1 = exp(∆1A1), B̄1 = (∆1A1)−1(exp(∆1A1) − I)∆1B1; (3c)
Ht

θ := Ht
θ + SSMĀ1,B̄1,C1

(Ht
θ). (3d)

WB1 , WC1 ∈ R4d×dSSM and W∆1 ∈ R4d×1. Ā1, B̄1 ∈ R⌈(|Neit
θ|+1)/p⌉×4d×dSSM are discretized parameters.

Param∆1 ∈ R⌈(|Neit
θ|+1)/p⌉×4d is a parameter defined by Gu & Dao (2023). Broadcast4d(·) is a function that
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copies its vector input for 4d times to form a matrix with 4d identical columns (following the definition in
Gu & Dao (2023) ). I is an identity matrix. Then we use an MLP fnode(·) : R4d → R4d on SSM’s output

Ht
θ := Ht

θ + fnode
(
LayerNorm(Ht

θ)
)

. (4)

After lN layers, we have Ht
u and Ht

v that contain the encoded information of all one-hop temporal neigh-
bors for the entities u and v as well as the information of themselves. Since we sort temporal neighbors
chronologically, our node-level SSM block can directly learn the temporal dynamics for graph forecasting.

3.2 Learning from Edge-Specific Temporal Patterns

Time-Level SSM Block. To capture edge-specific temporal patterns, we use another time-level SSM
block consisting of lT layers. We first find out k temporally nearest historical interactions between u and
v before t and sort them in the chronological order, i.e., {(u, v, t0), ..., (u, v, tk−1)|t0 < ... < tk−1 < t}.
Then we construct a timestamp sequence {t0, t1, ..., tk−1, t} based on these interactions and the prediction
timestamp t. We compute the time difference between each neighboring pair of them and further get a
time difference sequence {t1 − t0, t2 − t1, ..., t − tk−1}, representing the change of time interval between two
identical interactions. Each element in this sequence is input into the time encoding function stated above
to get a edge-specific (specific to the edge (u, v, t)) time feature. The features are stacked into a feature
matrix Ht

u,v ∈ Rk×dT and mapped by an MLP fmap1(·) : RdT → Rγd (γ ∈ [0, 1] is a hyperparameter), i.e.,
Ht

u,v := fmap1(Ht
u,v). A time-level SSM layer takes Ht

u,v as input and computes

B2 = Ht
u,vWB2 ∈ Rk×dSSM , C2 = Ht

u,vWC2 ∈ Rk×dSSM ; (5a)
∆2 = Softplus(Broadcastγd(Ht

u,vW∆2) + Param∆2) ∈ Rk×γd; (5b)
Ā2 = exp(∆2A2), B̄2 = (∆2A2)−1(exp(∆2A2) − I)∆2B2; (5c)
Ht

u,v := Ht
u,v + SSMĀ2,B̄2,C2

(Ht
u,v). (5d)

WB2 , WC2 ∈ Rγd×dSSM and W∆2 ∈ Rγd×1. Ā2, B̄2 ∈ Rk×γd×dSSM are discretized parameters. Param∆2 ∈
Rk×γd is a parameter defined as same as Param∆1 . In practice, we set k to a number much smaller than
|Neitθ|, e.g., 10. This ensures that time-level SSM will not incur huge computational burden and the model
focuses more on the recent histories. Note that we cannot always find k recent historical interactions between
each pair of nodes, leading to varying lengths of time difference sequences for different (u, v, t) in a batch of
data. To enable batch processing, we set the time difference without a found historical interaction to a very
large number 1010. For example, if k = 2, and for (u, v, t) we can only find (u, v, t0). The time difference
sequence will be {1010, t − t0}. 1010 is much larger than t − t0, indicating that u and v have not had an
interaction for an extremely long time, same as existing no historical interaction. We further explain why
we use SSM to learn temporal patterns in App. I.

Dynamic Information Selection with Temporal Patterns. After the time-level SSM block, we com-
pute a compressed representation to represent the edge-specific temporal pattern by averaging over k encoded
time intervals: ht

u,v = MeanPooling(Ht
u,v). As a result, we have ht

u,v ∈ Rγd to represent the temporal pat-
tern specific to the edge (u, v, t). To leverage learned temporal pattern, we use it to dynamically select the
information from the encoded temporal neighbors Ht

θ

ĥt
u,v = fmap2(ht

u,v) ∈ R4d; (6a)

ĥt
θ = wagg

⊤Ht
θ ∈ R4d, where wagg = fmap3(Ht

θ) ∈ R⌈(|Neit
θ|+1)/p⌉; (6b)

αu = f ′(ĥt
v) ∗ ĥt

u,v ∈ R4d, αv = f ′(ĥt
u) ∗ ĥt

u,v ∈ R4d; (6c)

ht
θ = βθ

⊤Ht
θ, where βθ = Softmax(Ht

θαθ) ∈ R⌈(|Neit
θ|+1)/p⌉. (6d)

fmap2(·) : Rγd → R4d and fmap3(·) : R4d → R1 are two mapping MLPs. f ′(·) : R4d → R4d is another
MLP introducing training parameters. Note that αu/αv is computed by considering both the edge-specific
temporal pattern and the opposite node v/u. In the node-level SSM block, we separately model the one-hop
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temporal neighbors of each node θ, making it hard to connect u and v. Computing αθ as Eq. 6c helps to
strengthen the connection between both nodes and meanwhile incorporates the learned temporal pattern. βθ

is derived by transforming the queried results based on αθ into weights. It is then used to compute a weighted-
sum of all temporal neighbors for representing θ at t, i.e., ht

θ. The neighbors assigned with greater weights
from βθ are selected as more critical and will contribute more to ht

θ. Finally, we output the representations
of u, v and the edge-specific temporal pattern by employing two output MLPs fout1(·) : R4d → RdN and
fout2(·) : Rγd → RdN , i.e., ht

θ := fout1(ht
θ) ∈ RdN , ht

u,v := fout2(ht
u,v) ∈ RdN .

3.3 Leveraging Learned Representations for Link Prediction

We leverage ht
θ and ht

u,v for dynamic link prediction. We employ a prediction MLP, i.e., fLP(·) :
R3dN → R, as the predictor. The probability of existing a link (u, v, t) is computed as y′(u, v, t) =
Sigmoid(fLP(ht

u∥ht
v∥ht

u,v)). For model parameter learning, we use the following loss function

L = − 1
2M

∑
2M

(y(u, v, t) log(y′(u, v, t)) + (1 − y(u, v, t)) log(1 − y′(u, v, t))) . (7)

y(u, v, t) is the ground truth label denoting the existence of (u, v, t) (1/0 means existing/non-existing). M is
the total number of edges existing in the training data (positive edges). We follow previous work (Yu et al.,
2023) and randomly sample one negative edge for each positive edge during training. Therefore, in total we
have 2M edges considered in our loss L.

4 Experiments

In Sec. 4.2.1, we validate DyGMamba’s ability in CTDG representation learning by comparing it with
baseline methods on dynamic link prediction4. We show the effectiveness of model components by conducting
ablation studies (Sec. 4.2.2) and analysis on synthetic datasets (Sec. 4.2.3). In Sec. 4.3.1, we show
DyGMamba’s efficiency against various baselines. We also show that it achieves much stronger scalability
in modeling long-term temporal information compared with the current state-of-the-art DyGFormer (Sec.
4.3.2 and Sec. 4.3.3).

4.1 Experimental Setting

CTDG Datasets and Baselines. We consider seven real-world CTDG datasets collected by (Poursafaei
et al., 2022), i.e., LastFM, Enron, MOOC, Reddit, Wikipedia, UCI and Social Evo.. Dataset statistics are
presented in App. A.1. Among them, we take LastFM, Enron and MOOC as long-range temporal dependent
datasets because according to Yu et al. (2023), much longer histories are needed for optimal representation
learning on them. We compare DyGMamba with ten recent CTDG baseline models, i.e., JODIE (Kumar
et al., 2019), DyRep (Trivedi et al., 2019), TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), CAWN (Wang
et al., 2021c), EdgeBank (Poursafaei et al., 2022), TCL (Wang et al., 2021a), GraphMixer (Cong et al.,
2023), DyGFormer (Yu et al., 2023) and CTAN (Gravina et al., 2024). Among them, only DyGFormer
and CTAN are designed for long-range temporal information propagation. Detailed descriptions of baseline
methods are presented in App. B. We also implemented FreeDyG (Tian et al., 2024) by using its official
code repository, however, on LastFM, we find that FreeDyG’s loss cannot converge and the reported results
are not reproducible. So we do not report its performance in our paper.

Implementation Details and Evaluation Settings. We use the implementations and the best hyper-
parameters provided by Yu et al. (2023) for all baseline models except CTAN. For CTAN, we use its official
implementation, fixing the number of layers to 5. All models are trained with a batch size of 200 for fair
efficiency analysis. For DyGMamba, we report the number of sampled one-hop temporal neighbors ρ and
the patch size p here. On Wikipedia, Social Evo., and UCI, ρ & p = 32 & 1. On Reddit, ρ & p = 64 &

4To supplement, we also validate on the dynamic node classification task. Since current mainstream datasets of this task
requires no long-term temporal reasoning, we put the discussion in App. F. Additionally, we also benchmark DyGMamba on
DTDGs in App. K. This serves as supplementary experiment and does not directly connect to our main focus.

7



Published in Transactions on Machine Learning Research (05/2025)

2. On MOOC, ρ & p = 128 & 4. On Enron, ρ & p =256 & 8. On LastFM, ρ & p = 512 & 16. Note that
to fairly compare DyGMamba’s efficiency with DyGFormer, we keep the sequence length ρ/p input into the
SSM as same as the length input into Transformer in Yu et al. (2023), i.e., ρ/p = 32. All experiments are
implemented with PyTorch (Paszke et al., 2019) on a server equipped with an AMD EPYC 7513 32-Core
Processor and a single NVIDIA A40 with 45GB memory. We run each experiment for five times with five
random seeds and report the mean results together with error bars. Further implementation details including
complete hyperparameter configurations are presented in App. C. We employ two evaluation settings follow-
ing previous works: the transductive and inductive settings. As suggested in (Poursafaei et al., 2022), we do
link prediction evaluation using three negative sampling strategies (NSSs): random, historical and inductive.
Historical NSS is only considered under the transductive setting. See App. D for detailed explanations. We
employ two metrics, i.e., average precision (AP) and area under the receiver operating characteristic curve
(AUC-ROC)

Table 1: AP of transductive dynamic link prediction. The best and the second best results are marked as
bold and underlined, respectively. CTAN cannot be trained before 120 hours timeout on Social Evo. so is
ranked bottom on this dataset.

NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

LastFM 70.95 ± 2.94 71.85 ± 2.44 73.30 ± 0.18 75.31 ± 5.62 86.60 ± 0.11 79.29 ± 0.00 76.62 ± 1.83 75.56 ± 0.19 92.95 ± 0.14 86.44 ± 0.80 93.35 ± 0.20
Enron 84.85 ± 3.13 79.80 ± 2.28 70.76 ± 1.05 86.98 ± 1.05 89.50 ± 0.10 83.53 ± 0.00 85.41 ± 0.71 82.13 ± 0.30 92.42 ± 0.11 92.52 ± 1.20 92.65 ± 0.12
MOOC 81.04 ± 0.83 81.50 ± 0.77 85.71 ± 0.20 89.15 ± 1.69 80.30 ± 0.43 57.97 ± 0.00 83.89 ± 0.86 82.80 ± 0.15 87.66 ± 0.48 84.71 ± 2.85 89.21 ± 0.08
Reddit 98.31 ± 0.06 98.18 ± 0.03 98.57 ± 0.01 98.65 ± 0.04 99.11 ± 0.01 94.86 ± 0.00 97.78 ± 0.02 97.31 ± 0.01 99.22 ± 0.01 97.21 ± 0.84 99.32 ± 0.01

Wikipedia 96.51 ± 0.22 94.88 ± 0.29 96.88 ± 0.06 98.45 ± 0.10 98.77 ± 0.01 90.37 ± 0.00 97.75 ± 0.04 97.22 ± 0.02 99.03 ± 0.03 96.61 ± 0.79 99.15 ± 0.02
UCI 89.28 ± 1.02 66.11 ± 2.75 79.40 ± 0.61 92.33 ± 0.64 95.13 ± 0.23 76.20 ± 0.00 86.63 ± 1.30 93.15 ± 0.41 95.74 ± 0.17 76.64 ± 4.11 95.91 ± 0.15

Social Evo. 89.88 ± 0.40 88.39 ± 0.69 93.33 ± 0.06 93.45 ± 0.29 84.90 ± 0.11 74.95 ± 0.00 93.82 ± 0.19 93.36 ± 0.06 94.63 ± 0.07 Timeout 94.77 ± 0.01
Avg. Rank 8.29 9.29 7.00 4.29 6.00 9.43 5.57 6.43 2.43 6.29 1.00

H
is

to
ri

ca
l

LastFM 74.38 ± 6.27 71.85 ± 2.91 71.60 ± 0.36 75.03 ± 6.90 69.93 ± 0.33 73.03 ± 0.00 71.02 ± 2.07 72.28 ± 0.37 81.51 ± 0.14 82.29 ± 0.94 83.02 ± 0.16
Enron 69.13 ± 1.66 72.58 ± 1.83 64.24 ± 1.24 74.31 ± 0.99 65.40 ± 0.36 76.53 ± 0.00 72.39 ± 0.61 77.35 ± 1.22 76.93 ± 0.76 77.24 ± 1.53 77.77 ± 1.32
MOOC 78.62 ± 2.43 75.14 ± 2.86 82.83 ± 0.71 85.46 ± 2.32 74.46 ± 0.53 60.71 ± 0.00 78.51 ± 1.24 77.09 ± 0.83 85.65 ± 0.89 67.73 ± 2.08 85.89 ± 0.94
Reddit 79.96 ± 0.30 79.40 ± 0.30 79.78 ± 0.25 81.05 ± 0.32 80.96 ± 0.28 73.59 ± 0.00 77.38 ± 0.20 78.39 ± 0.40 81.63 ± 1.08 89.77 ± 2.28 81.80 ± 1.52

Wikipedia 81.16 ± 0.73 79.46 ± 0.95 87.31 ± 0.36 87.31 ± 0.25 66.77 ± 6.62 73.35 ± 0.00 86.12 ± 1.69 90.74 ± 0.06 70.13 ± 11.02 95.91 ± 0.10 81.77 ± 1.20
UCI 74.77 ± 5.35 55.89 ± 2.83 66.78 ± 0.77 81.32 ± 1.26 64.69 ± 1.78 65.50 ± 0.00 74.62 ± 2.70 83.88 ± 1.06 80.44 ± 1.16 76.62 ± 0.33 81.03 ± 1.09

Social Evo. 91.26 ± 2.47 92.86 ± 0.90 95.31 ± 0.30 93.84 ± 1.68 85.65 ± 0.11 80.57 ± 0.00 95.93 ± 0.63 95.30 ± 0.34 97.05 ± 0.16 Timeout 97.35 ± 0.52
Avg. Rank 6.57 8.14 6.57 4.14 9.29 8.71 7.00 4.71 4.00 4.71 2.14

In
du

ct
iv

e

LastFM 62.63 ± 6.89 62.49 ± 3.04 71.16 ± 0.33 65.09 ± 7.05 67.38 ± 0.57 75.49 ± 0.00 62.76 ± 0.81 67.87 ± 0.37 72.60 ± 0.06 80.06 ± 0.85 73.63 ± 0.54
Enron 69.51 ± 1.06 66.78 ± 2.21 63.16 ± 0.59 73.27 ± 0.58 75.08 ± 0.81 73.89 ± 0.00 70.98 ± 0.96 74.12 ± 0.65 78.22 ± 0.80 72.02 ± 2.64 80.86 ± 1.24
MOOC 66.56 ± 1.49 61.48 ± 0.96 76.96 ± 0.89 77.59 ± 1.83 73.55 ± 0.36 49.43 ± 0.00 76.35 ± 1.41 74.24 ± 0.75 80.99 ± 0.88 64.93 ± 3.31 81.11 ± 0.63
Reddit 86.93 ± 0.21 86.06 ± 0.36 89.93 ± 0.10 88.12 ± 0.13 91.89 ± 0.18 85.48 ± 0.00 86.97 ± 0.26 85.37 ± 0.26 91.06 ± 0.60 90.99 ± 2.19 91.15 ± 0.54

Wikipedia 74.78 ± 0.56 70.55 ± 1.22 86.77 ± 0.29 85.80 ± 0.15 69.27 ± 7.07 80.63 ± 0.00 72.54 ± 4.69 88.54 ± 0.20 62.00 ± 14.00 94.15 ± 0.08 79.86 ± 2.18
UCI 66.02 ± 1.28 54.64 ± 2.52 67.63 ± 0.51 70.34 ± 0.72 64.08 ± 1.06 57.43 ± 0.00 73.49 ± 2.21 79.57 ± 0.61 70.51 ± 1.83 66.25 ± 0.51 71.95 ± 2.51

Social Evo. 91.08 ± 3.29 92.84 ± 0.98 95.20 ± 0.30 94.58 ± 1.52 88.50 ± 0.13 83.69 ± 0.00 96.14 ± 0.63 95.11 ± 0.32 97.62 ± 0.12 Timeout 97.68 ± 0.42
Avg. Rank 8.29 9.57 5.43 5.43 6.57 7.57 6.00 5.00 4.00 5.71 2.43

Table 2: AP of inductive dynamic link prediction. EdgeBank cannot do inductive link prediction so is not
reported.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

LastFM 83.13 ± 1.19 83.47 ± 1.06 78.40 ± 0.30 81.18 ± 3.27 89.33 ± 0.06 81.38 ± 1.53 82.07 ± 0.31 94.17 ± 0.10 60.40 ± 3.01 94.42 ± 0.21
Enron 78.97 ± 1.59 73.97 ± 3.00 66.67 ± 1.07 78.76 ± 1.69 86.30 ± 0.56 82.61 ± 0.61 75.55 ± 0.81 89.62 ± 0.27 74.61 ± 1.64 89.67 ± 0.27
MOOC 80.57 ± 0.52 80.50 ± 0.68 85.28 ± 0.30 88.01 ± 1.48 81.32 ± 0.42 82.28 ± 0.99 81.38 ± 0.17 87.05 ± 0.51 64.99 ± 2.24 88.64 ± 0.08
Reddit 96.43 ± 0.16 95.89 ± 0.26 97.13 ± 0.04 97.41 ± 0.12 98.62 ± 0.01 95.01 ± 0.10 95.24 ± 0.08 98.83 ± 0.02 80.07 ± 2.53 98.97 ± 0.01

Wikipedia 94.91 ± 0.32 92.21 ± 0.29 96.26 ± 0.12 97.81 ± 0.18 98.27 ± 0.02 97.48 ± 0.06 96.61 ± 0.04 98.58 ± 0.01 93.58 ± 0.65 98.77 ± 0.03
UCI 79.73 ± 1.48 58.39 ± 2.38 79.10 ± 0.49 87.81 ± 1.32 92.61 ± 0.35 84.19 ± 1.37 91.17 ± 0.29 94.45 ± 0.13 49.78 ± 5.02 94.76 ± 0.19

Social Evo. 91.72 ± 0.66 89.10 ± 1.90 91.47 ± 0.10 90.74 ± 1.40 79.83 ± 0.14 92.51 ± 0.11 91.89 ± 0.05 93.05 ± 0.10 Timeout 93.13 ± 0.05
Avg. Rank 6.29 8.00 7.00 5.14 4.43 5.57 5.86 2.14 9.57 1.00

In
du

ct
iv

e

LastFM 71.37 ± 3.45 69.75 ± 2.73 76.26 ± 0.34 68.47 ± 6.07 71.28 ± 0.43 68.79 ± 0.93 76.27 ± 0.37 75.07 ± 1.45 55.60 ± 3.91 76.76 ± 0.43
Enron 66.99 ± 1.15 62.64 ± 2.33 59.95 ± 1.00 64.51 ± 1.66 60.61 ± 0.63 68.93 ± 1.34 71.71 ± 1.33 67.21 ± 0.72 68.66 ± 2.31 68.77 ± 0.60
MOOC 64.67 ± 1.18 62.05 ± 2.11 77.43 ± 0.81 76.81 ± 2.83 74.36 ± 0.78 75.95 ± 1.46 73.87 ± 0.99 80.66 ± 0.94 57.49 ± 1.34 80.75 ± 1.00
Reddit 62.54 ± 0.52 61.07 ± 0.86 63.96 ± 0.25 65.27 ± 0.57 64.10 ± 0.22 61.45 ± 0.25 64.82 ± 0.30 65.03 ± 1.20 78.35 ± 5.03 65.30 ± 1.05

Wikipedia 68.22 ± 0.36 61.07 ± 0.82 84.19 ± 0.96 81.96 ± 0.62 62.34 ± 6.79 71.46 ± 4.95 87.47 ± 0.25 57.90 ± 11.05 92.61 ± 0.90 71.14 ± 2.44
UCI 63.57 ± 2.15 52.63 ± 1.87 69.77 ± 0.43 69.94 ± 0.50 63.44 ± 1.52 74.39 ± 1.81 81.40 ± 0.52 70.25 ± 2.02 52.31 ± 2.67 72.17 ± 2.20

Social Evo. 89.06 ± 1.23 87.30 ± 1.55 94.24 ± 0.36 90.67 ± 2.41 80.30 ± 0.21 95.94 ± 0.37 94.56 ± 0.24 96.73 ± 0.11 Timeout 96.83 ± 0.56
Avg. Rank 6.86 8.57 5.29 5.43 7.43 4.86 3.14 4.43 6.57 2.43

4.2 Performance Analysis

4.2.1 Comparative Study on Benchmark Datasets

We report the AP of transductive and inductive link prediction in Table 1 and 2 (AUC-ROC reported in
Table 12 and 13 in App. E). We find that: (1) DyGMamba constantly ranks top 1 under the random NSS,
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showing a superior performance; (2) Under the historical and inductive NSS, DyGMamba can achieve the
best average rank compared with all baselines. More importantly, it shows more superiority on the datasets
where encoding longer-term temporal dependencies is necessary, e.g., on LastFM, Enron and MOOC. (3)
Among the models that can do long range propagation of information over time (i.e., DyGFormer, CTAN
and DyGMamba), DyGMamba achieves the best average rank under any NSS setting in both transductive
and inductive link prediction. On the long-range temporal dependent datasets, DyGMamba outperforms
DyGFormer and CTAN in most cases; (4) CTAN achieves much better results in transductive than in
inductive link prediction. This is because CTAN requires multi-hop temporal neighbors to learn node
representations, which is difficult for unseen nodes. By contrast, DyGMamba and DyGFormer require only
one-hop temporal neighbors, thus performing much better in inductive link prediction.

Table 3: Ablation studies under transductive setting. R/H/I means random/historical/inductive NSS. Metric
is AP.

Datasets LastFM Enron MOOC Reddit Wikipedia UCI Social Evo.
Models R H I R H I R H I R H I R H I R H I R H I

Variant A 93.14 80.30 71.29 91.35 70.07 75.44 87.78 83.25 77.04 99.19 81.60 90.70 98.99 80.99 79.26 94.88 79.37 70.43 94.59 96.97 97.42
Variant B 93.07 82.53 72.97 92.46 76.88 78.87 86.95 83.78 75.81 97.97 73.47 84.16 94.17 81.37 79.24 91.69 71.13 60.45 92.90 96.61 97.14
Variant C 92.71 82.85 72.36 92.49 76.99 78.64 88.80 85.23 81.02 99.27 81.74 91.05 99.06 79.14 73.49 95.85 81.00 71.86 94.71 96.71 97.25
Variant D 92.74 82.87 72.68 92.52 77.07 78.05 88.71 85.76 81.09 99.27 82.10 91.07 99.08 81.75 79.79 95.87 82.35 72.98 94.74 97.17 97.60
Variant E 85.80 63.98 70.09 89.09 70.85 85.42 83.25 82.18 75.06 99.00 82.21 91.02 98.92 81.21 76.62 95.12 82.11 70.04 94.18 96.97 97.50
Variant F 87.47 67.11 64.10 88.32 69.16 83.98 82.42 76.18 74.12 99.08 76.09 88.75 98.76 72.41 70.03 94.74 63.94 63.56 94.17 96.15 96.29

DyGMamba 93.35 83.02 73.63 92.65 77.77 80.86 89.21 85.89 81.11 99.32 81.80 91.15 99.15 81.77 79.86 95.91 81.03 71.95 94.77 97.35 97.68

Table 4: Ablation studies under inductive setting. R/I means random/inductive NSS. Metric is AP.

Datasets LastFM Enron MOOC Reddit Wikipedia UCI Social Evo.
Models R I R I R I R I R I R I R I

Variant A 94.12 73.03 85.97 61.43 84.25 76.16 98.84 65.19 98.49 70.98 93.23 70.84 92.99 96.54
Variant B 94.25 75.26 89.13 67.87 86.21 75.08 97.32 58.22 92.41 70.76 90.42 60.43 91.11 96.32
Variant C 94.18 76.44 89.40 68.33 88.59 80.39 98.90 64.07 98.65 69.82 94.47 72.05 93.07 96.20
Variant D 94.21 76.64 89.44 67.91 88.29 80.86 98.91 65.10 98.69 71.10 94.51 73.50 93.10 96.75
Variant E 88.36 55.95 89.08 68.05 82.24 74.72 98.70 65.20 98.40 70.99 93.47 74.64 92.76 96.50
Variant F 87.71 66.45 84.02 66.85 81.13 73.85 98.54 61.74 98.37 67.59 92.81 64.59 92.42 95.38

DyGMamba 94.42 76.76 89.67 68.77 88.64 80.75 98.97 65.30 98.77 71.14 94.76 72.17 93.13 96.83

4.2.2 Ablation Study

We conduct four ablation studies to study the effectiveness of model components. In study A, we make
a model variant (Variant A) by removing the time-level SSM block and restrain our model from learning
temporal patterns (information selection is substituted by mean pooling over the output of Eq. 4). In study
B, we make a model variant (Variant B) by removing the Mamba SSM layers (Eq. 3) in the node-level SSM
block. In study C, we switch the computation of the selection weights βθ in Eq. 6d to βθ = Softmax(fsel(Ht

θ))
(fsel(·) : R4d → R4d) to create Variant C. In study D, we base on Variant C and develop Variant D that further
enables information selection from opposite nodes, i.e., βu = Softmax(fsel(Ht

v))/ βv = Softmax(fsel(Ht
u)).

Both ablation C and D do information selection without learning temporal patterns. In study E and F, we
devise Variant E and Variant F by removing the time features and the node interaction frequency features,
respectively, during neighbor encoding. From Table 3 and 4, we find that: (1) Variant A is constantly beaten
by DyGMamba, showing the effectiveness of dynamic information selection based on edge-specific temporal
patterns; (2) DyGMamba always outperforms Variant B, indicating the importance of encoding the one-hop
temporal neighbors with SSM layers for capturing graph dynamics; (3) Variant C and D perform better than
Variant A in most cases, implying that selecting temporal information is generally contributive; (4) Variant
C generally lags behind Variant D, meaning that information selection from opposite node is beneficial;
(5) DyGMamba performs better than both Variant C and D in almost all cases, proving that information
selection based on temporal patterns is more effective; (6) Variant E and F in general achieve worse results
than DyGMamba, validating the contribution of both time and node interaction frequency features.

4.2.3 A Closer Look into Temporal Pattern Modeling with Synthetic Datasets

We observe from ablation studies that dynamic information selection based on temporal patterns contributes
to better model performance on real-world datasets. To better quantify its benefits, we construct three
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synthetic datasets, i.e., S1, S2 and S3, that follow different patterns and compare our model with DyGFormer,
CTAN as well as Variant A, C, D on them. Each synthetic dataset contains 7 nodes, where the interactions
of each pair of two nodes follow a certain pattern along time. And for each node, we generate interactions
with all the other nodes. Assume we have a pair of node u and v and they have interactions at {ti}N

i=0, in
S1, the time intervals between neighboring interactions {t1 − t0, ..., tN − tN−1} follow an increasing trend
with a constant velocity of 0.05, i.e., (ti+2 − ti+1) − (ti+1 − ti) = 0.05 . In S2, we set the time intervals to a
decreasing trend with the same velocity, i.e., (ti+1 − ti) − (ti+2 − ti+1) = 0.05. And in S3, we modify S1 by
repeating several periods of increasing patterns taken from S1 to form a periodic dataset. In this way, we
have three datasets demonstrating diverse temporal patterns: increasing/decreasing/periodic time intervals
between neighboring interactions. Details of dataset construction and statistics are provided in App. A.2.
From Table 5, we observe that DyGMamba greatly outperforms DyGFormer and CTAN. More importantly,
Variant A, C and D show similar performance to DyGFormer, meaning that our time-level SSM block is able
to capture temporal patterns and modeling such patterns for dynamic information selection is important in
CTDG reasoning. For more implementation details on synthetic datasets, please refer to App. C.2.

Table 5: Performance (Random NSS) on synthetic datasets.

(a) AP on synthetic datasets.

Datasets DyGFormer CTAN Variant A Variant C Variant D DyGMamba
S1 55.19 ± 0.98 51.25 ± 2.11 53.72 ± 0.04 55.45 ± 0.32 54.52 ± 0.71 81.58 ± 1.31
S2 57.80 ± 4.61 51.17 ± 0.93 60.16 ± 2.20 64.71 ± 2.33 61.51 ± 3.00 85.36 ± 2.55
S3 79.20 ± 0.60 51.46 ± 0.19 77.61 ± 2.31 77.61 ± 2.31 79.41 ± 2.13 86.59 ± 0.09

(b) AUC-ROC on synthetic datasets.

Datasets DyGFormer CTAN Variant A Variant C Variant D DyGMamba
S1 56.27 ± 0.54 51.25 ± 2.38 53.16 ± 0.39 57.41 ± 0.04 55.83 ± 1.03 86.61 ± 1.30
S2 59.06 ± 6.07 51.46 ± 0.91 62.50 ± 2.28 64.93 ± 2.59 62.06 ± 3.40 89.94 ± 2.70
S3 82.89 ± 1.34 52.12 ± 0.44 81.78 ± 0.40 82.73 ± 1.97 84.20 ± 3.57 91.72 ± 0.11

4.3 Efficiency Analysis

We evaluate the models’ efficiency based on the following aspects: model size (number of trainable param-
eters), per-epoch training time, and GPU memory consumption during training. Since DyGMamba shares
similarities with DyGFormer, i.e., both of them model large sequences of one-hop temporal neighbors and
use patching to enhance scalability, we further analyze the impact of patch size on their scalability and
performance. We also compare the complexity of DyGMamba and DyGFormer to highlight DyGMamba’s
efficiency.

4.3.1 Model Size, Per Epoch Training Time and GPU Memory Comparison Across Various Models

Fig. 2 compares DyGMamba with five baselines in terms of number of parameters (model size), per epoch
training time, and GPU memory consumption during training5. We find that: (1) DyGMamba uses very
few parameters while maintaining the best performance, showing a strong parameter efficiency. Only CTAN
constantly uses fewer parameters than DyGMamba, however, its performance is significantly worse with the
only exception of Enron; (2) DyGMamba is always more efficient than DyGFormer with the same length
of input sequence (ρ/p =32) while achieving the same performance; (3) Although DyGMamba generally
consumes more GPU memory and takes more time to train per epoch compared with most baselines, the
gap of consumption is modest. To model more temporal neighbors for long-range temporal dependent
datasets, DyGMamba naturally requires more computational resources, thus enlarging the consumption gap.
DyGFormer shows the same trend as DyGMamba since it also captures long-term temporal dependencies
but at a higher cost; (4) CTAN requires very few computational resources. However, on long-range temporal
dependent datasets, it is beaten by DyGFormer and DyGMamba by a large margin, e.g., on LastFM and

5The baselines not included here are either extremely inefficient (e.g., CAWN) or inferior in performance (e.g., DyRep).
Complete statistics of all baseline models presented in App. G.1
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Figure 2: Efficiency comparison on four datasets among DyGMamba and five baselines in terms of number
(#) of parameters, training time per epoch and GPU memory. The performance metric here is AP of
transductive link prediction under random NSS. The greener, the better performance/efficiency. In contrast
to other methods, DyGMamba consistently shows strong overall capability across different datasets. More
explanations in Sec. 4.3.1. Further comparison on Reddit and Social Evo. is presented in App. G.1

(a) Enron performance. (b) Enron # params. (c) Enron GPU memory. (d) Enron train time/epoch.

Figure 3: Impact of patch size on DyGFormer, DyGMamba and Variant A, given a fixed number of sampled
temporal neighbors ρ on Enron. Patch size p varies from 8, 4, 2, 1. Sequence length ρ/p increases as patch
size decreases. Performance is the transductive AP under random NSS.

Enron. Besides, CTAN is also hard to converge. Although it takes little time to train a single epoch, it needs
more epochs to reach the best performance, leading to a long total training time. See App. G.2 for a total
training time comparison among DyGFormer, CTAN and DyGMamba. To supplement, we also present in
App. G.3 another experiment to compare DyGMamba with baselines in modeling an increasing number of
temporal neighbors on Enron with limited total training time.

4.3.2 Impact of Patch Size on Scalability and Performance

Patching treats p temporal neighbors as one patch and thus decreases the sequence length by p times. This
is very helpful in cutting the consumption of GPU memory and training/evaluation time. However, patching
introduces excessive parameters because it is done through fN , fE , fT and fF whose sizes increase as the
patch size grows. Fig. 3b shows the numbers of parameters of DyGFormer and DyGmamba with different
patch sizes on a long-term temporal dependent dataset Enron. We find that patching greatly affects model
sizes. To further study how patching affects DyGMamba, we decrease the patch size gradually from 8 to 1
and track DyGMamba’s performance (Fig. 3a) as well as efficiency (Fig. 3b to 3d) on Enron. Meanwhile,
we also keep track on DyGFormer under the same patch size for comparison. We have several findings:
(1) Whatever the patch size is, DyGMamba always consumes fewer parameters, less GPU memory and per
epoch training time, showing its high efficiency; (2) While both models require increasing computational
budgets as the patch size decreases, the speed of increase is much lower for DyGMamba, demonstrating
its strong scalability in modeling longer sequences; (3) Different trends in performance change are observed
between two models. While DyGFormer performs worse, DyGMamba can benefit from a smaller patch size,
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indicating its strong ability to capture nuanced temporal details even if the sequence becomes much longer.
Note that the models use fewer parameters under smaller patch size. This also shows that DyGMamba can
achieve much stronger parameter efficiency by reducing patch sizes. To further study the reason for finding
(3), we plot the performance of Variant A under different patch sizes in Fig. 3a. We find that Variant A’s
performance degrades when sequence length is more than 64. This means that dynamic information selection
based on edge-specific temporal patterns is essential for DyGMamba to optimally process long sequences.
To supplement, we provide additional analysis on MOOC in App. J.

Reason for Diverse Performance Trends between DyGMamba and DyGFormer. Patching de-
creases sequence length by applying linear transformation on a patch of node embeddings, giving a model
much more parameters to tune (as indicated in Fig. 3b). Larger patch size mixes more sampled neighbors
in each patch, introducing more training parameters while losing nuanced temporal details brought by the
temporal order of the neighbors within each patch. For DyGFormer, the negative influence brought by mix-
ing neighbors within patches is smaller than the positive influence brought by more trainable parameters,
so the performance constantly increases with a growing patch size in Fig. 3a. By contrast, for DyGMamba,
the negative influence brought by mixing neighbors is much greater than the positive influence brought by
more trainable parameters, so it shows better performance when the patch size is smaller. For Variant A,
given an increasing patch size, it follows the trend of DyGFormer when the patch size is below a threshold
and shows degrading performance after that. This means that there is a trade-off between the lost temporal
details and the additional parameters when we modify patch size. Also, by comparing Variant A and DyG-
Mamba, we can tell that the difference in performance trend roots from the dynamic information selection
module. Smaller patch size leads to longer sequences with more temporal details. The strong capability of
the dynamic information selection module in long-range temporal reasoning let DyGMamba benefit from
more nuanced temporal details, which is more influential than increasing training parameters.

4.3.3 Complexity Analysis: DyGMamba vs. DyGFormer

DyGMamba follows the current state-of-the-art DyGFormer by learning from one-hop temporal neighbors for
temporal reasoning. We analyze the complexity of both models to show DyGMamba’s efficiency. Sequence
length is the key factor affecting the consumption of computational resources in DyGFormer and DyGMamba.
Following the computation of previous work (Zhu et al., 2024), the complexity of Transformer and Mamba
in DyGFormer and DyGMamba can be written as

O(Transformer) = 4(ρ/p)(4d)2 + 2(ρ/p)2(4d) = 64(ρ/p)d2 + 8d(ρ/p)2, (8a)
O(Mamba) = 3(ρ/p)(4d)dSSM + (ρ/p)(4d)dSSM = 16dSSMd(ρ/p). (8b)

This means that DyGMamba holds a computational complexity linear to ρ/p, while DyGFormer’s complexity
is quadratic to ρ/p. As a result, as the sequence length grows (either ρ increases or p decreases), DyGFormer
is less scalable compared with DyGMamba6. Some may argue that increasing the patch size p to a large
enough value can offset the negative influence of the higher complexity of Transformer. However, as discussed
in Sec. 4.3.2, increasing patch size will substantially increase model parameters, causing burden in parameter
optimization, and meanwhile lose temporal details. This indicates that patching is not always beneficial and
DyGMamba’s low complexity provides an alternative way to maintain great efficiency while considering more
temporal information. With the same number of sampled temporal neighbors and equivalent computational
resources, DyGMamba can leverage a smaller patch size, mitigating the negative effects of lost temporal
details and simplifying parameter optimization, as implied in Sec. 4.3.2.

Modeling Increasing Number of Temporal Neighbors with a Fixed Patch Size. Sequence length
is decided by the sampled temporal neighbors ρ and the patch size p. If we want to model a huge number
of temporal neighbors, e.g., ρ = 4096, keeping the sequence length unchanged as 32 means we need to set
p to 128. Considering the potential negative impact brought by excessively large patch size (i.e., too many
lost temporal details, harder optimization and much lower parameter efficiency), it is also important to see

6As we set k (number of edge-specific historical interactions discussed in Sec. 3.2) to a number much smaller than the
number of sampled one-hop temporal neighbors, i.e., sequence length ρ/p, we omit here the contribution of the time-level SSM
in complexity analysis.
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if a model is scalable to ρ, with a fixed p. In Fig. 4, we show the consumed GPU memory of DyGMamba
and DyGFormer with ρ varying from 64, 128, 256, 512, 1024, 2048, 4096 and 8192 on Enron, under a fixed
patch size p = 8. We find that DyGMamba shows superior scalability over DyGFormer. While DyGFormer
can only process 2048 nodes, DyGMamba can deal with more than 8192 (at least 4 times) on a single 45GB
NVIDIA A40 GPU. This implies our model’s potential to process a huge number of temporal neighbors with
a limited GPU memory budget, while keeping a moderate patch size. The experiment provides a concrete
example to demonstrate DyGMamba’s advantage in efficiency brought by its low complexity.

Figure 4: GPU memory consumption on Enron with increasing neighbors. For clarity, memory is shown
only when neighbors are more than 512.

5 Discussion

In this section, we discuss where DyGMamba excels and where it falls short, and explain our choice to
consider only one-hop temporal neighbors. We additionally provide a full justification of our motivation in
App. L, recommended for reading after the main paper.

Where DyGMamba Excels and Where It Falls Short. We summarize here the conditions under
which DyGMamba performs well and scenarios where it may fall short. DyGMamba is expected to out-
perform previous state-of-the-art models in the following scenarios: (1) when modeling long-range temporal
information is critical; (2) when there is a clear temporal pattern, i.e., the density of repeated edges follows
a specific trend. For the first scenario, we have demonstrated in Table 1 and 2 that DyGMamba surpasses
previous models on long-range temporal-dependent datasets (LastFM, MOOC, and Enron) in both trans-
ductive and inductive link prediction under the random NSS setting. Under the historical and inductive NSS
settings, DyGMamba consistently ranks among the top 3 models and even achieves the top 1 position in
7 out of 9 cases. Regarding the second scenario, Table 5 confirms that DyGMamba’s dynamic information
selection module significantly enhances its capability to model temporal patterns, enabling superior per-
formance on datasets characterized by clear temporal trends. Conversely, DyGMamba might underperform
previous state-of-the-art models on certain datasets (e.g., Wikipedia and UCI) under historical and inductive
NSS settings, particularly when the number of available one-hop temporal neighbors for nodes in the link
prediction query is limited (the availability of historical neighbors across datasets for both link prediction
tasks under all NSS settings is presented in Table 22). DyGMamba rely on abundant historical information
to effectively capture graph dynamics and temporal patterns. Insufficient historical context may hinder its
performance, leading to potential misclassification of negative edges and higher false positive rates.

Why We Only Consider One-Hop Neighbors. We only consider encoding one-hop temporal neighbors
in DyGMamba due to two reasons. First, our primary motivation is to design an efficient model that effec-
tively captures long-range temporal dependencies in CTDGs. While incorporating higher-order information
is an intuitive approach, it introduces several challenges. Maintaining the same computational budget would
require reducing the number of first-order (one-hop) temporal neighbors, leading to a less representative
one-hop neighborhood. The alternative—allocating more computational resources such as increased GPU
memory—goes against our objective of efficiency in this work. Moreover, modeling higher-order temporal
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neighbors requires additional specialized modules to differentiate the influence of neighbors from different
hops, which can further increase computational cost and difficulties in modeling. Besides, recent CTDG
models that only consider one-hop temporal neighbors, such as DyGFormer and FreeDyG, have demon-
strated strong performance, and DyGMamba further validates this observation. Some of our baselines, such
as CAWN and CTAN, do incorporate higher-order information. However, as shown in Table 1 and 2, they
are outperformed by DyGMamba in most cases. A potential reason for this is that these models may still
struggle to optimally differentiate information from different hops. Efficiently integrating higher-order in-
formation into CTDG modeling is a promising research direction, and we would be happy to explore it in
future work.

6 Conclusion

We propose DyGMamba, an efficient CTDG representation learning model that can capture long-term
temporal dependencies. DyGMamba first leverages a node-level SSM to encode long sequences of historical
node interactions. It then employs a time-level SSM to learn edge-specific temporal patterns. The learned
patterns are used to select the critical part of the encoded temporal information. DyGMamba achieves
superior performance on dynamic link prediction, and moreover, it shows high efficiency and strong scalability
compared with previous CTDG methods, implying a great potential in modeling huge amounts of temporal
information with a limited computational budget.

7 Limitation

One limitation of our work is that DyGMamba is designed to only model CTDGs. DTDGs are represented
as a sequence of graph snapshots, where all the edges in a snapshot are taken as existing simultaneously.
This poses a challenge to DyGMamba because it can only encode edges sequentially, which are not suitable
for modeling concurrent edges. A possible solution is to first employ methods such as graph neural networks
(GNN) to encode each graph snapshot and then use SSM to model the temporal graph dynamics (similar
to approaches used in recent works on temporal knowledge graph modeling, e.g., Han et al. (2021)). How-
ever, the introduction of GNNs inevitably requires more computational resources, which would lower model
efficiency.
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A CTDG Dataset Details

A.1 Real-World Benchmark Datasets

We present the dataset statistics of all considered CTDG datasets in Table 6. All the datasets in our experi-
ments are taken from Yu et al. (2023). We chronologically split each dataset with the ratio of 70%/15%/15%
for training/validation/testing. Please refer to it for detailed dataset descriptions.
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Table 6: Dataset statistics. # N&E Feat means the numbers of node and edge features.

Datasets # Nodes # Edges # N&E Feat Bipartite Duration # Timestamps Time Granularity
LastFM 1,980 1,293,103 0 & 0 True 1 month 1,283,614 Unix timestamps
Enron 184 125,235 0 & 0 False 3 years 22,632 Unix timestamps
MOOC 7,144 411,749 0 & 4 True 17 months 345,600 Unix timestamps
Reddit 10,984 672,447 0 & 172 True 1 month 669,065 Unix timestamps

Wikipedia 9,227 157,474 0 & 172 True 1 month 152,757 Unix timestamps
UCI 1,899 59,835 0 & 0 False 196 days 58,911 Unix timestamps

Social Evo. 74 2,099,519 0 & 2 False 8 months 565,932 Unix timestamps

A.2 Synthetic Datasets

For all of our three synthetic datasets, node and link features are not involved during dataset construction.
The construction details are as follows:

• S1: For each interaction pair u and v, their first interaction is at timestamp 0 and the second
interaction is generated randomly. Thus, the first time interval is also determined. Starting from
the second interval, they follow an increasing trend with a constant velocity of 0.05, i.e., (ti+2 −
ti+1) − (ti+1 − ti)= 0.05. The number of interactions for each node pair is randomly determined and
the interaction numbers of all node pairs sum up to 100000.

• S2: For each interaction pair u and v, their first interaction is at timestamp 0 and the second
interaction is generated randomly. However, it should be large enough so that the interval will not
drop to zero or negative afterwards. Starting from the second interval, they follow a decreasing trend
with a constant velocity of 0.05, i.e., (ti+1 − ti) − (ti+2 − ti+1) = 0.05. The number of interactions
for each node pair is randomly determined and the interaction numbers of all node pairs sum up to
100000.

• S3: S3 contains 8 periods. In each period, the interactions of each node pair u and v are generated
following the same pattern in S1. The number of interactions for each node pair is randomly
determined and the interaction numbers of all node pairs sum up to 12000 in the period.

We present the statistics of all synthetic datasets in Table 7. We chronologically split each dataset with the
ratio of 70%/15%/15% for training/validation/testing. To better visualize the temporal patterns in each
dataset, we pick one pair of interacting nodes and plot the time intervals between neighboring interactions
in each dataset in Figure 5. Note that for the periodic dataset S3 (Figure 5c), each of the train, validation
and test sets contains at least one start of a new period. This ensures that models have to capture periodic
temporal patterns in order to achieve good performance during evaluation, rather than only learning the
increasing time intervals as specified in S1.

Furthermore, we provide the information about the numbers of interactions regarding interacting node pairs
in Table 8. We show that each node pair is equipped with a substantial number of interactions, meaning
that temporal patterns in our synthetic datasets span across long time periods. This encourages models to
consider long-term temporal dependencies for better graph reasoning.

Table 7: Synthetic dataset statistics.

Datasets # Nodes # Edges # Timestamps Time Range
S1 7 100,000 96,869 0 - 163241.65
S2 7 100,000 98,004 0 - 1573561.52
S3 7 95,657 95,370 0 - 1771300.40
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Table 8: Interaction information of node pairs in synthetic datasets. Complete Dataset includes the numbers
of interactions across the whole datasets, including training, validation and testing.

Datasets Avg. # Interactions Min # Interactions Max # Interactions

Training Set
S1 1,428.57 1,205 1,663
S2 1,428.57 1,424 1,433
S3 1,367.91 1,364 1,372

Complete Dataset

S1 2,010.20 1,879 2,150
S2 2,010.20 1,921 2,097
S3 1,952.18 1,721 2,193

S3 (each period) 244.02 215 274

(a) Synthetic dataset S1. (b) Synthetic dataset S2. (c) Synthetic dataset S3.

Figure 5: Time intervals of a node pair u, v in synthetic datasets S1, S2 and S3.

B Baseline Details

We provide the detailed descriptions of all baselines here. The baselines can be split into two groups: the
methods designed/not designed for long-range temporal information propagation.

B.1 Baselines Not Designed for Long-Range Temporal Information Propagation

• JODIE (Kumar et al., 2019): JODIE employs a recurrent neural network (RNN) for each node and
uses a projection operation to learn the future representation trajectory of each node.

• DyRep (Trivedi et al., 2019): DyRep updates node representations as events appear. It designs a
two-time scale deep temporal point process approach for source and destination nodes and couples
the structural and temporal components with a temporal-attentive aggregation module.

• TGAT (Xu et al., 2020): TGAT computes the node representations by aggregating each node’s
temporal neighbors based on a self-attention module. A time encoding function is proposed to learn
functional representations of time.

• TGN (Rossi et al., 2020): TGN leverages an evolving memory for each node and updates the
memory when a node-relevant interaction occurs by using a message function, a message aggregator,
and a memory updater. An embedding module is used to generate the temporal representations of
nodes.

• CAWN (Wang et al., 2021c): CAWN is a random walk-based method. It does multiple causal
anonymous walks for each node and extracts relative node identities from the walk results. RNNs
are then introduced to encode the anonymous walks. The aggregated walk information forms the
final node representation.

20



Published in Transactions on Machine Learning Research (05/2025)

• EdgeBank (Poursafaei et al., 2022): EdgeBank is a non-parametric method purely based on mem-
ory. It stores the observed interactions in its memory and updates the memory through various
strategies. An interaction, i.e., link, will be predicted as existing if it is stored in the memory, and
non-existing otherwise. EdgeBank uses four memory update strategies: (1) EdgeBank∞, where all
the observed edges are stored in the memory; (2) EdgeBanktw-ts, where only the edges within the
duration of the test set from the immediate past are kept in the memory; (3) EdgeBanktw-re, where
only the edges within the average time intervals of repeated edges from the immediate past are kept
in the memory; (4) EdgeBankth, where the edges with appearing counts higher than a threshold are
stored in the memory. The results reported in our paper correspond to the best results achieved
among the four memory update strategies.

• TCL (Wang et al., 2021a): TCL first extracts temporal dependency interaction sub-graphs for source
and interaction nodes and then presents a graph transformer to aggregate node information from
the sub-graphs. A cross-attention operation is implemented to enable information communication
between two source and destination nodes.

• GraphMixer (Cong et al., 2023): GraphMixer designs a link-encoder based on MLP-Mixer (Tol-
stikhin et al., 2021) to learn from the temporal interactions. A mean pooling-based node-encoder is
used to aggregate the node features. Link prediction is done with a link classifier that leverages the
representations output by link-encoder and node-encoder.

Note that TGN uses a memory network to store the whole graph history, making it able to preserve long-range
temporal information. However, as discussed in Yu et al. (2023), it faces a problem of vanishing/exploding
gradients, preventing it from optimally capturing long-term temporal dependencies. EdgeBank can also
preserve a very long graph history, but we can observe from the experimental results (Table 1, 12) that
without learnable parameters, it is not strong enough on long-range temporal dependent datasets.

B.2 Baselines Designed for Long-Range Temporal Information Propagation

• DyGFormer (Yu et al., 2023): DyGFormer is a Transformer-based CTDG model. It takes the
long-term one-hop temporal interactions of source and destination nodes and uses a Transformer
to encode them. A patching technique is developed to cut the computational consumption and a
node co-occurrence encoding scheme is used to exploit the correlations of nodes in each interaction.
DyGFormer achieves long-range temporal information propagation by increasing the number of
sampled one-hop historical interactions. The patching technique ensures that even with a huge
number of sampled interactions, the length of the sequence input into Transformer will not be too
long, making it possible to implement DyGFormer with a limited computational budget.

• CTAN (Gravina et al., 2024): CTAN is deep graph network for learning CTDGs based on non-
dissipative ordinary differential equations. CTAN’s formulation allows for a scalable long-range
temporal information propagation in CTDGs because its non-dissipative layer can retain the infor-
mation from a specific event indefinitely, ensuring that the historical context of a node is preserved
despite the occurrence of additional events involving this node.

C Implementation Details

We train every CTDG model except for CTAN for a maximum number of 200 epochs. Maximum epochs for
CTAN training is 1000. We evaluate each model on the validation set at the end of every training epoch and
adopt an early stopping strategy with a patience of 20. We take the model that achieves the best validation
result for testing. We use the implementations7 provided by Yu et al. (2023) for all baseline models except
CTAN. For CTAN, we use its official implementation8. All models are trained with a batch size of 200 for
fair efficiency analysis. All experiments are implemented with PyTorch (Paszke et al., 2019) on a server

7https://github.com/yule-BUAA/DyGLib
8https://github.com/gravins/non-dissipative-propagation-CTDGs
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equipped with an AMD EPYC 7513 32-Core Processor and a single NVIDIA A40 with 45GB memory. We
run each experiment for five times with five random seeds and report the mean results together with error
bars.

C.1 Hyperparameter Configurations on Real-World Datasets

For all the baselines except CTAN, please refer to Yu et al. (2023) for the hyperparameter configurations
on real-world datasets. For CTAN, we present its hyperparameter configurations in Table 9. We keep its
hyperparameters unchanged for all real-world datasets. Note that we set the number of graph convolution
layers (GCLs) in CTAN to its maximum, i.e., 5, in order to maximize its performance in capturing long-term
temporal dependencies.

Table 9: Hyperparameter configurations of CTAN on all real-world datasets. γ here denotes the discretization
step size introduced in Gravina et al. (2024), different from the one in DyGMamba.

Model # GCL ϵ γ Embedding Dim
CTAN 5 0.5 0.5 128

We report the hyperparameter searching strategy of DyGMamba on real-world datasets and the best hyper-
parameters in Table 10. To achieve fair efficiency comparison with DyGFormer, we fix the length of the input
sequence into the node-level SSM to 32, i.e., ρ & p = 32. The results reported in Table 1, 2, 12, 13 are all
achieved by DyGMamba with ρ & p = 32. In practice, we can decrease p to have a better performance given
more computational resources (as discussed in Sec. 4.3). DyGMamba keeps the embedding size as same as
DyGFormer on all real-world datasets, i.e., dN = dE = 172, dT = 100, dF = 50. We also set γ = 0.5 for all
experiments of DyGMamba. The dimension of SSMs dSSM = 16 remains the default value of mamba SSM’s
official repository9. For all experiments, we set the numbers of layers in both node-level and time-level SSMs
as 2. We also set γ to 0.5 for all datasets. A smaller γ lowers the computational resource consumption in
time-level SSM, potentially at the cost of performance. Raising γ’s value does not necessarily lead to better
performance but will lower efficiency. We search γ’s value in {0.1, 0.5, 0.7, 1} and find that 0.5 brings a
good balance between performance and efficiency.

Table 10: DyGMamba hyperparameter searching strategy on real-world datasets. The best settings are
marked as bold.

Datasets Dropout ρ & p k

LastFM {0.0, 0.1, 0.2} {1024 & 32, 512 & 16, 256 & 8} {30, 10, 5}
Enron {0.0, 0.1, 0.2} {512 & 16, 256 & 8, 128 & 4} {30, 10, 5}
MOOC {0.0, 0.1, 0.2} {512 & 16, 256 & 8, 128 & 4} {30, 10, 5}
Reddit {0.0, 0.1, 0.2} {128 & 4, 64 & 2, 32 & 1} {30, 10, 5}
Wikipedia {0.0, 0.1, 0.2} {64 & 2, 32 & 1} {30, 10, 5}
UCI {0.0, 0.1, 0.2} {64 & 2, 32 & 1} {30, 10, 5}
Social Evo. {0.0, 0.1, 0.2} {64 & 2, 32 & 1} {30, 10, 5}

C.2 Hyperparameter Configurations on Synthetic Datasets

We use the same settings of CTAN on real-world datasets when we experiment it on synthetic datasets.
For DyGFormer and DyGMamba, we fix the length of the input sequence into the Transformer and the
node-level SSM to 32, i.e., ρ/p = 32. For DyGFormer, we set the hyperparameters except ρ and p to the
same default values as on real-world datasets, and search for the best ρ & p within {512 & 16, 256 & 8, 128
& 4, 64 & 2, 32 & 1}. For DyGMamba, we search for the best ρ & p within the same search range and
further search for the best k. All the other hyperparameters are set as same as the setting on LastFM. We

9https://github.com/state-spaces/mamba
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Table 11: DyGFormer and DyGMamba hyperparameter searching strategy on synthetic datasets. The best
settings are marked as bold.

Models DyGFormer DyGMamba
Datasets ρ & p ρ & p k

S1 {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {30, 10, 5}
S2 {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {30, 10, 5}
S3 {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {30, 10, 5}

Table 12: AUC-ROC of transductive dynamic link prediction.

NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

LastFM 70.89 ± 1.97 71.40 ± 2.12 71.47 ± 0.14 76.64 ± 4.66 85.92 ± 0.16 83.77 ± 0.00 71.09 ± 1.48 73.51 ± 0.14 93.03 ± 0.11 85.12 ± 0.77 93.31 ± 0.18
Enron 87.77 ± 2.43 83.09 ± 2.20 68.57 ± 1.46 88.72 ± 0.95 90.34 ± 0.23 87.05 ± 0.00 83.33 ± 0.93 84.16 ± 0.34 93.20 ± 0.12 87.09 ± 1.51 93.34 ± 0.23
MOOC 84.50 ± 0.60 84.50 ± 0.87 87.01 ± 0.16 91.91 ± 0.82 80.48 ± 0.41 60.86 ± 0.00 84.02 ± 0.59 84.04 ± 0.12 88.08 ± 0.50 85.40 ± 2.67 89.58 ± 0.12
Reddit 98.29 ± 0.05 98.13 ± 0.04 98.50 ± 0.01 98.61 ± 0.05 99.02 ± 0.00 95.37 ± 0.00 97.67 ± 0.01 97.17 ± 0.02 99.15 ± 0.01 97.24 ± 0.75 99.27 ± 0.01

Wikipedia 96.36 ± 0.14 94.43 ± 0.32 96.60 ± 0.07 98.37 ± 0.10 98.54 ± 0.01 90.78 ± 0.00 97.27 ± 0.06 96.89 ± 0.04 98.92 ± 0.03 97.00 ± 0.21 99.08 ± 0.02
UCI 90.35 ± 0.51 69.46 ± 2.66 78.76 ± 1.10 92.03 ± 0.69 93.81 ± 0.23 77.30 ± 0.00 85.49 ± 0.82 91.62 ± 0.52 94.45 ± 0.22 76.25 ± 2.83 94.77 ± 0.18

Social Evo. 92.13 ± 0.20 90.37 ± 0.52 94.93 ± 0.06 95.31 ± 0.27 87.34 ± 0.10 81.60 ± 0.00 95.45 ± 0.21 95.21 ± 0.07 96.25 ± 0.04 Timeout 96.38 ± 0.02
Avg. Rank 7.14 8.86 7.14 3.86 4.86 9.14 7.29 7.14 2.14 7.29 1.14

H
is

to
ri

ca
l

LastFM 75.65 ± 4.43 70.63 ± 2.56 64.23 ± 0.45 78.00 ± 2.97 67.92 ± 0.32 78.09 ± 0.00 60.53 ± 2.54 64.06 ± 0.34 78.80 ± 0.02 79.50 ± 0.82 79.82 ± 0.27
Enron 75.21 ± 1.27 76.36 ± 1.42 62.36 ± 1.07 76.75 ± 1.40 65.62 ± 0.49 79.59 ± 0.00 71.72 ± 1.24 74.82 ± 2.04 77.35 ± 0.64 81.95 ± 1.64 77.73 ± 0.61
MOOC 82.38 ± 1.75 80.71 ± 2.08 81.53 ± 0.79 86.59 ± 2.03 71.74 ± 0.88 61.90 ± 0.00 73.22 ± 1.21 77.09 ± 0.83 87.26 ± 0.83 73.87 ± 2.77 87.91 ± 0.93
Reddit 80.70 ± 0.20 79.96 ± 0.23 79.60 ± 0.09 81.04 ± 0.23 80.42 ± 0.20 78.58 ± 0.00 76.83 ± 0.12 77.83 ± 0.33 80.61 ± 0.48 90.63 ± 2.28 81.71 ± 0.49

Wikipedia 80.71 ± 0.64 77.49 ± 0.72 82.83 ± 0.27 83.28 ± 0.26 65.74 ± 3.46 77.27 ± 0.00 85.55 ± 0.47 87.47 ± 0.20 72.78 ± 6.65 95.43 ± 0.07 78.99 ± 1.24
UCI 78.21 ± 3.18 58.65 ± 3.58 57.12 ± 0.98 78.48 ± 1.79 57.67 ± 1.11 69.56 ± 0.00 65.42 ± 2.62 77.46 ± 1.63 75.71 ± 0.57 75.05 ± 0.13 75.43 ± 1.99

Social Evo. 91.83 ± 1.52 92.81 ± 0.60 93.63 ± 0.48 94.27 ± 1.33 87.61 ± 0.06 85.81 ± 0.00 95.03 ± 0.82 94.65 ± 0.28 97.16 ± 0.06 Timeout 97.27 ± 0.30
Avg. Rank 5.29 7.14 7.86 3.71 9.14 7.43 7.71 6.29 4.29 4.29 2.86

In
du

ct
iv

e

LastFM 61.59 ± 5.72 60.62 ± 2.20 63.96 ± 0.41 65.48 ± 4.13 67.90 ± 0.44 77.37 ± 0.00 54.75 ± 1.31 59.98 ± 0.20 67.87 ± 0.53 78.70 ± 0.87 68.74 ± 0.55
Enron 70.75 ± 0.69 67.37 ± 2.21 59.78 ± 1.12 73.22 ± 0.42 75.29 ± 0.66 75.00 ± 0.00 69.74 ± 1.19 70.72 ± 1.08 74.67 ± 0.80 75.40 ± 1.92 75.47 ± 1.41
MOOC 67.53 ± 1.76 62.60 ± 1.27 74.44 ± 0.81 76.89 ± 2.13 70.08 ± 0.33 48.18 ± 0.00 71.80 ± 1.09 72.25 ± 0.57 80.78 ± 0.89 68.17 ± 3.73 81.08 ± 0.82
Reddit 83.40 ± 0.33 82.75 ± 0.36 87.46 ± 0.10 84.57 ± 0.19 88.19 ± 0.20 85.93 ± 0.00 84.41 ± 0.18 82.24 ± 0.24 86.25 ± 0.64 91.42 ± 2.18 86.35 ± 0.52

Wikipedia 70.41 ± 0.39 67.57 ± 0.94 81.54 ± 0.31 81.21 ± 0.30 68.48 ± 3.64 81.73 ± 0.00 73.51 ± 1.88 84.20 ± 0.36 64.09 ± 9.75 93.67 ± 0.11 75.64 ± 2.42
UCI 64.14 ± 1.25 54.10 ± 2.74 59.60 ± 0.61 63.76 ± 0.99 57.85 ± 0.59 58.03 ± 0.00 65.46 ± 2.07 74.25 ± 0.71 64.92 ± 0.83 66.51 ± 0.25 66.83 ± 2.83

Social Evo. 91.81 ± 1.69 92.77 ± 0.64 93.54 ± 0.48 94.86 ± 1.25 90.10 ± 0.11 87.88 ± 0.00 95.13 ± 0.83 94.50 ± 0.26 95.01 ± 0.15 Timeout 97.37 ± 0.26
Avg. Rank 7.86 9.57 6.14 5.43 6.29 6.43 6.71 6.00 5.14 3.86 2.57

report the hyperparameter searching strategy as well as the best settings of DyGFormer and DyGMamba on
synthetic datasets in Table 11. For all experiments with DyGMamba, we set the numbers of layers in both
node-level and time-level SSMs as 2.

D Negative Edge Sampling Strategies during Evaluation

We justify why we do not do historical NSS for inductive link prediction. As described in Poursafaei et al.
(2022), historical NSS focuses on sampling negative edges from the set of edges that have been observed during
previous timestamps but are absent in the current step. In the setting of inductive link prediction, models
are asked to predict the links between the nodes unseen in the training dataset. This means when doing
historical NSS, models only need to care about the previously observed edges in the test set (or validation set
during validation) for choosing negative edges. This makes historical NSS the same as inductive NSS in the
inductive link prediction, where inductive NSS samples negative edges that have been observed only in the
test set, but not training set. Empirical results shown in Appendix C.2 Table 13 and 14 of Yu et al. (2023)
also prove that there is no difference between historical and inductive NSS in inductive link prediction. So
we omit the results of historical NSS in our paper.

E AUC-ROC Results on Real-World Datasets

Table 12 and 13 presents the AUC-ROC results of all baselines and DyGMamba on real-world datasets. We
have similar observations as the AP results shown in Table 1 and 2. DyGMamba still demonstrates superior
performance and can achieve the best average rank under any NSS setting in both transductive and inductive
link prediction.
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Table 13: AUC-ROC of inductive dynamic link prediction. EdgeBank cannot do inductive link prediction
so is not reported.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

LastFM 82.49 ± 0.94 82.82 ± 1.17 76.76 ± 0.22 82.61 ± 2.62 87.92 ± 0.15 76.95 ± 1.34 80.34 ± 0.14 94.10 ± 0.09 61.49 ± 2.78 94.37 ± 0.13
Enron 80.16 ± 1.50 75.82 ± 3.14 64.25 ± 1.29 79.40 ± 1.77 86.84 ± 0.89 81.03 ± 0.93 76.08 ± 0.92 89.59 ± 0.10 75.23 ± 2.24 89.76 ± 0.21
MOOC 83.82 ± 0.30 83.42 ± 0.77 86.67 ± 0.24 91.58 ± 0.74 81.76 ± 0.46 82.42 ± 0.71 82.76 ± 0.13 87.75 ± 0.42 66.38 ± 1.59 89.34 ± 0.12
Reddit 96.42 ± 0.13 95.87 ± 0.21 97.02 ± 0.04 97.30 ± 0.12 98.42 ± 0.01 94.63 ± 0.08 94.95 ± 0.08 98.70 ± 0.02 82.35 ± 4.03 98.88 ± 0.01

Wikipedia 94.43 ± 0.28 91.31 ± 0.40 95.93 ± 0.19 97.71 ± 0.19 98.05 ± 0.03 97.03 ± 0.08 96.26 ± 0.04 98.49 ± 0.02 92.59 ± 0.70 98.72 ± 0.03
UCI 78.78 ± 1.11 58.84 ± 2.54 77.41 ± 0.65 86.27 ± 1.49 90.27 ± 0.40 81.67 ± 1.01 89.26 ± 0.42 92.43 ± 0.20 48.58 ± 6.02 92.70 ± 0.19

Social Evo. 93.62 ± 0.36 90.20 ± 2.05 93.52 ± 0.05 93.21 ± 0.90 84.73 ± 0.20 94.63 ± 0.06 94.09 ± 0.03 95.30 ± 0.05 Timeout 95.36 ± 0.04
Avg. Rank 6.00 7.43 7.00 4.57 4.71 6.14 6.14 2.14 9.71 1.14

In
du

ct
iv

e

LastFM 69.85 ± 1.70 68.14 ± 1.61 69.89 ± 0.41 67.01 ± 5.77 67.72 ± 0.20 63.15 ± 1.17 69.93 ± 0.17 69.86 ± 0.80 57.85 ± 3.67 70.59 ± 0.57
Enron 65.95 ± 1.27 62.20 ± 2.15 56.52 ± 0.84 64.21 ± 0.94 62.07 ± 0.72 67.56 ± 1.34 67.39 ± 1.33 66.07 ± 0.65 68.70 ± 1.82 68.98 ± 1.00
MOOC 65.37 ± 0.96 62.97 ± 2.05 74.94 ± 0.80 76.36 ± 2.91 71.18 ± 0.54 71.30 ± 1.21 72.15 ± 0.65 80.42 ± 0.72 58.06 ± 0.89 81.12 ± 0.63
Reddit 61.84 ± 0.44 60.35 ± 0.53 64.92 ± 0.08 65.24 ± 0.08 65.37 ± 0.12 61.85 ± 0.11 64.56 ± 0.26 64.80 ± 0.53 81.70 ± 4.71 64.93 ± 0.89

Wikipedia 61.66 ± 0.30 56.34 ± 0.67 78.40 ± 0.77 75.86 ± 0.50 59.00 ± 4.33 71.45 ± 2.23 82.76 ± 0.11 58.21 ± 8.78 91.12 ± 0.13 67.92 ± 2.23
UCI 60.66 ± 1.82 51.50 ± 2.08 61.27 ± 0.78 62.07 ± 0.67 55.60 ± 1.22 65.87 ± 1.90 75.72 ± 0.70 64.37 ± 0.98 51.68 ± 2.60 66.95 ± 2.22

Social Evo. 88.98 ± 0.81 86.43 ± 1.48 92.37 ± 0.50 91.66 ± 2.14 83.84 ± 0.21 95.50 ± 0.31 93.88 ± 0.22 94.97 ± 0.36 Timeout 96.65 ± 0.29
Avg. Rank 7.00 8.71 5.14 5.14 7.14 5.14 3.57 4.71 6.14 2.29

F Dynamic Node Classification

We first give the definition of the dynamic node classification task.
Definition 3 (Dynamic Node Classification). Given a CTDG G, a source node u ∈ N , a destination node
v ∈ N , a timestamp t ∈ T , and all the interactions before t, i.e., {(ui, vi, ti)|ti < t, (ui, vi, ti) ∈ G}, dynamic
node classification aims to predict the state (e.g., dynamic node label) of u or v at t in the condition that the
interaction (u, v, t) exists.

We follow Rossi et al. (2020); Xu et al. (2020); Yu et al. (2023) to conduct dynamic node classification by
estimating the state of a node in a given interaction at a specific timestamp. A classification MLP is employed
to map the node representations as well as the learned temporal patterns to the labels. AUC-ROC is used
as the evaluation metric and we follow the dataset splits introduced in Yu et al. (2023) (70%15%/15%
for training/validation/testing in chronological order) for node classification. Table 14 shows the node
classification results on Wikipedia and Reddit (the only two CTDG datasets for dynamic node classfication),
we observe that DyGMamba can achieve the best average rank, showing its strong performance. Note that
both Wikipedia and Reddit are not long-range temporal dependent datasets, therefore we do not include
this part into the main body of the paper. Nonetheless, DyGMamba’s great results on these datasets further
prove its strength in CTDG modeling, regardless of the type of the dataset (whether long-range temporal
dependent or not).

Table 14: AUC-ROC of dynamic node classification.

Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGMamba
Wikipedia 88.10 ± 1.57 87.41 ± 1.94 83.42 ± 2.92 85.51 ± 3.28 84.59 ± 1.16 79.03 ± 1.18 85.60 ± 1.73 86.35 ± 2.19 87.38 ± 0.14 87.44 ± 0.82

Reddit 59.53 ± 3.18 63.12 ± 0.51 69.31 ± 2.18 63.21 ± 3.00 65.22 ± 0.79 68.04 ± 2.00 64.42 ± 1.15 67.67 ± 1.39 67.29 ± 0.15 67.70 ± 1.32
Avg. Rank 5.50 6.00 5.00 7.50 7.00 6.00 6.50 4.50 4.50 2.50

G Efficieny Analysis Complete Results

We first provide the efficiency analysis results of all baselines in this section. We then provide a comparison
of total training time among DyGFormer, CTAN and DyGMamba.

G.1 Efficiency Statistics for all baselines

We provide the efficiency statistics for all baselines in Table 15. To supplement, in Figure 6, we further plot
the comparison of model size, per epoch training time and GPU Memory across models on Reddit and Social
Evo., analogous to the analysis in Sec. 4.3.1. CTAN cannot be trained on Social Evo. before timeout and

24



Published in Transactions on Machine Learning Research (05/2025)

therefore does not appear in the plot of Social Evo.. The complete statistics including the numbers in the
plots can be found in Table 15.

Table 15: Efficiency statistics for all baselines. EdgeBank is non-parameterized and not a machine learning
model so we omit it here. # Params means number of parameters (MB). Time and Mem denote per epoch
training time (min) and GPU memory (GB), respectively. The numbers in this table are the average results
of five runs with different random seeds.

Datasets LastFM Enron MOOC UCI Reddit Social Evo.
Models # Params Time Mem # Params Time Mem # Params Time Mem # Params Time Mem # Params Time Mem # Params Time Mem
JODIE 0.75 4.4 2.28 0.75 0.07 1.30 0.75 0.78 2.36 0.75 0.03 1.44 0.75 3.95 1.10 0.75 4.70 1.71
DyRep 2.64 6.6 2.29 2.64 0.10 1.34 2.64 0.88 2.38 2.64 0.05 1.51 2.64 5.75 1.21 2.64 7.55 1.76
TGAT 4.02 22.75 4.15 4.02 1.28 3.46 4.02 4.08 3.64 4.02 0.60 3.42 4.02 16.33 2.98 4.02 25.50 3.89
TGN 3.68 12.14 2.21 3.68 0.15 1.45 3.68 1.03 2.54 3.68 0.08 1.51 3.67 2.05 1.67 3.67 3.83 1.78

CAWN 15.35 99.00 14.92 15.35 2.62 4.03 15.35 13.45 8.02 15.35 1.95 9.40 15.35 20.16 5.89 15.35 85.66 8.14
TCL 3.37 6.23 3.04 3.37 0.30 2.51 3.37 1.00 2.49 3.37 0.13 2.00 3.37 2.25 1.82 3.37 5.05 2.48

GraphMixer 2.45 16.35 2.78 2.45 1.20 2.23 2.45 4.02 2.40 2.45 0.73 2.19 2.44 4.92 1.57 2.45 15.50 2.71
DyGFormer 5.56 47.00 7.57 4.80 2.73 3.23 4.80 8.32 3.35 4.15 0.62 2.30 4.24 7.00 2.42 4.14 20.00 2.77

CTAN 0.45 3.33 1.44 0.47 0.50 1.33 0.68 3.22 2.30 0.50 0.38 1.30 0.53 0.86 1.54 0.45 2.41 0.63
DyGMamba 2.78 28.45 4.17 2.03 2.05 2.74 1.65 4.88 2.48 1.37 0.60 1.93 3.32 6.30 2.07 3.22 17.80 2.59

Figure 6: Efficiency comparison on Reddit and Social Evo. among DyGMamba and five baselines in terms
of number (#) of parameters, training time per epoch and GPU memory.

G.2 Total Training Time Comparison among DyGFormer, CTAN and DyGMamba

We present the per epoch training time, number of epochs until the best performance and the total training
time in Table 16. Total training time computes the total amount of time a model requires to reach its
maximum performance, without considering the patience during training. We observe that CTAN requires
much more epochs to converge, e.g., on LastFM it uses almost 54 times of epochs than DyGMamba to reach
its best performance.

G.3 Modeling an Increasing Number of Temporal Neighbors with Limited Total Training Time

To further show DyGMamba’s superior efficiency against baseline methods, we do the following experiments.
We train five best performing models (as shown in Table 1) on Enron with a gradually increasing number
of temporal neighbors10 and report their performance. The number of sampled neighbors spans from 8, 16,

10For CTAN, by number of temporal neighbors we mean the sampler size in each graph convolutional layer, i.e., the size of
the sampled temporal neighborhood for each node at a timestamp.

25



Published in Transactions on Machine Learning Research (05/2025)

Table 16: Comparison among DyGFormer, CTAN and DyGMamba on per epoch training time (Tep (min)),
number of epochs until the best performance (# Epoch) and the total training time (Ttot (min)). Ttot =
Tep× # Epoch. The numbers in this table are the average results of five runs with different random seeds.
CTAN cannot be trained on Social Evo. before timeout and thus without # Epoch and Ttot.

Datasets LastFM Enron MOOC UCI Reddit Social Evo.
Models Tep # Epoch Ttot Tep # Epoch Ttot Tep # Epoch Ttot Tep # Epoch Ttot Tep # Epoch Ttot Tep # Epoch Ttot

DyGFormer 47.00 49.60 2331.20 2.73 32.80 89.54 8.32 64.20 534.14 0.62 34.80 21.58 4.24 24.60 104.30 20.00 30.22 604.40
CTAN 3.33 635.00 2114.55 0.50 173.00 86.50 3.22 138.00 444.36 0.38 236.00 89.68 0.53 327.18 173.41 0.45 Timeout Timeout

DyGMamba 28.45 11.80 335.71 2.05 33.00 67.65 4.88 38.00 185.44 0.60 28.00 16.80 3.32 26.80 88.98 17.80 24.40 434.32

Figure 7: Performance comparison among TGN, CAWN, DyGFormer, CTAN and DyGMamba on Enron,
with an increasing number of encoded temporal neighbors. The metric is AP under random NSS on trans-
ductive link prediction. The time limit for training is 120 min. If a model fails to complete training within
this limit, a cross × is used to mark the data point. Dashed lines indicate that models start to exceed time
limit as neighbor number increases.

32, 64, 128 to 256 (Note that these numbers are different from the best hyperparameters reported in Yu
et al. (2023)). We fix the patch size p of DyGFormer and DyGMamba to 1 in order to maximize their input
sequence lengths. We set a time limit of 120 minutes for the total training time. We let all the experiments
finish the complete training process and note down the ones that exceed the time limit. In this way, we
not only care about the per epoch training time, but also pay attention to how long it takes for models
to converge. The experimental results are reported in Fig. 7. The points marked with crosses (×) mean
that the training process cannot finish within the time limit (although we still plot their corresponding
performance). We find that only TGN and DyGMamba can successfully converge within the time limit
when the number of considered neighbors increases to 256. DyGMamba can constantly achieve performance
gain from modeling more temporal neighbors while TGN cannot. CAWN is extremely time consuming so it
cannot finish training within the time limit even when it is asked to model 16 temporal neighbors. As for the
methods designed for long-range temporal information propagation, DyGFormer and CTAN consume much
longer total training time than DyGMamba. They fail to converge within 120 minutes when the number of
considered neighbors reaches 128 and 256, respectively. We also observe that CTAN’s performance fluctuates
greatly with the increasing temporal neighbors, indicating that it is not stable to model a large number of
temporal neighbors. This also implies that increasing the amount of historical information will gradually
make CTAN harder to converge, which might cause trouble in modeling long range temporal dependent
datasets.

H Details of S4 and Mamba Operations

Single-Input Single-Output. Given a sequence of vector elements as input, SISO means that the SSM
processes each input dimension in parallel with the same set of parameters. For example, a sequence of
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d2-dimensional vectors will be split into d2 1-dimensional sequences with the same sequence length. Each of
them will be computed in parallel as in Eq. 2 with a shared set of SSM parameters. After computation, all
these d2 sequences will be rearranged back into a sequence of d2-dimensional vectors. SISO fails to mix the
information across dimensions of each vector. To address this, S4 and Mamba employs a mixing linear layer
fmix(·) : Rd2 → Rd2 on each d2-dimensional vector to mix the information across d2 dimensions. For more
details, please refer to (Gu et al., 2022b), (Smith et al., 2023) and (Gu & Dao, 2023).

SSM Function. SSMĀ,B̄,C(·) takes a matrix as input. The input matrix can be considered as a sequence
of vector elements, where each row of the matrix corresponds to an element. The output of SSMĀ,B̄,C(·) is
also a matrix, where each row of the output matrix is the output of its corresponding input vector element.
SSMĀ,B̄,C(·) can be viewed as using S4 or Mamba to process a sequence of vectors in the SISO fashion,
based on their parameters Ā, B̄, C.

I Motivation of Using SSM for Temporal Pattern Modeling

The biggest motivation of using SSM for temporal pattern modeling is that it helps to maintain good
efficiency. If in the future we want to deploy DyGMamba on larger datasets that require much longer
historical histories for modeling, the value of k will also increase accordingly and the time difference sequence
will not be short anymore. Besides, as we have chosen SSM to model historical one-hop temporal neighbors
in the node-level SSM, it is natural to employ another SSM for temporal pattern modeling.

J Impact of Patch Size on MOOC

(a) MOOC performance. (b) MOOC # params. (c) MOOC GPU memory. (d) MOOC train time/epoch.

Figure 8: Impact of patch size on DyGFormer, DyGMamba and Variant A, given a fixed number of sampled
temporal neighbors ρ on MOOC. Patch size p varies from 4, 2, 1. Sequence length ρ/p increases as patch
size decreases. Performance is the transductive AP under random NSS.

Apart from the analysis on Enron, we further analyze the impact of patch size on another long-term temporal
dependent dataset MOOC. Fig. 8b shows the numbers of parameters of DyGFormer and DyGmamba with
different patch sizes on MOOC. We confirm that patching greatly affects model sizes. We decrease the patch
size gradually from 4 to 1 (the optimal value of DyGMamba’s hyperparameter ρ & p is 128 & 4) and track
DyGMamba’s performance (Fig. 8a) as well as efficiency (Fig. 8b to 8d) on MOOC. Meanwhile, we also
keep track on DyGFormer under the same patch size for comparison. Same as our analysis on Enron, we
plot the performance of Variant A under different patch sizes in Fig. 8a as well. We can draw the same
conclusions as in our analysis on Enron.

K Performance of DyGMamba on Discrete-Time Dynamic Graphs

To better benchmark DyGMamba, we test the performance of DyGMamba on 6 DTDG datasets collected
in (Yu et al., 2023) (i.e., Flights, Can. Parl, US Legis., UN Trade, UN Vote and Contact) and compare it
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with the 10 recent baselines discussed in Sec. 4.1 (i.e., JODIE, DyRep, TGAT, TGN, CAWN, EdgeBank,
TCL, GraphMixer, DyGFormer, CTAN)11. The value of the hyperparameter ρ & p of DyGMamba is set
as same as the one for DyGFormer. The optimal ρ & p for Flights, Can. Parl, US Legis., UN Trade, UN
Vote and Contact is {256 & 8, 2048 & 64, 256 & 8, 256 & 8, 256 & 8, 128 & 4, 32 & 1}. We report the best
hyperparameter k of DyGMamba for each dataset in Table 17. We use the implementations and the best
hyperparameters provided by Yu et al. (2023) for all baseline models except CTAN. For CTAN, we use its
official implementation, fixing the number of layers to 5. All models are trained with a batch size of 200
for fair efficiency analysis. We report the AP of both models on DTDG datasets in the transductive and
inductive settings in Table 18 and Table 19, respectively. In addition, Table 20 and Table 21 present the
AUC-ROC of both models in the transductive and inductive settings, respectively.

We find that DyGMamba achieves strong overall performance (Avg. Rank) on DTDGs in both transduc-
tive and inductive link prediction tasks. However, compared to its performance on CTDGs, DyGMamba’s
performance on DTDGs is not always highly competitive. This is expected, as DyGMamba is not originally
designed for DTDGs and lacks the ability to optimally handle concurrent edges.

One interesting finding is that on the long-range temporal dependent dataset Can. Parl which requires sam-
pling 2048 neighbors for modeling, DyGMamba can benefit from such long neighbor sequence and achieve the
best performance among all models, indicating the importance of modeling long-term temporal information
as well as the strong capability of our model in capturing it. More importantly, we find that DyGMamba
can benefit from greater value of k as the number of the sampled neighbors ρ increases. For example, on
Can. Parl, as shown in Table 17, the optimal value of k is 100. This makes our selection of using Mamba for
temporal pattern modeling more reasonable since Mamba can better demonstrate its advantage in efficiency
when there is a growing time difference sequence corresponding to the temporal pattern.

Table 17: DyGMamba hyperparameter searching strategy on DTDG datasets. The best settings are marked
as bold.

Datasets k

Flights {30, 10, 5}
Can. Parl. {200, 100, 30}
US Legis. {30, 10, 5}
UN Trade {30, 10, 5}
UN Vote {30, 10, 5}
Contact {30, 10, 5}

L Detailed Discussion of Motivation

The goal of this work is to introduce a model capable of effective and efficient reasoning over CTDGs using
extensive historical information. Our motivation is supported by the following considerations:

Abundant Historical Information in Real-World Datasets. We quantify the availability of histor-
ical neighbors across various datasets for transductive and inductive link prediction tasks under random,
historical, and inductive NSS settings, as shown in Table 22. Observations indicate that real-world CTDG
datasets, such as LastFM and Enron, typically possess extensive one-hop historical information. Although
it is feasible to perform predictions based solely on recent interactions, we posit that effectively leveraging
longer historical contexts can further enhance model performance.

Limitations of Existing Models in Handling Extensive Historical Information. Two recent state-
of-the-art methods, DyGFormer and CTAN, explicitly designed to capture long-range historical dependen-
cies, have been considered in our study. Our experimental results reveal distinct limitations: DyGFormer

11Although we have discussed in Sec. 7 that DyGMamba is not suitable to reason over DTDGs, we still benchmark our model
on them to show its effectiveness.
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Table 18: AP of transductive dynamic link prediction on DTDGs. The best and the second best results are
marked as bold and underlined, respectively.

NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

Can. Parl. 69.58 ± 0.28 68.94 ± 3.55 71.57 ± 0.68 69.37 ± 1.86 69.07 ± 3.01 64.55 ± 0.00 71.49 ± 0.46 77.49 ± 0.62 97.63 ± 0.21 87.01 ± 1.10 99.57 ± 0.08
Contact 94.75 ± 0.82 95.97 ± 0.16 96.55 ± 0.11 97.21 ± 0.44 90.65 ± 0.16 92.58 ± 0.00 94.67 ± 0.11 91.88 ± 0.07 98.30 ± 0.00 98.53 ± 0.09 98.43 ± 0.12
Flights 96.03 ± 1.17 95.49 ± 0.49 93.92 ± 0.04 98.01 ± 0.39 98.50 ± 0.01 89.35 ± 0.00 91.30 ± 0.05 91.02 ± 0.04 98.92 ± 0.01 93.64 ± 0.54 98.95 ± 0.05

UN Trade 64.43 ± 0.25 62.58 ± 0.93 61.53 ± 0.18 64.03 ± 0.69 65.41 ± 0.04 60.41 ± 0.00 62.19 ± 0.07 62.87 ± 0.12 66.69 ± 0.33 69.01 ± 0.38 67.50 ± 0.24
UN Vote 63.35 ± 0.99 63.90 ± 0.08 52.89 ± 0.28 65.18 ± 0.61 52.77 ± 0.07 58.49 ± 0.00 51.89 ± 0.18 52.18 ± 0.13 55.90 ± 0.24 70.19 ± 1.26 56.39 ± 0.18
US Legis. 74.29 ± 0.68 73.81 ± 2.29 67.85 ± 2.80 76.46 ± 0.37 70.60 ± 0.25 58.39 ± 0.00 70.99 ± 0.25 72.44 ± 0.29 71.06 ± 1.06 79.44 ± 2.28 71.75 ± 0.26

Avg. Rank 5.17 6.17 7.50 4.33 7.50 9.67 8.50 7.67 4.00 2.50 3.00

H
is

to
ri

ca
l Can. Parl. 51.66 ± 0.51 62.46 ± 2.73 68.87 ± 0.96 66.49 ± 0.47 65.58 ± 3.34 63.76 ± 0.00 68.92 ± 2.04 74.58 ± 1.42 95.72 ± 1.84 89.28 ± 1.24 99.77 ± 0.12

Contact 94.33 ± 1.77 96.27 ± 0.17 96.75 ± 0.72 96.39 ± 0.47 84.61 ± 0.52 88.83 ± 0.00 95.26 ± 0.19 93.29 ± 0.47 97.59 ± 0.18 97.86 ± 0.15 97.61 ± 0.04
Flights 66.56 ± 1.39 67.53 ± 1.79 72.60 ± 0.33 67.77 ± 1.08 64.60 ± 0.64 70.53 ± 0.00 71.13 ± 0.19 71.40 ± 0.32 65.63 ± 0.21 75.75 ± 8.04 67.80 ± 2.17

UN Trade 61.38 ± 1.27 58.56 ± 1.04 54.64 ± 0.22 56.64 ± 3.43 57.09 ± 1.80 81.08 ± 0.00 56.80 ± 1.20 57.91 ± 0.81 62.86 ± 1.66 67.38 ± 1.08 65.10 ± 0.02
UN Vote 71.11 ± 1.00 70.33 ± 1.21 53.67 ± 2.31 69.16 ± 1.82 51.29 ± 0.41 84.76 ± 0.00 53.78 ± 2.16 54.17 ± 1.08 60.59 ± 0.94 74.75 ± 1.81 61.07 ± 0.39
US Legis. 47.20 ± 1.72 81.60 ± 7.14 76.28 ± 4.16 67.45 ± 6.79 73.25 ± 14.99 63.31 ± 0.00 83.27 ± 0.88 86.05 ± 1.77 63.99 ± 11.58 84.20 ± 0.95 82.15 ± 1.02

Avg. Rank 7.83 6.50 6.50 7.00 9.33 6.00 6.17 5.33 5.83 1.83 3.67

In
du

ct
iv

e

Can. Parl. 48.13 ± 0.42 57.90 ± 2.61 69.54 ± 0.66 63.58 ± 1.59 66.94 ± 1.60 62.20 ± 0.00 68.23 ± 1.42 70.00 ± 0.57 95.01 ± 0.80 87.42 ± 0.71 98.32 ± 0.34
Contact 92.34 ± 1.91 93.99 ± 0.24 95.14 ± 1.19 94.36 ± 0.88 89.61 ± 0.36 85.19 ± 0.00 92.08 ± 0.32 90.64 ± 0.56 94.93 ± 0.54 97.31 ± 0.19 95.43 ± 0.17
Flights 69.39 ± 2.19 71.32 ± 2.44 75.68 ± 0.37 72.27 ± 1.33 69.01 ± 0.35 81.07 ± 0.00 75.10 ± 0.08 74.68 ± 0.35 70.31 ± 1.00 76.20 ± 7.96 73.79 ± 5.69

UN Trade 60.55 ± 1.20 60.15 ± 0.52 58.86 ± 0.38 59.52 ± 3.79 63.37 ± 2.14 73.00 ± 0.00 61.86 ± 1.42 62.03 ± 0.63 53.53 ± 0.27 68.98 ± 0.73 58.89 ± 0.98
UN Vote 67.81 ± 0.75 68.69 ± 0.24 52.66 ± 1.18 67.58 ± 1.51 51.90 ± 1.40 66.31 ± 0.00 49.17 ± 4.04 51.28 ± 1.25 53.06 ± 0.23 72.85 ± 1.36 52.24 ± 0.95
US Legis. 46.58 ± 1.19 79.16 ± 7.11 76.09 ± 4.00 61.85 ± 7.02 71.78 ± 14.33 64.83 ± 0.00 74.33 ± 2.79 83.71 ± 0.69 62.01 ± 10.94 79.13 ± 2.03 81.67 ± 2.16

Avg. Rank 8.00 6.00 5.50 7.00 7.83 5.83 6.67 5.50 6.83 2.17 4.67

Table 19: AP of inductive dynamic link prediction on DTDGs. EdgeBank cannot do inductive link prediction
so is not reported.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

Can. Parl. 53.69 ± 1.27 54.28 ± 1.84 55.60 ± 0.57 53.47 ± 1.04 55.33 ± 0.98 55.06 ± 0.67 56.69 ± 0.04 87.14 ± 1.40 62.97 ± 0.34 93.46 ± 2.62
Contact 95.20 ± 0.34 92.32 ± 0.20 96.18 ± 0.21 92.74 ± 2.86 89.98 ± 0.36 93.93 ± 0.14 90.51 ± 0.03 98.04 ± 0.02 76.19 ± 5.71 98.16 ± 0.03
Flights 94.45 ± 0.89 92.85 ± 0.55 88.70 ± 0.02 95.03 ± 1.04 97.07 ± 0.02 83.54 ± 0.10 83.03 ± 0.10 97.79 ± 0.04 75.12 ± 5.52 97.85 ± 0.22

UN Trade 58.94 ± 0.28 56.46 ± 0.60 61.20 ± 0.21 56.97 ± 1.53 65.30 ± 0.14 62.24 ± 0.27 62.55 ± 0.11 64.62 ± 0.58 53.83 ± 0.20 70.55 ± 0.04
UN Vote 55.65 ± 1.32 55.53 ± 1.43 52.38 ± 0.92 57.86 ± 1.72 49.66 ± 0.77 53.38 ± 0.60 51.94 ± 1.32 56.40 ± 0.16 55.02 ± 3.04 56.61 ± 0.13
US Legis. 54.36 ± 1.90 57.54 ± 1.43 50.21 ± 1.77 59.39 ± 2.30 52.79 ± 0.41 57.12 ± 0.22 54.68 ± 2.07 54.39 ± 1.63 52.55 ± 3.42 55.95 ± 1.16

Avg. Rank 6.00 6.17 6.50 6.00 6.33 5.83 6.50 3.00 8.00 1.67

In
du

ct
iv

e

Can. Parl. 51.91 ± 1.35 52.52 ± 1.85 57.42 ± 0.57 53.55 ± 1.36 57.56 ± 0.81 56.59 ± 1.22 56.91 ± 0.55 84.72 ± 2.58 63.27 ± 1.07 92.68 ± 0.97
Contact 91.22 ± 0.18 89.18 ± 0.48 94.93 ± 0.97 88.74 ± 2.60 74.88 ± 0.81 91.41 ± 0.40 89.67 ± 0.66 93.78 ± 0.88 70.10 ± 5.03 94.05 ± 0.32
Flights 60.79 ± 1.25 62.54 ± 1.73 65.23 ± 0.42 59.58 ± 1.56 56.76 ± 0.11 65.12 ± 0.09 65.26 ± 0.44 56.45 ± 0.17 66.53 ± 2.41 57.76 ± 2.06

UN Trade 55.33 ± 0.88 54.52 ± 0.52 54.21 ± 0.24 51.84 ± 1.57 56.29 ± 1.86 55.82 ± 1.21 55.73 ± 0.20 51.92 ± 0.13 51.91 ± 0.57 52.81 ± 0.18
UN Vote 59.24 ± 1.60 61.97 ± 1.82 52.52 ± 2.93 66.41 ± 1.80 47.35 ± 0.75 56.34 ± 2.25 48.15 ± 0.58 52.79 ± 0.84 55.49 ± 0.78 53.70 ± 2.40
US Legis. 55.59 ± 2.38 59.60 ± 1.64 50.85 ± 2.59 60.19 ± 2.60 55.15 ± 1.55 58.56 ± 0.99 55.15 ± 0.27 54.76 ± 2.35 52.65 ± 1.99 57.85 ± 0.23

Avg. Rank 5.50 5.00 5.50 5.83 6.50 4.00 5.33 6.33 6.17 4.67

Table 20: AUC-ROC of transductive dynamic link prediction on DTDGs.

NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

Can. Parl. 78.34 ± 0.24 76.69 ± 4.51 76.36 ± 0.95 75.66 ± 1.62 74.24 ± 3.64 64.14 ± 0.00 76.64 ± 0.39 83.22 ± 0.84 98.00 ± 0.22 86.77 ± 1.17 99.69 ± 0.06
Contact 96.36 ± 0.48 96.46 ± 0.14 97.18 ± 0.09 97.76 ± 0.35 90.45 ± 0.24 94.34 ± 0.00 95.53 ± 0.06 93.92 ± 0.01 98.52 ± 0.00 98.88 ± 0.06 98.68 ± 0.02
Flights 96.48 ± 1.17 96.10 ± 0.50 94.05 ± 0.08 98.26 ± 0.36 98.45 ± 0.01 90.23 ± 0.00 91.26 ± 0.03 91.14 ± 0.03 98.93 ± 0.01 94.57 ± 0.57 98.98 ± 0.05

UN Trade 69.10 ± 0.45 66.92 ± 0.53 63.99 ± 0.18 67.80 ± 0.81 68.57 ± 0.14 66.75 ± 0.00 64.72 ± 0.01 65.97 ± 0.10 70.53 ± 0.34 72.00 ± 0.24 71.41 ± 0.21
UN Vote 68.26 ± 1.19 68.72 ± 0.08 53.68 ± 0.37 68.92 ± 0.72 53.15 ± 0.03 62.97 ± 0.00 51.73 ± 0.25 52.60 ± 0.09 57.65 ± 0.48 73.91 ± 1.08 58.48 ± 0.12
US Legis. 82.13 ± 0.30 80.98 ± 1.92 75.00 ± 2.19 83.65 ± 0.27 77.10 ± 0.14 62.57 ± 0.00 77.11 ± 0.59 79.19 ± 0.23 77.65 ± 0.95 86.01 ± 1.68 79.03 ± 0.26

Avg. Rank 4.83 5.33 8.00 5.67 8.83 9.83 9.00 7.83 3.00 2.67 2.00

H
is

to
ri

ca
l Can. Parl. 62.08 ± 0.96 70.62 ± 3.57 72.11 ± 0.93 71.43 ± 0.99 70.44 ± 3.69 62.94 ± 0.00 74.07 ± 1.60 78.55 ± 0.72 96.46 ± 1.93 89.06 ± 1.14 99.82 ± 0.10

Contact 96.23 ± 0.67 95.89 ± 0.14 96.01 ± 0.61 96.34 ± 0.24 83.63 ± 0.49 92.18 ± 0.00 94.70 ± 0.18 92.98 ± 0.39 97.20 ± 0.13 98.37 ± 0.10 97.27 ± 0.06
Flights 68.84 ± 0.70 69.23 ± 1.44 72.33 ± 0.23 69.12 ± 0.81 65.93 ± 0.46 74.64 ± 0.00 70.81 ± 0.07 70.78 ± 0.32 67.50 ± 0.66 78.87 ± 7.94 68.98 ± 0.81

UN Trade 68.89 ± 1.20 63.54 ± 1.02 59.33 ± 0.58 61.61 ± 2.98 64.74 ± 2.21 86.44 ± 0.00 62.11 ± 1.03 64.50 ± 0.17 72.17 ± 1.68 69.75 ± 0.90 71.41 ± 0.21
UN Vote 77.54 ± 1.09 76.32 ± 1.04 55.61 ± 2.41 73.31 ± 1.65 50.95 ± 0.72 89.53 ± 0.00 54.70 ± 1.78 56.29 ± 1.46 64.79 ± 1.13 78.62 ± 1.36 65.17 ± 1.24
US Legis. 54.26 ± 3.67 88.47 ± 4.92 83.49 ± 4.72 79.29 ± 4.52 80.85 ± 9.96 67.50 ± 0.00 86.20 ± 0.84 90.38 ± 0.73 75.60 ± 9.12 89.88 ± 0.54 88.36 ± 1.78

Avg. Rank 7.33 6.00 6.83 6.83 9.17 5.67 6.83 5.67 5.50 2.17 4.00

In
du

ct
iv

e

Can. Parl. 52.09 ± 0.28 63.40 ± 3.74 72.42 ± 0.82 67.47 ± 1.82 71.66 ± 1.91 61.25 ± 0.00 72.29 ± 1.43 71.25 ± 0.46 95.78 ± 0.85 85.99 ± 0.95 99.56 ± 0.21
Contact 94.24 ± 0.24 94.11 ± 0.17 94.76 ± 0.98 94.70 ± 0.39 88.26 ± 0.29 85.86 ± 0.00 92.28 ± 0.24 90.71 ± 0.43 95.12 ± 0.28 97.93 ± 0.12 95.68 ± 0.20
Flights 70.09 ± 1.39 71.38 ± 1.84 73.56 ± 0.22 72.41 ± 0.71 69.61 ± 0.26 81.10 ± 0.00 72.77 ± 0.04 72.03 ± 0.35 69.33 ± 0.56 79.82 ± 7.80 71.16 ± 3.24

UN Trade 66.91 ± 1.17 65.40 ± 0.56 64.50 ± 0.93 64.50 ± 3.18 72.63 ± 2.17 74.25 ± 0.00 68.28 ± 0.85 68.58 ± 0.13 59.98 ± 0.40 69.74 ± 1.54 67.60 ± 0.64
UN Vote 73.82 ± 1.05 74.67 ± 0.22 52.88 ± 1.86 72.60 ± 1.62 52.05 ± 1.65 72.87 ± 0.00 50.25 ± 7.46 51.37 ± 1.05 55.36 ± 0.30 76.64 ± 1.02 54.09 ± 0.06
US Legis. 53.13 ± 2.57 86.74 ± 5.01 83.16 ± 3.65 73.50 ± 5.46 79.80 ± 10.61 68.72 ± 0.00 80.53 ± 3.50 88.82 ± 0.32 73.31 ± 9.22 86.09 ± 1.11 86.06 ± 2.27

Avg. Rank 7.83 5.83 5.50 6.67 7.33 6.17 6.50 6.17 7.00 2.17 4.67
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Table 21: AUC-ROC of inductive dynamic link prediction on DTDGs. EdgeBank cannot do inductive link
prediction so is not reported.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

Can. Parl. 53.62 ± 1.28 55.89 ± 1.77 56.67 ± 0.60 55.38 ± 2.11 57.91 ± 0.84 56.92 ± 0.97 59.29 ± 0.04 89.06 ± 0.39 59.13 ± 0.36 94.02 ± 3.02
Contact 95.96 ± 0.20 92.00 ± 0.16 96.78 ± 0.17 94.04 ± 2.09 89.60 ± 0.32 94.82 ± 0.09 92.81 ± 0.02 98.30 ± 0.00 80.41 ± 4.30 98.44 ± 0.05
Flights 94.82 ± 0.85 93.64 ± 0.44 88.61 ± 0.12 95.81 ± 0.87 96.87 ± 0.02 82.56 ± 0.13 82.28 ± 0.08 97.80 ± 0.05 79.41 ± 3.79 97.98 ± 0.25

UN Trade 61.34 ± 0.38 58.41 ± 0.54 62.68 ± 0.21 58.71 ± 1.69 67.21 ± 0.15 63.83 ± 0.16 63.90 ± 0.02 67.28 ± 0.54 54.62 ± 0.93 68.26 ± 0.26
UN Vote 56.24 ± 1.56 56.72 ± 1.90 52.44 ± 1.09 59.42 ± 2.12 47.92 ± 1.19 51.94 ± 0.69 51.65 ± 1.10 57.47 ± 0.27 53.40 ± 3.51 56.91 ± 0.12
US Legis. 57.23 ± 1.92 60.86 ± 1.59 46.86 ± 3.44 62.36 ± 2.04 50.81 ± 1.02 58.02 ± 1.37 54.98 ± 2.39 52.96 ± 1.71 53.89 ± 3.55 57.17 ± 0.20

Avg. Rank 5.83 6.17 6.67 4.83 6.50 5.83 6.33 3.00 7.83 2.00

In
du

ct
iv

e

Can. Parl. 50.56 ± 2.02 52.07 ± 1.53 58.91 ± 0.48 54.61 ± 2.40 60.17 ± 0.46 58.37 ± 1.15 58.59 ± 0.77 86.13 ± 2.37 59.68 ± 1.05 92.37 ± 0.18
Contact 91.20 ± 0.17 88.90 ± 0.26 94.44 ± 0.86 89.78 ± 2.06 75.38 ± 0.50 91.78 ± 0.28 89.82 ± 0.51 94.31 ± 0.43 74.41 ± 3.94 94.35 ± 0.29
Flights 60.58 ± 0.50 61.64 ± 1.60 63.61 ± 0.32 59.28 ± 0.95 56.51 ± 0.03 63.64 ± 0.11 63.07 ± 0.35 55.67 ± 0.48 71.35 ± 1.86 56.58 ± 2.12

UN Trade 58.51 ± 1.05 56.96 ± 0.44 58.71 ± 0.43 54.45 ± 1.33 62.65 ± 2.62 61.14 ± 1.09 61.00 ± 0.35 55.80 ± 0.11 52.05 ± 0.59 57.58 ± 0.20
UN Vote 62.88 ± 1.52 65.80 ± 2.47 51.79 ± 3.30 71.29 ± 2.01 46.61 ± 1.35 57.35 ± 2.24 45.75 ± 1.04 54.62 ± 0.50 54.31 ± 1.14 54.83 ± 2.17
US Legis. 59.83 ± 2.06 65.54 ± 1.42 47.15 ± 4.26 63.95 ± 2.30 53.14 ± 2.15 59.73 ± 1.06 56.22 ± 2.36 53.57 ± 2.73 53.64 ± 2.12 57.91 ± 3.41

Avg. Rank 5.33 5.33 5.17 5.67 6.67 3.83 5.83 6.17 6.50 4.50

suffers from high computational complexity, while CTAN exhibits comparatively weaker predictive perfor-
mance. Consequently, neither model achieves an optimal balance between effectiveness and computational
efficiency. Our proposed model, DyGMamba, overcomes these limitations by demonstrating superior predic-
tive capability and efficiency. Extensive experiments position DyGMamba as the top ranked method across
multiple benchmark datasets.

Proven Performance Enhancement with Increased Historical Information. In Appendix G.3, we
have included an experiment showing different models’ performance with a varying number of temporal
neighbors. From Figure 7, we observe that, for datasets with long-range temporal dependencies (such as
Enron), an increase in sampled neighbors positively impacts model performance, particularly for DyGMamba
and DyGFormer. We also find that for other baseline models, increasing the number of sampled neighbors
does not consistently lead to performance improvements. This suggests that the key issue is not whether
increasing sampled neighbors is always beneficial for dynamic graph modeling, but rather whether a model
is robust enough to effectively process larger amounts of historical information. To further support this, we
conducted additional experiments on Can. Parl12 using DyGMamba with an increasing number of sampled
temporal neighbors (64, 128, 256, 512, 1024 and 2048). The results, presented in Table 23, confirm that
DyGMamba consistently benefits from an increasing neighbor count until reaching the large number of 2048,
further demonstrating its ability to leverage long-range temporal dependencies.

Temporal Pattern Modeling is Game Changer. As mentioned in introduction, we wish to capture
edge-specific temporal patterns for better CTDG modeling. The motivation can be well supported with the
following experiment. We provide a comparison between DyGMamba, DyGFormer, and a modified version
of DyGFormer where Transformer is replaced with Mamba (referred to as Variant G). Our results in Table 24
show a performance drop for Variant G across all datasets compared to DyGFormer. Additionally, Variant G
performs significantly worse than DyGMamba, with particularly notable declines on the synthetic datasets
S1, S2, and S3. We attribute this to two reasons:

• Intrinsic Limitations of Mamba: Previous study (Waleffe et al., 2024) has shown that Mamba is
generally less effective than Transformer in tasks requiring strong copying or in-context learning
abilities. In CTDG modeling, strong copying ability is crucial, as many predictions are based on re-
calling repeated edges. Consequently, replacing Transformer with Mamba in DyGFormer inevitably
leads to a performance drop, despite the gains in efficiency.

• The Importance of Temporal Pattern Modeling: Our dynamic information selection module plays a
crucial role in enabling a Mamba-based model to outperform a Transformer-based model in CTDG
modeling, especially when clear temporal patterns exist. This suggests that effectively capturing
temporal patterns can significantly enhance the competitiveness of Mamba-based models in this
context, further validating the novelty and the contribution of our work.

12Although Can. Parl is a DTDG, it requires huge number of sampled historical neighbors for optimal modeling. Therefore,
it is considered here to prove the performance enhancement with increased historical information.
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To summarize, the design our DyGMamba achieves a good balance between efficiency and effectiveness,
thanks to temporal pattern modeling.

Table 22: Number of available historical neighbors for all datasets on both transductive and inductive link
prediction under random/historical/inductive NSS settings. Trans LP and Ind LP denote transductive and
inductive link prediction, respectively.

NSS Random NSS Historical NSS Inductive NSS
Trans LP Ind LP Trans LP Trans LP Ind LP

Datasets Avg. Max Avg. Max Avg. Max Avg. Max Avg. Max
LastFM 2,253.03 51,767 2,333.75 51,767 2,393.71 51,767 2,237.29 51,767 2,309.49 51,767
Enron 1,681.80 21,512 1,693.40 21,511 1,734.19 21,512 1,675.21 21,512 1,670.65 21,511
MOOC 2,304.04 19,473 2,312.62 19,473 3,265.62 19,473 2,293.64 19,473 2,275.23 19,473
Reddit 4,129.77 58,726 4,196.20 58,726 4,604.99 58,726 4,128.88 58,726 4,186.38 58,726
Wikipedia 144.39 1,937 149.67 1,937 164.49 1,937 144.17 1,937 149.22 1,937
UCI 172.82 1,546 193.87 1,546 261.31 1,546 173.08 1,546 192.72 1,546
Social Evo. 63,962.35 124,565 68,701.32 124,565 60,403.62 124,565 60,395.83 124,565 65,191.24 124,565

Table 23: DyGMamba’s performance with increasing sampled neighbors on transductive link prediction
under random NSS.

Can. Parl 64 128 256 512 1024 2048
DyGMamba 72.58 74.46 76.85 82.67 94.88 99.57

Table 24: Comparison among Variant G, DyGFormer and DyGMamba on transductive link prediction under
random NSS.

Models LastFM Enron MOOC Reddit Wikipedia UCI Social Evo. S1 S2 S3
Variant G 92.69 92.24 87.13 98.89 98.70 95.32 94.29 54.40 55.13 72.53

DyGFormer 92.95 92.42 87.66 99.22 99.03 95.74 94.63 55.19 57.80 79.20
DyGMmaba 93.35 92.65 89.21 99.32 99.15 95.91 94.77 81.85 85.36 86.59
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