
Improving Continual Learning Performance and Efficiency
with Auxiliary Classifiers

Filip Szatkowski 1 2 Yaoyue Zheng 3 4 Fei Yang 5 6

Tomasz Trzciński 1 7 8 Bartłomiej Twardowski 7 4 Joost van de Weijer 4 9

Abstract
Continual learning is crucial for applying ma-
chine learning in challenging, dynamic, and of-
ten resource-constrained environments. However,
catastrophic forgetting — overwriting previously
learned knowledge when new information is ac-
quired — remains a major challenge. In this work,
we examine the intermediate representations in
neural network layers during continual learning
and find that such representations are less prone
to forgetting, highlighting their potential to accel-
erate computation. Motivated by these findings,
we propose to use auxiliary classifiers (ACs) to
enhance performance and demonstrate that inte-
grating ACs into various continual learning meth-
ods consistently improves accuracy across diverse
evaluation settings, yielding an average 10% rela-
tive gain. We also leverage the ACs to reduce the
average cost of the inference by 10-60% without
compromising accuracy, enabling the model to
return the predictions before computing all the
layers. Our approach provides a scalable and effi-
cient solution for continual learning.

1. Introduction
The ability to adapt to changing environments is crucial
for practical machine learning applications, particularly
in resource-constrained settings where computational effi-
ciency is essential. Continual learning provides the theoreti-
cal foundations and algorithms for learning from non-i.i.d.
data streams in such environments (De Lange et al., 2021).

1Warsaw University of Technology 2IDEAS NCBR 3Institute
of Artificial Intelligence and Robotics, Xi’an Jiaotong Univer-
sity, China 4Computer Vision Center, Barcelona 5VCIP, Col-
lege of Computer Science, Nankai University 6NKIARI, Shen-
zhen Futian 7IDEAS Research Institute 8Tooploox 9Universitat
Autonoma de Barcelona. Correspondence to: Fei Yang
<feiyang@nankai.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

20 30 40 50 60 70 80 90 100

20

25

30

35

40

45

A
cc

ur
ac

y

CIFAR100x10 | ResNet32

80%

81%55%

70%

30 40 50 60 70 80 90 100
Inference cost [%]

30

35

40

45

50

55

A
cc

ur
ac

y
ImageNet100x10 | ResNet18

ANCL
+AC

DER++
+AC

LODE
+AC

SSIL
+AC

69%

47%

49%

68%

Figure 1. We integrate auxiliary classifiers (ACs) into various CL
methods, enabling dynamic inference and reducing the inference
cost. We measure their accuracy relative to the standard network
at different computational budgets and show that AC-enhanced
methods match the performance of the standard counterparts at
only 50-80% cost, and improve their performance at higher compu-
tational budgets. The accuracy of AC-enhanced models saturates at
80-90% computation, allowing us to save 10-20% of the inference
cost without sacrificing accuracy.

The most common continual learning scenario involves
learning from sequential tasks, where the learner cannot
access previously seen tasks when learning new ones. The
tasks may differ in data distributions (domain-incremental
learning) or introduce new classes (class-incremental learn-
ing) and may or may not provide task identity during classi-
fication (task-incremental learning) (Van de Ven & Tolias,
2019). The primary challenge in continual learning is to
avoid catastrophic forgetting – a significant drop in perfor-
mance on past tasks while learning on the new data (Mc-
Closkey & Cohen, 1989; Kirkpatrick et al., 2017). Vari-
ous strategies including parameter isolation (Rusu et al.,
2016; Serra et al., 2018; Mallya & Lazebnik, 2018), weight

1



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

2 3 4 5 6 7 8 9 10
Task index

AC1

AC2

AC3

AC4

AC5

AC6

Final

0.95 0.93 0.92 0.91 0.87 0.83 0.87 0.85 0.84

0.92 0.89 0.88 0.87 0.84 0.80 0.84 0.80 0.78

0.89 0.87 0.87 0.84 0.83 0.79 0.83 0.80 0.78

0.87 0.84 0.85 0.81 0.80 0.75 0.79 0.76 0.74

0.81 0.77 0.78 0.77 0.75 0.72 0.74 0.71 0.71

0.66 0.62 0.63 0.65 0.62 0.57 0.62 0.61 0.61

0.41 0.41 0.42 0.42 0.45 0.31 0.44 0.38 0.43

CIFAR100x10 | FT

2 3 4 5 6 7 8 9 10
Task index

0.96 0.94 0.92 0.91 0.89 0.88 0.87 0.86 0.83

0.94 0.90 0.88 0.87 0.85 0.84 0.84 0.82 0.80

0.93 0.89 0.88 0.87 0.87 0.85 0.85 0.85 0.82

0.91 0.87 0.86 0.84 0.84 0.82 0.82 0.81 0.79

0.88 0.83 0.81 0.80 0.79 0.78 0.78 0.78 0.76

0.82 0.77 0.73 0.73 0.71 0.71 0.70 0.70 0.69

0.80 0.74 0.68 0.67 0.64 0.63 0.62 0.62 0.60

CIFAR100x10 | FT+Ex

2 3 4 5 6 7 8 9 10
Task index

0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.97

0.99 0.98 0.98 0.97 0.97 0.97 0.97 0.96 0.96

0.99 0.98 0.97 0.97 0.96 0.96 0.96 0.96 0.95

0.98 0.97 0.96 0.96 0.95 0.95 0.95 0.94 0.94

0.96 0.95 0.94 0.93 0.93 0.93 0.92 0.92 0.91

0.93 0.91 0.90 0.89 0.88 0.87 0.86 0.85 0.85

0.91 0.88 0.86 0.85 0.84 0.84 0.84 0.83 0.82

CIFAR100x10 | LwF

2 3 4 5 6 7 8 9 10
Task index

0.99 0.98 0.96 0.95 0.94 0.92 0.92 0.91 0.89

0.99 0.97 0.95 0.92 0.90 0.88 0.87 0.86 0.83

0.98 0.96 0.94 0.93 0.91 0.90 0.89 0.88 0.87

0.97 0.94 0.92 0.91 0.89 0.88 0.87 0.86 0.85

0.95 0.91 0.89 0.87 0.86 0.84 0.84 0.83 0.82

0.91 0.86 0.83 0.80 0.79 0.77 0.76 0.75 0.74

0.89 0.82 0.78 0.75 0.72 0.70 0.68 0.67 0.66

CIFAR100x10 | BiC

Figure 2. CKA of the first task representations across different ResNet32 layers (L1.B3-L3.B5) through continual learning on CIFAR100
split into 10 tasks. Representations at the early layers are more similar across the continual learning, hinting at the potential for more
stability that could be leveraged to improve the performance by incorporating auxiliary classifiers at the intermediate layers.

and data regularization (Kirkpatrick et al., 2017; Li &
Hoiem, 2017), and rehearsal methods (Rebuffi et al., 2017;
Chaudhry et al., 2018) have been proposed to address this
challenge. Despite these efforts, continual learning, particu-
larly class-incremental learning, remains an open problem.

Several studies have investigated knowledge transfer and
accumulation in deep neural networks through intermediate
representations (Evci et al., 2022; Jung et al., 2023), and
works such as Liu et al. (2020a); Ramasesh et al. (2020);
Zhao et al. (2023); Masarczyk et al. (2023) revealed that
later layers undergo the most significant changes during
continual learning. However, these insights have yet to be
leveraged to enhance continual learning performance. Inde-
pendently, work on neural network efficiency has introduced
early-exit classifiers (Panda et al., 2016; Teerapittayanon
et al., 2016), which utilize intermediate layers to make pre-
dictions before reaching the final classifier. Such classifiers
not only accelerate inference but can also improve accu-
racy by addressing “overthinking” – a phenomenon where
inputs that could be correctly classified earlier are unnec-
essarily processed by deeper layers, sometimes leading to
errors (Kaya et al., 2019). In this paper, we bridge these two
research areas and propose to use auxiliary classifiers (ACs)
in continual learning to capitalize on the lower forgetting
observed in early layers and enable computational savings
during inference.

We begin our work with a detailed analysis of intermediate
representations in continual learning. First, we examine the
stability of representations across different network layers
using CKA (Figure 2) and find that early layer representa-
tions are more stable throughout the training. Building on
this insight, we explore the discriminative power of these
representations and reveal that, surprisingly, auxiliary classi-
fiers (ACs) trained on top of the early layers can significantly
outperform the final classifier on older tasks. To dive deeper
into this phenomenon, we compare overthinking in continu-
ally trained networks with models trained in i.i.d. settings,
discovering that overthinking is far more pronounced in
continual learning. Our findings highlight the potential of

intermediate representations in continual learning scenarios,
suggesting that utilizing additional classifiers built on top of
these representations could effectively reduce forgetting.

Motivated by the insights from our analysis, we adapt
and integrate auxiliary classifiers (ACs) into various well-
established continual learning strategies (LwF (Li & Hoiem,
2017), EWC (Kirkpatrick et al., 2017), ER (Chaudhry et al.,
2019), BiC (Wu et al., 2019), SSIL (Ahn et al., 2021),
ANCL (Kim et al., 2023), LODE (Liang & Li, 2024),
DER++ (Buzzega et al., 2020)) and demonstrate that they
consistently outperform single-classifier methods on stan-
dard benchmarks such as CIFAR100 and ImageNet100.
Since ACs enable dynamic inference and control of the
network computation through early exit, we also explore the
efficiency gains offered by their introduction. As shown in
Figure 1, AC-based networks with dynamic inference can
maintain the performance of single-classifier models while
using only a fraction of the computation. Furthermore, at
80-90% of the original network’s computational cost, per-
formance reaches a saturation point, which means that our
method provides lossless acceleration. Our results demon-
strate that ACs can be seamlessly integrated into common
continual learning methods, yielding consistent performance
improvements and computational savings without the need
for extensive hyperparameter tuning.

ACs provide a high-performing alternative to standard meth-
ods in scenarios where faster inference or flexible resource
usage is essential. Our contributions can be summarized as:

• We analyze intermediate representations in continual
learning (CL) and show that classifiers built on such
representations are less prone to forgetting.

• We propose to use auxiliary classifiers (ACs) in CL
and show that our idea yields an average 10% relative
improvement over single classifier alternatives across
diverse benchmarks and architectures.

• We leverage ACs to reduce the average cost of infer-
ence by 10-60% without sacrificing accuracy by allow-
ing early prediction through dynamic inference.

2



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

AC1 AC2 AC3 AC4 AC5 AC6
0

5

10

15

20

25

A
cc

ur
ac

y 
di

ffe
re

nc
e

CIFAR100x10 | FT

AC1 AC2 AC3 AC4 AC5 AC6
0

1

2

3

4

CIFAR100x10 | FT+Ex

AC1 AC2 AC3 AC4 AC5 AC6
0
5

10
15
20
25
30
35

CIFAR100x10 | LwF

AC1 AC2 AC3 AC4 AC5 AC6
0

1

2

3

4

CIFAR100x10 | BiC
Task ID

0
1

2
3

4
5

6
7

8
9

Figure 3. Per-task difference (only positives) in accuracy between the auxiliary classifiers (ACs), trained with linear probing on intermedi-
ate layers, and the final classifier. Surprisingly, in continual learning, some intermediate classifiers can significantly outperform the final
classifier on the old task data, especially for exemplar-free methods (FT and LwF).

2. Related works

Continual learning. Continual learning methods (Parisi
et al., 2019; De Lange et al., 2021; Masana et al., 2022)
can be broadly categorized into three types: regularization-
based, replay-based, and parameter-isolation methods.
Regularization-based methods typically introduce a reg-
ularization term to the loss function to constrain param-
eter changes for prior tasks, with subcategories of data-
focused (Li & Hoiem, 2017; Kim et al., 2023) and prior-
focused (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi
et al., 2018) approaches. Recent research also enforces
weight updates within the null space of feature covari-
ance (Wang et al., 2021; Tang et al., 2021). Replay-
based methods use memory and rehearsal mechanisms
to recall past tasks during training, maintaining low loss
on those tasks. Two main strategies are exemplar replay
- which stores selected training samples (Riemer et al.,
2018; Buzzega et al., 2020; Chaudhry et al., 2018; Prabhu
et al., 2020; Chaudhry et al., 2019; Liang & Li, 2024),
and generative replay, where models synthesize previous
data using generative models (Shin et al., 2017; Wu et al.,
2018). Parameter isolation methods learn task-specific sub-
networks within a shared network. Techniques like Piggy-
back (Mallya et al., 2018), PackNet (Mallya & Lazebnik,
2018), SupSup (Wortsman et al., 2020), HAT (Serra et al.,
2018), and Progressive Neural Networks (Rusu et al., 2016)
allocate and combine parameters for individual task. While
effective in task-aware settings, these methods are most
suited for scenarios with a known task sequence or oracle.

Representations in neural networks. Understanding and
comparing representations (Kornblith et al., 2019; Davari
et al., 2022) at different layers in deep neural networks is
an active area of research on transfer learning (Boschini
et al., 2022) and continual learning (Ramasesh et al., 2020;
Zhao et al., 2023; Masarczyk et al., 2023). Motivated by
such analyses, several continual learning methods leverage
intermediate layers for replay (Liu et al., 2020a; Pawlak
et al., 2022) or regularization (Douillard et al., 2020). Early-
exit techniques (Panda et al., 2016; Teerapittayanon et al.,

2016; Kaya et al., 2019; Wójcik et al., 2023) that attach
intermediate classifiers to the model were developed based
on the observation that their representations could be used
for classification to allow skipping later model layers and re-
duce inference cost. While works such as Liu et al. (2020b);
Yan et al. (2024) use multiple classifiers to improve on-
line CL through specialized techniques such as ensembling,
self-distillation, and contrastive learning, our approach ex-
plores intermediate classifiers as a general framework that
enhances offline class-incremental learning performance
and efficiency and can be applied to most continual learning
methods and architectures.

3. Intermediate representations in CL
In this section, we analyze the stability of intermediate
representations in continual learning and how auxiliary clas-
sifiers (ACs) trained on these representations can reduce
forgetting. We train a neural network over the 10 tasks of
split CIFAR100 (Krizhevsky, 2009) in a class-incremental
learning setting (De Lange et al., 2021; Masana et al., 2022),
aiming to classify new classes while avoiding catastrophic
forgetting of previous ones without access to task identity
at prediction time. For the analysis we train ResNet32 (He
et al., 2016) with different approaches for continual learn-
ing: naive finetuning (FT) without any additional contin-
ual learning technique, finetuning with exemplars (FT+Ex),
exemplar-free regularization with LwF (Li & Hoiem, 2017),
and BiC (Wu et al., 2019) with both regularization, exem-
plars and an additional bias correction. We analyze rep-
resentations at 6 intermediate layers and the final feature
layer before the classifier, referring to the intermediate clas-
sifiers as AC1-AC6. See Appendix A for setup details and
Appendix F.3 for a detailed description of our approach,
further analysis, and more results.

3.1. Intermediate representations are more stable

We present the representational similarity of the interme-
diate and final layers in Figure 2 using Centered Kernel
Alignment (CKA) (Kornblith et al., 2019). CKA measures

3



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

Joint FT FT+Ex LwF BiC
10

25

50

100

200

O
ve

rth
in

ki
ng

 [%
]

(a) Overthinking in CL

AC1 AC2 AC3 AC4 AC5 AC6
0

10

20

30

40

50

60

M
is

cl
s.

 s
am

pl
es

 [%
]

(b) Overthinking per AC

AC1 AC2 AC3 AC4 AC5 AC6
0

2

4

6

8

10

12

14

16

U
ni

qu
e 

ov
er

th
in

ki
ng

 [%
]

(c) Unique overthinking

AC1 AC2 AC3 AC4 AC5 AC6 Final

4

2

0

+2

+4

+6

+8

A
cc

ur
ac

y 
ch

an
ge

FT
FT+Ex

LwF
BiC

(d) AC training changes

Figure 4. Overthinking and AC performance analysis on CIFAR100x10. Overthinking refers to a case where samples correctly classified
by early classifiers are misclassified later by the final classifier. (a) Overthinking is much more prominent in continual learning methods
than in standard joint training, which indicates that the accuracy of continual learning could be greatly improved through ACs. (b) Each
classifier correctly classifies a significant portion of the samples misclassified by the final classifier. (c) Subsets of samples can be correctly
classified only by a single given AC. (d) Training ACs together with final networks improves the performance of most classifiers.

the similarity of two sets of representations by comput-
ing the normalized Hilbert-Schmidt Independence Criterion
(HSIC) between their kernel. It is invariant to orthogonal
transformations and isotropic scaling, making it suitable for
comparing learned features across layers or models. We
measure the similarity between the representations of the
first task data learned after the initial task and the repre-
sentations learned after each subsequent task. Across all
methods, early layer representations change less and exhibit
more stability. As expected, the most significant changes oc-
cur in FT. Continual learning methods, such as FT+Ex, LwF,
or BiC, show less change due to replay or regularization
strategies that enforce stability, though the trend of early-
layer stability remains. Our findings are consistent with the
observations in previous research (Ramasesh et al., 2020;
Zhao et al., 2023) and suggest that intermediate representa-
tions are more robust in continual learning, and classifiers
built on top of those representations should suffer from less
forgetting than the final classifier.

3.2. Early layer classifiers perform better on old data

Knowing that early layers produce more stable represen-
tations in class-incremental learning, we now assess their
usefulness for classification. To assess the discriminative
power of intermediate representations, we use linear prob-
ing (Davari et al., 2022). Specifically, we attach ACs to the
intermediate representations of the network and train them
alongside the main model in a continual scenario. To prevent
interference with the representations during the learning of
the ACs, we detach the gradients between the ACs and the
rest of the network. Given the high dimensionality of the
representations, the ACs consist of a simple pooling layer
followed by a linear layer. Then, we compare the final accu-
racy of the learned ACs with that of the final classifier on a
per-task basis and show the differences in Figure 3.

ACs perform surprisingly well, with the penultimate classi-
fier’s accuracy matching or surpassing the final classifier on

older tasks across all methods – an outcome not typically
seen in i.i.d. settings. The most interesting results can be
observed for the exemplar-free methods: in FT, intermedi-
ate classifiers achieve the highest accuracy for most of the
tasks, and in LwF, the intermediate classifiers outperform
the final classifier by a significant margin on the older tasks.
For exemplar-based methods, deeper ACs also surpass the
final classifier, though the differences are less prominent,
and earlier classifiers do not exceed the final one as in the
exemplar-free cases. Generally, early classifiers exhibit
more stability, while later classifiers provide better ability
to discriminate between classes. Our results suggest that
selecting the appropriate AC could improve performance in
continual learning, especially on older tasks.

3.3. Continually trained networks overthink more

Overthinking (Kaya et al., 2019) refers to cases where inter-
mediate classifiers correctly classify samples that the final
classifier misclassifies. This concept emphasizes that us-
ing classifiers that operate on intermediate representations
can not only accelerate inference but also enhance network
accuracy. To formally define overthinking, we consider a
multi-classifier network evaluated under an oracle prediction
rule, where a sample is considered correctly classified if any
of the intermediate or final classifiers predicts the correct
label. We denote the accuracy under this rule as Accoracle,
and let Accfinal represent the accuracy when using only the
prediction of the last classifier. Overthinking is then mea-
sured as the performance gap: O = Accoracle −Accfinal,
and we also define relative overthinking as the normalized
quantity O/Accfinal. Initially, overthinking was studied
in intermediate classifiers under i.i.d. settings. However,
our prior analysis indicates that a similar effect occurs in
continual learning, particularly for older tasks, where aux-
iliary classifiers (ACs) experience less forgetting than the
final classifier. Therefore, we investigate overthinking in
continual learning methods and compare it to the standard

4



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

i.i.d. joint training scenario in Figures 4a to 4c.

Networks trained using different continual learning meth-
ods exhibit a higher degree of overthinking compared to
those trained under standard joint training (i.i.d. setting).
To highlight the difference, we plot relative overthinking in
Figure 4a. The more pronounced overthinking in continual
learning aligns with our earlier findings, where intermediate
classifiers perform surprisingly well and often outperform
the final classifier on older tasks. In Figure 4b, we show
the proportion of samples misclassified by the final layer
that each AC correctly classifies, that is how much a given
classifier contributes to overthinking. While the later layers
correctly classify larger subsets of the samples, early lay-
ers still can contribute towards improving the performance,
especially in exemplar-free methods. Since the correctly
classified subsets might overlap between the classifiers, in
Figure 4c, we further investigate how diverse the learned
classifiers are by measuring unique overthinking. Specifi-
cally, we measure which samples, misclassified by the final
layer, are correctly classified only by a specific AC, which
emphasizes the diversity of the learned classifiers. The
heightened overthinking in continual learning suggests that
ACs preserve valuable knowledge that the final classifier
struggles to retain. Unlike in the i.i.d. joint training case,
where ACs primarily serve to speed up inference, our analy-
sis suggests that in continual learning, they could also play
a crucial role in improving overall performance.

3.4. End-to-end training improves ACs

Although ACs trained through linear probing show promise
for improving performance in continual learning, it is un-
clear how end-to-end training with enabled gradient propa-
gation would affect the network. To explore this, we train
the network with gradient propagation and compare the final
average accuracy across all tasks with linear probing classi-
fiers. We show the difference in the classifiers’ performance
in Figure 4d. End-to-end training improves the performance
of early-stage classifiers, though it may lead to a slight de-
crease in performance for the final classifier in some cases
(e.g., LwF). However, in exemplar-based methods, we see
significant accuracy improvements in intermediate layers
with no degradation in any of the layers. The gains in the
exemplar-based approach are likely due to the network’s
enhanced ability to retain knowledge during training, which
aligns with our earlier findings in Section 3.1.

Our analysis shows that classifiers trained end-to-end gen-
erally achieve better accuracy in non-naive continual learn-
ing methods (a broader comparison is provided in Ap-
pendix D.3). Building on these findings, the next section
further investigates how end-to-end trained ACs can be uti-
lized to enhance both the accuracy and efficiency of the
continual learning approaches.

...

Feature Extraction Network
Task

...

Auxiliary Classifier Final Classifier

1
f

N
f

... g

g

2
f

1N
f



1
ˆ

N 
g

2
ĝ

1
ĝ

ˆ
i

g

Static 
Inference

Dynamic 
Inference

1
y

2
y

1N
y

 N
y...

Prevent forgetting from

2
y

Predict sequentially

Prediction

old task

new task


1

y Exit     condition
confidence >

Feature Extraction Network

Task

...

old task

new task

Less forgetting on

g

1N
f

 N
f

1
ˆ

N 
g

2
f

1
f

N
y

Final ClassifiergAuxiliary Classifierˆ
i

g

1
y

2
y

1N
y



1
ĝ

2
ĝ

Predictions on

Retaining knowledge of the old task

...

Feature Extraction Network

Task

...

old task

new task

Less forgetting on

g

1N
f

 N
f

1
ˆ

N 
g

2
f

1
f

N
y

Final ClassifiergAuxiliary Classifierˆ
i

g

1
y

2
y

1N
y



1
ĝ

2
ĝ

Prediction on

?

✘

correct

✘or

failed✘

correct

...

Feature Extraction Network

...

old task data

new task data 1
f

Final ClassifierAuxiliary Classifierˆ
i

g

1
y

2
y

1
ĝ

✘

✘

failed
✘

Prediction on

Prediction on

Less forgetting on

2
f

1N
f

 N
f

2
ĝ g

1
ˆ

N 
g

1N
y

 N
y

✘

g

Figure 5. Overview of the network enhanced with ACs in continual
learning. The early layers exhibit less forgetting on the old tasks,
and can return the correct prediction (✓) in cases where the final
classifier fails (✗), and save computations.

4. Enhancing CL through ACs
4.1. Combining from multiple classifier predictions

Our analysis in Section 3 demonstrates that auxiliary clas-
sifiers (ACs) can learn to classify different subsets of data
than just a standard, single-classifier network, which hints
that combining their predictions should yield improved accu-
racy. Therefore, we advocate the use of such multi-classifier
networks in continual learning. Formally, we consider a
neural network composed of backbone f = fN (...(f1(x)))
and final classifier g, where f1, ..., fN are submodules in
the backbone. The standard network prediction y for a
given input x can be written as y = g(f(x)). We intro-
duce additional N − 1 auxiliary classifiers ĝi on top of
the backbone sub-modules f1, f2, ..., fN−1. During infer-
ence with such multi-classifier network, we obtain N pre-
dictions: y1 = ĝ1(f1(x)), y2 = ĝ2(f2(x)), ..., yN−1 =
ˆgN−1(fN−1(x)), yN = g(f(x)) and select the prediction

yi where the class predicted by the corresponding proba-
bility distribution pi has maximum confidence. Therefore,
we return y = y

argmaxi∈{1,...,N} maxk p
(k)
i

, where p
(k)
i repre-

sents the predicted probability for class k in the distribution
pi. We refer to this simple inference paradigm as static
inference and use it in most of the experiments, as we find
it performs well across all tested settings. We show the
conceptual diagram of our network in Figure 5.

4.2. Dynamic inference with ACs

Inspired by the early-exit models (Panda et al., 2016; Teer-
apittayanon et al., 2016; Kaya et al., 2019), we also consider
using ACs as a means to reduce the average computational
cost of the classification through dynamic inference. Specif-
ically, we perform inference sequentially through the clas-

5



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

Table 1. The final accuracy of diverse continual learning methods enhanced with auxiliary classifiers (ACs) on CIFAR100 and ImageNet100
benchmarks. Adding ACs improves the performance of all methods across both benchmarks, demonstrating the robustness of our idea.

Method FT FT+Ex GDumb ANCL BiC DER++ ER EWC LwF LODE SSIL Avg

CIFAR100x5

Base 18.68±0.31 38.35±0.86 19.09±0.44 37.71±1.14 47.66±0.43 38.96±1.38 34.55±0.21 18.95±0.29 38.26±0.98 42.82±0.84 45.62±0.16 34.60±0.20

+AC 28.18±1.07 38.75±0.26 23.29±0.54 39.83±1.22 50.40±0.68 43.49±0.73 39.77±0.32 28.96±1.13 40.55±0.95 49.13±0.35 48.35±0.50 39.15±0.59

∆ +9.49±0.96 +0.39±0.90 +4.20±0.16 +2.12±1.03 +2.74±0.83 +4.53±2.05 +5.22±0.38 +10.02±1.39 +2.29±0.25 +6.31±0.81 +2.72±0.42 +4.55±0.38

CIFAR100x10

Base 10.27±0.05 34.51±0.40 22.22±0.72 30.69±0.62 42.87±1.51 38.54±0.65 32.31±0.82 10.20±0.35 29.56±0.44 38.87±0.45 42.29±0.49 30.21±0.18

+AC 16.88±1.08 36.97±0.39 27.74±0.73 31.37±0.94 46.19±1.47 39.64±1.00 37.32±0.28 19.12±0.88 30.31±1.14 45.67±0.52 44.17±0.28 34.13±0.24

∆ +6.62±1.06 +2.46±0.31 +5.52±1.13 +0.68±0.79 +3.31±2.62 +1.10±1.08 +5.01±0.98 +8.92±1.06 +0.74±0.91 +6.80±0.93 +1.88±0.77 +3.91±0.41

ImageNet100x5

Base 23.27±0.39 44.05±0.69 21.29±0.59 60.79±0.06 62.55±0.53 45.33±2.55 38.65±0.43 23.36±0.64 59.60±0.27 49.88±0.56 60.54±0.32 44.48±0.31

+AC 34.93±0.65 46.75±0.61 25.30±1.14 62.99±0.30 65.22±0.27 54.14±0.80 44.46±0.47 35.09±0.17 61.07±0.57 56.23±0.66 63.89±0.18 50.01±0.13

∆ +11.67±0.77 +2.71±0.85 +4.01±0.61 +2.21±0.35 +2.67±0.79 +8.81±3.34 +5.81±0.66 +11.73±0.71 +1.47±0.45 +6.35±1.22 +3.35±0.48 +5.53±0.41

ImageNet100x10

Base 14.40±0.30 35.94±0.86 22.55±0.62 49.96±0.46 56.32±0.47 38.45±1.95 32.45±0.35 14.69±0.20 49.15±0.38 45.75±0.50 56.35±0.51 37.82±0.35

+AC 22.14±0.16 39.26±0.61 25.93±0.52 52.07±0.50 57.23±0.87 45.70±0.40 37.10±1.20 23.25±0.55 49.51±0.71 51.39±0.91 57.71±0.08 41.93±0.25

∆ +7.74±0.37 +3.32±0.90 +3.38±0.37 +2.11±0.32 +0.91±0.42 +7.25±1.55 +4.65±0.88 +8.56±0.39 +0.36±1.05 +5.64±0.90 +1.35±0.59 +4.12±0.13

sifiers ĝ1, ĝ2, ..., g, and at each stage i, we compute the
probability distribution pi corresponding to the prediction
of i-th classifier. If the confidence exceeds a threshold λ,
we return the corresponding prediction yi. If no prediction
satisfies the threshold, we use the static inference rule to
determine the prediction. Formally, we define this as:

y =

{
y
min{i∈{1,...,N}|maxk p

(k)
i ≥λ} if such i exists,

y
argmaxi∈{1,...,N} maxk p

(k)
i

otherwise.
(1)

By varying the confidence threshold, one can trade off
the amount of computation performed by the network for
slightly lower performance, which allows such a model to be
deployed in settings requiring computational adaptability.

Note that our use of ACs is different from the early-exit
literature, where the model accuracy usually monotonically
improves when going through subsequent classifiers and
the model returns the prediction of the last classifier in case
no classifier can satisfy the exit threshold. As shown in
Section 3, in continual learning the accuracy and quality
of intermediate predictions significantly vary for different
tasks, and the last classifier is not always the best one for a
given subset of data. Refer to Appendix F.7 for a comparison
between the performance of the standard early-exit inference
rule and our method in continual learning setting.

4.3. AC-enhanced CL methods

To demonstrate the effectiveness of our idea, we extend
several continual learning methods with auxiliary classi-
fiers (ACs) and examine their performance. In total, we
investigate ACs with the following continual learning meth-
ods: FT (Masana et al., 2022), GDUMB (Prabhu et al.,
2020), EWC (Kirkpatrick et al., 2017), LwF (Li & Hoiem,

2017), ER (Chaudhry et al., 2019), DER++ (Buzzega et al.,
2020), BiC (Wu et al., 2019), SSIL (Ahn et al., 2021),
ANCL (Kim et al., 2023) and LODE (Liang & Li, 2024). For
all the methods, we replicate the method logic (loss) across
all the classifiers and do not introduce classifier-specific
parameters. If the original method introduces a hyperparam-
eter, we use the same value for this hyperparameter across
all the classifiers. We also use the same batches of data for
each classifier during the training. Similar to (Kaya et al.,
2019), to prevent overfitting the network to the early layer
classifiers we scale the total loss of each classifier according
to its position so that the losses from early classifiers are
weighted less than the losses for the final classifier.

5. Experimental results
In this section, we present the experimental results for AC-
enhanced networks in CL. All our experiments are con-
ducted with the FACIL (Masana et al., 2022) framework. We
perform experiments on CIFAR100 (Krizhevsky, 2009) and
ImageNet100 (the first 100 classes from ImageNet (Deng
et al., 2009)), split into tasks containing different numbers of
classes. Unless stated otherwise, we report average accuracy
across all tasks at the end of the training. In Appendices F.1
and F.2, we additionally provide the isolated accuracies of
the networks on each task across the training and the final
forgetting after training on all the tasks. For all exemplar-
based methods (BiC, DER++, ER, GDUMB, LODE, and
SSIL), we maintain a fixed-size memory budget of 2000
exemplars, updated after each task. We report results av-
eraged over three random seeds. More details about our
experimental setup can be found in Appendix A.

6



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

5.1. Improved CL with ACs

First, we demonstrate the effectiveness of our approach in
standard CL settings. For our main experiments, we use
well-established architectures: ResNet32 for CIFAR100 and
ResNet18 (He et al., 2016) for ImageNet100. In both cases,
following Section 3, we use six ACs. For ResNet32, we
follow the previously described AC placement, while for
ResNet18, we attach ACs to the six residual blocks between
the first and last one.

Additionally, in Appendices C.1 and C.2, we show that our
findings extend beyond the standard 5- and 10-task splits
and explore warm-start continual learning (Goswami et al.,
2024), where half the data is used for the first task, as well
as continual learning on more challenging, fine-grained 20-
and 50-task sequences.

Standard CL benchmarks. We evaluate our approach
on CIFAR100 and ImageNet100, each split into 5 and 10
equally sized, disjoint tasks, and present the main results in
Table 1. Across all methods and settings, adding ACs consis-
tently improves final performance, with the average relative
improvement exceeding 10% of the baseline accuracy in ev-
ery scenario tested. Interestingly, naive finetuning and EWC
exhibit particularly strong gains, highlighting the potential
of our simple yet effective idea. Exemplar-based methods
(GDumb, DER++, ER, LODE) benefit more from ACs than
one with additional distillation (ACNL, BiC, SSIL), which
suggests that distillation may hinder ACs’ ability to diver-
sify and mitigate forgetting. Overall, our approach reliably
enhances performance for all methods across all scenarios.
In the next paragraph, we explore how ACs can be leveraged
to also improve inference efficiency.

Leveraging ACs for dynamic inference. The previous
section demonstrates that ACs improve performance in con-
tinual learning when performing the inference through the
full network. However, ACs also can accelerate the network
inference, as described in Section 4.2. To show how our
approach enhances the effectiveness of continual learning
methods, we evaluate selected techniques on 10- and 5-task
splits of CIFAR100 and ImageNet100 using dynamic infer-
ence. We conduct the evaluation with λ ∈ {1, 2, ..., 100}%
to assess the accuracy of the methods achieved at a given
computational budget. We measure the inference cost in
FLOPs, and report it relative to the non-AC network. Our
results are presented in Figures 1 and 6.

AC-enhanced networks match the accuracy of the single-
classifier alternatives while using only 50%-70% of the
computation on CIFAR100 and 40%-60% on ImageNet100.
Notably, for most methods, performance stabilizes at 70%-
90% of the computational cost, which indicates that sub-
stantial computation savings are possible without sacrificing

20 40 60 80 100
Inference cost [%]

30

40

50

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

40 60 80 100
Inference cost [%]

40

50

60

ImageNet100x5 | ResNet18

ANCL
+AC

BiC
+AC

DER++
+AC

LODE
+AC

SSIL
+AC

Figure 6. Dynamic inference on 5 tasks for AC-enhanced networks
on CIFAR100 and ImageNet100. ACs improve accuracy while
reducing computational cost, offering a selectable trade-off. We
mark every 10% dynamic inference threshold with dots.

accuracy. To unlock those savings, it is essential to properly
set the exit threshold λ. Therefore, an important factor to
consider is how sensitive to this threshold is the dynamic
inference. In our experiments, AC-enhanced methods con-
sistently perform better than the baselines at the confidence
thresholds above 70%, and there is no noticeable drop in the
network accuracy the thresholds above 90%. These results
indicate that dynamic inference can be easily tuned to pro-
vide meaningful computational savings. Moreover, we high-
light how at the test-time ACs enable smooth adjustment of
the average computation spent on the inference without the
need for any further training. Further cost-accuracy plots
for all methods from Table 1 can be found in Appendix E.1.

5.2. ACs with deeper networks

In this section, we conduct experimental evaluations of
our approach on larger and deeper models, specifically
VGG19 (Simonyan & Zisserman, 2014) and ViT (Doso-
vitskiy, 2020), which helps us gain a deeper understanding
of how the impact of ACs relates to network size. Our re-
sults demonstrate good scaling of the ACs with network
size, highlighting the robustness of our approach.

Number of ACs with deep CNN. We investigate the im-
pact of the number of ACs in the deep convolutional VGG19
model, which allows us to add more classifiers. We eval-
uate three AC-enhanced VGG variants: 1) 18 ACs at all
18 intermediate layers, 2) 10 ACs at every other convolu-
tional layer and both fully connected layers, and 3) 6 ACs
at every fourth convolutional layer and both fully connected
layers. We present the final accuracy for those setups in Ta-
ble 2, with dynamic inference curves for selected methods
enhanced with 18 ACs displayed in Figure 7.

In all configurations, AC-enhanced methods outperform
their baseline counterparts. As expected, denser AC place-
ments generally lead to better performance. Using more
ACs appears to be a reliable strategy for improving per-
formance, although some outliers (e.g. DER++) perform
better with fewer ACs. Interestingly, for VGG19 archi-
tecture, the ACs provide a more substantial performance

7



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

Table 2. VGG19 enhanced with different numbers of ACs on CIFAR100. ACs integrate seamlessly with deeper network architectures, and
the higher number of classifiers usually provides more significant gains. The brighter colors correspond to the better scores.

Method FT FT+Ex GDumb ANCL BiC DER++ ER EWC LwF LODE SSIL Avg

CIFAR100x5

Base 18.91±0.14 42.56±0.55 26.64±1.24 40.73±0.57 52.75±0.70 45.52±0.29 33.82±0.20 18.72±0.36 39.54±0.59 46.69±0.64 47.79±0.11 37.61±0.19

+6AC 26.71±0.62 42.78±0.62 29.61±1.11 47.64±0.66 56.62±1.13 51.16±0.64 37.45±0.40 26.98±0.68 44.81±0.64 52.03±0.07 52.87±0.42 42.61±0.43

+10AC 29.16±0.23 43.05±0.45 31.36±0.73 49.12±0.70 58.05±0.44 51.03±0.23 39.06±0.70 29.40±0.32 46.51±0.52 50.39±0.65 55.30±0.32 43.86±0.22

+18AC 31.47±0.34 43.53±0.39 31.06±0.82 48.49±1.02 59.03±0.41 50.67±0.89 39.91±0.33 30.66±0.63 48.22±0.16 51.27±0.85 56.35±0.16 44.61±0.23

CIFAR100x10

Base 9.52±0.17 34.20±0.48 28.79±0.66 19.50±0.97 44.30±1.70 41.88±0.44 28.85±0.83 9.37±0.43 21.04±0.79 40.08±0.52 42.49±0.73 29.09±0.18

+6AC 16.73±0.31 35.29±0.39 30.99±0.69 26.96±1.00 50.36±0.73 45.02±0.13 32.48±0.48 17.16±0.37 28.80±0.97 45.67±0.39 47.39±0.30 34.26±0.06

+10AC 18.91±0.36 36.99±0.15 31.55±0.35 29.73±0.46 52.69±0.56 43.94±0.58 33.95±0.41 19.78±0.32 31.28±0.73 46.27±0.58 48.29±1.02 35.76±0.15

+18AC 21.16±0.13 37.54±0.19 31.63±0.78 32.61±0.60 52.56±0.53 43.94±0.82 34.86±0.32 20.54±0.28 32.54±0.22 47.62±0.14 49.68±0.10 36.79±0.10

boost than for ResNet32, and the best 18-AC setup yields
average relative improvements of approximately 20% and
25% for 5 and 10 tasks, respectively. Notably, for 10 tasks,
VGG19 with ACs achieves a 2.5% accuracy improvement
over AC-ResNet32 across all methods, even though the
non-AC baseline VGG19 is on average 1% worse than the
baseline ResNet32. This suggests the potential gains from
ACs are higher in deeper networks. We also hypothesize
that VGG may develop more diverse and robust classifiers
than ResNet due to the absence of residual connections,
which further benefits our approach.

In Figure 7, we show that the VGG19 enhanced with 18 ACs
is also well-suited for dynamic inference, matching baseline
performance at just 20–40% of the full model’s computation
for non-naive methods and achieving the maximum accuracy
at as few as 40% of the computation. We present detailed re-
sults for all VGG19 methods in Appendix E.2. Additionally,
in Appendices D.1 and D.2, we explore AC placement and
architecture for ResNet32, and in Appendix B we quantify
the training overhead of our method. We find that the impact
of using more ACs is more pronounced in larger networks,
where the potential for reducing inference cost is higher.

ACs in Vision Transformers. We further explore the com-
patibility of ACs with larger models by continually training
base Vision Transformer (ViT1). To ensure a fair comparison
with prior experiments, we train ViT from scratch, incorpo-
rating ACs into each transformer block (11 blocks in total).
Following the standard classifier design in ViT, we perform
classification using the [CLS] token and implement ACs
with a single LayerNorm followed by a linear classification
layer. This AC architecture is notably lightweight compared
to the standard transformer block, which makes integrating
ACs with transformers particularly seamless. In Figure 7,
we present dynamic inference results for ViT with a selected
subset of methods on the 10-task split of ImageNet100.

As highlighted in works like Pan et al. (2022); Wang et al.

1For simplicity, we refer to ViT-b-16 as ViT in this work.

0 20 40 60 80 100
Inference cost [%]

20

30

40

50

A
cc

ur
ac

y

CIFAR100x10 | VGG19

20 40 60 80 100
Inference cost [%]

20

25

30

35

ImageNet100x10 | ViT-base

ANCL
+AC

BiC
+AC

LODE
+AC

SSIL
+AC

Figure 7. Dynamic inference plots for selected CL methods ex-
tended with ACs for VGG19 and ViT trained for 10 tasks from
scratch on CIFAR100 and ImageNet100. Dynamic inference with
ACs is even more beneficial with bigger networks. We show the
results for all the methods in Appendices E.2 and E.3.

(2022), ViT is notoriously data-hungry. Therefore, when
trained from scratch in continual learning scenarios, it tends
to perform less effectively than ResNet18. However, ACs
still integrate effectively with the ViT architecture, deliver-
ing superior results compared to the baseline counterparts
across all methods. AC-enhanced methods achieve perfor-
mance on par with their standard counterparts at particularly
low 20-40% computation and quickly reach the saturation
point, attaining full performance at 50% of the computa-
tional budget. These findings highlight the scalability of our
approach and its compatibility with larger models, where
the benefits and computational savings are even more pro-
nounced due to richer representations.

5.3. ACs with wider networks

Wider networks offer richer, higher-dimensional feature rep-
resentations, but they may also impose greater overhead on
attached classifiers. This makes it particularly interesting
to assess how network width affects the applicability of our
approach. To this end, we evaluate AC-enhanced models
using WideResNet16-2 (Zagoruyko & Komodakis, 2016)
on CIFAR100. This architecture is shallower than ResNet-
32 but twice as wide, with approximately 0.7M parameters
compared to 0.46M in ResNet-32. To measure performance
under our framework, we attach five additional classifiers

8



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

20 40 60 80 100
Inference cost [%]

30

40

50

A
cc

ur
ac

y

CIFAR100x5 | WideResNet16

20 40 60 80 100
Inference cost [%]

20

30

40

50
CIFAR100x10 | WideResNet16

ANCL
+AC

BiC
+AC

DER++
+AC

LODE
+AC

SSIL
+AC

Figure 8. Dynamic inference results with WideResNet16.

to each ResNet block in the model. Results for the main
continual learning methods are presented in Figure 8, with
complementary results for other methods provided in Ap-
pendix E.4.

Consistent with the previous experiments for other architec-
tures, AC-enhanced variants outperform their corresponding
baselines across all configurations. Interestingly, in line with
the recent work (Mirzadeh et al., 2022a;b) which suggests
that wider networks may be less prone to forgetting, the
final accuracies with WideResNet16-2 are better than with
ResNet32. These findings further underscore the general-
ity of our method, demonstrating its effectiveness even in
architectures less commonly used for continual learning.

6. Conclusions
In this work, we show how intermediate representations in
neural networks can be leveraged to improve both perfor-
mance and efficiency in continual learning through auxiliary
classifiers (ACs). Our analysis reveals that representations
in the early layers are more stable and less prone to for-
getting compared to those in the final classifier. Based on
these findings, we propose attaching lightweight ACs to
intermediate layers to boost network performance while
enabling faster inference through dynamic layer skipping.
Our experiments across diverse continual learning methods
show an average 10% relative performance improvement
over standard single-classifier models on CIFAR100 and
ImageNet100, consistent with different architectures such as
ResNets, VGG19, and ViT. Additionally, through dynamic
inference, AC-enhanced models reduce the computational
cost of the inference by up to 60% without sacrificing accu-
racy. Overall, our approach provides a promising solution
to address both performance and efficiency challenges in
resource-constrained continual learning environments.

Discussion. Our findings demonstrate that adding ACs
improves overall continual learning performance. The gains
from ACs might seem counterintuitive at first, especially
since early ACs are less accurate and also not immune to
forgetting. However, different ACs learn to classify samples
based on different features. In particular, early classifiers
rely on shared, general features, which makes them more

robust across tasks and capable of correctly classifying dis-
tinct subsets of data, even if their overall accuracy is lower.
As a result, using multiple ACs introduces both diversity
and redundancy in predictions - if one classifier forgets, an-
other may still succeed. This redundancy, combined with
confidence-based early exits, makes ACs a viable tool for
continual learning and helps explain how they can improve
not only efficiency but also performance.

Reproducibility. The code used to run experiments in this
paper is publicly available at https://github.com/
fszatkowski/cl-auxiliary-classifiers.

Limitations. ACs add slight training and memory over-
head, which varies by method and architecture. This study
focused on computer vision and classification, leaving op-
portunities for exploration in other modalities and tasks.

Impact Statement
This work aims to advance the scientific understanding of
machine learning, particularly in the field of continual learn-
ing. Our primary contribution is to enhance the fundamental
principles of AI research, fostering progress within the aca-
demic and scientific community. While our work has the
potential to influence broader applications, we emphasize
that its intended purpose is purely scientific. We do not take
responsibility for any unintended consequences that may
arise from its application beyond this scope, especially in
an era of rapid AI and deep learning advancements.

Acknowledgements
This work is supported by National Centre of Sci-
ence (NCP, Poland) Grants No. 2022/45/B/ST6/02817,
2024/53/N/ST6/03078, and 2023/51/D/ST6/02846. Yaoyue
Zheng acknowledges the China Scholarship Council (CSC)
No.202406280387. This work was supported by Horizon
Europe Programme under GA no. 101120237, project
”ELIAS: European Lighthouse of AI for Sustainability”.
We gratefully acknowledge Polish high-performance com-
puting infrastructure PLGrid (HPC Center: ACK Cyfronet
AGH) for providing computer facilities and support within
computational grant no. PLG/2024/017385. We acknowl-
edge the Spanish project PID2022-143257NB-I00, financed
by MCIN/AEI/10.13039/501100011033 and FEDER, and
Funded by the European Union ELLIOT project. Bartłomiej
Twardowski acknowledges the grant RYC2021-032765-I.

9

https://github.com/fszatkowski/cl-auxiliary-classifiers
https://github.com/fszatkowski/cl-auxiliary-classifiers


Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

References
Ahn, H., Kwak, J., Lim, S., Bang, H., Kim, H., and Moon,

T. Ss-il: Separated softmax for incremental learning. In
Proceedings of the IEEE/CVF International conference
on computer vision, pp. 844–853, 2021.

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and
Tuytelaars, T. Memory aware synapses: Learning what
(not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139–154, 2018.

Boschini, M., Bonicelli, L., Porrello, A., Bellitto, G., Pen-
nisi, M., Palazzo, S., Spampinato, C., and Calderara, S.
Transfer without forgetting. In European conference on
computer vision, pp. 692–709. Springer, 2022.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and
Calderara, S. Dark experience for general continual learn-
ing: a strong, simple baseline. Advances in neural infor-
mation processing systems, 33:15920–15930, 2020.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. Efficient lifelong learning with a-gem. In Interna-
tional Conference on Learning Representations, 2018.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T.,
Dokania, P. K., Torr, P. H., and Ranzato, M. On tiny
episodic memories in continual learning. arXiv preprint
arXiv:1902.10486, 2019.

Davari, M., Asadi, N., Mudur, S., Aljundi, R., and
Belilovsky, E. Probing representation forgetting in super-
vised and unsupervised continual learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16712–16721, 2022.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia,
X., Leonardis, A., Slabaugh, G., and Tuytelaars, T. A
continual learning survey: Defying forgetting in classifi-
cation tasks. IEEE transactions on pattern analysis and
machine intelligence, 44(7):3366–3385, 2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dosovitskiy, A. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Douillard, A., Cord, M., Ollion, C., Robert, T., and Valle, E.
Podnet: Pooled outputs distillation for small-tasks incre-
mental learning. In European Conference on Computer
Vision, pp. 86–102, 2020.

Evci, U., Dumoulin, V., Larochelle, H., and Mozer, M. C.
Head2toe: Utilizing intermediate representations for bet-
ter transfer learning. In International Conference on
Machine Learning, pp. 6009–6033. PMLR, 2022.

Goswami, D., Liu, Y., Twardowski, B., and van de Weijer, J.
Fecam: Exploiting the heterogeneity of class distributions
in exemplar-free continual learning. Advances in Neural
Information Processing Systems, 36, 2024.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Jung, D., Lee, D., Hong, S., Jang, H., Bae, H., and Yoon, S.
New insights for the stability-plasticity dilemma in online
continual learning. arXiv preprint arXiv:2302.08741,
2023.

Kaya, Y., Hong, S., and Dumitras, T. Shallow-deep net-
works: Understanding and mitigating network overthink-
ing. In Chaudhuri, K. and Salakhutdinov, R. (eds.), Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 3301–3310. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/
v97/kaya19a.html.

Kim, S., Noci, L., Orvieto, A., and Hofmann, T. Achieving a
better stability-plasticity trade-off via auxiliary networks
in continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 11930–11939, 2023.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. E.
Similarity of neural network representations revisited.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pp. 3519–3529. PMLR,
2019. URL http://proceedings.mlr.press/
v97/kornblith19a.html.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Master’s thesis, University of Tront, 2009.

Li, Z. and Hoiem, D. Learning without forgetting. IEEE
transactions on pattern analysis and machine intelligence,
40(12):2935–2947, 2017.

10

https://proceedings.mlr.press/v97/kaya19a.html
https://proceedings.mlr.press/v97/kaya19a.html
http://proceedings.mlr.press/v97/kornblith19a.html
http://proceedings.mlr.press/v97/kornblith19a.html


Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

Liang, Y.-S. and Li, W.-J. Loss decoupling for task-agnostic
continual learning. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Liu, X., Wu, C., Menta, M., Herranz, L., Raducanu, B.,
Bagdanov, A. D., Jui, S., and de Weijer, J. v. Generative
feature replay for class-incremental learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, pp. 226–227, 2020a.

Liu, Y., Parisot, S., Slabaugh, G., Jia, X., Leonardis, A., and
Tuytelaars, T. More classifiers, less forgetting: A generic
multi-classifier paradigm for incremental learning. In
Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXVI 16, pp. 699–716. Springer, 2020b.

Magistri, S., Trinci, T., Soutif, A., van de Weijer, J., and
Bagdanov, A. D. Elastic feature consolidation for cold
start exemplar-free incremental learning. In The Twelfth
International Conference on Learning Representations,
2024.

Mallya, A. and Lazebnik, S. Packnet: Adding multiple tasks
to a single network by iterative pruning. In Proceedings
of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 7765–7773, 2018.

Mallya, A., Davis, D., and Lazebnik, S. Piggyback: Adapt-
ing a single network to multiple tasks by learning to mask
weights. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 67–82, 2018.

Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov,
A. D., and Van De Weijer, J. Class-incremental learning:
survey and performance evaluation on image classifica-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(5):5513–5533, 2022.

Masarczyk, W., Ostaszewski, M., Imani, E., Pascanu, R.,
Miłoś, P., and Trzciński, T. The tunnel effect: Build-
ing data representations in deep neural networks. arXiv
preprint arXiv:2305.19753, 2023.

McCloskey, M. and Cohen, N. J. Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, pp. 109–165. Elsevier, 1989.

Mirzadeh, S. I., Chaudhry, A., Yin, D., Hu, H., Pascanu,
R., Gorur, D., and Farajtabar, M. Wide neural networks
forget less catastrophically. In International conference
on machine learning, pp. 15699–15717. PMLR, 2022a.

Mirzadeh, S. I., Chaudhry, A., Yin, D., Nguyen, T., Pascanu,
R., Gorur, D., and Farajtabar, M. Architecture matters
in continual learning. arXiv preprint arXiv:2202.00275,
2022b.

Pan, X., Jin, X., He, Y., Song, S., Huang, G., et al. Bud-
geted training for vision transformer. In The Eleventh
International Conference on Learning Representations,
2022.

Panda, P., Sengupta, A., and Roy, K. Conditional deep learn-
ing for energy-efficient and enhanced pattern recognition.
In 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 475–480. IEEE, 2016.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter,
S. Continual lifelong learning with neural networks: A
review. Neural Networks, 113:54–71, 2019.

Pawlak, S., Szatkowski, F., Bortkiewicz, M., Dubiński, J.,
and Trzciński, T. Progressive latent replay for efficient
generative rehearsal. In International Conference on
Neural Information Processing, pp. 457–467. Springer,
2022.

Prabhu, A., Torr, P. H., and Dokania, P. K. Gdumb: A
simple approach that questions our progress in continual
learning. In Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part II 16, pp. 524–540. Springer, 2020.

Ramasesh, V. V., Dyer, E., and Raghu, M. Anatomy of
catastrophic forgetting: Hidden representations and task
semantics. In International Conference on Learning Rep-
resentations, 2020.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H.
icarl: Incremental classifier and representation learning.
In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp. 2001–2010, 2017.

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu,
Y., and Tesauro, G. Learning to learn without forgetting
by maximizing transfer and minimizing interference. In
International Conference on Learning Representations,
2018.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. Over-
coming catastrophic forgetting with hard attention to the
task. In International Conference on Machine Learning,
pp. 4548–4557. PMLR, 2018.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning
with deep generative replay. Advances in neural informa-
tion processing systems, 30, 2017.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. International
Conference on Learning Representations, 2014.

11



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

Tang, S., Chen, D., Zhu, J., Yu, S., and Ouyang, W. Layer-
wise optimization by gradient decomposition for contin-
ual learning. In Proceedings of the IEEE/CVF conference
on Computer Vision and Pattern Recognition, pp. 9634–
9643, 2021.

Teerapittayanon, S., McDanel, B., and Kung, H. Branchynet:
Fast inference via early exiting from deep neural net-
works. In 2016 23rd International Conference on Pat-
tern Recognition (ICPR), pp. 2464–2469, 2016. doi:
10.1109/ICPR.2016.7900006.

Van de Ven, G. M. and Tolias, A. S. Three scenarios for
continual learning. arXiv preprint arXiv:1904.07734,
2019.

Wang, S., Li, X., Sun, J., and Xu, Z. Training networks in
null space of feature covariance for continual learning. In
Proceedings of the IEEE/CVF conference on Computer
Vision and Pattern Recognition, pp. 184–193, 2021.

Wang, Z., Liu, L., Duan, Y., Kong, Y., and Tao, D. Continual
learning with lifelong vision transformer. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 171–181, 2022.

Wójcik, B., Przewieźlikowski, M., Szatkowski, F., Wołczyk,
M., Bałazy, K., Krzepkowski, B., Podolak, I., Tabor, J.,
Śmieja, M., and Trzciński, T. Zero time waste in pre-
trained early exit neural networks. Neural Networks, 168:
580–601, 2023.

Wortsman, M., Ramanujan, V., Liu, R., Kembhavi, A.,
Rastegari, M., Yosinski, J., and Farhadi, A. Supermasks
in superposition. Advances in Neural Information Pro-
cessing Systems, 33:15173–15184, 2020.

Wu, C., Herranz, L., Liu, X., Van De Weijer, J., Raducanu,
B., et al. Memory replay gans: Learning to generate
new categories without forgetting. Advances in Neural
Information Processing Systems, 31, 2018.

Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., and Fu,
Y. Large scale incremental learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 374–382, 2019.

Yan, H., Wang, L., Ma, K., and Zhong, Y. Orchestrate
latent expertise: Advancing online continual learning
with multi-level supervision and reverse self-distillation.
Computer Vision and Pattern Recognition, 2024. doi:
10.1109/CVPR52733.2024.02234.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
British Machine Vision Conference, 2016. doi: 10.5244/
C.30.87.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In International conference
on machine learning, pp. 3987–3995. PMLR, 2017.

Zhao, H., Zhou, T., Long, G., Jiang, J., and Zhang, C. Does
continual learning equally forget all parameters? arXiv
preprint arXiv:2304.04158, 2023.

12



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

Appendix
A. AC architecture and training details
In our main experiments, we follow the insights from (Kaya et al., 2019) and (Wójcik et al., 2023) in our design of
multi-classifier networks. We place the ACs after layers that perform roughly 15%, 30%, 45%, 60%, 75%, 90% of the
computations of the full network (L1.B3, L1.B5, L2.B2, L2.B4, L3.B1, L3.B3, L3.B5 for ResNet32, and blocks B2-B7
for ResNet18). For convolutional networks, ACs are composed of pooling layers to reduce the input size for the fully
connected networks that produce the predictions. For experiments on ViT, we apply a fully connected classifier on top of the
LayerNorm layer on the first token. All the classifiers in our model are composed of heads for each task, and we add a new
head upon encountering a new task.

Our main objective used for training the network on any given task is a weighted sum of losses for each classifier. For
continual learning methods, we use the additional losses alongside the cross-entropy and weigh the total loss. We train the
model for each task jointly with all the ACs, updating all the parameters of the network. We follow the weight scheduler
from (Kaya et al., 2019) and progressively increase loss weights for different ACs over the training phase to the values
matching their computational cost (e.g. the weight for the first classifier for ResNet32 would increase up to 0.15, for the
second classifier to 0.30, and so on). For ResNet18 we use 6 ACs and set weights to [0.3, 0.4, 0.55, 0.65, 0.8, 0.9], as the
network contains only 8 blocks whose computational cost distributes approximately like that. For experiments with 12 ACs,
we attach classifiers to all blocks L1.B3-L3.B4 and interpolate the weights from the standard setting. For 3 ACs, we use
blocks L1.B3, L2.B2, and L3.B1 with weights [0.15, 0.45, 0.75]. When training ViT or VGG networks, for each model
block we use multiplies of a given base weight (e.g. 0.08 for ViT-base, 0.05 or 0.09 for 18 and 10 AC setup for VGG19).
For example, we set the AC weights for 11 ACs in ViT as [0.08, 0.16, ..., 0.80, 0.88]. Different loss weights for each AC
serve to stabilize the training and mitigate overfitting in the earlier layers, which may have lower learning capacity.

We train the ResNet32 models on CIFAR100 for 200 epochs on each task, using SGD optimizer with a batch size of 128 with
a learning rate initialized to 0.1 and decayed by a rate of 0.1 at the 60th, 120th, and 160th epochs. For training ResNet18 on
ImageNet100, we change the scheduler to cosine with a linear warmup and train for 100 epochs with 5 epochs of warmup,
as we find it to converge to similar results in a shorter time. For ViT, we use AdamW and train each task for 100 epochs
with a learning rate of 0.01 and batch size of 64. We also use a cosine scheduler with a linear warmup for 5 epochs. We use
a fixed memory of 2000 exemplars selected with herding (Rebuffi et al., 2017). For ER each batch is balanced between old
and new data, and for SSIL we use a 4:1 ratio of new to old data. Otherwise, for other exemplar-based methods, we follow
the standard FACIL procedure for exemplars and just add them to the training data without any balancing.

13



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

B. Training time and memory overhead disucssion
Introducing Auxiliary Classifiers (ACs) into the network introduces additional computational and memory overhead during
training, due to the extra gradient computations and memory required by the classifiers. In this section, we quantify this
overhead by evaluating the impact of ACs on training ResNet-32 on CIFAR-100 with various CL methods. We train the
model with different numbers of ACs, where ”0 ACs” corresponds to the baseline model without any auxiliary classifiers.
For each configuration, we report average training time (in hours) and peak GPU memory usage (in GB) across three
random seeds. Training time is measured separately for 5-task and 10-task incremental setups, while peak memory usage is
independent of the number of tasks. We present the results in Tables 3 and 4.

In the standard setup used in the main paper (6 ACs), we observe a roughly 50% increase in training time and a 10% increase
in peak memory usage compared to the baseline. However, it is important to note that these results represent the worst-case
overhead across all our experiments, since ResNet-32 is the smallest model we evaluate, and the relative impact of the added
ACs on parameter count and computational load is the most pronounced for this model. As shown in Figures 1 and 7, the
total inference cost with ACs exceeds the baseline by approximately 3% for ResNet-32, whereas for larger models like ViT,
this overhead reduces to around 1%. While these overheads are non-negligible, they are not prohibitive in practical settings.
Class-incremental learning is typically performed in an offline setting without real-time constraints, making the additional
training costs acceptable in exchange for the performance gains achieved by ACs. Moreover, we did not specifically optimize
for training efficiency, and these overheads could be further reduced if necessary in the downstream applications.

Table 3. Training time (in hours) for CIFAR-100 under 5-task and 10-task setups, reported as (5-task / 10-task).

ACs FT FT+Ex GDumb ANCL BiC ER EWC LwF LODE SSIL Avg

0 1.1 / 1.4 1.3 / 1.7 0.6 / 1.2 2.1 / 2.8 1.4 / 2.0 2.4 / 2.5 1.2 / 1.4 1.2 / 1.4 3.0 / 3.3 1.7 / 1.8 1.6 / 1.9
3 1.3 / 1.6 1.5 / 2.0 0.8 / 1.5 2.7 / 3.6 1.8 / 2.5 2.8 / 3.2 1.5 / 1.9 1.5 / 1.9 3.6 / 4.2 2.1 / 2.3 2.0 / 2.5
6 1.6 / 1.9 1.7 / 2.4 1.1 / 1.7 3.3 / 4.4 2.1 / 3.0 3.3 / 3.8 1.8 / 2.2 1.8 / 2.4 4.3 / 5.2 2.5 / 2.9 2.4 / 3.0
12 2.0 / 2.4 2.3 / 3.3 1.5 / 2.3 4.5 / 6.8 2.9 / 4.2 4.0 / 4.8 2.5 / 3.0 2.5 / 3.5 5.5 / 6.9 3.2 / 3.9 3.1 / 4.1

Table 4. Peak GPU memory usage (in GB) across methods and AC configurations.

ACs FT FT+Ex GDumb ANCL BiC ER EWC LwF LODE SSIL Avg

0 2.10 2.10 2.39 2.10 2.09 2.10 2.10 2.10 2.10 2.18 2.14
3 2.25 2.18 2.56 2.29 2.22 2.18 2.56 2.22 2.22 2.29 2.30
6 2.41 2.27 2.73 2.47 2.32 2.27 2.73 2.30 2.31 2.41 2.42
12 2.72 2.43 3.03 2.82 2.50 2.43 3.02 2.50 2.49 2.65 2.66

14



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

C. ACs in more CL settings
In this section, we prove the robustness of our idea on additional benchmarks in warm-start continual learning and two
setups with more tasks (20 and 50) on CIFAR100.

C.1. Warm-start continual learning

Table 5. Adding auxiliary classifiers (ACs) is beneficial to the final network accuracy when training on CIFAR100 warm-start scenario
with 50 classes in the first task.
Method FT FT+Ex GDumb ANCL BiC DER++ ER EWC LwF LODE SSIL Avg

CIFAR100x6

Base 16.18±0.65 40.38±0.75 17.38±0.33 42.85±1.07 46.60±1.15 38.49±0.14 38.11±0.10 17.08±1.11 42.72±0.60 42.28±0.46 46.78±0.15 35.35±0.18

+AC 22.37±1.28 38.12±0.77 22.60±0.31 43.97±0.41 48.75±0.17 43.55±0.54 37.81±0.58 25.49±0.97 43.45±0.74 44.95±0.28 48.97±0.28 38.18±0.28

∆ +6.19±1.72 -2.26±0.35 +5.22±0.19 +1.12±1.35 +2.15±1.23 +5.06±0.66 -0.30±0.68 +8.40±0.71 +0.72±1.13 +2.67±0.28 +2.19±0.36 +2.83±0.11

CIFAR100x11

Base 7.90±0.30 36.41±1.06 16.55±0.41 33.86±0.11 42.38±0.64 35.24±0.90 34.86±0.56 8.01±0.88 32.13±0.72 38.17±0.17 41.46±0.84 29.73±0.04

+AC 11.91±1.59 36.80±0.45 22.73±0.74 34.94±0.95 45.37±0.44 40.46±0.55 36.80±0.53 16.05±0.96 35.31±1.42 40.97±0.22 45.70±0.59 33.37±0.31

∆ +4.00±1.48 +0.39±0.63 +6.17±0.38 +1.08±0.85 +2.99±0.21 +5.22±1.09 +1.94±1.07 +8.04±0.67 +3.18±0.77 +2.80±0.35 +4.24±1.10 +3.64±0.35

20 30 40 50 60 70 80 90 100
Inference cost [%]

30

40

50

A
cc

ur
ac

y

CIFAR100x6 | ResNet32

20 30 40 50 60 70 80 90 100
Inference cost [%]

20

30

40

CIFAR100x11 | ResNet32

ANCL
+AC

BiC
+AC

DER++
+AC

LODE
+AC

SSIL
+AC

20 30 40 50 60 70 80 90 100
Inference cost [%]

20

30

40

A
cc

ur
ac

y

CIFAR100x6 | ResNet32

20 30 40 50 60 70 80 90 100
Inference cost [%]

10

20

30

CIFAR100x11 | ResNet32

ER
+AC

EWC
+AC

FT
+AC

FT+Ex
+AC

GDumb
+AC

LwF
+AC

Figure 9. Dynamic inference results for CL methods enhanced with ACs in warm start scenario on CIFAR100.

A common scenario in continual learning is warm-start (Magistri et al., 2024; Goswami et al., 2024), which simulates
starting from a pre-trained model. This scenario is an interesting study for continual learning due to the practical benefits
of pre-trained models and the differing learning dynamics. To evaluate our model in a warm-start scenario, we train on
CIFAR100, using 50 classes for the first task to simulate a pre-training phase. The remaining classes are split evenly into 5
or 10 tasks, referred to as the 6-task and 11-task splits. We conduct experiments with a new task split and results are shown
in Table 5. We observe a general improvement in the warm-start setting, except for ER and FT+Ex, which show different
performances on the 6-task and 11-task splits. In Figure 9, we also show the effectiveness of dynamic inference under the
warm-start scenario.

15



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

Table 6. Additional results for AC-enhanced methods with longer sequences of tasks on CIFAR100.

Method FT FT+Ex GDumb ANCL BiC DER++ ER EWC LwF LODE SSIL Avg

CIFAR100x20

Base 4.72±0.75 32.35±0.26 23.68±1.08 19.34±0.32 38.81±1.02 34.50±0.33 30.94±0.53 5.51±0.36 18.97±1.20 37.90±0.37 36.86±1.21 25.78±0.32

+AC 7.33±0.45 37.16±0.63 30.11±0.36 20.87±0.78 42.03±0.18 36.45±0.81 36.10±0.07 9.70±0.18 19.63±0.75 41.85±0.49 39.78±0.24 29.18±0.10

∆ +2.61±0.61 +4.81±0.86 +6.43±0.98 +1.53±0.91 +3.22±1.01 +1.95±1.05 +5.16±0.60 +4.19±0.40 +0.66±1.69 +3.95±0.65 +2.92±1.03 +3.40±0.22

CIFAR100x50

Base 0.97±0.51 21.60±0.88 13.48±0.89 5.88±0.21 24.01±0.42 16.79±1.38 18.35±0.38 1.63±0.55 5.09±0.51 23.56±1.82 22.66±0.39 14.00±0.22

+AC 1.64±0.19 26.39±0.16 17.63±0.90 5.54±0.25 29.39±0.73 22.59±0.39 22.96±0.29 2.12±0.02 5.40±0.60 28.53±1.29 25.77±0.74 17.09±0.27

∆ +0.67±0.67 +4.79±0.88 +4.15±0.60 -0.34±0.19 +5.38±0.41 +5.80±1.01 +4.61±0.52 +0.49±0.57 +0.31±0.88 +4.97±2.06 +3.11±1.12 +3.08±0.47

20 30 40 50 60 70 80 90 100
Inference cost [%]

20

30

40

A
cc

ur
ac

y

CIFAR100x20 | ResNet32

20 40 60 80 100
Inference cost [%]

10

20

30
CIFAR100x50 | ResNet32

ANCL
+AC

BiC
+AC

DER++
+AC

LODE
+AC

SSIL
+AC

20 30 40 50 60 70 80 90 100
Inference cost [%]

10

20

30

A
cc

ur
ac

y

CIFAR100x20 | ResNet32

20 40 60 80 100
Inference cost [%]

0

10

20

CIFAR100x50 | ResNet32

ER
+AC

EWC
+AC

FT
+AC

FT+Ex
+AC

GDumb
+AC

LwF
+AC

Figure 10. Dynamic inference results for CL methods enhanced with ACs on CIFAR100 split into long, 20 and 50 tasks sequences.

C.2. AC-enhanced methods on longer task sequences

In Table 6 we present results for experiments on 20 and 50 equally split tasks on CIFAR100, following the setup from
Section 5.1. For the 50-task split, we use a growing memory of 20 exemplars instead of a constant memory of 2000 due
to the early tasks containing less samples than the memory limit. Non-replay-based methods perform poorly on longer
sequences of tasks, especially on 50 tasks, but ACs robustly enhance the method performance in all tested scenarios. In
Figure 10, we also demonstrate the performance of AC-enhanced methods with dynamic inference.

16



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

D. Ablation studies on AC design
In this section, we perform ablation studies on AC design in the setup from Section 5.1 for CIFAR100. In Appendices D.1
and D.2 we explore the impact of the number of the ACs and alternative AC architectures from Wójcik et al. (2023). In
Appendix D.3 we compare models trained end-to-end and obtained through linear probing, and in Appendix D.4 we show
the performance of networks with only a single classifier to provide the intuition behind the classifier behaviour.

D.1. Number of ACs

We vary the number of classifiers for the 6 AC setup from the main paper: we either drop half of them or insert an extra one
between the existing classifiers. We measure the improvement obtained upon the baseline and the additional computational
cost incurred by 3, 6, and 12 ACs and show the results in Table 7 and Figure 11. While the optimal setup varies across
different continual learning methods, the addition of ACs is universally beneficial to performance.

Table 7. Difference w.r.t. baseline single-classifier methods when using a different number of auxiliary classifiers (ACs). ACs robustly
improve the final accuracy of continual learning methods, regardless of the number of classifiers used.

FLOPS FT FT+Ex GDumb ANCL BiC ER EWC LwF LODE SSIL Avg

NoAC 69.90M (1x)

CIFAR100x5

3AC 70.72M (1.01x) +7.61±0.68 +0.70±0.83 +5.08±0.87 +2.14±1.05 +2.62±0.60 +4.63±0.38 +8.94±0.40 +0.95±1.18 +4.19±0.63 +2.65±0.58 +3.95±0.39

6AC 71.55M (1.02x) +9.49±0.96 +0.39±0.90 +4.20±0.16 +2.12±1.03 +2.74±0.83 +5.22±0.38 +10.02±1.39 +2.29±0.25 +6.31±0.81 +2.72±0.42 +4.55±0.43

12AC 72.97M (1.04x) +9.09±0.81 +1.67±1.28 +5.15±0.08 +2.45±0.74 +3.57±0.47 +4.46±0.54 +9.97±0.35 +2.75±1.26 +5.43±0.65 +2.92±0.53 +4.74±0.20

CIFAR100x10

3AC 70.84M (1.01x) +6.48±0.43 +3.05±0.99 +5.74±0.47 +1.71±0.31 +2.85±2.19 +4.44±1.00 +7.92±0.61 +0.53±0.44 +6.13±0.23 +2.02±1.69 +4.09±0.42

6AC 71.77M (1.03x) +6.62±1.06 +2.46±0.31 +5.52±1.13 +0.68±0.79 +3.31±2.62 +5.01±0.98 +8.92±1.06 +0.74±0.91 +6.80±0.93 +1.88±0.77 +4.20±0.47

12AC 73.36M (1.05x) +4.63±1.46 +2.59±1.19 +6.12±0.78 +1.85±1.49 +3.98±2.01 +4.95±1.05 +6.57±0.97 +1.14±0.38 +6.68±0.79 +1.98±0.91 +4.05±0.60

20 40 60 80 100
Inference cost [%]

30

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

25

30

CIFAR100x10 | ResNet32

ANCL
+3AC
+6AC
+12AC

20 40 60 80 100
Inference cost [%]

30

40

50

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

30

40

CIFAR100x10 | ResNet32

BiC
+3AC
+6AC
+12AC

20 40 60 80 100
Inference cost [%]

15

20

25

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

10

15

CIFAR100x10 | ResNet32

FT
+3AC
+6AC
+12AC

20 40 60 80 100
Inference cost [%]

20

30

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

30

CIFAR100x10 | ResNet32

FT+Ex
+3AC
+6AC
+12AC

20 40 60 80 100
Inference cost [%]

30

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

30

CIFAR100x10 | ResNet32

ER
+3AC
+6AC
+12AC

20 40 60 80 100
Inference cost [%]

20

30

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

10

15

CIFAR100x10 | ResNet32

EWC
+3AC
+6AC
+12AC

20 40 60 80 100
Inference cost [%]

17.5

20.0

22.5

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

25

CIFAR100x10 | ResNet32

GDumb
+3AC
+6AC
+12AC

20 40 60 80 100
Inference cost [%]

30

40

50

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

30

40

CIFAR100x10 | ResNet32

LODE
+3AC
+6AC
+12AC

20 40 60 80 100
Inference cost [%]

30

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

25

30
CIFAR100x10 | ResNet32

LwF
+3AC
+6AC
+12AC

20 40 60 80 100
Inference cost [%]

30

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

30

40

CIFAR100x10 | ResNet32

SSIL
+3AC
+6AC
+12AC

Figure 11. Dynamic inference experiments for ResNet32 on CIFAR100 enhanced with different number of ACs.

17



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

D.2. AC architecture

In our main work, we investigate a simple setup with independent classifiers. Early-exit works such as (Wójcik et al., 2023)
propose more complex dynamic architectures, where subsequent classifiers are connected and their predictions are combined
through a weighted ensemble. Those architectures induce only a slight parameter and computation overhead, but in a
standard supervised learning setting can improve the performance of intermediate classifiers through sharing the knowledge
between them. We investigate those architectures in continual learning on the set of methods analyzed in previous sections
on split CIFAR100 benchmarks and present the results in Table 8, alongside dynamic inference plots in Figure 12. Similar to
the AC density ablation, we do not observe a clear improvement from changing the setup. We hypothesize that connecting
the classifiers makes them no longer independent, which negates the benefits yielded in continual learning by the classifier
diversity.

Table 8. Difference w.r.t. baseline single-classifier methods when using a different auxiliary classifier architecture: cascading (C) and
ensebling (E) from Wójcik et al. (2023). Similar to Table 7, ACs universally improve the accuracy with small differences in performance
between the architectures.

Method FT FT+Ex GDumb ANCL BiC ER EWC LwF LODE SSIL Avg

CIFAR100x5

AC +5.70±5.24 +0.24±0.67 +2.52±2.30 +1.27±1.37 +1.65±1.61 +3.13±2.87 +6.01±5.57 +1.37±1.27 +3.79±3.50 +1.63±1.52 +2.73±2.51

AC+C +5.41±4.99 -0.72±0.70 +2.49±2.27 +1.20±1.37 +1.16±1.06 +2.57±2.37 +6.16±5.62 +0.66±0.77 +2.89±2.66 +1.26±1.23 +2.31±2.12

AC+E +6.47±5.91 +0.38±1.03 +2.00±1.83 +1.28±39.62 +1.30±1.20 +2.32±2.16 +6.58±6.01 +1.14±1.18 +2.79±2.61 +1.29±1.23 +2.56±2.11

CIFAR100x10

AC +6.62±1.06 +2.46±0.31 +5.52±1.13 +0.68±0.79 +3.31±2.62 +5.01±0.98 +8.92±1.06 +0.74±0.91 +6.80±0.93 +1.88±0.77 +4.20±0.47

AC+C +6.98±1.05 +2.63±0.92 +5.56±0.96 +1.60±0.70 +3.63±1.51 +5.19±1.08 +8.35±0.39 +1.27±0.47 +5.45±0.17 +2.53±0.56 +4.32±0.16

AC+E +7.35±0.14 +3.27±0.74 +5.09±0.40 +2.28±0.21 +3.68±2.16 +4.77±0.52 +8.62±1.12 +1.18±0.30 +5.85±0.68 +1.53±0.67 +4.36±0.33

20 40 60 80 100
Inference cost [%]

30

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

30

CIFAR100x10 | ResNet32

ANCL
+AC
+AC+C
+AC+E

20 40 60 80 100
Inference cost [%]

30

40

50

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

30

40

CIFAR100x10 | ResNet32

BiC
+AC
+AC+C
+AC+E

20 40 60 80 100
Inference cost [%]

20

30

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

10

15

CIFAR100x10 | ResNet32

FT
+AC
+AC+C
+AC+E

20 40 60 80 100
Inference cost [%]

20

30

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

30

CIFAR100x10 | ResNet32

FT+Ex
+AC
+AC+C
+AC+E

20 40 60 80 100
Inference cost [%]

30

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

30

CIFAR100x10 | ResNet32

ER
+AC
+AC+C
+AC+E

20 40 60 80 100
Inference cost [%]

20

25

30

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

10

15

CIFAR100x10 | ResNet32

EWC
+AC
+AC+C
+AC+E

20 40 60 80 100
Inference cost [%]

17.5

20.0

22.5

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

25

CIFAR100x10 | ResNet32

GDumb
+AC
+AC+C
+AC+E

20 40 60 80 100
Inference cost [%]

30

40

50

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

30

40

CIFAR100x10 | ResNet32

LODE
+AC
+AC+C
+AC+E

20 40 60 80 100
Inference cost [%]

30

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

25

30
CIFAR100x10 | ResNet32

LwF
+AC
+AC+C
+AC+E

20 40 60 80 100
Inference cost [%]

30

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

30

40

CIFAR100x10 | ResNet32

SSIL
+AC
+AC+C
+AC+E

Figure 12. Dynamic inference experiments for ResNet32 on CIFAR100 enhanced with different types of classifiers.

18



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

D.3. Comparison between end-to-end training and linear probing

In Section 3.4, we advocate for training the network and ACs jointly with enabled gradient propagation, as it leads to better
performance of individual classifiers. In this section, we investigate the final performance of linear probing classifiers in
comparison with jointly trained ACs on CIFAR100. For ACs use the same setup as in Section 5.1, and in the case of linear
probing the only difference is that the classifiers are trained without gradient propagation. We show the final performance of
both settings in Table 9, and also demonstrate their cost-accuracy characteristics in Figure 13. Aside from distillation-based
exemplar-free methods, ACs outperform probing accuracy but probing also outperforms baselines most of the time. Dynamic
accuracy curves also highlight that end-to-end training generally allows AC methods to achieve greater accuracy at lower
computational costs due to the ability to learn better early classifiers.

Table 9. Comparison between final results when using intermediate classifiers trained together with the network (AC) or trained with linear
probing (LP). Training classifiers together generally yields better performance, with the only noticeable exception being exemplar-free
distillation-based methods (ANCL and LwF), which could be caused by significant variance in per-task accuracy of intermediate classifiers.

Method FT FT+Ex GDumb ANCL BiC ER EWC LwF LODE SSIL Avg

CIFAR100x5

Base 18.68±0.31 38.35±0.86 19.09±0.44 37.71±1.14 47.66±0.43 34.55±0.21 18.95±0.29 38.26±0.98 42.82±0.84 45.62±0.16 34.17±0.27

+LP 26.82±1.19 36.83±1.27 22.56±0.63 43.60±0.19 49.62±0.07 38.47±0.78 28.13±1.11 41.13±0.33 46.35±0.45 47.33±0.60 38.09±0.45

+AC 28.18±1.07 38.75±0.26 23.29±0.54 39.83±1.22 50.40±0.68 39.77±0.32 28.96±1.13 40.55±0.95 49.13±0.35 48.35±0.50 38.72±0.61

CIFAR100x10

Base 10.27±0.05 34.51±0.40 22.22±0.72 30.69±0.62 42.87±1.51 32.31±0.82 10.20±0.35 29.56±0.44 38.87±0.45 42.29±0.49 29.38±0.26

+LP 17.77±1.30 35.62±0.89 25.60±0.91 33.72±1.38 44.74±2.31 35.78±0.46 18.84±0.19 31.88±1.11 43.37±0.31 43.33±0.08 33.06±0.17

+AC 16.88±1.08 36.97±0.39 27.74±0.73 31.37±0.94 46.19±1.47 37.32±0.28 19.12±0.88 30.31±1.14 45.67±0.52 44.17±0.28 33.57±0.22

20 40 60 80 100
Inference cost [%]

20

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

30

CIFAR100x10 | ResNet32

ANCL
+AC
+LP

20 40 60 80 100
Inference cost [%]

30

40

50

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

30

40

CIFAR100x10 | ResNet32

BiC
+AC
+LP

20 40 60 80 100
Inference cost [%]

15

20

25

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

10

15

CIFAR100x10 | ResNet32

FT
+AC
+LP

20 40 60 80 100
Inference cost [%]

20

30

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

30

CIFAR100x10 | ResNet32

FT+Ex
+AC
+LP

20 40 60 80 100
Inference cost [%]

20

30

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

30

CIFAR100x10 | ResNet32

ER
+AC
+LP

20 40 60 80 100
Inference cost [%]

20

30

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

10

15

CIFAR100x10 | ResNet32

EWC
+AC
+LP

20 40 60 80 100
Inference cost [%]

17.5

20.0

22.5

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

25

CIFAR100x10 | ResNet32

GDumb
+AC
+LP

20 40 60 80 100
Inference cost [%]

20

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

40

CIFAR100x10 | ResNet32

LODE
+AC
+LP

20 40 60 80 100
Inference cost [%]

20

30

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

20

30

CIFAR100x10 | ResNet32

LwF
+AC
+LP

20 40 60 80 100
Inference cost [%]

30

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

20 40 60 80 100
Inference cost [%]

30

40

CIFAR100x10 | ResNet32

SSIL
+AC
+LP

Figure 13. Dynamic inference plots for several continual learning methods extended with auxiliary classifiers when using auxiliary
classifiers with enabled gradient propagation (AC) or without (LP).

19



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

D.4. Leave-one-AC ablation

In this section, we perform leave-one-out ablation of the setting explored in Section 5.1 for CIFAR100 on methods explored
in Section 3. Namely, we train the model with only one auxiliary classifier out of the original six, with the classifier weight
equal to 1. during training and present dynamic inference results in Figure 14. For non-naive methods, we observe that
either the 5th or the 6th AC achieves the best performance. Interestingly for finetuning, later ACs yield lower performance,
which is consistent with our observations on more native stability in early layers. All tested AC setups achieve comparable
performance at the full computational budget, but compared to our based setup of using all 6 ACs they tend to underperform
at a lower compute budget. Slightly better performance of single AC setup for FT+Ex and LwF hints that AC placement
in our work could be further optimized. However, overall similar performance across all the tested scenarios prove the
robustness of our idea.

0.25 0.50 0.75 1.00

20

25

30

A
cc

ur
ac

y

CIFAR100x5 | FT

0.25 0.50 0.75 1.00

20

30

40
CIFAR100x5 | FT+Ex

0.25 0.50 0.75 1.00

25

30

35

40

CIFAR100x5 | LwF

0.25 0.50 0.75 1.00

30

40

50
CIFAR100x5 | BiC

0.25 0.50 0.75 1.00
Cost

10

12

14

16

18

A
cc

ur
ac

y

CIFAR100x10 | FT

0.25 0.50 0.75 1.00
Cost

20

30

CIFAR100x10 | FT+Ex

0.25 0.50 0.75 1.00
Cost

20

25

30

CIFAR100x10 | LwF

0.25 0.50 0.75 1.00
Cost

30

40

CIFAR100x10 | BiC

All ACs
1st AC
2nd AC
3rd AC

4th AC
5th AC
6th AC

Figure 14. Leave one out AC ablation for FT, FT+Ex, LwF and BiC.

20



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

E. Additional dynamic inference results
This section presents dynamic inference plots for experiments performed in Section 5 or complementary to those experiments.

E.1. Standard benchmarks

In Figure 6, we present dynamic inference results for 5 and 10 task splits of CIFAR100 and ImageNet100 with the methods
omitted in the main section due to space constraints. As in the previous sections, ACs demonstrate robustness and allow for
a significant reduction of average computation.

20 40 60 80 100
Inference cost [%]

20

30

40

A
cc

ur
ac

y

CIFAR100x10 | ResNet32

40 60 80 100
Inference cost [%]

30

40

50

ImageNet100x10 | ResNet18

ANCL
+AC

BiC
+AC

DER++
+AC

LODE
+AC

SSIL
+AC

20 40 60 80 100
Inference cost [%]

20

30

40

A
cc

ur
ac

y

CIFAR100x5 | ResNet32

40 60 80 100
Inference cost [%]

20

30

40

50

60
ImageNet100x5 | ResNet18

ER
+AC

EWC
+AC

FT
+AC

FT+Ex
+AC

GDumb
+AC

LwF
+AC

20 40 60 80 100
Inference cost [%]

10

20

30

A
cc

ur
ac

y

CIFAR100x10 | ResNet32

40 60 80 100
Inference cost [%]

20

30

40

50
ImageNet100x10 | ResNet18

ER
+AC

EWC
+AC

FT
+AC

FT+Ex
+AC

GDumb
+AC

LwF
+AC

Figure 15. Dynamic inference plots as in Figure 6 for additional continual learning methods extended with auxiliary classifiers on
CIFAR100 and ImageNet100 split into 5 and 10 tasks.

21



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

E.2. VGG19

In Figure 7 in this section, we present dynamic inference plots for VGG19 on CIFAR100 with all the methods considered in
the main paper that correspond to the results from Table 2. AC-enhanced methods outperform the baselines by even bigger
margins than ResNets used in our main analysis and match their accuracy at a smaller fraction of the compute.

0 20 40 60 80 100
Inference cost [%]

20

40

A
cc

ur
ac

y

CIFAR100x5 | VGG19

0 20 40 60 80 100
Inference cost [%]

20

30

CIFAR100x10 | VGG19

ANCL
ANCL +6AC
ANCL +10AC
ANCL +18AC

0 20 40 60 80 100
Inference cost [%]

40

60

A
cc

ur
ac

y

CIFAR100x5 | VGG19

0 20 40 60 80 100
Inference cost [%]

30

40

50
CIFAR100x10 | VGG19

BiC
BiC +6AC
BiC +10AC
BiC +18AC

0 20 40 60 80 100
Inference cost [%]

20

40

A
cc

ur
ac

y

CIFAR100x5 | VGG19

0 20 40 60 80 100
Inference cost [%]

20

40

CIFAR100x10 | VGG19

DER++
DER++ +6AC
DER++ +10AC
DER++ +18AC

0 20 40 60 80 100
Inference cost [%]

20

30

A
cc

ur
ac

y

CIFAR100x5 | VGG19

0 20 40 60 80 100
Inference cost [%]

10

20

CIFAR100x10 | VGG19

FT
FT +6AC
FT +10AC
FT +18AC

0 20 40 60 80 100
Inference cost [%]

20

40

A
cc

ur
ac

y

CIFAR100x5 | VGG19

0 20 40 60 80 100
Inference cost [%]

20

30

CIFAR100x10 | VGG19

FT+Ex
FT+Ex +6AC
FT+Ex +10AC
FT+Ex +18AC

0 20 40 60 80 100
Inference cost [%]

30

40

A
cc

ur
ac

y

CIFAR100x5 | VGG19

0 20 40 60 80 100
Inference cost [%]

20

30

CIFAR100x10 | VGG19

ER
ER +6AC
ER +10AC
ER +18AC

0 20 40 60 80 100
Inference cost [%]

20

30

A
cc

ur
ac

y

CIFAR100x5 | VGG19

0 20 40 60 80 100
Inference cost [%]

10

20

CIFAR100x10 | VGG19

EWC
EWC +6AC
EWC +10AC
EWC +18AC

0 20 40 60 80 100
Inference cost [%]

20

30

A
cc

ur
ac

y

CIFAR100x5 | VGG19

0 20 40 60 80 100
Inference cost [%]

20

30

CIFAR100x10 | VGG19

GDumb
GDumb +6AC
GDumb +10AC
GDumb +18AC

0 20 40 60 80 100
Inference cost [%]

30

40

50

A
cc

ur
ac

y

CIFAR100x5 | VGG19

0 20 40 60 80 100
Inference cost [%]

30

40

CIFAR100x10 | VGG19

LODE
LODE +6AC
LODE +10AC
LODE +18AC

0 20 40 60 80 100
Inference cost [%]

20

40

A
cc

ur
ac

y

CIFAR100x5 | VGG19

0 20 40 60 80 100
Inference cost [%]

20

30

CIFAR100x10 | VGG19

LwF
LwF +6AC
LwF +10AC
LwF +18AC

Figure 16. Dynamic inference experiments on CIFAR100 with VGG19 network enhanced with different number of ACs.

22



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

E.3. ViT

In Figure 17, we show dynamic inference results with all AC-enhanced methods for ViT trained on ImageNet100. Due to
computational constraints, contrary to the main experiments, we only use a single seed for these experiments. While the
overall performance of ViT is below the results we achieve with ResNet18 models due to issues with training ViTs, already
discussed in the paper, for all methods, AC versions outperform the baseline. Interestingly, for certain methods, performance
peaks at the middle computational budgets and starts to degrade a bit, indicating insufficient calibration of Transformers
trained with those methods.

20 40 60 80 100
Inference cost [%]

10

20

30

40

A
cc

ur
ac

y

ImageNet100x5 | ViT-base

20 40 60 80 100
Inference cost [%]

10

20

30

ImageNet100x10 | ViT-base

FT+Ex
+AC

LODE
+AC

LwF
+AC

SSIL
+AC

20 40 60 80 100
Inference cost [%]

10

20

30

40

A
cc

ur
ac

y

ImageNet100x5 | ViT-base

20 40 60 80 100
Inference cost [%]

10

20

30

ImageNet100x10 | ViT-base

ANCL
+AC

BiC
+AC

ER
+AC

GDumb
+AC

20 40 60 80 100
Inference cost [%]

10

15

20

25

A
cc

ur
ac

y

ImageNet100x5 | ViT-base

20 40 60 80 100
Inference cost [%]

10.0

12.5

15.0

17.5

ImageNet100x10 | ViT-base

DER++
+AC

EWC
+AC

FT
+AC

Figure 17. Dynamic inference plots for ViT-base on ImageNet100.

23



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

E.4. WideResNet-2

In this section, we provide dynamic inference plots for WideResNet-2 for continual learning methods missing from Figure 8
in the main paper.

20 40 60 80 100
Inference cost [%]

20

30

40

A
cc

ur
ac

y

CIFAR100x5 | WideResNet16

20 40 60 80 100
Inference cost [%]

10

20

30

CIFAR100x10 | WideResNet16

ER
+AC

EWC
+AC

FT
+AC

FT+Ex
+AC

GDumb
+AC

LwF
+AC

Figure 18. Dynamic inference plots for WideResNet-2 on CIFAR100.

24



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

F. Additional analysis
In this section, we present additional analysis of multi-classifier networks. Furthermore, we provide results complementary
to the experiments from Section 3 for 5 task split of CIFAR100, as well as the results of those experiments for the models
with enabled gradient propagation.

F.1. Forgetting in AC-enhanced models

To better understand the impact of the addition of ACs, we further analyse how they affect the network forgetting. We
define average forgetting across training on total T tasks as 1

T−1

∑T−1
t=1 (Acctt −AccTt ), where Accji refers to the accuracy

on the i-th task after training on j-th task. The final task is excluded from the average, as it has zero forgetting under this
definition. In Table 10, we report average forgetting values at the end of training for the main settings we consider in our
experimental section (ResNet32 on CIFAR100 and ResNet18 on ImageNet100). The addition of ACs generally leads to
reduced forgetting. While there are isolated cases where AC-enhanced models show slightly higher forgetting, these are
exceptions, and even in those cases the final accuracy is still higher with ACs, as evidenced in Table 1. These results indicate
that ACs enable more effective knowledge accumulation during continual learning.

Table 10. Forgetting values (difference between average accuracy at the end of the first task and at the end of the training) corresponding to
the experiments in Table 1. AC-enhanced models generally exhibit lower forgetting, and even in cases where the forgetting is higher, the
ACs still lead to better final accuracy. This indicates that the addition of the ACs improves the network’s ability to accumulate knowledge.
Method FT FT+Ex GDumb ANCL BiC DER++ ER EWC LwF LODE SSIL Avg

CIFAR100x5

Base 64.85±1.27 44.80±0.79 12.01±0.63 36.94±0.79 9.33±2.89 7.42±4.17 47.25±0.36 64.65±1.13 24.21±2.69 20.61±1.14 24.80±1.08 32.44±19.83
+AC 50.04±1.18 45.51±0.66 10.00±0.47 26.32±1.15 9.26±4.00 3.68±4.05 40.31±0.84 48.04±1.34 19.95±0.57 20.61±0.96 19.95±1.12 26.70±15.90

CIFAR100x10

Base 70.35±2.42 49.57±1.25 14.11±1.08 40.49±1.55 9.31±2.43 11.88±4.27 51.77±1.11 68.40±2.74 24.26±2.12 18.49±1.50 21.44±2.74 34.55±21.51
+AC 56.40±2.97 48.03±1.05 10.68±1.44 30.60±1.46 6.37±3.81 8.39±5.10 46.62±1.33 54.08±2.30 29.12±1.01 20.24±2.12 16.71±1.96 29.75±17.96

ImageNet100x5

Base 74.35±0.63 52.00±0.75 16.73±0.82 9.41±1.06 10.37±1.70 42.74±7.04 56.14±1.27 74.49±0.97 18.90±0.73 36.32±0.98 21.90±0.88 37.58±23.08
+AC 61.45±1.30 49.97±1.00 15.98±1.07 13.70±0.99 9.76±1.05 14.45±2.39 49.65±1.25 61.77±0.61 17.49±0.76 31.83±2.64 19.68±0.80 31.43±19.40

ImageNet100x10

Base 77.50±1.54 57.50±1.40 19.67±1.37 25.27±1.07 12.73±3.38 28.54±5.96 60.38±1.42 76.70±1.40 23.76±1.49 34.37±2.08 19.75±1.69 39.65±22.73
+AC 68.44±1.54 54.67±1.73 18.12±1.47 27.44±1.14 12.84±2.71 28.38±5.63 56.06±1.74 68.13±1.18 18.17±0.90 31.15±2.20 18.90±1.80 36.57±20.12

25



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

F.2. Accuracies across the training on CIFAR100 for separate tasks

In this section, we provide more detailed results for our experiments on CIFAR100, where we compare the performance of
base and AC-enhanced networks with different continual learning methods on a per-task basis. The results for each method
are shown in Figures 19 to 29.

0 1 2 3 4
Current Task

20

40

60

A
cc

ur
ac

y
CIFAR100x5 | ANCL

Task ID
0
1
2
3

4
Method
Base
+AC

0 2 4 6 8
Current Task

0

20

40

60

80

A
cc

ur
ac

y

CIFAR100x10 | ANCL

Task ID
0
1
3
4
6

7
9
Method
Base
+AC

Figure 19. Per-task accuracy on CIFAR100x5 (left) and CIFAR100x10 (right) for ANCL.

0 1 2 3 4
Current Task

45

50

55

60

65

A
cc

ur
ac

y

CIFAR100x5 | BiC
Task ID
0
1
2
3

4
Method
Base
+AC

0 2 4 6 8
Current Task

20

30

40

50

60

70

80
A

cc
ur

ac
y

CIFAR100x10 | BiC

Task ID
0
1
3
4
6

7
9
Method
Base
+AC

Figure 20. Per-task accuracy on CIFAR100x5 (left) and CIFAR100x10 (right) for BiC.

0 1 2 3 4
Current Task

35

40

45

50

55

60

65

A
cc

ur
ac

y

CIFAR100x5 | DER++
Task ID
0
1
2

3
4
Method
+AC

0 2 4 6 8
Current Task

30

40

50

60

70

80

A
cc

ur
ac

y

CIFAR100x10 | DER++
Task ID
0
1
3
4

6
7
9
Method
+AC

Figure 21. Per-task accuracy on CIFAR100x5 (left) and CIFAR100x10 (right) for DER++.

26



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

0 1 2 3 4
Current Task

20

30

40

50

60

70

A
cc

ur
ac

y

CIFAR100x5 | ER

Task ID
0
1
2
3

4
Method
Base
+AC

0 2 4 6 8
Current Task

20

40

60

80

A
cc

ur
ac

y

CIFAR100x10 | ER

Task ID
0
1
3
4
6

7
9
Method
Base
+AC

Figure 22. Per-task accuracy on CIFAR100x5 (left) and CIFAR100x10 (right) for ER.

0 1 2 3 4
Current Task

0

20

40

60

A
cc

ur
ac

y

CIFAR100x5 | EWC

Task ID
0
1
2
3

4
Method
Base
+AC

0 2 4 6 8
Current Task

0

20

40

60

80

A
cc

ur
ac

y

CIFAR100x10 | EWC

Task ID
0
1
3
4
6

7
9
Method
Base
+AC

Figure 23. Per-task accuracy on CIFAR100x5 (left) and CIFAR100x10 (right) for EWC.

0 1 2 3 4
Current Task

30

40

50

60

70

80

A
cc

ur
ac

y

CIFAR100x5 | FT+Ex

Task ID
0
1
2
3

4
Method
Base
+AC

0 2 4 6 8
Current Task

20

40

60

80

A
cc

ur
ac

y

CIFAR100x10 | FT+Ex

Task ID
0
1
3
4
6

7
9
Method
Base
+AC

Figure 24. Per-task accuracy on CIFAR100x5 (left) and CIFAR100x10 (right) for FT+Ex.

0 1 2 3 4
Current Task

0

20

40

60

A
cc

ur
ac

y

CIFAR100x5 | FT

Task ID
0
1
2
3

4
Method
Base
+AC

0 2 4 6 8
Current Task

0

20

40

60

80

A
cc

ur
ac

y

CIFAR100x10 | FT

Task ID
0
1
3
4
6

7
9
Method
Base
+AC

Figure 25. Per-task accuracy on CIFAR100x5 (left) and CIFAR100x10 (right) for FT.

27



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

0 1 2 3 4
Current Task

15

20

25

30

35

40

45

A
cc

ur
ac

y

CIFAR100x5 | GDumb
Task ID
0
1
2
3

4
Method
Base
+AC

0 2 4 6 8
Current Task

20

30

40

50

60

A
cc

ur
ac

y

CIFAR100x10 | GDumb
Task ID
0
1
3
4
6

7
9
Method
Base
+AC

Figure 26. Per-task accuracy on CIFAR100x5 (left) and CIFAR100x10 (right) for GDumb.

0 1 2 3 4
Current Task

40

50

60

70

A
cc

ur
ac

y

CIFAR100x5 | LODE

Task ID
0
1
2
3

4
Method
Base
+AC

0 2 4 6 8
Current Task

30

40

50

60

70

80

A
cc

ur
ac

y

CIFAR100x10 | LODE

Task ID
0
1
3
4
6

7
9
Method
Base
+AC

Figure 27. Per-task accuracy on CIFAR100x5 (left) and CIFAR100x10 (right) for LODE.

0 1 2 3 4
Current Task

20

30

40

50

60

A
cc

ur
ac

y

CIFAR100x5 | LwF

Task ID
0
1
2
3

4
Method
Base
+AC

0 2 4 6 8
Current Task

20

40

60

80

A
cc

ur
ac

y

CIFAR100x10 | LwF

Task ID
0
1
3
4
6

7
9
Method
Base
+AC

Figure 28. Per-task accuracy on CIFAR100x5 (left) and CIFAR100x10 (right) for LwF.

0 1 2 3 4
Current Task

40

50

60

70

A
cc

ur
ac

y

CIFAR100x5 | SSIL

Task ID
0
1
2
3

4
Method
Base
+AC

0 2 4 6 8
Current Task

30

40

50

60

70

80

A
cc

ur
ac

y

CIFAR100x10 | SSIL
Task ID
0
1
3
4
6

7
9
Method
Base
+AC

Figure 29. Per-task accuracy on CIFAR100x5 (left) and CIFAR100x10 (right) for SSIL.

28



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

F.3. Results complementary to Section 3

F.3.1. CKA

2 3 4 5
Task index

AC1

AC2

AC3

AC4

AC5

AC6

Final

0.95 0.94 0.90 0.87

0.92 0.90 0.85 0.81

0.93 0.90 0.86 0.84

0.91 0.86 0.82 0.79

0.86 0.81 0.78 0.77

0.74 0.69 0.66 0.65

0.57 0.51 0.51 0.51

CIFAR100x5 | FT

2 3 4 5
Task index

0.95 0.95 0.92 0.91

0.93 0.91 0.87 0.84

0.94 0.91 0.89 0.87

0.92 0.87 0.84 0.83

0.88 0.85 0.82 0.81

0.79 0.74 0.72 0.70

0.73 0.66 0.63 0.61

CIFAR100x5 | FT+Ex

2 3 4 5
Task index

0.99 0.99 0.99 0.98

0.98 0.98 0.97 0.97

0.99 0.98 0.98 0.98

0.99 0.98 0.97 0.96

0.97 0.96 0.96 0.95

0.94 0.92 0.91 0.90

0.91 0.88 0.86 0.85

CIFAR100x5 | LwF

2 3 4 5
Task index

0.99 0.98 0.96 0.94

0.98 0.96 0.94 0.92

0.98 0.96 0.94 0.92

0.97 0.94 0.92 0.89

0.95 0.92 0.89 0.87

0.91 0.85 0.81 0.78

0.86 0.79 0.74 0.71

CIFAR100x5 | BiC

Figure 30. CKA of the first task representations across ResNet32 layers through continual learning on CIFAR100 split into 5 tasks. ACs
are trained without gradient propagation.

2 3 4 5 6 7 8 9 10
Task index

AC1

AC2

AC3

AC4

AC5

AC6

Final

0.95 0.92 0.88 0.85 0.82 0.75 0.80 0.77 0.76

0.92 0.89 0.86 0.83 0.83 0.77 0.81 0.78 0.77

0.87 0.83 0.83 0.80 0.78 0.72 0.75 0.72 0.73

0.81 0.77 0.76 0.75 0.73 0.67 0.71 0.67 0.69

0.72 0.69 0.69 0.69 0.67 0.62 0.66 0.63 0.62

0.59 0.55 0.56 0.58 0.55 0.47 0.53 0.51 0.52

0.41 0.38 0.41 0.43 0.43 0.30 0.42 0.36 0.41

CIFAR100x10 | FT

2 3 4 5 6 7 8 9 10
Task index

0.95 0.91 0.88 0.86 0.84 0.81 0.82 0.79 0.77

0.93 0.87 0.85 0.82 0.82 0.80 0.80 0.78 0.77

0.90 0.84 0.82 0.81 0.80 0.79 0.79 0.78 0.77

0.88 0.82 0.81 0.79 0.78 0.77 0.76 0.76 0.75

0.86 0.81 0.79 0.78 0.76 0.76 0.76 0.75 0.74

0.81 0.76 0.72 0.72 0.70 0.69 0.68 0.67 0.66

0.80 0.74 0.69 0.68 0.65 0.65 0.62 0.61 0.61

CIFAR100x10 | FT+Ex

2 3 4 5 6 7 8 9 10
Task index

0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.97

0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.97

0.99 0.98 0.97 0.97 0.97 0.97 0.96 0.96 0.96

0.98 0.97 0.96 0.96 0.96 0.95 0.95 0.95 0.94

0.96 0.95 0.95 0.94 0.94 0.93 0.93 0.93 0.92

0.94 0.92 0.91 0.90 0.89 0.89 0.88 0.88 0.87

0.92 0.90 0.88 0.87 0.86 0.86 0.85 0.85 0.84

CIFAR100x10 | LwF

2 3 4 5 6 7 8 9 10
Task index

0.99 0.97 0.95 0.93 0.93 0.91 0.90 0.88 0.86

0.98 0.96 0.94 0.92 0.91 0.90 0.89 0.88 0.86

0.97 0.94 0.92 0.90 0.89 0.88 0.87 0.86 0.85

0.96 0.91 0.89 0.87 0.85 0.84 0.83 0.82 0.81

0.94 0.90 0.87 0.85 0.84 0.83 0.81 0.80 0.79

0.92 0.86 0.83 0.80 0.77 0.76 0.74 0.73 0.72

0.90 0.83 0.79 0.76 0.73 0.71 0.68 0.67 0.66

CIFAR100x10 | BiC

Figure 31. CKA of the first task representations across ResNet32 layers through continual learning on CIFAR100 split into 10 tasks. ACs
are trained with gradient propagation enabled.

2 3 4 5
Task index

AC1

AC2

AC3

AC4

AC5

AC6

Final

0.95 0.91 0.86 0.83

0.92 0.88 0.84 0.81

0.89 0.84 0.81 0.80

0.85 0.80 0.77 0.75

0.80 0.77 0.73 0.71

0.67 0.63 0.60 0.58

0.53 0.47 0.49 0.49

CIFAR100x5 | FT

2 3 4 5
Task index

0.96 0.92 0.89 0.86

0.94 0.89 0.86 0.83

0.91 0.87 0.85 0.83

0.88 0.84 0.81 0.80

0.85 0.81 0.78 0.77

0.77 0.71 0.68 0.67

0.72 0.65 0.63 0.61

CIFAR100x5 | FT+Ex

2 3 4 5
Task index

1.00 0.99 0.99 0.99

0.99 0.99 0.99 0.99

0.99 0.98 0.98 0.98

0.98 0.97 0.97 0.96

0.97 0.96 0.95 0.95

0.94 0.92 0.91 0.90

0.91 0.88 0.87 0.86

CIFAR100x5 | LwF

2 3 4 5
Task index

0.98 0.97 0.95 0.94

0.98 0.96 0.93 0.91

0.97 0.94 0.92 0.91

0.96 0.92 0.90 0.88

0.94 0.90 0.87 0.85

0.89 0.83 0.78 0.76

0.86 0.79 0.74 0.71

CIFAR100x5 | BiC

Figure 32. CKA of the first task representations across ResNet32 layers through continual learning on CIFAR100 split into 5 tasks. ACs
are trained with gradient propagation enabled.

29



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

F.3.2. AC PERFORMANCE DIFFERENCE OVER THE FINAL CLASSIFIER

AC1 AC2 AC3 AC4 AC5 AC6
0

5

10

15

20

25

30

A
cc

ur
ac

y 
di

ffe
re

nc
e

CIFAR100x5 | FT

AC1 AC2 AC3 AC4 AC5 AC6
0.0

0.5

1.0

1.5

2.0

2.5

CIFAR100x5 | FT+Ex

AC1 AC2 AC3 AC4 AC5 AC6
0

5

10

15

20

CIFAR100x5 | LwF

AC1 AC2 AC3 AC4 AC5 AC6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

CIFAR100x5 | BiC
Task ID

0 1 2 3 4

Figure 33. Per-task difference between the accuracy (only positives) of the ACs trained with linear probing for 5 task split of CIFAR100.

AC1 AC2 AC3 AC4 AC5 AC6
0

5

10

15

20

25

A
cc

ur
ac

y 
di

ffe
re

nc
e

CIFAR100x10 | FT

AC1 AC2 AC3 AC4 AC5 AC6
0

1

2

3

4

5

6

7
CIFAR100x10 | FT+Ex

AC1 AC2 AC3 AC4 AC5 AC6
0

2

4

6

8

10

CIFAR100x10 | LwF

AC1 AC2 AC3 AC4 AC5 AC6
0

1

2

3

4

CIFAR100x10 | BiC
Task ID

0
1

2
3

4
5

6
7

8
9

Figure 34. Per-task difference between the accuracy (only positives) of the ACs trained with gradient propagation for 10 task split of
CIFAR100.

AC1 AC2 AC3 AC4 AC5 AC6
0

5

10

15

20

25

30

A
cc

ur
ac

y 
di

ffe
re

nc
e

CIFAR100x5 | FT

AC1 AC2 AC3 AC4 AC5 AC6
0.0

0.5

1.0

1.5

2.0

2.5

3.0
CIFAR100x5 | FT+Ex

AC1 AC2 AC3 AC4 AC5 AC6
0

1

2

3

4

5

6

7
CIFAR100x5 | LwF

AC1 AC2 AC3 AC4 AC5 AC6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

CIFAR100x5 | BiC
Task ID

0 1 2 3 4

Figure 35. Per-task difference between the accuracy (only positives) of the ACs trained with gradient propagation for 5 task split of
CIFAR100.

30



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

F.3.3. OVERTHINKING

Joint FT FT+Ex LwF BiC
10

25

50

100

200

O
ve

rth
in

ki
ng

 [%
]

(a) Overthinking

AC1 AC2 AC3 AC4 AC5 AC6
0

10

20

30

40

50

M
is

cl
s.

 s
am

pl
es

 [%
]

(b) Overthinking per AC

AC1 AC2 AC3 AC4 AC5 AC6
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

U
ni

qu
e 

ov
er

th
in

ki
ng

 [%
]

(c) Unique overthinking

Figure 36. Overthinking for 5 task split of CIFAR100, without gradient propagation.

Joint FT FT+Ex LwF BiC
10

25

50

100

200

O
ve

rth
in

ki
ng

 [%
]

(a) Overthinking

AC1 AC2 AC3 AC4 AC5 AC6
0

10

20

30

40

50
M

is
cl

s.
 s

am
pl

es
 [%

]

(b) Overthinking per AC

AC1 AC2 AC3 AC4 AC5 AC6
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

U
ni

qu
e 

ov
er

th
in

ki
ng

 [%
]

(c) Unique overthinking

Figure 37. Overthinking for 10 task split of CIFAR100, with gradient propagation enabled.

Joint FT FT+Ex LwF BiC
10

25

50

100

200

O
ve

rth
in

ki
ng

 [%
]

(a) Overthinking

AC1 AC2 AC3 AC4 AC5 AC6
0

10

20

30

40

50

M
is

cl
s.

 s
am

pl
es

 [%
]

(b) Overthinking per AC

AC1 AC2 AC3 AC4 AC5 AC6
0

2

4

6

8

10

12

14

U
ni

qu
e 

ov
er

th
in

ki
ng

 [%
]

(c) Unique overthinking

Figure 38. Overthinking for 10 task split of CIFAR100, with gradient propagation enabled.

F.3.4. TRAINING ACCURACY CHANGE FOR CIFAR100 5 TASK SPLIT

AC1 AC2 AC3 AC4 AC5 AC6 Final

2

0

+2

+4

+6

+8

10

A
cc

ur
ac

y 
ch

an
ge

FT
FT+Ex

LwF
BiC

Figure 39. Difference between classifiers performance after enabling gradient propagation on CIFAR100 split into 5 tasks.

31



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

F.4. Classifier selection patterns and accuracy during inference

In Figures 40 and 41, we show the classifier selection distribution and accuracy for static inference in the CIFAR100
experiments from Table 1. While early classifiers are rarely selected, intermediate classifiers often match or outperform the
final classifier. We hope these results help to explain the performance improvements from adding the ACs.

1 2 3 4 5 Avg
Task ID

L1
.B

3
L1

.B
5

L2
.B

2
L2

.B
4

L3
.B

1
L3

.B
3

Fin
al

1.4 1.6 0.9 0.8 1.2 1.2

1.9 1.9 1.6 1.5 1.9 1.8

5.4 5.2 4.4 3.7 3.7 4.5

10.4 10.2 9.6 8.8 9.3 9.6

13.9 16.4 12.9 10.7 9.2 12.6

32.0 34.6 37.8 35.4 30.5 34.1

35.0 30.1 32.7 39.2 44.2 36.2

CIFAR100x5, ANCL | Classifier Selection

1 2 3 4 5 Avg
Task ID

23.7 4.1 47.1 5.5 7.1 16.2

6.2 6.4 42.8 13.0 22.2 17.3

36.8 28.5 53.9 13.8 15.9 31.2

5.3 21.8 48.2 24.1 32.6 26.3

20.2 56.0 62.7 30.4 26.5 41.3

1.3 53.2 61.9 59.3 48.7 46.0

4.9 18.8 38.1 60.8 65.4 40.2

CIFAR100x5, ANCL | Accuracy

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

1.6 1.9 2.6 3.8 1.7 2.0 2.0 1.6 1.7 3.1 2.2

3.5 3.6 3.8 4.0 2.7 3.7 3.0 3.0 2.7 4.9 3.5

6.0 5.8 7.0 6.2 5.9 6.1 6.2 5.4 5.6 5.1 5.9

11.8 13.2 11.8 13.6 11.9 12.9 11.9 14.1 11.7 13.1 12.6

14.6 16.2 16.8 18.2 15.7 13.1 13.5 15.0 12.5 14.0 15.0

32.8 31.2 33.0 30.2 35.6 40.1 34.3 29.9 40.5 32.8 34.0

29.6 28.1 25.0 24.1 26.4 22.2 29.2 31.1 25.2 27.1 26.8

CIFAR100x10, ANCL | Classifier Selection

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

27.8 6.7 22.0 0.8 32.2 34.9 9.2 23.2 3.5 3.5 14.4

7.2 3.4 19.6 11.9 41.0 20.3 2.2 29.7 7.8 6.2 14.6

11.9 9.0 32.8 9.4 62.7 38.4 9.9 24.3 11.0 11.6 22.4

0.6 3.0 24.6 11.7 46.9 34.6 8.7 51.5 33.4 21.0 24.0

12.6 22.2 43.3 33.0 59.6 38.8 28.5 46.0 33.5 30.0 35.5

0.2 4.9 33.2 21.3 57.0 63.2 41.8 44.6 58.9 49.4 39.1

0.5 4.0 21.1 19.3 35.9 10.8 39.0 60.2 36.8 42.5 28.2

CIFAR100x10, ANCL | Accuracy

1 2 3 4 5 Avg
Task ID

L1
.B

3
L1

.B
5

L2
.B

2
L2

.B
4

L3
.B

1
L3

.B
3

Fin
al

1.3 1.7 1.2 1.4 2.0 1.5

2.2 2.6 2.3 2.3 2.7 2.4

5.5 5.3 5.8 4.6 4.1 5.1

11.1 11.5 11.0 10.9 10.7 11.0

11.3 13.1 10.8 11.7 11.0 11.6

30.0 27.2 29.6 29.8 23.0 27.9

38.5 38.5 39.2 39.3 46.5 40.4

CIFAR100x5, BiC | Classifier Selection

1 2 3 4 5 Avg
Task ID

32.4 23.5 18.3 4.2 0.7 15.5

22.0 22.8 18.4 11.1 4.7 15.6

43.4 33.4 35.4 20.2 6.6 30.2

42.0 39.6 34.0 47.2 30.3 39.0

53.3 55.3 40.9 49.6 33.0 47.7

58.1 56.9 56.6 59.4 37.6 54.9

54.4 62.1 51.6 55.6 60.0 57.0

CIFAR100x5, BiC | Accuracy

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

1.8 2.1 1.9 2.4 1.9 1.9 1.3 1.4 2.3 2.0 1.9

3.2 4.4 3.9 4.8 3.2 3.9 3.0 3.2 4.5 4.2 3.8

8.1 6.8 7.6 7.5 5.6 5.1 5.0 4.7 6.0 5.2 6.2

13.0 12.4 12.1 13.2 12.7 12.8 11.4 12.0 12.6 10.1 12.2

15.0 15.4 14.2 15.0 15.0 14.6 14.2 12.7 13.7 11.4 14.1

23.3 20.8 21.3 21.8 24.6 23.4 26.2 29.6 27.6 31.0 25.0

35.6 38.1 38.9 35.4 37.1 38.3 38.8 36.4 33.2 36.0 36.8

CIFAR100x10, BiC | Classifier Selection

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

33.3 28.2 33.9 31.6 14.8 4.1 3.7 4.8 1.5 2.2 16.5

44.9 26.1 36.2 22.1 40.3 12.0 13.6 9.4 12.6 0.0 21.0

51.4 32.5 41.5 39.6 48.9 25.8 23.1 19.2 11.4 5.4 32.0

49.7 36.8 49.9 40.6 52.0 36.1 42.2 37.2 24.2 20.4 39.6

56.8 40.6 55.4 50.7 55.3 42.8 51.6 42.0 31.3 27.9 46.8

56.8 34.4 50.8 44.8 60.3 39.6 61.8 61.4 37.1 56.3 51.6

55.9 39.6 61.5 52.8 57.7 47.0 57.9 48.9 38.0 46.0 51.1

CIFAR100x10, BiC | Accuracy

1 2 3 4 5 Avg
Task ID

L1
.B

3
L1

.B
5

L2
.B

2
L2

.B
4

L3
.B

1
L3

.B
3

Fin
al

1.1 1.4 1.1 1.1 0.8 1.1

2.1 2.4 2.5 2.2 1.1 2.0

5.5 5.5 5.3 4.5 2.9 4.8

9.7 10.3 11.0 9.9 6.0 9.4

13.3 13.1 13.0 14.2 8.0 12.3

26.2 26.8 26.1 24.8 27.6 26.3

42.0 40.5 41.0 43.3 53.5 44.1

CIFAR100x5, ER | Classifier Selection

1 2 3 4 5 Avg
Task ID

24.8 25.6 14.6 14.8 24.1 21.0

20.0 29.1 24.8 25.2 29.6 25.5

34.5 38.9 38.6 35.6 34.7 36.7

35.4 37.5 36.3 35.8 48.0 37.8

39.0 42.7 41.9 45.9 63.1 45.1

22.4 30.0 28.5 33.5 77.4 38.8

19.4 28.7 28.2 32.1 82.9 40.7

CIFAR100x5, ER | Accuracy

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

1.4 1.0 1.5 2.0 1.7 1.4 1.7 1.1 1.5 0.6 1.4

2.2 2.4 2.2 2.3 2.0 2.8 2.2 2.3 1.8 1.1 2.1

5.0 4.3 3.9 5.1 5.4 4.3 4.3 5.1 4.4 2.9 4.5

10.6 9.8 9.3 10.5 9.1 8.1 9.6 9.2 7.9 6.8 9.1

13.0 12.7 13.3 12.9 13.1 12.5 14.0 11.7 12.9 7.7 12.4

26.4 26.9 26.0 24.7 24.4 25.1 25.9 27.1 25.9 27.1 25.9

41.4 42.9 43.8 42.5 44.3 45.8 42.4 43.6 45.6 53.8 44.6

CIFAR100x10, ER | Classifier Selection

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

16.3 21.4 16.2 16.9 23.6 3.0 5.6 8.4 13.8 41.1 15.2

20.9 12.7 10.8 18.6 34.8 9.6 22.2 22.9 32.1 26.3 20.3

36.9 20.8 39.6 30.9 45.7 26.7 39.8 31.0 28.8 47.8 34.3

38.5 34.2 39.5 36.9 40.4 24.4 41.1 35.6 38.3 56.3 38.4

44.0 32.5 43.8 42.5 42.0 39.8 45.5 43.5 47.0 65.9 44.0

29.4 17.8 29.8 30.4 34.4 23.0 38.2 36.7 46.1 81.2 36.9

27.6 19.7 33.6 26.7 34.1 23.3 36.8 31.0 43.2 84.8 37.3

CIFAR100x10, ER | Accuracy

1 2 3 4 5 Avg
Task ID

L1
.B

3
L1

.B
5

L2
.B

2
L2

.B
4

L3
.B

1
L3

.B
3

Fin
al

2.1 2.4 1.8 1.5 1.0 1.8

5.4 6.6 7.1 4.8 3.3 5.4

12.8 14.0 14.8 12.3 5.3 11.9

15.1 16.9 17.4 17.5 10.4 15.5

13.8 14.5 13.9 15.8 9.7 13.6

22.7 20.2 20.1 23.9 22.7 21.9

28.0 25.4 24.8 24.2 47.5 30.0

CIFAR100x5, EWC | Classifier Selection

1 2 3 4 5 Avg
Task ID

23.8 29.3 42.0 36.4 14.4 30.3

10.6 22.8 50.7 23.3 14.8 27.1

23.0 30.8 55.8 29.4 10.7 34.1

9.5 35.9 44.6 40.8 37.8 34.3

5.7 30.4 40.6 44.6 36.5 32.2

0.7 8.1 16.9 32.3 52.6 22.8

0.2 1.5 3.8 5.3 81.7 27.7

CIFAR100x5, EWC | Accuracy

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

5.2 6.5 5.8 6.3 5.0 5.5 5.3 5.6 5.0 2.5 5.3

8.8 9.1 11.7 13.5 15.5 11.1 9.2 13.2 10.1 5.7 10.8

13.9 14.4 14.3 14.6 18.5 14.6 13.9 18.5 14.7 7.0 14.4

24.6 24.6 22.7 23.7 19.9 24.8 26.0 23.9 24.9 15.0 23.0

14.7 12.7 11.3 13.3 11.2 12.2 14.4 13.8 15.8 13.1 13.3

19.4 18.6 18.7 15.9 16.7 18.0 18.1 12.0 16.4 31.4 18.5

13.3 14.1 15.3 12.6 13.1 13.9 13.1 13.0 13.2 25.3 14.7

CIFAR100x10, EWC | Classifier Selection

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

23.9 14.3 18.4 7.8 12.8 16.7 33.0 25.6 11.4 3.6 18.2

3.6 5.4 36.1 12.2 57.6 33.7 6.0 36.1 17.2 7.4 25.2

9.9 8.7 27.0 11.6 46.5 32.7 25.2 33.0 31.3 15.2 25.8

1.9 0.7 18.6 12.2 23.5 19.6 21.1 21.2 30.3 15.0 16.5

0.7 0.8 7.8 3.6 16.9 18.5 10.3 24.7 31.7 44.8 16.2

0.0 2.1 1.4 0.9 4.9 5.0 3.3 10.5 18.7 79.2 17.4

0.0 0.0 0.0 0.0 0.4 2.9 1.7 12.1 22.4 81.3 17.5

CIFAR100x10, EWC | Accuracy

1 2 3 4 5 Avg
Task ID

L1
.B

3
L1

.B
5

L2
.B

2
L2

.B
4

L3
.B

1
L3

.B
3

Fin
al

2.0 2.7 1.6 2.0 1.0 1.9

5.7 6.3 6.5 6.1 3.3 5.6

11.1 12.5 13.1 9.6 4.3 10.1

15.4 16.0 16.6 17.6 12.5 15.6

16.0 16.3 18.6 17.8 10.0 15.7

22.2 21.1 19.1 23.1 19.5 21.0

27.6 25.1 24.3 23.8 49.3 30.0

CIFAR100x5, FT | Classifier Selection

1 2 3 4 5 Avg
Task ID

8.7 33.0 37.3 49.9 31.0 33.0

2.1 16.3 39.9 39.6 19.7 25.1

31.1 37.7 53.2 30.5 16.1 37.1

7.0 23.8 46.4 35.9 44.5 32.2

9.6 29.4 42.9 31.6 22.8 28.6

1.0 8.1 13.7 34.2 37.9 19.1

0.2 0.5 3.8 6.4 85.1 29.7

CIFAR100x5, FT | Accuracy

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

7.9 5.3 7.2 7.4 8.1 6.8 4.7 7.1 5.0 3.0 6.2

8.5 10.7 12.1 14.3 11.6 12.9 11.1 15.0 12.2 4.4 11.3

16.4 17.2 16.8 16.5 20.7 17.5 19.5 17.5 18.0 10.3 17.0

20.7 19.2 17.8 18.3 17.9 19.8 22.2 20.7 21.9 13.1 19.2

15.0 15.0 12.6 13.1 13.9 15.2 12.1 13.5 16.6 14.5 14.1

18.1 18.5 19.5 17.0 16.7 16.4 18.5 14.9 15.9 31.6 18.7

13.4 14.0 13.9 13.4 10.9 11.5 11.9 11.4 10.6 23.1 13.4

CIFAR100x10, FT | Classifier Selection

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

16.9 13.2 13.3 2.6 25.8 33.5 34.6 25.1 22.0 2.3 19.1

1.6 1.6 24.7 10.9 32.8 32.7 22.2 46.6 19.7 8.1 22.4

2.7 9.1 25.5 12.1 38.8 18.4 25.9 27.1 16.2 10.0 19.8

0.3 0.9 11.7 13.4 23.4 12.4 6.3 17.9 21.2 19.2 12.5

1.0 2.1 10.8 6.2 14.8 6.7 7.0 25.5 29.9 46.6 15.6

0.0 0.0 0.4 0.7 4.7 1.0 2.3 9.9 19.4 77.1 16.4

0.3 0.0 0.0 0.0 1.7 1.3 4.0 3.6 17.7 80.5 16.1

CIFAR100x10, FT | Accuracy

Figure 40. Distribution and accuracy of classifiers for ANCL, BiC, ER, EWC and FT.

32



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

1 2 3 4 5 Avg
Task ID

L1
.B

3
L1

.B
5

L2
.B

2
L2

.B
4

L3
.B

1
L3

.B
3

Fin
al

2.3 3.6 2.5 2.5 1.4 2.4

3.8 4.1 5.1 4.3 2.0 3.9

5.6 5.5 5.2 5.9 3.2 5.1

10.4 10.3 9.8 9.6 6.7 9.4

12.6 12.4 12.6 11.4 8.0 11.4

28.0 27.9 27.6 29.5 30.3 28.6

37.3 36.2 37.2 36.9 48.3 39.2

CIFAR100x5, FT+Ex | Classifier Selection

1 2 3 4 5 Avg
Task ID

0.6 3.5 3.5 0.8 28.8 5.1

2.4 4.9 4.3 3.2 39.1 7.3

11.9 15.0 14.9 12.9 44.7 17.6

21.0 24.0 24.0 23.4 63.1 28.8

29.2 38.6 31.6 32.2 66.4 37.6

29.8 35.9 34.6 40.3 82.0 45.1

27.1 32.5 32.3 34.2 85.0 44.7

CIFAR100x5, FT+Ex | Accuracy

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

2.5 3.0 2.5 3.4 1.9 3.6 2.1 2.4 2.7 1.0 2.5

3.7 2.8 2.9 3.4 3.2 5.0 3.2 3.8 4.2 1.6 3.4

5.4 3.8 4.6 4.4 4.8 5.0 5.1 4.9 4.2 3.1 4.5

10.0 9.6 9.0 9.7 8.9 8.5 9.9 9.2 8.7 5.9 8.9

12.0 11.0 10.4 12.0 12.4 11.6 11.9 10.6 11.0 7.3 11.0

25.6 27.1 26.6 26.1 26.1 25.3 25.8 27.3 26.0 31.1 26.7

40.7 42.8 44.0 41.0 42.7 41.0 42.0 41.9 43.2 50.0 42.9

CIFAR100x10, FT+Ex | Classifier Selection

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

5.4 4.6 5.1 4.5 10.6 0.9 3.7 2.6 2.7 16.7 5.0

10.3 5.8 15.9 16.4 14.6 3.0 8.3 6.0 11.7 37.2 11.2

20.9 12.8 28.5 20.3 35.7 6.7 27.0 19.4 26.5 44.7 23.6

33.5 22.4 29.5 24.7 36.2 23.2 34.5 28.4 28.7 64.9 31.5

44.8 29.4 41.0 41.2 44.9 31.2 38.0 42.0 40.1 76.3 41.7

31.0 23.8 38.2 32.7 34.5 24.8 39.9 37.9 46.5 81.3 39.9

32.4 23.0 39.6 30.5 37.0 27.6 42.6 35.7 41.7 85.2 40.4

CIFAR100x10, FT+Ex | Accuracy

1 2 3 4 5 Avg
Task ID

L1
.B

3
L1

.B
5

L2
.B

2
L2

.B
4

L3
.B

1
L3

.B
3

Fin
al

1.7 3.2 1.9 2.4 3.1 2.4

3.4 5.3 4.3 4.6 4.6 4.4

6.5 7.4 6.0 6.1 6.1 6.4

13.8 13.8 14.7 13.6 14.3 14.0

13.4 12.5 12.6 12.3 11.4 12.5

29.7 27.3 30.1 30.2 29.7 29.4

31.6 30.5 30.3 30.8 30.8 30.8

CIFAR100x5, GDumb | Classifier Selection

1 2 3 4 5 Avg
Task ID

23.9 26.7 31.0 18.5 19.2 23.9

15.8 26.4 26.8 25.8 16.9 23.0

29.6 32.6 35.2 26.3 14.6 28.1

26.3 29.4 30.9 22.0 24.8 26.8

27.9 25.7 29.2 21.6 10.7 23.3

21.0 23.8 25.0 26.3 22.8 23.8

20.5 22.9 20.6 23.0 14.0 20.2

CIFAR100x5, GDumb | Accuracy

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

1.6 1.9 2.8 2.6 2.5 2.2 2.2 2.1 2.2 3.0 2.3

4.1 3.9 5.3 5.8 4.5 4.8 4.5 4.6 6.0 5.1 4.9

8.7 7.5 7.8 7.7 8.9 8.1 8.1 7.4 7.5 7.8 8.0

17.8 15.2 15.0 15.1 15.0 15.4 14.7 15.9 16.5 17.4 15.8

16.8 14.8 17.1 14.9 16.5 14.8 15.0 14.8 14.8 13.2 15.3

23.7 25.2 24.2 23.2 24.4 24.9 27.4 24.0 25.3 25.6 24.8

27.2 31.5 27.8 30.7 28.2 29.7 28.1 31.1 27.7 27.9 29.0

CIFAR100x10, GDumb | Classifier Selection

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

38.6 10.1 28.5 21.9 46.5 12.8 25.5 3.5 13.1 17.2 22.1

31.8 18.0 27.6 20.5 39.0 20.5 25.7 25.8 33.5 16.2 26.2

50.1 24.8 34.1 22.5 40.8 25.5 29.4 27.2 27.9 13.5 30.2

37.9 20.2 29.4 28.2 38.9 21.9 25.5 30.4 35.5 26.3 29.6

45.0 22.5 38.2 33.1 38.2 25.0 37.5 30.3 25.4 15.6 31.5

30.0 20.4 29.1 24.1 33.3 20.8 34.0 29.2 30.2 32.1 28.4

29.6 17.6 23.3 26.8 31.3 19.0 26.7 27.8 20.0 20.0 24.2

CIFAR100x10, GDumb | Accuracy

1 2 3 4 5 Avg
Task ID

L1
.B

3
L1

.B
5

L2
.B

2
L2

.B
4

L3
.B

1
L3

.B
3

Fin
al

0.7 1.0 0.9 0.6 0.6 0.7

2.4 2.6 2.6 2.1 1.8 2.3

5.3 6.0 5.5 5.2 3.6 5.1

9.2 8.8 9.1 9.4 5.8 8.5

17.1 16.7 15.9 16.7 12.7 15.8

28.3 27.6 27.5 29.8 35.0 29.6

37.0 37.3 38.5 36.2 40.6 37.9

CIFAR100x5, LODE | Classifier Selection

1 2 3 4 5 Avg
Task ID

20.8 18.9 23.2 33.8 13.0 22.0

21.8 32.4 30.0 37.5 6.9 26.7

34.9 38.1 41.9 41.5 18.3 36.2

37.3 43.4 43.4 43.7 22.0 39.3

39.1 49.4 47.6 48.1 42.3 45.5

40.9 48.4 44.7 54.0 71.9 53.0

41.8 51.5 50.2 54.2 68.4 53.5

CIFAR100x5, LODE | Accuracy

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

1.1 1.0 0.5 0.8 0.9 0.8 0.6 0.9 1.2 1.0 0.9

2.2 1.7 2.2 2.6 2.4 2.3 2.0 2.0 1.9 1.7 2.1

5.3 5.7 5.5 6.4 6.7 5.2 6.2 5.8 5.2 3.5 5.6

9.5 9.8 8.6 8.9 10.0 9.9 10.2 9.9 9.6 7.4 9.4

17.0 17.5 17.2 19.9 16.5 17.3 16.2 16.5 18.2 13.3 17.0

28.1 29.9 29.4 27.4 28.7 28.8 28.9 31.2 30.1 35.7 29.8

36.8 34.3 36.7 34.0 34.8 35.7 35.9 33.7 33.8 37.3 35.3

CIFAR100x10, LODE | Classifier Selection

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

55.7 28.3 14.8 27.1 45.2 3.0 44.9 13.9 15.1 3.7 25.1

49.1 27.3 25.3 31.5 28.5 22.5 21.9 22.7 39.8 6.5 28.7

33.2 21.2 34.7 31.4 47.3 34.3 40.9 34.6 36.8 16.2 34.2

44.7 34.6 50.1 35.6 45.4 38.1 48.5 42.9 41.3 17.1 40.5

48.4 34.1 47.3 43.4 43.6 37.9 48.3 41.3 47.5 36.5 43.0

45.5 36.4 45.5 43.1 48.1 33.6 52.8 45.5 54.8 69.4 48.1

52.8 32.5 52.5 45.4 50.3 39.3 57.5 45.6 52.9 64.7 49.6

CIFAR100x10, LODE | Accuracy

1 2 3 4 5 Avg
Task ID

L1
.B

3
L1

.B
5

L2
.B

2
L2

.B
4

L3
.B

1
L3

.B
3

Fin
al

2.2 3.2 1.9 2.2 2.6 2.4

3.8 4.9 4.2 4.0 4.5 4.3

7.5 7.7 7.0 6.8 7.0 7.2

12.2 11.5 13.1 11.8 13.3 12.4

16.8 15.1 12.3 12.3 11.0 13.5

26.0 29.4 27.3 32.5 26.8 28.4

31.6 28.3 34.2 30.3 34.8 31.8

CIFAR100x5, LwF | Classifier Selection

1 2 3 4 5 Avg
Task ID

12.8 9.3 32.8 22.4 16.1 17.6

4.0 6.7 40.2 18.1 31.2 19.9

34.8 23.0 48.2 18.3 18.4 28.8

15.3 21.1 50.5 25.5 40.2 31.6

47.1 47.3 51.1 32.1 28.8 42.8

23.3 56.0 49.4 60.6 47.4 48.4

29.5 33.9 53.7 41.8 53.7 43.3

CIFAR100x5, LwF | Accuracy

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

3.0 3.4 3.8 5.4 2.5 2.6 2.9 2.6 3.6 4.6 3.4

4.4 5.7 5.6 5.7 4.7 5.3 5.0 4.6 4.7 7.3 5.3

7.9 6.8 7.3 7.5 8.7 7.4 7.8 6.7 7.3 6.3 7.4

12.1 12.0 13.0 11.9 13.1 14.0 11.5 12.0 11.7 10.9 12.2

15.6 15.2 15.6 16.1 14.9 15.7 11.0 14.6 12.7 12.4 14.4

27.1 27.3 26.6 25.7 29.7 27.1 29.2 28.1 28.1 31.0 28.0

29.9 29.6 28.0 27.8 26.5 27.8 32.6 31.3 31.9 27.4 29.3

CIFAR100x10, LwF | Classifier Selection

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

8.2 8.4 33.6 3.6 29.8 26.9 15.4 29.8 17.3 9.7 17.0

0.8 4.6 20.8 4.5 39.7 27.2 4.6 37.8 10.9 12.0 15.7

23.0 14.5 23.6 12.5 70.8 23.7 13.4 29.4 22.6 13.1 26.3

2.5 4.0 27.4 11.8 51.5 41.8 12.4 39.5 32.7 27.2 26.1

23.0 12.7 33.2 28.6 51.2 47.6 13.2 51.8 36.6 22.2 33.1

1.1 6.9 34.8 28.6 51.8 43.0 41.0 54.9 48.5 56.1 37.8

1.4 4.0 19.4 6.4 23.0 33.3 50.1 56.3 48.8 37.7 28.8

CIFAR100x10, LwF | Accuracy

1 2 3 4 5 Avg
Task ID

L1
.B

3
L1

.B
5

L2
.B

2
L2

.B
4

L3
.B

1
L3

.B
3

Fin
al

1.8 2.8 1.9 1.5 2.0 2.0

3.1 3.7 4.1 3.9 3.6 3.7

6.2 6.1 6.6 5.5 4.9 5.9

12.4 11.2 12.3 12.2 9.5 11.6

13.5 12.7 12.2 12.2 9.6 12.1

28.4 29.6 30.0 30.7 29.6 29.6

34.5 34.0 33.0 34.0 40.7 35.2

CIFAR100x5, SSIL | Classifier Selection

1 2 3 4 5 Avg
Task ID

19.3 26.5 21.6 11.8 12.1 19.2

16.7 28.1 33.9 31.3 16.2 26.2

36.4 30.2 39.7 27.9 19.0 31.5

40.0 45.4 47.5 47.3 22.7 41.5

46.2 47.6 55.4 48.6 33.7 46.9

44.1 57.8 55.2 55.2 61.5 54.9

42.1 52.7 46.7 48.0 68.5 52.3

CIFAR100x5, SSIL | Accuracy

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

1.1 1.8 2.1 2.3 1.9 2.2 1.7 1.8 1.9 2.9 2.0

2.6 3.1 2.8 3.6 3.5 4.8 3.3 4.2 3.0 5.3 3.6

5.2 4.8 5.7 6.2 5.8 6.6 5.0 6.3 5.3 5.4 5.6

12.4 11.3 11.7 11.7 13.4 11.8 12.3 13.0 11.4 9.3 11.8

13.6 12.9 12.8 12.1 12.6 12.3 13.1 12.8 13.1 10.8 12.6

27.3 28.2 28.2 29.6 31.3 27.0 30.6 31.7 32.8 27.6 29.4

37.8 37.9 36.8 34.6 31.5 35.3 33.9 30.2 32.5 38.8 34.9

CIFAR100x10, SSIL | Classifier Selection

1 2 3 4 5 6 7 8 9 10 Avg
Task ID

14.4 9.1 22.2 26.4 45.9 10.4 19.4 16.3 21.8 7.1 18.8

8.4 8.8 26.5 23.2 48.7 18.1 19.3 40.3 26.2 7.3 22.7

39.8 18.3 37.1 28.9 37.8 43.1 19.1 25.4 45.5 6.9 30.9

42.2 28.4 48.6 31.8 48.8 35.1 49.3 43.8 44.9 13.3 39.6

55.5 35.2 52.8 45.1 54.1 38.8 54.2 47.0 56.2 24.7 47.1

50.1 37.9 49.7 50.6 59.2 40.3 55.9 51.2 56.1 47.1 50.3

58.3 32.8 49.4 45.4 45.3 38.1 45.5 40.0 41.7 54.1 45.3

CIFAR100x10, SSIL | Accuracy

Figure 41. Distribution and accuracy of classifiers for FT+Ex, GDumb, LODE, LwF and SSIL.

33



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

F.5. Diversity of the auxiliary classifier predictions

To investigate the diversity among the auxiliary classifiers, we measure unique accuracy - the percentage of the samples
correctly predicted only by this given classifier and are misclassified by all other classifiers - and present the results in
Figures 42 to 45. The intermediate classifiers learn to specialize to some degree across all analyzed methods and all
intermediate classifiers, especially on the older tasks, with the trend more visible for the naive and exemplar-free settings.

1 2 3 4 5 Avg
Task

L1.B3

L1.B5

L2.B2

L2.B4

L3.B1

L3.B3

Final

2.68 2.13 2.48 1.95 0.12 1.87

3.32 1.92 1.97 1.37 0.35 1.78

6.52 3.88 4.18 1.65 0.20 3.29

3.10 5.05 2.30 1.73 0.67 2.57

3.05 7.43 6.22 4.95 0.75 4.48

0.43 2.05 2.47 4.90 1.48 2.27

0.30 0.43 1.00 2.28 10.88 2.98

CIFAR100x5 | FT

1 2 3 4 5 Avg
Task

0.25 0.37 0.15 0.30 0.42 0.30

0.27 0.57 0.37 0.30 0.57 0.41

0.55 0.63 0.30 0.47 0.23 0.44

0.78 0.88 0.90 0.93 0.42 0.78

2.00 2.47 1.92 1.83 0.93 1.83

3.03 2.48 2.15 3.10 1.23 2.40

3.63 3.98 4.70 5.27 2.37 3.99

CIFAR100x5 | FT+Ex

1 2 3 4 5 Avg
Task

0.78 1.10 1.50 1.57 0.85 1.16

0.93 0.97 1.08 1.95 1.92 1.37

1.72 0.82 1.13 0.45 0.30 0.88

0.88 0.80 1.12 1.07 1.40 1.05

3.27 2.75 1.35 0.62 0.28 1.65

4.15 4.92 1.60 2.05 0.65 2.67

0.33 1.93 4.12 6.17 11.32 4.77

CIFAR100x5 | LwF

1 2 3 4 5 Avg
Task

0.52 0.98 0.77 0.63 1.32 0.84

0.72 0.78 0.92 1.00 0.85 0.85

0.73 0.75 1.02 0.77 0.53 0.76

0.95 0.72 1.00 0.82 0.73 0.84

1.63 1.77 2.20 1.45 0.78 1.57

1.53 1.97 1.67 3.33 2.85 2.27

3.60 3.97 3.53 3.68 4.40 3.84

CIFAR100x5 | BiC

Figure 42. Percentage of unique samples that only a single given classifier classifies correctly for different tasks on CIFAR100 split into 5
tasks. The classifiers are trained without gradient propagation.

1 2 3 4 5 6 7 8 9 10 Avg
Task

L1.B3

L1.B5

L2.B2

L2.B4

L3.B1

L3.B3

Final

9.30 0.67 2.10 0.67 2.43 2.50 2.57 1.13 1.37 0.23 2.30

4.33 2.27 2.40 2.20 4.80 2.67 2.97 2.13 2.23 0.60 2.66

4.87 3.17 4.43 2.20 5.57 4.30 2.53 4.23 1.27 0.33 3.29

2.30 2.60 5.80 5.27 3.47 4.97 2.63 3.13 1.40 0.30 3.19

0.60 2.03 3.80 4.40 4.67 5.00 3.30 7.43 6.80 1.23 3.93

0.03 0.70 0.60 0.33 1.33 1.33 1.73 2.50 2.53 2.93 1.40

0.03 0.07 0.43 0.23 0.50 0.47 1.53 2.03 4.07 6.70 1.61

CIFAR100x10 | FT

1 2 3 4 5 6 7 8 9 10 Avg
Task

0.37 0.60 0.40 0.43 0.33 0.17 0.67 0.03 0.17 0.57 0.37

0.33 0.43 0.53 0.47 0.63 0.47 0.70 0.77 0.57 0.47 0.54

0.70 0.60 0.90 0.93 0.77 0.80 0.87 0.80 0.80 0.50 0.77

1.00 0.90 1.17 1.43 1.07 1.40 0.93 1.20 0.80 0.23 1.01

3.57 3.07 2.60 2.80 2.73 2.50 2.23 2.63 2.00 0.90 2.50

2.37 2.53 2.37 2.07 2.07 2.83 2.13 2.27 2.30 0.73 2.17

2.93 1.93 3.33 2.87 2.07 4.10 4.03 3.57 4.33 1.97 3.11

CIFAR100x10 | FT+Ex

1 2 3 4 5 6 7 8 9 10 Avg
Task

2.23 0.67 1.13 0.87 0.97 1.33 1.20 0.93 1.17 1.10 1.16

0.77 1.10 1.43 1.33 1.90 1.97 3.40 2.50 1.90 1.87 1.82

1.63 0.87 1.67 1.67 1.03 0.67 0.83 1.13 0.43 0.43 1.04

1.80 0.80 1.47 2.33 1.40 2.17 1.00 1.77 1.43 0.47 1.46

6.13 3.13 1.60 2.80 1.87 2.13 0.30 0.43 0.13 0.17 1.87

1.23 6.30 5.33 5.07 2.37 1.67 1.73 1.50 1.33 1.13 2.77

0.50 0.37 1.53 1.73 3.03 4.0310.376.70 8.37 8.13 4.48

CIFAR100x10 | LwF

1 2 3 4 5 6 7 8 9 10 Avg
Task

0.80 1.20 0.43 1.20 0.27 1.33 0.33 0.50 0.70 1.20 0.80

0.83 1.27 0.57 1.17 0.37 0.47 0.43 0.73 1.57 0.63 0.80

0.67 0.90 1.00 0.93 0.97 1.03 0.83 1.00 0.43 0.47 0.82

1.13 0.87 1.07 0.73 1.07 0.73 0.53 1.17 1.00 1.13 0.94

1.80 2.27 2.27 1.93 2.50 2.10 1.87 2.43 1.90 1.37 2.04

2.10 2.57 1.83 1.97 2.07 2.83 2.27 3.13 2.97 2.63 2.44

2.90 2.97 3.40 3.67 2.97 4.53 4.60 4.83 4.03 6.43 4.03

CIFAR100x10 | BiC

Figure 43. Percentage of unique samples that only a single given classifier classifies correctly for different tasks on CIFAR100 split into
10 tasks. The classifiers are trained without gradient propagation.

1 2 3 4 5 Avg
Task

L1.B3

L1.B5

L2.B2

L2.B4

L3.B1

L3.B3

Final

2.48 3.25 2.07 2.47 0.50 2.15

0.78 2.25 3.15 2.58 0.45 1.84

7.77 5.68 4.40 2.08 0.60 4.11

1.90 3.20 3.33 3.07 1.00 2.50

2.53 5.18 3.57 3.00 0.68 2.99

0.47 1.22 1.45 3.25 0.58 1.39

0.38 0.30 0.90 1.00 6.98 1.91

CIFAR100x5 | FT

1 2 3 4 5 Avg
Task

0.18 0.18 0.27 0.08 0.42 0.23

0.42 0.60 0.18 0.58 0.47 0.45

0.85 0.83 1.08 0.58 0.42 0.75

1.40 1.48 1.73 1.22 0.45 1.26

2.37 2.63 2.07 1.85 0.90 1.96

1.80 1.60 1.90 2.12 0.95 1.67

2.48 2.68 2.85 2.83 1.40 2.45

CIFAR100x5 | FT+Ex

1 2 3 4 5 Avg
Task

0.98 0.72 1.47 1.20 0.72 1.02

0.53 0.85 1.30 0.75 0.70 0.83

1.77 1.33 0.75 0.63 0.55 1.01

0.48 1.18 0.82 0.97 1.62 1.01

2.58 3.10 1.28 1.15 0.97 1.82

0.92 2.63 1.13 2.57 1.62 1.77

2.10 1.97 2.15 2.52 3.82 2.51

CIFAR100x5 | LwF

1 2 3 4 5 Avg
Task

0.65 0.68 1.33 0.35 0.47 0.70

0.52 0.60 0.73 0.60 0.83 0.66

0.88 0.83 0.98 1.05 0.58 0.87

0.77 1.02 0.82 1.45 1.52 1.11

1.10 1.53 1.37 1.43 1.75 1.44

1.55 1.42 1.83 1.93 1.30 1.61

1.95 2.75 2.42 2.05 4.78 2.79

CIFAR100x5 | BiC

Figure 44. Percentage of unique samples that only a single given classifier classifies correctly for different tasks on CIFAR100 split into 5
tasks. The classifiers are trained with gradient propagation enabled.

F.6. Upper bound analysis of multi-classifier networks

To quantify the potential of the auxiliary classifiers, we consider an oracle multi-classifier network as an upper bound for our
method. When evaluating such an oracle, we obtain predictions from all of its classifiers and consider a prediction correct
when at least one classifier (auxiliary classifier or the original network classifier) is correct. Therefore, the oracle has an

34



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

1 2 3 4 5 6 7 8 9 10 Avg
Task

L1.B3

L1.B5

L2.B2

L2.B4

L3.B1

L3.B3

Final

7.50 3.93 3.27 1.83 3.07 4.83 3.67 1.93 2.83 0.27 3.31

2.07 1.03 5.50 5.23 6.23 6.10 4.23 4.33 3.97 0.27 3.90

1.37 4.20 5.63 5.10 5.13 2.90 5.23 3.80 2.20 0.50 3.61

0.17 0.43 3.10 2.97 2.80 2.87 2.23 2.43 2.20 0.43 1.96

0.70 1.60 2.13 1.83 1.77 1.87 1.07 3.40 3.27 0.87 1.85

0.13 0.10 0.43 0.20 1.50 0.63 0.70 0.93 1.53 2.10 0.83

0.07 0.10 0.33 0.20 0.33 0.90 1.27 0.70 1.27 3.87 0.90

CIFAR100x10 | FT

1 2 3 4 5 6 7 8 9 10 Avg
Task

0.37 0.60 0.30 0.27 0.77 0.23 0.60 0.20 0.40 0.70 0.44

0.63 0.50 0.63 1.17 0.60 0.90 0.30 0.60 0.57 0.43 0.63

1.67 1.17 1.40 1.60 1.73 1.57 1.70 1.63 1.70 0.57 1.47

1.57 1.73 1.70 1.73 1.23 1.67 1.40 1.40 1.07 0.57 1.41

2.83 3.40 2.53 2.57 1.70 3.03 1.97 1.93 1.63 1.07 2.27

1.30 1.23 1.23 1.13 1.10 2.10 1.03 1.57 1.67 0.73 1.31

1.40 1.43 2.37 1.70 1.83 2.67 2.83 2.50 2.43 0.97 2.01

CIFAR100x10 | FT+Ex

1 2 3 4 5 6 7 8 9 10 Avg
Task

3.20 1.97 2.20 0.57 0.93 1.93 1.60 0.87 1.73 0.80 1.58

0.37 0.83 1.33 1.47 1.57 1.90 0.67 1.70 0.80 1.03 1.17

1.77 0.73 1.10 1.23 1.20 0.60 0.87 1.13 0.70 1.13 1.05

0.50 0.50 1.20 1.23 1.23 0.97 0.83 0.83 0.80 0.40 0.85

4.77 1.53 1.33 2.60 1.30 1.70 0.53 1.37 0.80 0.83 1.68

0.47 1.57 2.13 2.60 1.53 1.97 2.00 1.40 2.00 2.23 1.79

2.17 1.97 2.50 1.17 0.93 2.00 4.23 2.23 2.90 2.13 2.22

CIFAR100x10 | LwF

1 2 3 4 5 6 7 8 9 10 Avg
Task

0.70 1.07 0.87 1.30 0.70 0.50 0.27 0.73 0.70 0.60 0.74

0.70 0.70 0.73 0.87 0.93 1.00 0.67 0.67 0.83 0.50 0.76

1.40 1.03 1.03 1.23 0.97 1.17 1.03 0.93 1.03 0.73 1.06

0.97 1.23 1.07 1.07 1.17 1.27 0.97 1.57 1.07 1.43 1.18

1.37 1.87 1.47 1.70 1.43 1.87 1.90 1.67 1.93 1.87 1.71

1.10 1.33 1.20 1.10 1.60 1.60 1.47 2.30 1.90 2.30 1.59

1.50 1.87 1.83 2.10 1.90 2.53 2.20 3.13 4.20 3.03 2.43

CIFAR100x10 | BiC

Figure 45. Percentage of unique samples that only a single given classifier classifies correctly for different tasks on CIFAR100 split into
10 tasks. The classifiers are trained with gradient propagation enabled.

ideal algorithm for combining classifier predictions and always returns the ’best case’ prediction from all the classifiers.
We measure the difference between the accuracy of such an oracle network and the accuracy of a standard single-classifier
network and present the results for first task data, last task data, and average over all the tasks in Table 11 and Table 12
for both linear probing and ACs. As in our previous analysis in Section 3, exemplar-free methods show more variance
in the performance across tasks. However, the average difference across all tasks is also significant for exemplar-based
methods, with the oracle for the best-performing method - BiC - achieving approximately a 30-40% relative increase in
overall accuracy. Those results indicate that, while our simple setup achieves consistent improvement, it is still leaves room
for improvement in the future work.

Table 11. Upper bound on accuracy improvement on 5 tasks of CIFAR100 when using oracle multi-classifier network, trained with linear
probing and auxiliary classifiers.

Task 1 Task 2 Task 3 Task 4 Task 5 Avg

CIFAR100x5, Linear Probing

FT 31.82±2.23 46.90±1.60 54.22±0.59 43.30±1.24 6.57±0.96 36.56±0.52
FT+Ex 12.28±0.10 14.58±0.33 12.72±1.80 13.87±0.93 11.37±0.71 12.96±0.62
LwF 35.07±2.03 28.88±2.51 20.92±2.01 15.25±1.13 9.55±1.47 21.93±0.20
BiC 15.15±0.91 17.00±2.33 18.73±1.50 17.93±2.26 16.03±2.39 16.97±0.50

CIFAR100x5, Auxiliary Classifiers

FT 24.65±2.82 45.07±5.77 56.87±3.68 48.82±4.36 9.05±0.65 36.89±1.33
FT+Ex 14.42±0.60 17.42±1.12 15.70±1.58 15.30±1.59 10.88±0.40 14.74±0.66
LwF 18.52±1.89 22.57±2.84 21.57±0.93 18.57±0.95 15.07±2.08 19.26±0.61
BiC 15.88±0.96 18.42±0.46 18.83±2.29 18.72±0.06 15.43±3.06 17.46±0.61

Table 12. Upper bound on accuracy improvement on 10 tasks of CIFAR100 when using oracle multi-classifier network, trained with linear
probing and auxiliary classifiers.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Avg

CIFAR100x10, Linear Probing

FT 30.00±7.52 16.10±3.90 40.47±6.03 23.37±4.57 48.70±0.72 41.43±5.52 32.80±1.78 44.40±4.83 28.87±0.97 9.03±1.72 31.52±0.64
FT+Ex 17.17±1.24 16.63±0.42 18.40±2.72 18.10±1.44 17.67±0.78 16.30±1.31 18.90±0.79 15.77±1.30 17.00±0.44 11.90±1.32 16.78±0.38
LwF 48.93±6.24 30.30±3.00 33.63±3.35 28.93±5.05 25.60±2.13 21.50±5.50 13.30±2.17 14.47±1.50 11.33±1.24 8.40±1.54 23.64±1.29
BiC 19.03±1.10 20.73±2.04 20.50±2.74 20.83±2.37 17.83±1.12 19.17±0.67 16.83±3.16 18.90±0.53 20.77±4.80 17.73±4.31 19.23±0.70

CIFAR100x10, Auxiliary Classifiers

FT 12.93±0.38 14.30±4.69 35.07±0.21 25.70±4.90 46.27±4.57 38.70±2.77 32.50±2.17 43.77±0.93 34.73±3.46 9.20±0.62 29.32±0.98
FT+Ex 20.03±1.56 17.77±1.47 18.87±0.60 20.33±1.70 18.13±2.25 20.50±0.78 18.97±1.95 17.47±1.36 19.13±2.48 12.30±0.80 18.35±0.01
LwF 22.80±3.46 12.60±4.18 22.93±1.65 21.50±2.91 28.30±1.80 25.33±4.65 12.70±1.49 21.53±3.31 18.00±5.12 15.27±2.77 20.10±0.74
BiC 18.87±2.76 20.60±0.46 21.53±2.74 22.70±2.52 18.60±1.51 19.87±2.01 17.17±1.88 19.77±0.57 18.77±8.36 17.73±7.03 19.56±0.78

35



Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers

F.7. Dynamic inference rule ablation

In Table 13 we demonstrate the accuracy of two variants of dynamic inference for different confidence thresholds λ for
CIFAR100. We compare the standard, early-exit paradigm, where the network returns a final classifier prediction in case no
classifier meets the exit rule, and the paradigm used in our experiments where the network defaults to the most confident
prediction. Using the most confident prediction outperforms the standard early-exit rule, which is consistent with our
analysis that showed that the last classifier is not always the best in continual learning and that the early classifiers exhibit
lower forgetting for earlier task data.

Table 13. Comparison between dynamic inference performance with different confidence thresholds λ when using maximum confidence
prediction (MC) and final classifier prediction (Last) as the default output for multi-classifier networks trained with linear probing (LP) or
jointly with the network with gradient propagation (AC). Using max confidence prediction yields better accuracy.

λ FT (LP) FT+Ex (LP) LwF (LP) BiC (LP) FT (AC) FT+Ex (AC) LwF (AC) BiC (AC)

CIFAR100x5

Last 0.5 24.14±1.35 28.43±0.87 37.34±0.09 48.35±0.23 27.64±0.97 28.87±0.32 38.08±0.87 48.15±0.40
MC 24.73±1.48 28.33±0.96 36.95±0.20 48.48±0.40 28.10±1.03 28.85±0.31 38.36±0.59 48.37±0.31

Last 0.75 23.67±1.32 35.60±1.26 40.21±0.08 49.25±0.33 26.00±0.67 36.27±0.28 39.41±1.01 49.45±0.73
MC 26.66±1.70 35.09±1.38 39.70±0.10 49.74±0.48 28.91±1.07 36.18±0.17 40.33±0.76 50.19±0.63

Last 0.9 20.98±0.99 37.27±1.10 39.97±0.27 49.18±0.36 22.38±0.33 38.22±0.19 39.28±1.28 49.35±0.65
MC 26.70±1.55 36.57±1.33 40.07±0.10 49.89±0.52 28.44±1.04 38.27±0.13 40.50±0.91 50.39±0.65

Last 0.95 19.91±0.76 37.48±0.98 39.62±0.23 49.15±0.31 20.69±0.24 38.50±0.17 39.25±1.36 49.24±0.63
MC 26.74±1.40 36.77±1.29 40.07±0.08 49.89±0.52 28.25±1.05 38.62±0.21 40.53±0.94 50.40±0.66

Last 0.98 19.19±0.27 37.46±0.92 39.40±0.21 49.14±0.32 19.49±0.18 38.55±0.38 39.22±1.34 49.24±0.65
MC 26.83±1.23 36.81±1.27 40.10±0.07 49.89±0.52 28.19±1.08 38.72±0.24 40.55±0.95 50.40±0.68

Last 0.99 18.94±0.15 37.44±0.88 39.32±0.22 49.14±0.32 19.08±0.20 38.55±0.44 39.22±1.35 49.23±0.64
MC 26.82±1.22 36.83±1.27 40.10±0.07 49.89±0.52 28.20±1.09 38.75±0.27 40.55±0.95 50.40±0.68

Last 1.0 18.39±0.08 37.43±0.85 39.11±0.26 49.14±0.32 18.35±0.30 38.51±0.43 39.22±1.34 49.22±0.65
MC 26.82±1.19 36.83±1.27 40.10±0.07 49.89±0.52 28.18±1.07 38.75±0.26 40.55±0.95 50.40±0.68

CIFAR100x10

Last 0.5 15.22±1.64 27.03±0.90 28.69±0.79 42.37±1.60 15.85±1.10 27.68±0.42 28.96±1.29 42.40±1.17
MC 16.05±1.95 27.04±0.87 28.06±0.93 42.62±1.75 16.79±1.34 27.72±0.37 29.09±1.10 42.67±1.44

Last 0.75 14.12±0.98 33.69±1.20 31.10±0.87 43.95±1.69 13.31±1.17 34.40±0.47 28.65±1.72 44.93±0.93
MC 17.47±1.51 33.84±1.03 30.17±0.77 44.59±1.75 16.77±1.22 34.64±0.41 29.72±1.19 45.83±1.51

Last 0.9 12.19±0.51 34.61±1.05 31.03±0.92 43.87±1.63 11.25±1.04 35.83±0.51 28.30±1.83 44.55±0.62
MC 17.71±1.33 35.41±0.87 30.54±0.76 44.82±1.71 16.82±1.14 36.59±0.52 29.79±1.21 46.14±1.46

Last 0.95 11.25±0.55 34.49±1.10 30.63±1.10 43.79±1.72 10.62±0.83 35.63±0.43 28.27±1.79 44.33±0.53
MC 17.74±1.31 35.58±0.92 30.59±0.67 44.84±1.72 16.89±1.11 36.92±0.39 29.79±1.21 46.17±1.45

Last 0.98 10.51±0.35 34.27±1.13 30.17±1.19 43.77±1.72 10.09±0.73 35.29±0.39 28.22±1.81 44.23±0.54
MC 17.77±1.30 35.61±0.90 30.60±0.68 44.84±1.73 16.88±1.08 36.97±0.40 29.79±1.21 46.19±1.47

Last 0.99 10.19±0.37 34.26±1.10 30.00±1.20 43.76±1.72 9.92±0.69 35.10±0.45 28.20±1.83 44.21±0.53
MC 17.77±1.30 35.61±0.89 30.60±0.68 44.84±1.73 16.88±1.08 36.98±0.40 29.79±1.21 46.19±1.47

Last 1.0 9.79±0.33 34.22±1.08 29.65±1.19 43.75±1.72 9.76±0.63 34.93±0.40 28.19±1.84 44.19±0.51
MC 17.77±1.30 35.62±0.89 30.60±0.69 44.84±1.73 16.88±1.08 36.97±0.39 29.79±1.21 46.19±1.47

36


