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ABSTRACT

We study the expressivity of ReLU neural networks in the setting of a binary
classification problem from a topological perspective. Recently, empirical stud-
ies showed that neural networks operate by changing topology, transforming a
topologically complicated data set into a topologically simpler one as it passes
through the layers. This topological simplification has been measured by Betti
numbers, which are algebraic invariants of a topological space. We use the same
measure to establish lower and upper bounds on the topological simplification a
ReLU neural network can achieve with a given architecture. We therefore con-
tribute to a better understanding of the expressivity of ReLU neural networks in
the context of binary classification problems by shedding light on their ability to
capture the underlying topological structure of the data. In particular the results
show that deep ReLU neural networks are exponentially more powerful than shal-
low ones in terms of topological simplification. This provides a mathematically
rigorous explanation why deeper networks are better equipped to handle complex
and topologically rich datasets.

1 INTRODUCTION

Neural networks are at the core of many AI applications. A crucial task when working with neural
networks is selecting the appropriate architecture to effectively tackle a given problem. Therefore, it
is of fundamental interest to understand the range of problems that can be solved by neural networks
with a given architecture, i.e., its expressivity.

In recent years, many theoretical findings have shed light on the expressivity of neural networks.
Universal approximation theorems (Cybenko, 1989) (Hornik, 1991) state that one hidden layer is al-
ready sufficient to approximate any continuous function with arbitrary accuracy. On the other hand,
it is known that deep networks can represent more complex functions than their shallow counter-
parts, see e.g. (Telgarsky, 2016; Eldan and Shamir, 2016; Arora et al., 2018).

The measure of expressivity of a neural network should always be related to the problem it has
to solve. A common scenario in which neural networks are employed is the binary classification
problem, where the network serves as a classifier for a binary labeled dataset. Since topological
data analysis has revealed that data often has nontrivial topology, it is important to consider the
topological structure of the data when dealing with a binary classification problem. Naitzat et al.
(2020) show through empirical methods that neural networks operate topologically, transforming a
topologically complicated dataset into a topologically simple one as it passes through the layers.
Given a binary labeled dataset, they assume that the positively labeled and the negatively labeled
points are sampled from topological spaces Ma and Mb respectively that are entangled with each
other in a nontrivial way. Their experiments show that a well-trained neural network gradually
disentangles the topological spaces until they are linearly separable in the end, i.e, the space Mb

is mapped to the positive real line and Ma to the negative real line. From a theoretical point of
view, it is of interest to determine the extent of “topological change” that can be achieved by neural
networks of a particular architecture. The topological expressivity of a neural network can therefore
be measured by the complexity of the most complex topological spaces it can separate and is directly
related to the complexity of the binary classification problem.

In this paper we investigate the topological expressivity of ReLU neural networks, which are one of
the most commonly used types of neural networks (Glorot et al., 2011; Goodfellow et al., 2016). A
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(L + 1)-layer neural network (NN) is defined by L + 1 affine transformations Tℓ : Rnℓ−1 → Rnℓ ,
x 7→ Aℓx+bℓ forAℓ ∈ Rnℓ−1×nℓ , bℓ ∈ Rnℓ and ℓ = 1, . . . , L+1. The tuple (n0, n1, . . . , nL, nL+1)
is called the architecture, L + 1 the depth, nℓ the width of the ℓ-layer, max{n1, . . . , nL} the width
of the NN and

∑L
ℓ=1 nℓ the size of the NN. The entries of Aℓ and bℓ for ℓ = 1, ..., L + 1 are called

weights of the NN and the vector space of all possible weights is called the parameter space of an
architecture. A ReLU neural network computes the function

F = TL+1 ◦ σnL
◦ TL ◦ · · · ◦ σn1

◦ T1,
where σn : Rn → Rn is the ReLU function given by σn(x) = (max(0, x1), . . . ,max(0, xn)).

Note that the function F is piecewise linear and continuous. In fact, it is known that any continuous
piecewise linear function F can be computed by a ReLU neural network (Arora et al., 2018). How-
ever, for a fixed architectureA, the class FA of piecewise linear functions that is representable by this
architecture is not known (Hertrich et al., 2021; Haase et al., 2023). Conveniently, in the setting of
a binary classification problem we are merely interested in the decision regions, i.e., F−1((−∞, 0))
and F−1((0,∞)) rather than the continuous piecewise linear function F itself.

A common choice to measure the complexity of a topological space X is the use of algebraic invari-
ants. Homology groups are the essential algebraic structures with which topological data analysis
analyzes data (Dey and Wang, 2022) and hence Betti numbers as the ranks of these groups are the
obvious measure of topological expressivity. Intuitively, the k-th Betti number βk(X) corresponds
to the number of (k+ 1)-dimensional holes in the space X for k > 0 and β0(X) corresponds to the
number of path-connected components of X . Thus, one can argue that when a space (the support of
one class of the data) has many connected components and higher dimensional holes, it is more dif-
ficult to separate this space from the rest of the ambient space, e.g., mapping it to the negative line.
In Appendix 5.1.2 we present a brief introduction to homology groups. For an in-depth discussion
of the aforementioned concepts, we refer to (Hatcher, 2002).

In order to properly separate Ma and Mb, the sublevel set F−1((−∞, 0)) of the function F com-
puted by the neural network should have the same topological complexity as Ma. Bianchini and
Scarselli (2014) measured the topological complexity of the decision region F−1((−∞, 0)) with
the sum of all its Betti numbers. This notion of topological expressivity does not differentiate be-
tween connected components and higher dimensional holes. On the other hand, if an architecture is
not capable of expressing the Betti numbers of different dimensions of the underlying topological
space of the dataset, then for every F ∈ FA there is a set of data points U such that F misclassifies
every x ∈ U (Guss and Salakhutdinov, 2018). Therefore it is of fundamental interest to understand
each Betti number of the decision regions and hence we propose the following definition:
Definition 1. The topological expressivity of a ReLU neural network F : Rd → R is defined as the
vector β(F ) = (βk(F ))k=0,...,d−1 = (βk(F

−1((−∞, 0)))k=0,...,d−1.

1.1 MAIN RESULTS

Our main contribution consists of lower and upper bounds on the topological expressivity for ReLU
NNs with architectures. These bounds demonstrate that the growth of Betti numbers in neural net-
works depends on their depth. With an unbounded depth, Betti numbers in every dimension can
exhibit exponential growth as the network size increases. However, in the case of a shallow neural
network, where the depth remains constant, the Betti numbers of the sublevel set are polynomi-
ally bounded in size. This implies that increasing the width of a network while keeping the depth
constant prevents exponential growth in the Betti numbers. Consequently, if a dataset possesses
exponentially high Betti numbers (parameterized by some parameter p), accurate modeling of the
dataset requires a deep neural network when the size of the neural network is constrained to be poly-
nomial in parameter p since the topological expressivity serves, as discussed above, as a bottleneck
measure for effective data representation.

In Theorem 9, the lower bounds for the topological expressivity are given by an explicit formula,
from which we can derive the following asymptotic lower bounds:

Corollary 1. Let A = (d, n1, . . . , nL, 1) with nL ≥ 4d and M = 2 ·
∏L−1

ℓ=1

⌊
nℓ

2d

⌋
, then there is a

ReLU NN F : Rd 7→ R with architecture A such that

(i) β0(F ) ∈ Ω(Md · nL)
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(ii) βk(F ) ∈ Ω(Mk · nL) for 0 < k < d.

In particular, given v = (v1, . . . , vd) ∈ Nd−1, there is a ReLU NN F of size O
(
log

(∑d−1
k=1 vk

))
such that βk(F ) ≥ vk+1 for all k ∈ {0, . . . , d− 1}.

Corollary 1 provides a proof for a conjecture on lower bounds for the zeroth Betti number of the
decision region given in (Guss and Salakhutdinov, 2018); in fact, it generalizes the statement to
arbitrary dimensions. Furthermore, we observe that L = 2 hidden layers are already sufficient to
increase the topological expressivity as much as we want at the expense of an increased width due
to the above lower bound.
Corollary 2. Given v ∈ Nd, there exists an NN F : Rd → R of depth 2 such that βk(F ) ≥ vk+1 for
all k ∈ {0, . . . , d− 1}.

We obtain the lower bound by making choices for the weights of the NN, nevertheless, we show that
our construction is robust with respect to small perturbations. In fact, in Proposition 10 we prove
that we actually have an open set in the parameter space such that the respective functions all have
the same topological expressivity.

Using an upper bound on the number of linear regions (Serra et al., 2017), we obtain the following
upper bound on βk(F ).
Proposition 3. Let F : Rd → R be a neural network of architecture (d, n1, . . . , nL, 1). Then it
holds that β0(F ) ≤

∑
(j1,...,jL)∈J

∏L
ℓ=1

(
nℓ

jℓ

)
and for all k ∈ [d− 1] that

βk(F ) ≤
(∑

(j1,...,jL)∈J

∏L
ℓ=1

(
nℓ

jℓ

)
d− k

)
,

where J =
{
(j1, . . . , jL) ∈ ZL : 0 ≤ jℓ ≤ min{d, n1 − j1, . . . , nℓ−1 − jℓ−1} for all ℓ = 1, . . . , L

}
.

If all hidden layers have dimension n, then for all k ∈ [d− 1] it holds that βk(F ) ∈ O(nL·d·(d−k))
and β0(F−1((−∞, 0))) ∈ O(nL·d) and hence is polynomially bounded in the width. By combining
Corollary 1 and the latter fact, we can conclude that there is an exponential gap in the topological
expressivity between shallow and deep neural networks. This aligns with other popular measures of
expressivity, such as the number of linear regions, where similar exponential gaps are known (Serra
et al., 2017; Montúfar et al., 2014; Montufar, 2017).

1.2 RELATED WORK

1.2.1 TOPOLOGY AND NEURAL NETWORKS

Recently, there is a vast stream of research studying neural networks by means of topology using
empirical methods (Petri and Leitão, 2020; Guss and Salakhutdinov, 2018; Naitzat et al., 2020; Li
et al., 2020) as well as from a theoretical perspective (Basri and Jacobs, 2017; Melodia and Lenz,
2020; Grigsby and Lindsey, 2022; Bianchini and Scarselli, 2014; Grigsby et al., 2022; Hajij and
Istvan, 2020). Bianchini and Scarselli (2014) were the first that used Betti numbers as a complexity
measure for decision regions of neural networks. Their work studies NNs with sigmoidal activation
functions and shows that there is an exponential gap with respect to the sum of Betti numbers
between deep neural networks and neural networks with one hidden layer. However, there are no
insights about distinct Betti numbers. In Guss and Salakhutdinov (2018), the decision regions of
ReLU neural networks ares studied with empirical methods and an exponential gap for the zeroth
Betti number is conjectured. Our results prove the conjecture and extend the results of Bianchini
and Scarselli (2014) for the ReLU case (see Section 3 and Appendix). Furthermore topological
characteristics such as connectivity or boundedness of the decision regions are also investigated in
(Fawzi et al., 2018; Grigsby and Lindsey, 2022; Grigsby et al., 2022; Nguyen et al., 2018).

1.2.2 EXPRESSIVITY OF (RELU) NEURAL NETWORKS

In addition to the universal approximation theorems (Cybenko, 1989; Hornik, 1991), there is a sig-
nificant amount of research on the expressivity of neural networks, e.g., indicating that deep neural
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networks can be exponentially smaller in size than shallow ones. For ReLU neural networks, the
number of linear regions is often used as a measure of complexity for the continuous piecewise linear
(CPWL) function computed by the network. It is well established that deep ReLU neural networks
can compute CPWL functions with exponentially more linear regions than shallow ones, based on
various results such as lower and upper bounds on the number of linear regions for a given archi-
tecture (Montufar, 2017; Serra et al., 2017; Montúfar et al., 2014; Arora et al., 2018). We partially
use techniques from their works to establish our bounds on topological expressivity, which offers
the advantage of being directly related to the complexity of binary classification problems.

1.3 NOTATION AND DEFINITIONS

A function F : Rd → Rd is continuous piecewise linear (CPWL) if there is a polyhedral complex
covering Rd, such that F is affine linear over each polyhedron of this complex. A linear region of f
is a maximal connected convex subspace R such that f is affine linear on R, i.e., a full-dimensional
polyhedron of the complex.1 For a survey on polyhedral theory in deep learning see Huchette et al.
(2023), and for a general introduction to polyhedra we refer to Schrijver (1986).

We denote by [n] the set {1, . . . , n} and by [n]0 the set {0, . . . , n}. We denote by πj : Rd → R
the projection onto the j-th component of Rd and by pj : Rd → Rj the projection onto the first j
components.

A crucial part of our construction is decomposing a unit cube into a varying number of small
cubes. Thereby, given m = (m1, . . . ,mL) ∈ NL and M =

(∏L
ℓ=1mℓ

)
, the set W (L,m,d)

i1,...,id

is defined as the cube of volume 1
Md with “upper right point” 1

M · (i1, . . . , id), i.e., the cube∏d
k=1[

(ik−1)
M , ik

M ] ⊂ [0, 1]d. The indices (L,m, d) are omitted whenever they are clear from the
context.

We denote by Dk = {x ∈ Rk : ∥x∥ < 1} the k-dimensional standard open disk and by
Sk = {x ∈ Rk+1 : ∥x∥ = 1} the k-dimensional standard sphere. We consider these sets as “in-
dependent” topological spaces. Therefore, it is justified to abstain from picking a specific norm,
since all norms on Rk are equivalent.

For k,m ∈ N with m ≤ k, the (j-dimensional open) k-annulus is the product space Sk × Dj−k.
Note that since Sk has one connected component and a (k + 1)-dimensional hole, it holds that
β0(S

k) = βk(S
k) = 1 and the remaining Betti numbers equal zero. The j-dimensional open

k-annulus is an j-dimensional manifold that can be thought as a thickened k-sphere and hence its
Betti numbers coincide with the ones from the k-sphere. In Appendix 5.1.2 the reader can find a
more formal treatment of the latter fact.

In contrast to Dk and Sk, which are only seen as spaces equipped with a topology, we also consider
neighborhoods around certain points x ∈ Rd as subsets of Rd. To make a clear distinction, we
define the space Bd

r (x) as the d-dimensional open r-ball around x with respect to the 1-norm, i.e.,
the space {y ∈ Rd : ∥x− y∥1 < r}. Note that for r < r′, the set Bk

r (x) \Bk
r′(x) is homeomorphic

to a k-dimensional open (k− 1)-annulus and we will refer to them as (k− 1)-annuli as well. These
annuli will be the building blocks of our construction for the lower bound.

The rest of the paper is devoted to proving the lower and upper bounds. Most of the statements
come with an explanation or an illustration. In addition, formal proofs for these statements are also
provided in the appendix.

2 LOWER BOUND

In this section, our aim is to construct a neural network F : Rd → R of depth L+2 such that βk(F )
grows exponentially in the size of the neural network for all k ∈ [d− 1]0.

We propose a construction that is restricted to architectures where the widths n1, . . . , nL+1 of all
hidden layers but the last one are divisible by 2d. This construction, however, is generalized for any

1In the literature there exists also a slightly different definition of a linear region leaving out the necessity
of the region being convex, but the bounds we use are all applicable to this definition of a linear region.
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Figure 1: The graph of the function
πj ◦ h(1,2,d) that folds the unit interval,
i.e., mapping the interval [0, 0.5] and
[0.5, 1] to the unit interval. This func-
tion is realised by a hidden layer with 2
hidden neurons.

x1

xd

...

y1

yd

Figure 2: The architecture of the one
hidden layer neural network h(1,2,d) that
folds the d-dimensional unit cube by
folding every component of the cube as
described in Figure 1

architecture where the dimension of all hidden layers is at least 2d by inserting at most 2d auxiliary
neurons at each layer at which a zero map is computed. Correspondingly, one obtains a lower bound
by rounding down the width nℓ at each layer to the largest possible multiple of 2d. In particular, a
reduction to the case in Theorem 24 does not have an effect on the asymptotic size of the NN.

The key idea is to construct F = f ◦ h as a consecutive execution of two neural networks f and
h, where the map h : Rd → Rd is an ReLU NN with L hidden layers that identifies exponentially
many regions with each other. More precisely, h cuts the unit cube of Rd into exponentially many
small cubes Wi1,...,id ∈ [0, 1]d and maps each of these cubes to the whole unit cube by scaling
and mirroring. The one hidden layer ReLU NN f then cuts the unit cube into pieces so that f on
the pieces alternatingly takes exclusively positive respectively negative values. Since h maps all
Wi1,...,id to [0, 1]d by scaling and mirroring, every Wi1,...,id is cut into positive-valued and negative-
valued regions by the composition f ◦ h in the same way as [0, 1]d is mapped by f , up to mirroring.
The cutting of the unit cube and the mirroring of the small cubes in the map to [0, 1]d are chosen in
such a way that the subspaces on which F takes negative values form k-annuli for every k ∈ [d−1].
Since h cuts the unit cube into exponentially many small cubes, we obtain exponentially many k-
annuli for every k ∈ [d− 1] in the sub level set F−1((−∞, 0)).

The idea of constructing a ReLU neural network that folds the input space goes back to Montúfar
et al. (2014), where the construction was used to show that a deep neural network with ReLU acti-
vation function can have exponentially many linear regions. Using their techniques, we first build
a 1-hidden layer NN h(1,m,d) : Rd → Rd for m ∈ N even that folds the input space, mapping md

many small cubes W (1,m,d)
i1,...,id

⊂ [0, 1]d by scaling and mirroring to [0, 1]d. More precisely, the NN
h(1,m,d) has m · d many neurons in the single hidden layer, who are partitioned into m groups. The
weights are chosen such that the output of the neurons in one group depends only on one input
variable and divides the interval [0, 1] into m subintervals of equal length, each of which is then
mapped to the unit interval [0, 1] by the output neuron. Figure 2 illustrates this construction. In
Appendix 5.2.1 or in Montúfar et al. (2014), the reader can find an explicit construction of h(1,m,d).

The map h(1,m,d) identifies only O(md) many cubes with each other. To subdivide the input space
into exponentially many cubes and map them to the unit cube, we need a deep neural network.
For this purpose, we utilize a vector m of folding factors instead of a single number m. Let
m = (m1, . . . ,mL) ∈ NL with mℓ even for all ℓ ∈ [L] and define the neural network h(L,m,d)

with L hidden layers as h(L,m,d) = h(1,mL,d) ◦ · · · ◦ h(1,m1,d). Since each of the md
1 cubes that

results from the subdivision by the first layer is mapped back to [0, 1]d, each cube is subdivided
again into md

2 cubes by the subsequent layer. Thus, after L such layers, we obtain a subdivision of

the input space into
(∏L

ℓ=1mℓ

)d

cubes.

In the following, we define variables that are fixed but arbitrary: L ∈ N, m = (m1, . . . ,mL) ∈ NL

and M =
(∏L

ℓ=1mℓ

)
with mℓ > 1 even for all ℓ ∈ [L]. The following lemma states that h(L,m,d)

actually enjoys the aforementioned properties.
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Figure 3: Illustration of the preim-
age of the map ĝ(4,2) in [0, 1]2, where
the darkgray regions correspond to
ĝ−1((0,∞)) and the lightgray regions
to ĝ−1((−∞, 0)).
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Figure 4: Illustration of the preimage of
the map g(4,2) in [0, 1]2.

Lemma 4. (cf. (Montúfar et al., 2014)) Let d ∈ N, then:

1. h(L,m,d)(W
(L,m,d)
(i1,...,id)

) = [0, 1]d

2. πj ◦ h(L,m,d)

|W (L,m,d)

(i1,...,id)

(x1, . . . , xd) =

{
M · xj − (ij − 1) ij odd
−M · xj + ij ij even

for all (i1, . . . , id) ∈ [M ]d.

We now define cutting points as the points that are mapped to the point (1, 1, 1, . . . ., 1, 0) by the
map h(L,m,d) since they will play a central role in counting the annuli in the sublevel set of F .

Definition 2. We call a point x ∈ [0, 1]d a cutting point if it has coordinates of the form xi =
x′
i

M
for all i ∈ {1, . . . , d}, where the x′i are odd integers for 1 ≤ i ≤ d− 1 and x′d is an even integer.

Next, for w ≥ 2, we build a 1-hidden layer neural network ĝ(w,d) : Rd → R that cuts the d-
dimensional unit cube into w pieces such that ĝ(w,d) maps the pieces alternatingly to R>0 and R<0,
respectively. We omit the indices w and d whenever they are clear from the context.

In order to build the neural network, we fix w and d and define the maps ĝq : Rd → R,
q = 0, . . . , w + 1 by

ĝq(x) =

 max{0,1Tx} q = 0
max{0,1Tx− 1} q = w + 1
max{0, 2(1Tx− (2q − 1)/4w)} else

and let ĝ : Rd → R be given by

ĝ(x) =

w+1∑
q=0

(−1)q · ĝq(x).

Later in this section, we will iteratively construct k-annuli in the sublevel set of F for all k ∈ [d− 1].
In order to ensure that these annuli are disjoint, it is convenient to place them around the cutting
points. To achieve this, we mirror the map ĝ before precomposing it with h. The mirroring transfor-
mation that maps the origin to the point (1, . . . , 1, 0) is an affine map t : [0, 1]d → [0, 1]d defined by
t(x1, x2, . . . , xd) = (1− x1, 1− x2, . . . , 1− xd−1, xd). We define the neural network g = ĝ ◦ t as
the consecutive execution of ĝ and t.
Lemma 5. Let d,w ∈ N and

Rq = {x ∈ [0, 1]d :
q

2w
< ∥(1, 1, . . . , 1, 0)− x∥1 <

q + 1

2w
}.
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Figure 5: Illustration of the preimage of
the composition g(4,2) ◦ h(3,2,2).
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Figure 6: Illustration of the preimage of
f (4,4) = g(4,3) + g(4,2) ◦ p2.

Then there exists a 1-hidden layer neural network g(w,d) : Rd → R of width w + 2 such that

sgn(g(w,d)(Rq)) = (−1)q ∀q = 0, . . . , w − 1

and g(w,d)(x) = 0 for all x ∈ [0, 1]d with ∥(1, 1, . . . , 1, 0)− x∥1 ≥ 1
2 .

Lemma 20 in the appendix characterizes the regions around cutting points that admit positive re-
spectively negative values under the map g(w,d) ◦ h(L,m,d). We focus on the regions that admit
negative values, i.e., the space Yd,w := (g(w,d) ◦ h(L,m,d))−1((−∞, 0)) and observe that we obtain
d-dimensional (d− 1)-annuli around each cutting point.

Combining Lemma 20 and further observations about the number of cutting points (cf. Observa-
tion 21 in the appendix), we can finally describe Yd,w as a topological space.

Proposition 6. The space Yd,w is homeomorphic to the disjoint union of
pd = M(d−1)

2d−1 ·
(
M
2 − 1

)
·
⌈
w
2

⌉
many (d − 1)-annuli and p′d = M(d−1)

2d−2 ·
⌈
w
2

⌉
many disks, that

is,

Yd,w ∼=
pd∐
k=1

(Sd−1 × [0, 1]) ⊔
p′
d∐

k=1

Dd.

In order to obtain exponentially many k-annuli for all k ∈ [d− 1], we follow a recursive approach:
At each step, we start with a k-dimensional space that has exponentially many j-annuli for all j ∈
[k−1]. We then cross this space with the interval [0, 1], transforming the k-dimensional j-annuli into
(k+1)-dimensional j-annuli. Finally, we “carve” (k+1)-dimensional k-annuli in this newly formed
product space. To allow us flexibility with respect to the numbers of annuli carved in different dimen-
sions, we fix an arbitrary vector w = (w1, . . . , wd−1) ∈ Nd−1 such that

∑d−1
i=1 (wi + 2) = nL+1.

We iteratively define the 1-hidden layer neural network f (w1,...,wk−1) : Rk → R of width nL+1 by
f (w1) = g(w1,2) and

f (w1,...,wk−1) = f (w1,...,wk−2) ◦ pk−1 + g(wk−1,k)

for k ≤ d. Roughly speaking, the following lemma states that the carving map does not interfere
with the other maps, i.e., there is enough space in the unit cubes to place the k-annuli after having
placed all k′-annuli (k′ < k) in the same, inductive manner.

Lemma 7. For k ≤ d and w = (w1, . . . , wd−1) ∈ Nd−1 it holds that

1. f (w1,...,wk−2) ◦ pk−1(x) ̸= 0 =⇒ g(wk−1,k)(x) = 0 and
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2. g(wk−1,k)(x) ̸= 0 =⇒ f (w1,...,wk−2) ◦ pk−1(x) = 0

for all x ∈ [0, 1]k.

Using Lemma 7 and the fact that the folding maps h(L,m,k) are compatible with projections
(cf. Lemma 22 in Appendix), we can make sure that we can construct the cuts iteratively so that
we obtain k-annuli for every k ∈ [d− 1], which is stated in the following lemma.
Lemma 8. For 2 ≤ k ≤ d, the space Xk := (f (w1,...,wk−1) ◦ h(L,m,k))−1((−∞, 0)) satisfies

Xk = (Xk−1 × [0, 1]) ⊔ Yk,w
with X1 := ∅.

Lemma 8, Proposition 6 and the disjoint union axiom (Proposition 15 in Appendix 5.1.2) allow us
to compute the Betti numbers of the decision region of F := f (w1,...,wd−1) ◦ h(L,m,d) as stated in
Theorem 24 in the Appendix. One can easily generalize this statement by rounding down the widths
n1, . . . , nL to the nearest even multiple of d:
Theorem 9. Given an architectureA = (d, n1, . . . , nL, 1) with nℓ ≥ 2d for all ℓ ∈ [L] and numbers
w1, . . . , wd−1 ∈ N such that

∑d−1
k=1(wk + 2) = nL, there is a neural network F ∈ FA such that

(i) β0(F ) =
∑d

k=2
M(k−1)

2k−1 ·
(
M
2 + 1

)
·
⌈
wk

2

⌉
(ii) βk(F ) = M(k−1)

2k−1 ·
(
M
2 − 1

)
·
⌈wk−1

2

⌉
for 0 < k < d,

where M =
∏L−1

ℓ=1 2 · ⌊nℓ

2d ⌋.

The special case
⌊
w1

2

⌋
= . . . =

⌊
wd

2

⌋
corresponds precisely to Corollary 1.

In order to obtain the lower bound we choose the weights explicitly, but the construction is robust to
small perturbations. Basically this relies on the fact that since we have finitely many linear regions
and no hyperplanes of non-linearity introduced at different applications of the ReLU function that
coincide, one can perturb the weights slightly, such that the combinatorial structure of the polyhedral
complex is preserved. From this we easily conclude the maintenance of the existence of all the
annuli. In fact, if we denote by Φ: RD → C(Rd) the map that assigns a vector of weights to
the function computed by the ReLU neural network with this weights, in Section 5.3 we prove the
following:
Proposition 10. There is an open set U ⊆ RD in the parameter space of the architecture
(d,m · d, . . . .,m · d,w, 1) such that Φ(u) restricted to the unit cube has at least the same topo-
logical expressivity as F in Theorem 24 for all u ∈ U.

As mentioned previously, the sum of Betti numbers, the notion of topological expressivity used
in Bianchini and Scarselli (2014), does not provide us with an understanding of holes of different
dimensions. On the other hand, our bounds are clearly an extension of this result. In addition, the
dimension-wise lower bound allows further implications, one of them being a lower bound on the
Euler characteristic, which is the alternating sum χ(X) =

∑d
k=1 βk(X) of the Betti numbers.

Corollary 11. Let A be the architecture as in Theorem 24, then there is a ReLU NN F : Rd 7→ R

with architectureA such that the spaceXd := F−1((−∞, 0)) satisfies χ(Xd) ∈ Ω

(
Md ·

d−1∑
i=1

wi

)
,

where χ(Xd) denotes the Euler characteristic of the space Xd.

3 UPPER BOUND

In this section we derive an upper bound for βk(F ) for a ReLU neural network F : Rd → R for all
k ∈ [d− 1], showing that they are polynomially bounded in the width using an upper bound on the
linear regions of F . A linear region R of F contains at most one convex polyhedral subspace where
F takes on exclusively nonnegative function values. Intuitively, every such polyhedral subspace can
be in the interior of at most one d-dimensional hole of the sublevel set F−1((−∞, 0)) and thus
the number of linear regions is an upper bound for βd−1(F ). In the following proposition we will
formalize this intuition and generalize it to βk(F ) for all k ∈ [d− 1]0.

8
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Proposition 3. Let F : Rd → R be a neural network of architecture (d, n1, . . . , nL, 1). Then it
holds that β0(F ) ≤

∑
(j1,...,jL)∈J

∏L
ℓ=1

(
nℓ

jℓ

)
and for all k ∈ [d− 1] that

βk(F ) ≤
(∑

(j1,...,jL)∈J

∏L
ℓ=1

(
nℓ

jℓ

)
d− k

)
,

where J =
{
(j1, . . . , jL) ∈ ZL : 0 ≤ jℓ ≤ min{d, n1 − j1, . . . , nℓ−1 − jℓ−1} for all ℓ = 1, . . . , L

}
.

Proof sketch. Theorem 1 in (Serra et al., 2017) states that F has at most
∑

(j1,...,jL)∈J

∏L
l=1

(
nl

jl

)
linear regions. In Section 5.4 we will provide a formal proof for the statement that we sketch here.
Let P be the canonical polyhedral complex of F , i.e, F is affine linear on all polyhedra in P (c.f
Appendix 12). For every k ∈ [d] we will define a P−

k as a subcomplex of a subdivison of the
(k + 1)-skeleton of P such that F takes on exclusively negative respectively nonnegative values on
the k + 1-dimensional polyhedra of P−

k in such a way that βk(P−
k ) = βk(F ). We then proceed

by showing the chain of inequalities βk(P−
k ) ≤ #P(k + 1) ≤

(∑
(j1,...,jL)∈J

∏L
ℓ=1 (

nℓ
jℓ
)

d−k

)
using

cellular homology and polyhedral geometry, where P(k + 1) ⊆ P is the set of k + 1-dimensional
polyhedra in P. This concludes the proof, since it also holds that β0(P−) ≤ #P−

d (d) ≤ P(d) =∑
(j1,...,jL)∈J

∏L
l=1

(
nl

jl

)
,

This implies that the upper bound is polynomial in the width:

Corollary 12. Let F : Rd → R be a neural network of architecture (d, n, . . . , n, 1) and depth L,
then βk(F−1((−∞, 0))) ∈ O(nL·d·(d−k)) for k ∈ [d− 1] and β0(F−1((−∞, 0))) ∈ O(nL·d).

4 CONCLUSION, LIMITATIONS AND OUTLOOK

Since it is widely accepted that data sets often have nontrivial topologies, investigating a neural net-
work’s ability to capture topological properties, as characterized by all Betti numbers, is an exciting
and essential question that yields insight into the nature of ReLU networks. In an attempt to shed
light on this question, we proved lower and upper bounds for the topological expressivity of ReLU
neural networks with a given architecture. Our bounds give a rough estimate on how the architec-
ture needs to be in order to be at least theoretically able to capture the topological complexity of
the data set in these dimensions; in particular, in the first few dimensions where Betti numbers are
computable in practice.

As a byproduct of our analysis we saw that two hidden layers are sufficient to increase the topo-
logical expressivity as much as we want at the expense of an increased width. Even though Betti
numbers are a common complexity measure for topological spaces in data analysis, they only pro-
vide a coarse classification, i.e., two spaces can have the same Betti numbers but still look very
different. Although there are finer topological invariants such as cohomology rings or homotopy
groups, from a computational point of view, Betti numbers are a good trade-off between the ability
to capture differences of spaces and tractability. Nevertheless, it might be interesting to find further
topological or geometrical invariants to investigate the expressivity of neural networks in the setting
of classification tasks.

Even though our lower bounds apply under certain restrictions of neural network architecture, this
does not pose a big limitation for our purposes. Since our results are of a theoretical and mostly
asymptotic nature, a constant factor (in the hidden layers resp. in the last hidden layer) is negligi-
ble. Besides, since our layers merely consists of many small layers put in parallel, one could also
concatenate the layers in order to achieve a smaller width maintaining all the asymptotic results.

It seems straightforward that the construction in Section 2 can be adapted to neural networks with
sigmoidal activation functions in a “smoothed” way. Therefore we conjecture that the same lower
bound holds for the topological expressivity of neural networks with sigmoidal activation function,
which would generalise the lower bound for the zeroth Betti number given in Bianchini and Scarselli
(2014) to all Betti numbers.
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1. Every face F of any polyhedra P ∈ P is also in P and

2. it holds that P ∩Q ∈ P for all P,Q ∈ P .

There is a poset structure given on P by Q ⪯ P : ⇐⇒ Q is a face of P and we call (P,⪯) the face
poset of the polyhedral complex. Furthermore we define

Pk := {k − dimensional polyehdra in P}.

Note that for any polyhedron, the set of all its faces forms a polyhedral complex .
Definition 4 (Isomorphisms of polyhedral complexes and polytopes). Let P and Q be polyhedral
complexes. A map φ : P → Q is called an isomorphism if it is an isomorphism of the face posets of
P and Q and it holds that dim(φ(P )) = dim(P ) for all P ∈ P.
If P and Q are polytopes we call a map φ : P → Q an isomorphism if it is an isomorphism when
considering P and Q as polyhedral complexes.
Definition 5. We call φ : P → Q an ε-isomorphism if it is an isomorphism (of polyhedral com-
plexes) and it holds that ∥φ(v)− v∥2 < ε for all v ∈ P0.
Definition 6. Let x 7→ aTx + b be an affine linear map and H(a, b) := {x ∈ Rd | aTx + b = 0}
the hyperplane given by the kernel. Then we denote the corresponding half-spaces by

H1(a, b) := {x ∈ Rd | aTx ≥ b},

H−1(a, b) := {x ∈ Rd | aTx ≤ b}.
We will also use the notation H0(a, b) := H(a, b). We will simply write Hs for Hs(a, b) whenever
a and b are clear from the context.
Lemma 13. Let P ⊆ Rd be a polytope, a ∈ Rd and b ∈ R such that P0 ∩H(a, b) = ∅. Then for
all ε > 0, there is a δ > 0 such that for all (a′, b′) ∈ Bd+1

δ ((a, b)) there are ε-isomorphisms

ψs : P ∩Hs(a, b) → P ∩Hs(a′, b′)

for s ∈ {−1, 0, 1}. Furthermore it holds that P0 ∩H(a′, b′) = ∅.

Proof. Let e ∈ P1 and Re := Aff(e) be the affine space spanned by e. First, assume that Re ∩
H(a, b) ̸= ∅. Since H(a, b) ∩ P0 = ∅ we know that Re ∩ H(a, b) = {v(a,b)e } with v(a,b)e ∈ e◦ or
v
(a,b)
e ∈ Re \ e, where e◦ denotes the relative interior of e. Let

εe :=

{
min{ε, 12 infy∈e◦ ∥y − v

(a,b)
e ∥∞} v

(a,b)
e ∈ e◦

min{ε, 12 infy∈Re\e ∥y − v
(a,b)
e ∥∞} v

(a,b)
e ∈ Re \ e

It is easily verified that the map (c, d) 7→ H(c, d)∩Re is locally continuous around (a, b) and hence
there is a δe > 0 such that ∥(a, b) − (a′, b′)∥ < δe implies that ∥v(a,b)e − v

(a′,b′)
e ∥∞ < εe for all

e ∈ P1. On the other hand, if Re ∩H(a, b) = ∅, then there is a δe > 0 such that e◦ ∩H(a′, b′) = ∅.
Let δ := mine∈P1

δe. Note that (P ∩ H(a, b))0 = {v(a,b)e | v(a,b)e ∈ e◦} and (P ∩ H(a′, b′))0 =

{v(a
′,b′)

e | v(a
′,b′)

e ∈ e◦} and hence f(v(a,b)e ) := v
(a′,b′)
e defines a bijection f : (P∩H)0 → (P∩H ′)0

for (a′, b′) ∈ Bd+1
δ ((a, b)). Let F be a face of P ∩H(a, b), then F = F ′ ∩H(a, b) for some face

F ′ of P and furthermore F = conv({v(a,b)e ∩ e | e ⪯ F}. It now easily follows by induction on
the dimension of the face F that F is isomorphic to conv({v(a

′,b′)
e ∩ e | e ⪯ F} and therefore

in particular that P ∩ H(a, b) is isomorphic to P ∩ H(a′, b′). We can extend f to a bijection
f : (P ∩Hs(a, b))0 → (P ∩Hs(a′, b′))0 by f(v) = v for all v ∈ P0 ∩Hs(a, b) and by the same
arguments we obtain that P ∩Hs(a, b) is isomorphic to P ∩Hs(a′, b′) for s ∈ {−1, 1}.

Lemma 14. Let P ⊆ Rd be a polytope, H = {x ∈ Rd | aTx = b} be a hyperplane. If P0 ∩H = ∅
then for all ε > 0 there is a δ > 0 such that for all polytopes Q ⊆ Rd and all δ-isomorphisms
φ : P → Q there are ε-isomorphisms

γs : P ∩Hs → Q ∩Hs

for s ∈ {−1, 0, 1} and furthermore it holds that P0 ∩H ′ = ∅.
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Proof. Let e ∈ P1 and let ∂e = {u, v}. We will also use the notation e = uv and define

δe := min{ε, 1
2

inf
y∈H

∥y − v∥∞,
1

2
inf
y∈H

∥y − u∥∞}

and δ := mine∈P1
δe. Since P0 ∩H = ∅ it holds that δ > 0. Let φ : P → Q be a δ-isomorphism.

Then it holds H ∩ uv = {ve} ̸= ∅ if and only if H ∩ φ(u)φ(v) = {vφ(e)} ̸= ∅. Note that
(P ∩H)0 = {ve | H ∩ e ̸= ∅} and (Q ∩H)0 = {vφ(e) | H ∩ φ(e) ̸= ∅} and hence f(ve) := vφ(e)

defines a bijection f : (P ∩ H)0 → (Q ∩ H)0. The remaining proof is equivalent to the proof of
Lemma 13.

5.1.2 TOPOLOGY

In the following, we summarize background knowledge necessary for our purposes that the reader
may not have been acquainted with. The content of this subsection can also be found in many
algebraic topology textbooks such as Hatcher (2002, Chapter 2).

First, we recall two well-known constructions in topology that yield well-behaved, yet more complex
topological spaces.

Definition 7. For two topological spaces X and Y , the space X ⊔ Y denotes the disjoint union of
X and Y endowed with the disjoint union topology. Similarly for an arbitrary index set I , the set⊔

i∈I Xi denotes the disjoint union of the topological spaces Xi for i ∈ I . If I is a finite set, i.e.,
I = {1, . . . , q} for a suitable q ∈ N , we also denote this space by

⊔q
i=1Xi.

We also create product spaces: For two topological spaces X and Y , the product space is the Carte-
sian product X × Y endowed with the product topology. Even though it is possible to extend this
definition to infinite families of topological spaces as well, this will not be needed for our purposes.

Next, we introduce the notion of homology by giving a sketch of the construction of homology
groups.

Let X be a topological space and

∆n =

{
n∑

i=0

θixi : x ∈ Rn,

n∑
i=0

θi = 1, θi ≥ 0 for all i = 0, . . . , n

}
denote the standard n-simplex. Note that the standard n-simplex is the convex combination of n+1
points {p0, . . . , pn}. Taking the convex combination of an n-subset {p0, . . . , pn} \ {pi} of these
points, one obtains a subspace homeomorphic to the standard n− 1-simplex, which we call an i-th
n-face of the simplex.

The Z-module Cn, the group of n-chains, is defined as the free abelian group generated by contin-
uous maps σ : ∆n → X , called simplices. The inclusion ιi : ∆n−1 ↪→ ∆n induces n− 1-simplices
σi := σ ◦ ιi : ∆n−1 → X by the inclusion of the i-th n-face into the standard simplex.

The map ∂n : Cn → Cn−1, which we call the boundary map, is constructed as σ 7→
∑n

i=1(−1)iσi
on the generators and by linear extension elsewhere. This yields a chain complex

. . .→ Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1 → . . . ,

where we have ∂n−1 ◦ ∂n = 0 for all n. Therefore, we can define the n-th singular homology group
as

Hn(X) := ker(∂n)/im(∂n+1).

We list some well-known properties of (singular) homology groups that will be used in our con-
structions.

Proposition 15. Let n ∈ N.
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1. (Disjoint union axiom, implication) For any index set I and topological spacesXi for i ∈ I ,
it holds that Hn

(⊔
i∈I Xi

) ∼= ⊕
i∈I Hn(Xi).

2. (Homotopy invariance axiom, special case) Let X be a topological space and n, d ∈ N,
then it holds that Hn(X ×Dd) ∼= Hn(X).

3. (Dimension axiom) Hn(D
d) =

{
Z, n = 0

0 else

4. Hn(S
d) =


Z⊕ Z n = d = 0

Z, n = d ̸= 0 or d ̸= n = 0

0 else

Observation 16. Using Proposition 15 and given definitions, one can immediately calculate the
homology groups of a d-dimensional k-annuli:

Hn(S
k ×Dd−k) = Hn(S

k) =


Z⊕ Z n = k = 0

Z, n = k ̸= 0 or k ̸= n = 0

0 else

To ease our computations for upper bounds, we deviate to another homology theory called cellular
homology which is defined on a special class of topological spaces called CW-complexes.

Definition 8. A Hausdorff space X with a filtration ∅ = X−1 ⊆ X0 ⊆ . . . ⊆
⋃d

i=1Xd = X is a
d-dimensional finite CW complex if the following axioms hold:

(i) A subset A ⊆ X is closed in X if and only if A ∩Xi is closed in Xi for all i ∈ [d]0.

(ii) The spaces Xi in the filtration are each called i-skeleton. The i-skeleton is recursively
obtained from Xi−1 by attaching cells, i.e. we have pushout maps of the form

⊔
j∈Ii

Si−1 Xi−1

⊔
j∈Ii

Di Xi

⊔
j∈Ii

qji

⊔
j∈Ii

Qj
i

for finite index sets Ii for i ∈ [d]0. The maps qji are called attaching maps and the maps
Qj

i are called characteristic maps.

For i ∈ [d]0, the set of path components of Xi \ Xi−1 is called the set of open i-cells. The set of
closures of open i-cells are called closed i-cells. We almost always make use of closed i-cells and
therefore refer to them simply as i-cells.

The non-expert can understand a pushout map as one that simply glues the boundary of an i-
dimensional cell (that is, a topological disk/polyhedron of dimension i) onto the (i − 1)-skeleton
Xi. Here, the choice of the attaching maps define the commutative pushout diagram above, while
the characteristic maps are those that are “uniquely” defined by the attaching maps “ı̀n a natural
way”. Figure 7 illustrates the above definition.

A more general definition of CW complexes allow an infinte dimension of cells as well as an (arbi-
trarily indexed) infinite number of cells in every dimension. For our results, it is sufficient to restrict
to our definition, as we will restrict to a CW complex that is a compact topological space without
loss of generality:
Lemma 17. A CW-complex is finite if and only if it is compact.

One can naturally endow polyhedral complexes with CW-structures by defining the i-cells as the
i-facets (therefore uniquely defining the filtration), and the attaching maps as those that include each
face into the i-skeleton of the CW complex for each i. This way, the poset structure is compatible

14
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A

B C

F

D

E ⇝

A

B C

F

D

E

Figure 7: A CW-complex X of dimension 1 that is homeomorphic to S1. The darker shaded points
constitute the 0-cells, i.e., we have X0 = {A,B,C}. The line segments on the left are the 1-cells.
The triangle on the right illustrates X = X1. The lighter shades of colors indicate the attaching
maps qj1 : S

0 → {A,B,C} for j ∈ {D,E, F}.

with the characteristic maps as well (because faces of polyhedra lie on their topological boundary
and the attaching maps qji are injective in this case).

Our motivation to endow polyhedral complexes with CW-structures is to use cellular homology,
which, given the natural CW-structure of a polyhedral complex, allows to compute homology groups
conventiently. Among other advantages, we will rely on cellular homology for an induction on the
number of polyhedra.

Definition 9. Let X be a finite CW-complex. The cellular chain complex (Ci)i∈N of X is given by
free abelian groupsCi

∼= Z|Ii| that are generated by the i-cells ofX . The boundary maps, which are
given by a construction using attachment maps in the general case, can be greatly simplified for our
purposes: The boundary map ∂i : Ci → Ci−1 is defined by the incidence matrix ∆ ∈ Z|Ii−1|×|Ii|

between i and (i− 1)-cells, that is, it is given by entries

δjk =

{
1 the (i− 1)-cell j lies in the boundary of the i-cell k
0 else.

The i-th cellular homology Hcell
i (X) of X is defined by the homology of the cellular chain complex

(Ci)i∈N, that is, we have
Hcell

i (X) = ker(∂i)/im(∂i−1).

It is well-known that on CW-complexes, cellular homology groups coincide with singular homol-
ogy groups. Therefore, we may make use of cellular homology groups in order to compute Betti
numbers.

5.2 PROOFS AND ADDITIONAL STATEMENTS

In this section we provide formal proofs for the statements made in sections 2 and 3 and additional
lemmata that are used in these proofs. For the sake of completeness, we also recall the statements
we prove.

5.2.1 PROOF OF LEMMA 4

Definition 10. We define the one hidden layer ReLU neural network h(1,m,d) in the following way:
The neurons {vi,j}i=0,...,m−1,j=1,...,d in the hidden layer are given by:

• v0,j(x) = max{0,mxj}, j = 1, . . . , d

• vi,j(x) = max{0, 2m(xj − i/m)}, j = 1, . . . , d i = 1, . . . ,m− 1

and the output neurons by: h(1,m,d)
j (x) =

∑m−1
i=0 (−1)i · vi,j(x).

Lemma 18. Let d,m ∈ N with m > 1. Then

15
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1. h(1,m,d)(W
(1,m,d)
(i1,...,id)

) = [0, 1]d

2. πj ◦ h(1,m,d)

|W (1,m,d)

(i1,...,id)

(x1, . . . , xd) =

{
m · xj − (ij − 1) ij odd
−m · xj + ij ij even

for all (i1, . . . , id) ∈ [m]d.

Proof. Throughout this proof we denote W (1,m,d)
(i1,...,id)

by W(i1,...,id) and h(1,m,d) by h. We prove that
h satisfies the second property. The first property then follows immediately from the second since

πj ◦ h|W(i1,...,id)
(W(i1,...,id)) =

[
m · (ij − 1)

m
− (ij − 1),m · ij

m
− (ij − 1)

]
= [0, 1]

if ij is odd and

πj ◦ h|W(i1,...,id)
(W(i1,...,id)) =

[
m · (ij − 1)

m
+ ij ,m · ij

m
+ ij

]
= [0, 1]

if ij is even.

Let j ∈ {1, . . . , d} and x ∈ W(i1,...,id), so in particular xj ∈
[
(ij−1)

m ,
ij
m

]
. Since i ≥ ij im-

plies 2m(xj − i/m) ≤ 0, it follows that vi,j(x) = 0 for all i ≥ ij . Similarly, i < ij implies
2m(xj − i/m) ≥ 0, and therefore it follows that vi,j(x) = 2m(xj − i/m) for all i < ij . Hence

hj(x) =

ij−1∑
i=0

(−1)i · vi,j(x) = mxj +

ij−1∑
i=1

(−1)i · 2m(xj − i/m).

If ij is even, then

hj(x) = mxj +

ij/2−1∑
i=1

2m(xj − 2i/m)−
ij/2∑
i=1

2m(xj − (2i− 1)/m)

= mxj − 2(ij/2− 1)− 2m(xj − (2ij/2− 1)/m)

= mxj − ij + 2− 2mxj + 2ij − 2

= −mxj + ij

If ij is odd, then

hj(x) = mxj +

(ij−1)/2∑
i=1

2m(xj − 2i/m)−
(ij−1)/2∑

i=1

2m(xj − (2i− 1)/m)

= mxj − 2(ij − 1/2)

= mxj − (ij − 1).

Lemma 4. (cf. (Montúfar et al., 2014)) Let d ∈ N, then:

1. h(L,m,d)(W
(L,m,d)
(i1,...,id)

) = [0, 1]d

2. πj ◦ h(L,m,d)

|W (L,m,d)

(i1,...,id)

(x1, . . . , xd) =

{
M · xj − (ij − 1) ij odd
−M · xj + ij ij even

for all (i1, . . . , id) ∈ [M ]d.

Proof. We apply induction over L. The base case has already been covered by Lemma 18. As-
sume that there exists a NN h(L−1,(m1,...,mL−1),d) that satisfies the desired properties and define
h(L,m,d) = h(1,mL,d) ◦ h(L−1,(m1,...,mL−1),d). Let j ∈ {1, . . . , d} and x ∈ W

(L,m,d)
(i1,...,id)

. Define

i
(1)
j :=

⌊
mL·(ij−1)

M

⌋
+ 1. It holds that

[
(ij−1)

M ,
ij
M

]
⊂

[
(i

(1)
j −1)

mL
,
i
(1)
j

mL

]
.
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Case 1: i(1)j odd. Then by Lemma 18:

h
(1,mL,d)
j

(
(ij−1)

M

)
= mL·

(ij − 1)

M
−(i

(1)
j −1) =

mL · (ij − 1)

M
−
⌊
mL · (ij − 1)

M

⌋
=

(ij − 1) mod (M/mL)

(M/mL)

and

h
(1,mL,d)
j

(
ij
M

)
= mL·

ij
M

−(i
(1)
j −1) =

mL · (ij)
M

−
⌊
mL · (ij − 1)

M

⌋
=

(ij − 1) mod (M/mL) + 1

(M/mL)
.

Define i
(L−1)
j := ((ij − 1) mod (M/mL)) + 1. Then it holds that

h
(1,mL,d)
j (x) ∈

[
mL·(i(L−1)

j −1)

M ,
mL·i(L−1)

j

M

]
. Moreover, i(L−1)

j = ((ij − 1) mod (M/mL)) + 1 is

odd if and only if ij is odd because M
mL

is an even number.

Case 1.i: i(L−1)
j (and therefore ij) is odd. Then follows with the induction hypothesis:

h
(L,m,d)
j (x) = h

(L−1,(m1,...,mL−1),d)
j (h

(1,mL,d)
j (x))

=
M

mL
· (h(1,mL,d)

j (x))− (i
(L−1)
j − 1)

=
M

mL
· (mLx− (i

(1)
j − 1))− (i

(L−1)
j − 1)

=Mx− M

mL
·
⌊
mL · (ij − 1)

M

⌋
− ((ij − 1) mod (M/mL))

=Mx− (ij − 1).

Case 1.ii: i(L−1)
j (and therefore ij) is even. Then follows with the induction hypothesis:

h
(L,m,d)
j (x) = h

(L−1,(m1,...,mL−1,d)
j (h

(1,mL,d)
j (x))

= − M

mL
· (h(1,mL,d)

j (x)) + i
(L−1)
j

= − M

mL
· (mLx− (i

(1)
j − 1)) + i

(L−1)
j

= −Mx+
M

mL
·
⌊
mL · (ij − 1)

M

⌋
+ ((ij − 1) mod (M/mL) + 1)

= −Mx+ ij − 1 + 1

= −Mx+ ij .

Case 2: i(1)j even. Then by Lemma 18:

h
(1,mL,d)
j (

(ij−1)
M ) = −mL·

(ij − 1)

M
+i

(1)
j = −mL · (ij − 1)

M
+

⌊
mL · (ij − 1)

M

⌋
+1 = 1− (ij − 1) mod (M/mL)

M/mL

and

h
(1,mL,d)
j (

ij
M ) = −mL·

ij
M

+i
(1)
j = −mL·

ij
M

+

⌊
mL · (ij − 1)

M

⌋
+1 = 1− (ij − 1) mod (M/mL))− 1

M/mL

Define i
(L−1)
j := M

mL
− ((ij − 1) mod (M/mL)). Then it holds that

h
(1,mL,d)
j (x) ∈

[
mL·(i(L−1)

j −1)

M ,
mL·(i(L−1)

j )

M

]
. Moreover, i

(L−1)
j is even if and only if ij is

odd, once more because M
mL

is an even number.
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Case 2.i: i(L−1)
j is odd (i.e., ij even). Then follows with the induction hypothesis:

h
(L,m,d)
j (x) = h

(L−1,(m1,...,mL−1),d)
j (h

(1,mL,d)
j (x))

=
M

mL
· (h(1,mL,d)

j (x))− (i
(L−1)
j − 1)

=
M

mL
· (−mLx+ i

(1)
j )− (i

(L−1)
j − 1)

= −Mx+
M

mL
·
⌊
mL · (ij − 1)

M

⌋
+

M

mL
−
(
M

mL
− ((ij − 1) modM/mL)− 1

)
= −Mx+ ij

Case 2.ii: i(L−1)
j is even (i.e., ij odd). Then follows with the induction hypothesis:

h
(L,m,d)
j (x) = h

(L−1,(m1,...,mL−1),d)
j (h

(1,mL,d)
j (x))

= − M

mL
· (h(1,mL,d)

j (x)) + i
(L−1)
j

= − M

mL
· (−mLx+ i

(1)
j ) + i

(L−1)
j

=Mx− M

mL
·
(⌊

mL(ij − 1)

M

⌋
+ 1

)
+

M

mL
− ((ij − 1) mod (M/mL) + 1) + 1

=Mx− (ij − 1).

This concludes the proof for all cases.

5.2.2 PROOF OF LEMMA 5

Lemma 19. Let d,w ∈ N and

Rq = {x ∈ Rd : x1, . . . , xd > 0,
q

2w
< ∥x∥1 <

q + 1

2w
}.

Then sgn(ĝ(Rq)) = (−1)q for all q = 0, . . . , w−1 and ĝ(x) = 0 for all x ∈ [0, 1]d with ∥x∥1 ≥ 1
2 .

Proof. Let q ∈ {0, . . . , w − 1} and x ∈ Rq . Note that ĝ0(x) = 1Tx for all q ∈ {0, . . . , w − 1}.

Case 1: 1Tx < (2q + 1)/4w. This implies ĝi(x) = 0 ∀q > i and
gi(x) = 2(1Tx− ((2i− 1)/4w)) ∀1 < i ≤ q and therefore

ĝ(x) =

q∑
i=0

(−1)iĝi(x) = x1 +

q∑
i=1

(−1)i2(1Tx− ((2i− 1)/4w)).

Case 1.i: If q is even, then it holds:

ĝ(x) = 1Tx+

q/2∑
i=1

2(1Tx− ((2(2i)− 1)/4w))−
q/2∑
i=1

2(1Tx− ((2(2i− 1)− 1)/4w))

= 1Tx+

q/2∑
i=1

2(1Tx− ((4i− 1)/4w))−
q/2∑
i=1

2(1Tx− ((4i− 3)/4w))

= 1Tx− q/2w > 0

18
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Case 1.ii: If q is odd, then it holds:

ĝ(x) = 1Tx+

(q−1)/2∑
i=1

2(1Tx− ((4i− 1)/4w))−
(q+1)/2∑

i=1

2(1Tx− ((4i− 3)/4w))

= 1Tx− 2(q − 1)/4w − 2(1Tx− ((4(q + 1)/2)− 3)/4w))

= −(1Tx)− 2(q − 1)/4w + (4(q + 1)− 6)/4w

= −(1Tx) + q/2w < 0

Case 2: 1Tx ≥ (2q + 1)/4w. This implies ĝi(x) = 0 ∀i > q + 1 and
gi(x) = 2(1Tx− ((2i− 1)/4w)) ∀1 < i ≤ q + 1 and therefore

ĝ(x) =

q+1∑
i=0

(−1)q ĝi(x) = x1 +

q+1∑
i=1

(−1)i2(1Tx− ((2i− 1)/4w)).

Case 2.i: If q is even, then it holds:

ĝ(x) = 1Tx+

q/2∑
i=1

2(1Tx− ((4i− 1)/4w))−
q/2+1∑
i=1

2(1Tx− ((4i− 3)/4w))

= 1Tx− 2q/4w − 2(1Tx− ((4(q/2 + 1)− 3)/4w))

= −(1Tx)− q/w + 2(2q + 1)/4w

= −(1Tx) + (q + 1)/2w > 0

Case 2.ii: If q is odd, then it holds:

ĝ(x) = 1Tx+

(q+1)/2∑
i=1

2(1Tx− ((4i− 1)/4w))−
(q+1)/2∑

i=1

2(1Tx− ((4i− 3)/4w))

= 1Tx− (q + 1)/2w < 0

and hence sgn(ĝ(x)) = (−1)q ∀x ∈ Rq ∀q = 1, . . . , w − 1.

Let x ∈ [0, 1]d with 1Tx ≥ 1
2 .

Case 1: w even. Then

ĝ(x) =

w+1∑
q=0

(−1)q · ĝq(x)

= 1Tx− (1Tx− 1

2
) +

w/2∑
q=1

ĝ2q (x)− ĝ2q−1(x)

=
1

2
+

w/2∑
q=1

2(1Tx− (2 · 2q − 1)/4w)− 2(1Tx− (2 · (2q − 1))− 1)/4w))

=
1

2
+

w/2∑
q=1

2(−(4q − 1)/4w + (4q − 3)/4w)

=
1

2
+

w/1∑
q=1

−1/2w

= 0
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Case 2: w odd. Then

ĝ(x) =

w+1∑
q=0

(−1)q · ĝq(x)

= ĝ0(x)− ĝw(x) + ĝw+1(x) +

w−1/2∑
q=1

ĝ2q (x)− ĝ2q−1(x)

= 1Tx− 2(1Tx− (2w − 1)/4w) +

(
1Tx− 1

2

)
+

w−1/2∑
q=1

−1/w

= (2w − 1)/2w − 1

2
+

w−1∑
q=1

−1/2w

= 1− 1/2w − 1

2
−
(
1

2
− 1/2w

)
= 0

Lemma 5. Let d,w ∈ N and

Rq = {x ∈ [0, 1]d :
q

2w
< ∥(1, 1, . . . , 1, 0)− x∥1 <

q + 1

2w
}.

Then there exists a 1-hidden layer neural network g(w,d) : Rd → R of width w + 2 such that

sgn(g(w,d)(Rq)) = (−1)q ∀q = 0, . . . , w − 1

and g(w,d)(x) = 0 for all x ∈ [0, 1]d with ∥(1, 1, . . . , 1, 0)− x∥1 ≥ 1
2 .

Proof. Let the affine map t : [0, 1]d → [0, 1]d be given by x 7→ (1 − x1, . . . , 1 − xd−1, xd)
and let ĝ be the 1-hidden layer neural network from Lemma 19. We prove that the neu-
ral network g := ĝ ◦ t satisfies the assumptions. Let q ∈ {0, . . . , n − 1} and x ∈ Rq .
Then ∥(1, 1, . . . , 1, 0)− t(x)∥1 = ∥(1, 1, . . . , 1, 0)− (1− x1, . . . , 1− xd−1, xd)∥1 = ∥x∥1. Since
g(x) = g ◦ t(x) = ĝ(t(x)), Lemma 19 implies that sgn(g(Rq)) = (−1)q . Analogously follows that
g(x) = 0 for all x ∈ [0, 1]d with ∥(1, 1, . . . , 1, 0)− x∥1 ≥ 1

2 .

5.2.3 PROOF OF PROPOSITION 6

Lemma 20. Let g(w,d) be the NN from Lemma 5 and C the set of cutting points. Define
Rq,c := Bd

q/(2w·M)(c) \Bd
(q−1)/(2w·M)(c) for a cutting point c ∈ C and q ∈ {1, . . . , w}. Then

1. x ∈ Rq,c implies sgn(g(w,d) ◦ h(L,m,d)(x)) = (−1)q and

2. x /∈
⋃

q∈[w],c∈C

Rq,c implies sgn(g(w,d) ◦ h(L,m,d)(x)) = 0.

In particular, g(w,d) ◦ h(L,m,d)(x) = 0 for all x ∈ ∂Rq,c.

In order to count the annuli we need to count the cutting points.

Proof. By definition of c being a cutting point, there exist odd numbers i1, . . . , id−1 ∈ [M ] and an
even number id ∈ [M ] such that c = ( i1−1

M , . . . , id−1
M ). Let x ∈ [0, 1]d with ∥x − c∥∞ ≤ 1

M , then

either xj ∈
[
ij−2
M ,

ij−1
M

]
or xj ∈

[
ij−1
M ,

ij
M

]
. Let J+ := {j ∈ [d] : xj − cj ≤ 0} be the set of
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indices j such that xj ∈
[
ij−1
M ,

ij
M

]
and J− := [d] \ J+. Let y = h(L,m,d)(x) ∈ [0, 1]d. Then it

follows with Lemma 4 that
1T y =

∑
j∈J+

M · xj − (ij − 1) +
∑
j∈J−

−M · xj + (ij − 1)

=
∑
j∈J+

M · (xj − cj + cj)− (ij − 1) +
∑
j∈J−

−M · (xj − cj + cj) + (ij − 1)

=
∑
j∈J+

M · (xj − cj) +
∑
j∈J+

M · cj − (ij − 1)

+
∑
j∈J−

−M · (xj − cj) +
∑
j∈J−

−M · cj + (ij − 1)

=
∑
j∈J+

M · (xj − cj) +
∑
j∈J−

−M · (xj − cj)

=M ·
d∑

j=1

|xj − cj |

=M · ∥x− c∥1

If x ∈ Rq,c, then in particular ∥x− c∥∞ ≤ 1
M and thus:

1T y =M · ∥x− c∥1 < M · q + 1

M · 2n
=
q + 1

2n
and

1T y =M · ∥x− c∥1 > M · q

M · 2n
=

q

2n
.

With Lemma 5 it follows that sgn(g(y)) = (−1)q and therefore g ◦ h(L,m,d)(x) = g(y) concludes
the first case.
If x is not in any Rq,c, then either x ∈ ∂Rq,c for some cutting point c or it holds that
∥x− c∥1 ≥ 1

2·M for every cutting point c. In the first case it follows directly from the above shown
that g ◦ h(L,m,d)(x)) = 0, since g ◦ h(L,m,d) is continuous. In the second case there exists a cutting
point c such that ∥x − c∥∞ ≤ 1

M , since for every xj either ⌊M · xj⌋ or ⌈M · xj⌉ is even. Thus
1Th(L,m,d)(x) = M · ∥x − c∥1 ≥ M · 1

2·M = 1
2 and therefore it follows with Lemma 5 that

g ◦ h(L,m,d)(x) = 0, which concludes the proof.

Observation 21. Cutting points lie on a grid in the unit cube, with M
2 many cutting points into

dimensions 1, . . . , d− 1 and M
2 +1 many in dimension d. Thus, there are M(d−1)

2d−1 ·
(
M
2 + 1

)
cutting

points. Note that since M is an even number, these points cannot lie on the boundary unless the last
coordinate is 0 or M . This means, 2 · M(d−1)

2d−1 = M(d−1)

2d−2 of the cutting points are located on the

boundary of the unit cube and the remaining M(d−1)

2d−1 ·
(
M
2 − 1

)
are in the interior.

Proposition 6. The space Yd,w is homeomorphic to the disjoint union of
pd = M(d−1)

2d−1 ·
(
M
2 − 1

)
·
⌈
w
2

⌉
many (d − 1)-annuli and p′d = M(d−1)

2d−2 ·
⌈
w
2

⌉
many disks, that

is,

Yd,w ∼=
pd∐
k=1

(Sd−1 × [0, 1]) ⊔
p′
d∐

k=1

Dd.

Proof. We observe that the sets Yd,w ∩Bd
1/2M (x) are disjoint for cutting points x because we have

||x − x′||1 ≥ 2
M for any two distinct cutting points x, x′. Moreover, by Lemma 20, we have

(g ◦ h)(y) = 0 for all y ∈ ∂Bd
1/2M (x) for x ∈ C. Therefore, the sets Yd,w∩Bd

1/2M (x) are pairwise
disjoint for x ∈ C. Since ∐

x∈E

Yd,w ∩Bd
1/2M (x) = Yd,w,
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the number of cutting points of the interior is M ·(d−1)

2d−1 ·
(
M
2 − 1

)
·
⌈
n
2

⌉
and the number of the

cutting points on the boundary is M ·(d−1)

2d−2 ·
⌈
n
2

⌉
by Observation 21, it suffices to show that

Yd,w ∩Bd

1/2M (x) ∼=
∐⌈n

2 ⌉
i=1 S

d−1 ×D1 for every x ∈ C ∩ int([0, 1]d) and Yd,w ∩ B
2

1/2M (x) ∼=∐⌈n
2 ⌉

i=1 D
d for every x ∈ C ∩ ∂[0, 1]d.

By Lemma 20, we can see that for every x ∈ C ∩ int([0, 1]d), we have

Yd,w ∩Bd

1/2M (x) =
∐

1≤q≤w odd

Bd
q/(w·2M)(x) \Bd

(q−1)/(w·2M)(x)

∼=
∐

1≤q≤w odd

Sd−1 × [0, 1]

=

⌈w
2 ⌉∐

q=1

Sd−1 × [0, 1],

as well as for every x ∈ C ∩ ∂([0, 1]d), we have

Yd,w ∩Bd

1/2M (x) ∼=
∐

1≤q≤w odd

(
Bd

q/(w·2M)(x) \Bd
(q−1)/(w·2M)(x)

)
∩ [0, 1]d ∼=

⌈w
2 ⌉∐

q=1

Dd,

proving the claim.

5.2.4 PROOF OF LEMMA 7

Lemma 7. For k ≤ d and w = (w1, . . . , wd−1) ∈ Nd−1 it holds that

1. f (w1,...,wk−2) ◦ pk−1(x) ̸= 0 =⇒ g(wk−1,k)(x) = 0 and

2. g(wk−1,k)(x) ̸= 0 =⇒ f (w1,...,wk−2) ◦ pk−1(x) = 0

for all x ∈ [0, 1]k.

Proof. We adopt the notation c(k) := (1, 1, . . . , 1, 0) ∈ Rk throughout.

We first show that for all x ∈ [0, 1]k,

∥x− c(k)∥1 ≤ 1

2
⇒ g(wk−2,k−1) ◦ pk−1(x) = 0. (1)

Let x ∈ [0, 1]k with g(wk−2,k−1) ◦ pk−1(x) ̸= 0. Lemma 5 implies that ∥pk−1(x)− c(k−1)∥1 < 1
2 .

Therefore we have 1
2 > |πk−1 ◦ pk−1(x) − 0| = |πk−1(x) − 0| = xk−1 which also means

|xk−1 − 1| > 1
2 and thus ∥x− c(k)∥1 > 1

2 .
Note that by Lemma 5 it suffices to show that f (w1,...,wk−1) ◦ pk−1(x) = 0 for all x with
∥x− c(k)∥1 ≤ 1

2 . We prove this by induction over k. The base case has already been covered since
g(w1,2) = fw1 . Furthermore

f (w1,...,wk−2) ◦ pk−1 = (f (w1,...,wk−3) ◦ pk−2 + g(wk−2,k−1)) ◦ pk−1

= f (w1,...,wk−3) ◦ pk−2 ◦ pk−1 + g(wk−2,k−1) ◦ pk−1

= f (w1,...,wk−3) ◦ pk−2 + g(wk−2,k−1) ◦ pk−1

and thus the induction hypothesis and (1) imply that fw ◦ pk−1(x) = 0 for x with ∥x− c(d)∥1 ≤ 1
2 .
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5.2.5 PROOF OF LEMMA 8

Lemma 22. The following diagram commutes:

[0, 1]k [0, 1]k

[0, 1]k−1 [0, 1]k−1 R

h(L,m,k)

pk−1 pk−1
fw◦pk−1

h(L,m,k−1) fw

Proof. In order to show that the left half of the diagram commutes, we prove that

(πj ◦ h(L,m,k−1) ◦ pk−1)(x) = (πj ◦ pk−1 ◦ h(L,m,k))(x)

for every j ∈ {1, . . . , k − 1} and x ∈ [0, 1]k. For any x ∈ [0, 1]k, there exist indices i1, . . . , ik such
that x = (x1, . . . , xk) ∈ W

(L,m,k)
(i1,...,ik)

. Moreover, if x ∈ W
(L,m,k)
(i1,...,ik)

, we have pk−1(x) ∈ W
(L,m,k−1)
(i1,...,ik−1)

because

pk−1

(
W

(L,m,k)
(i1,...,ik)

)
= pk−1

 k∏
j=1

[
(ij − 1)

M
,
ij
M

] =

k−1∏
j=1

[
(ij − 1)

M
,
ij
M

]
.

We use this observation combined with Lemma 4, assuming that ij is odd:

(πj ◦ h(L,m,k−1) ◦ pk−1)(x) =M · (pk−1(x))j − (ij − 1)

=M · xj − (ij − 1)

= (πj ◦ h(L,m,k))(x)

= (πj ◦ pk−1 ◦ h(L,m,k))(x),

as claimed. The case where ij is even follows analogously.

Lemma 8. For 2 ≤ k ≤ d, the space Xk := (f (w1,...,wk−1) ◦ h(L,m,k))−1((−∞, 0)) satisfies

Xk = (Xk−1 × [0, 1]) ⊔ Yk,w
with X1 := ∅.

Proof. For k = 2 it holds that fw1 = g(w1,2) and therefore the claim holds trivially.
Now let k ≥ 3. Since f (w1,...,wk−1) = f (w1,...,wk−2) ◦ pk−1 + g(wk−1,k) and the spaces
(f (w1,...,wk−2) ◦ pk−1 ◦ h(L,m,k))−1((−∞, 0)) and (g(wk−1,k) ◦ h(L,m,k))−1((−∞, 0)) are disjoint
by Lemma 7, it follows that

(f (w1,...,wk−1) ◦ h(L,m,k))−1((−∞, 0))

= ((f (w1,...,wk−2) ◦ pk−1 + g(wk−1,k)) ◦ h(L,m,k))−1((−∞, 0))

= (f (w1,...,wk−2) ◦ pk−1 ◦ h(L,m,k) + g(wk−1,k) ◦ h(L,m,k))−1((−∞, 0))

= (f (w1,...,wk−2) ◦ pk−1 ◦ h(L,m,k))−1((−∞, 0)) ⊔ (g(wk−1,k) ◦ h(L,m,k))−1((−∞, 0))

= (f (w1,...,wk−2) ◦ h(L,m,k−1) ◦ pk−1)
−1((−∞, 0)) ⊔ (g(wk−1,k) ◦ h(L,m,k))−1((−∞, 0))

= Xk−1 × [0, 1] ⊔ Yk,w,

where the second last equality is due to Lemma 22.

5.2.6 PROOF OF THEOREM 24

Lemma 23. The space Yd,w := (g(w,d) ◦ h(L,m,d))−1((−∞, 0)) satisfies

(i) H0(Yd,w) ∼= Zp+p′
,
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(ii) Hd−1(Yd,w) ∼= Zp,

(iii) Hk(Yd,w) = 0 for k ≥ d

with p = M(d−1)

2d−1 ·
(
M
2 − 1

)
·
⌈
n
2

⌉
and p′ = M(d−1)

2d−2 ·
⌈
n
2

⌉
Proof. Follows directly from Observation 16 and Proposition 6 and the disjoint union axiom (Propo-
sition 15).

Theorem 24. Let d ∈ N, then there is a ReLU NN F : Rd 7→ R with architecture
(d,m1 · d, . . . ,mL · d, nL+1, 1) such that the space Xd := F−1((−∞, 0)) satisfies

(i) β0(Xd) =
∑d−1

k=1
Mk

2k
·
(
M
2 + 1

)
·
⌈
wk

2

⌉
(ii) βk(Xd) =

M(k−1)

2k−1 ·
(
M
2 − 1

)
·
⌈wk−1

2

⌉
for 0 < k < d.

Proof. We consider the map F := fw ◦ h(L,m,d) that was previously constructed (Lemma 8). For
d = 2, the statement is identical to Lemma 23. Indeed, we have

2 ·
(
M
2 + 1

)3 − 1

M
− M

2
− 2 =

(
M

2
+ 1

)2

+
M

2
+ 1− M

2
− 2

=
M

2

(
M

2
+ 1

)
.

Let d ≥ 3. Using Proposition 6, we see that

Hk(Xd) ∼= Hk(Xd−1 ⊔ Yd,w) ∼= Hk(Xd−1)⊕
pd∏
i=1

Hk(S
d−1)⊕

p′
d∏

i=1

Hk(D
d) (2)

and therefore

βk(Xd) = βk(Xd−1) +

pd∑
i=1

(
βk(S

d−1)
)
+

p′
d∑

i=1

βk(D
d) (3)

where pd = Md−1

2d−1 ·
(
M
2 − 1

)
·
⌈wd−1

2

⌉
and p′d = Md−1

2d−2 ·
⌈wd−1

2

⌉
. Fix some k ∈ N. For different

values of k, we obtain the claims:

(i) For k = 0, equation (3) implies

β0(Xd) = β0(Xd−1) + pd + p′d =

d∑
i=2

M (i−1)

2i−1
·
(
M

2
+ 1

)
·
⌈wi−1

2

⌉
(ii) For k ≤ d− 1, we have βd−1(Xd) = 0 and therefore

βd−1(Xd) = pd =

(
M

2
− 1

)
· M

d−1

2d−1
·
⌈wd−1

2

⌉
.

For 0 < k < d− 1, we have βk(Xd) = βk(Xd−1), i.e., the claim is satisfied by induction.

(iii) Finally for k ≥ d, we observe that all summands of (3) vanish.
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5.2.7 PROOF OF COROLLARY 11

Corollary 11. Let A be the architecture as in Theorem 24, then there is a ReLU NN F : Rd 7→ R

with architectureA such that the spaceXd := F−1((−∞, 0)) satisfies χ(Xd) ∈ Ω

(
Md ·

d−1∑
i=1

wi

)
,

where χ(Xd) denotes the Euler characteristic of the space Xd.

Proof. The Euler characteristic of a finite CW complexX is given by the alternating sum of its Betti
numbers, i.e., by the sum

∑
k∈N(−1)kβk(X). By Theorem 24, this term is dominated by the zeroth

Betti number, from which the claim follows.

The Euler characteristic is an invariant used widely in differential geometry in addition to algebraic
topology. For instance, it can also be defined by means of the index of a vector field on a compact
smooth manifold.

5.3 STABILITY

Before we prove the stability of our construction, we prove stability for a wider range of neural
networks. Througout this section we will use definitions and statements from Section 5.1.1.
Definition 11 (The realization map). Let (n0, . . . nL+1) be an architecture, K ⊆ Rd a polyhedron,
RD ∼=

⊕L+1
ℓ=1 R(nℓ−1+1)×nℓ the corresponding parameter space where the vector space isomor-

phism is given by p 7→ (A(ℓ)(p), b(ℓ)(p))ℓ=1,...,L+1 for A(ℓ)(p) ∈ Rnℓ−1×nℓ , b(ℓ)(p) ∈ Rnℓ and
ℓ = 1, . . . , L+ 1. We define Φ: RD → C(K) to be the realization map, that assigns to a vector of
weights the function the corresponding neural network computes, i.e.,

Φ(p) := TL+1(p) ◦ σnL
◦ TL(p) ◦ · · · ◦ σn1

◦ T1(p)
where Tℓ(p) : Rnℓ−1 → Rnℓ , x 7→ A(ℓ)(p)x+ b(ℓ)(p)

Furthermore let
Φ(ℓ)(p) := Tℓ(p) ◦ σnℓ

◦ · · · ◦ σn1
◦ T0(p)

and
Φ(i,ℓ)(p) := πi ◦ Tℓ(p) ◦ · · · ◦ σn1

◦ T0(p).
We denote the points of non-linearity introduced by the i-th neuron in the ℓ-th layer by

H̃i,ℓ(p) := H
(
A

(ℓ)
i (p), b

(ℓ)
i (p)

)
Definition 12 (Canonical polyhedral complex (Grigsby et al. (2022))). Let p be a vector of weights.
Recall that Φ(p) is the corresponding neural network.

We iteratively define polyhedral complexes P(ℓ,i)(p) by P(1,0)(p) := {K} and

P(ℓ,i)(p) := {R ∩ (Φ(ℓ−1)(p))−1(H̃s
i,ℓ(p)) | R ∈ P(ℓ,i−1)(p), s ∈ {−1, 0, 1}}

for i = 2, . . . nℓ, ℓ = 1, . . . L and

P(ℓ,1)(p) := {R ∩ (Φ(ℓ−1)(p))−1(H̃s
i,ℓ(p)) | R ∈ P(ℓ−1,nℓ−1)(p), s ∈ {−1, 0, 1}}

for ℓ = 1, . . . L.

Note that for all j ≤ i, it holds that Φ(j,ℓ)(p) is affine linear on R for each R ∈ P(ℓ,i)(p) and we
denote this affine linear map by Φ

(j,ℓ)
|R (p). For ℓ ∈ [L], i ∈ [nℓ] and R ∈ P(i,ℓ)

d (p) we denote the
points of non-linearity in the region R introduced by the i-th neuron in the ℓ-th layer with respect to
the first ℓ− 1 layer map by

Hi,ℓ,R(p) := (Φ
(ℓ−1)
|R (p))−1(H̃i,ℓ(p)) = H

(
A

(ℓ)
i (p)

(
Φ

(ℓ−1)
|R (p)(x)

)
, b

(ℓ)
i (p)

)
.

For the sake of simplification we set P(0,ℓ) := P(nℓ−1,ℓ−1). Furthermore, since for R ∈
P(ℓ,i−1)
d (p), F ∈ P(ℓ,i−1)(p), F ⪯ R it holds that F ∩ Hs

i,ℓ,R(p) = F ∩ (Φ(ℓ−1)(p))−1(H̃s
i,ℓ(p))

due to the continuity of the function Φ(u), we have that

P(ℓ,i)(p) = {F ∩Hs
i,ℓ,R(p) | R ∈ P(ℓ,i−1)

d (p), F ∈ P(ℓ,i−1)(p), F ⪯ R, s ∈ {−1, 0, 1}}
We call P(u) := P(nL,L) the canonical polyhedral complex of Φ(u).
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Definition 13. Let K be a polytope and Φ(p) : K → R be a ReLU neural network of architecture
(n0, . . . nL+1). Then we call Φ(p) stable if for every ℓ ∈ [L + 1], i ∈ [nℓ] and all R ∈ P(i−1,ℓ)

d (p)
it holds

1. dim(Hi,ℓ,R(p)) = d− 1 and

2. Hi,ℓ,R(p) ∩R0 = ∅.
Proposition 25. Let K be a polytope and Φ(p) : K → R be a stable ReLU neural network of
architecture (n0, . . . nL+1). Then for every ε > 0, there is a an open set U ⊆ RD such that for
every u ∈ U there is an ε-isomorphism φu : P(p) → P(u).

Proof. We will prove the following stronger statement by induction on the indexing of the neurons.

Claim. For every ℓ ∈ [L + 1], i ∈ [nℓ] and every ε > 0, there is a δ > 0 such that for all
u ∈ B

∥·∥∞
δ (p) there is an ε-isomorphism φ

(i,ℓ)
u : P(i,ℓ)(p) → P(i,ℓ)(u).

The induction base is trivially satisfied.
So we assume that the statement holds for (i− 1, ℓ). For simpler notation we denote φ(i−1,ℓ)

u by φu

and Hi,ℓ,R(p) by HR(p). Let ε > 0 and F ∈ P(i−1,ℓ)(p). There is an R ∈ P(i−1,ℓ)
d (p) such that

F ⪯ R. In the following we wish to find a δF > 0 such that there are ε-isomorphisms

φ
(i,ℓ)
(u,R,s) : F ∩Hs

R(p) → φu(F ) ∩Hs
φu(R)(u)

for s ∈ {−1, 0, 1} and all u ∈ B
∥·∥∞
δF

(p).

Since Φ(p) is stable, we obtain by Lemma 14 a δ2 > 0 such that for all δ2-isomorphisms φ : F → Q
there are ε

3 -isomorphisms γs : F ∩Hs
R(p) → φ(F )∩Hs

R(p). By the induction hypothesis we obtain
δ1 > 0 such that for all u ∈ B

∥·∥∞
δ1

(p) there is an δ2-isomorphism φu : P(p)(i−1,ℓ) → P(u)(i−1,ℓ)

and hence we obtain ε
3 -isomormorphisms

γ(s,F ) : F ∩Hs
R(p) → φu(F ) ∩Hs

R(p).

Let Hφu(R)(u, p) := HR(u1,1, . . . ui−1,ℓ, pi,ℓ, . . . pnL+1,L+1) with uj,k, pj,k ∈ Rnk being the pa-
rameters associated to the j-th neuron in the k-th layer. Again, for simpler notation, let the affine
maps Φ(ℓ−1)

|R (p) be given by x 7→ Mx + c and Φ
(ℓ−1)
|φu(R)(u) by x 7→ Nx + d and the non-linearity

points introduced by the i-th neuron in the ℓ-th layer by H̃i,ℓ(p) = H(a, b). Then we have that

HR(p) = H(aTM,aT c+ b)

and
Hφu(R)(u, p) = H(aTN, aT d+ b).

By Lemma 14 we know that (φu(F ))0 ∩ HR(p) = ∅ and hence by Lemma 13 there is a δ3 > 0
such that there are ε

3 -isomorphisms ψs : φu(F ) ∩ Hs
R(p) → φu(F ) ∩ Hs(y, z) for all (y, z) ∈

Bd+1
δ3

((aTM,aT c + b)). Let C := nℓ−1 max
i=1,...,nℓ−1

{ai} and u ∈ RD with ∥u − p∥∞ < δ3
C . Then

we have that

∥(aTM,aT c+ b)− (aTN, aT d+ b)∥∞ = max
i=1,...,d

{ nℓ−1∑
j=1

aj(mij − nij),

nℓ−1∑
j=1

aj(cj − dj)

}

< max
i=1,...,d

{ nℓ−1∑
j=1

aj
δ3
C
,

nℓ−1∑
j=1

aj
δ3
C

}
< δ3

and hence there are ε
3 -isomorphisms

ψ(s,F ) : φu(F ) ∩Hs
R(p) → φu(F ) ∩Hs

φu(R)(u, p)
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By Lemma 13 we know that (φu(F ))0 ∩Hφ(R)(u, p) = ∅ and hence by the same lemma there is a
δ4 > 0 such that there are ε

3 -isomorphisms αs : φu(F ) ∩Hs
φ(R)(u, p) → φu(F ) ∩Hs(y, z) for all

(y, z) ∈ Bd+1
δ4

((aTN, aT d+ b)). Let a′ ∈ Rnℓ−1 , b′ ∈ R such that H̃i,ℓ(u) = H(a′T , b′). Then we
have that

Hφu(R)(u) = H(a′TN, a′T d+ b′).

Let E := nℓ−1 max
i,j=1,...,nℓ−1

{nij , dj} and u ∈ RD with ∥u− p∥∞ < δ5
E . Then we have that

∥(a′TN, a′T d+ b′)− (aTN, aT d+ b)∥∞ = max
i=1,...,d

{ nℓ−1∑
j=1

nij(a
′
j − aj),

( nℓ−1∑
j=1

dj(a
′
j − aj)

)
+ (b′j − bj)

}

< max
i=1,...,d

{ nℓ−1∑
j=1

nij
δ5
E
,

nℓ−1∑
j=1

nij
δ5
E

}
< δ4

and hence there are ε
3 -isomorphisms

α(s,F ) : φu(F ) ∩Hs
φ(R)(u, p) → φu(F ) ∩Hs

φu(R)(u).

Let δF := min{δ2, δ4C ,
δ5
E }, then for all u ∈ B

D,∥·∥∞
δF

(p) there is an ε-isomorphism

φ
(i,ℓ)
(u,F,s) : F ∩Hs

R(p) → φu(F ) ∩Hs
φu(R)(u)

given by
φ
(i,ℓ)
(u,F,s) = α(s,F ) ◦ ψ(s,F ) ◦ γ(s,F ).

Lastly, let δ = min{δF | F ∈ P(i−1,ℓ)(p)}. Since every element of P(i,ℓ)(p) is of the form
F ∩Hs

R(p), it now remains to show that the map φ(i,ℓ)
u : P(i,ℓ)(p) → P(i,ℓ)(u) defined by

φ(i,ℓ)
u (F ∩Hs

R(p)) := φu(F ) ∩Hs
φu(R)(u)

is an ε-isomorphism for all u ∈ B
∥·∥∞
δ (p). Since φu and φ(i,ℓ)

(u,F,s) are bijections, the same holds

for φ(i,ℓ)
u . Furthermore let G ⪯ F ∩ Hs

R(p), then there is a G′ ⪯ F and a s′ ∈ {0, s} such that
G = G′ ∩Hs′

R (p). Since φu is an isomorphism by the induction hypothesis, it follows that

φ(i,ℓ)
u (G′ ∩Hs′

R (p)) = φu(G
′) ∩Hs′

φu(R)(u) ⪯ φu(F ) ∩Hs
φu(R)(u)

and hence φ(i,ℓ)
u is an ε-isomorphism as claimed.

Definition 14. Let K be a polytope and Φ(p) : K → R be a ReLU neural network of architecture
(n0, . . . , nL, 1). Then we call Φ(p) topologically stable if for all R ∈ P(nL,L)

d (p) it holds that

1. dim(H1,L+1,R(p)) = d− 1 and

2. H1,L+1,R(p) ∩R0 = ∅.
Proposition 26. Let Φ(p) be a topologically stable ReLU neural network, then there is a δ > 0,
such that for all u ∈ Bδ(p) it holds that K ∩ Φ(p)−1((−∞, 0)) is homeomorphic to K ∩
Φ(u)−1((−∞, 0))

Proof. Let P−(p) := {F ∩ Hs
1,L+1,R(p) | R ∈ Pd(p), F ∈ P(p), F ⪯ R, s ∈ {−1, 0}} be the

polyhedral complex consisting of all subpolyhedron of P(p) where Φ(p) takes on non-negative
values. Analogously to the proof of Proposition 25 we obtain a δ > 0 such that P−(p) and
P−(u) are isomorphic as polyhedral complexes and hence in particular there is a homeomorphism
φ : |P−(p)| → |P−(u)| for all u ∈ Bδ(p), where |P−(p)| denotes the support of P−(p). We wish
now to show that |P−(p)|◦ = K◦ ∩ Φ(p)−1((−∞, 0)). Due to the continuity of Φ(u) it holds
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that K◦ ∩ Φ(p)−1((−∞, 0)) ⊆ |P−(p)|◦. Let now x ∈ |P−(p)| \
(
K◦ ∩ Φ(p)−1((−∞, 0))

)
,

i.e., Φ(p)(x) = 0. Since P(u) is a pure polyhedral complex, there is a R ∈ Pd(u) such
that x ∈ R. It follows that x ∈ H1,L+1,R(p) ∩ R with dim(H1,L+1,R(p)) = d − 1. If
dim(H1

1,L+1,R(p) ∩ R) < d, then there is a face F ⪯ R such that F ⊆ H1,L+1,R(p), which is
a contradiction to H1,L+1,R(p) ∩ R0 = ∅ and hence it holds that dim(H1

1,L+1,R(p) ∩ R) = d.
The latter fact implies that Φ(u) takes on exclusively positive values on (H1

1,L+1,R(p) ∩ R)◦ ̸= ∅
and hence for every open subset U ⊆ Rd with x ∈ U , it holds that U ∩ Φ(p)−1((0,∞)) ̸= ∅.
Thus, x /∈ |P−(p)|◦ and hence |P−(p)|◦ = K◦ ∩ Φ(p)−1((−∞, 0)). Since P−(p) and P−(u)
are isomorphic and Φ(u) is also topological stable due to Lemma 14 and Lemma 13, the same
arguments can be applied in order to show |P−(u)|◦ = K◦ ∩ Φ(u)−1((−∞, 0)). Hence, since
the restriction of φ to the interiors φ|P−(p)|◦ : |P−(p)|◦ → |P−(u)|◦ is a homeomorphism as
well, we conclude that K◦ ∩ Φ(u)−1((−∞, 0)) and K◦ ∩ Φ(p)−1((−∞, 0)) are homeomor-
phic. Let F be any face of K with dim(F ) ̸= 0, then by the same arguments it follows that
F ◦ ∩ Φ(u)−1((−∞, 0)) and F ◦ ∩ Φ(p)−1((−∞, 0)). Furthermore, due to the fact that Φ(p) is
topologically stable and the choice of u, if dim(F ) = 0, it holds that F ⊆ K ∩ Φ(p)−1((−∞, 0))
implies that F ⊆ K ∩ Φ(u)−1((−∞, 0)) and hence

∂K ∩ Φ(p)−1((−∞, 0)) =

 ⊔
F⪯K,F ̸=K
dim(F )̸=0

F ◦ ⊔
⊔

F∈K0

F

 ∩ Φ(p)−1((−∞, 0))

∼=

 ⊔
F⪯K,F ̸=K
dim(F )̸=0

F ◦ ⊔
⊔

F∈K0

F

 ∩ Φ(u)−1((−∞, 0))

= ∂K ∩ Φ(u)−1((−∞, 0))

Alltogether, we conclude that K ∩ Φ(p)−1((−∞, 0)) is homeomorphic to K ∩ Φ(u)−1((−∞, 0)).

We can finally show the stability of the constructed neural network for the lower bound of the
topological expressive power.
Proposition 10. There is an open set U ⊆ RD in the parameter space of the architecture
(d,m · d, . . . .,m · d,w, 1) such that Φ(u) restricted to the unit cube has at least the same topo-
logical expressivity as F in Theorem 24 for all u ∈ U.

Proof. In order to obtain stability we first modify our construction in the following two ways:

• To ensure that all the resulting annuli in F−1((−∞, 0)) of different dimensions have
positive distance to each other, we adjust f (w1,...,wd−1) by rescaling the summands of
f (w1,...,wd−1), i.e., we make F = Φ(u) combinatorially stable with respect to the unit
cube (c.f. Definition 13).

• Depending on the parity of thewk the “outermost annuli in F−1((−∞, 0)) around a cutting
point” might be surrounded by a fulldimensional 0−region. In order to guarantee stability,
we transform the fulldimensional 0−regions into slightly positive, but still constant regions
by adding a small constant b, i.e., we make F = Φ(u) topologically stable with respect to
the unit cube (c.f. Definition 14).

We achieve the first property by setting

ĝ(k,wk−1)
q (x) =

 max{0,1Tx} q = 0
max{0,1Tx− ( 14−)} q = w + 1
max{0, 2(1Tx− (2q − 1)/8w)} else

for all k = 2, . . . , d and constructing F dependent on h(L,m,d) and the new ĝ
(k,wk−1)
q (x), k =

2, ..., d in the same way as before. It is straighforward, that the the scaling does not change the
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topology of the sublevel set, since it merely makes the annuli thinner. The second property we
achieve by simply setting F ′(x) = F (x) + b, where b = mink=2,...,d{ 1

8wk·M }. We now argue, that
F−1((−∞, 0)) and F ′−1((−∞, 0)) are homeomorphic, since adding b also just makes the annuli
in F−1((−∞, 0)) thinner. Let k ∈ [d] and A be an k−annuli in F−1((−∞, 0)) and Ak = pk(A)
be its projection onto the first k coordinates. It follows that there is a cutting point c ∈ Rk such
that Ak = Bk

q/(2wk·M)(c) \ Bk
(q−1)/(2wk·M)(c) for a suitable q = 1, ..., wk. Since b ≤ { 1

8wk·M } it
follows that

A′
k,c,q := Bk

(q−2b)/(2wk·M)(c) \Bk
(q−1+2b)/(2wk·M)(c)

is also a k-annuli and revisiting the proof of Lemma 19 reveals that F (A′
k,c,q × Rd−k ∩ K) =

(− 1
4wk

,−b) and hence F ′(A′
k,c,q × Rd−k ∩ K) = (− 1

4wk
+ b, 0) since 1

8wk
≥ b. We conclude

that for every k-annuli in F−1((−∞, 0)) there is an k-annuli in F ′−1((−∞, 0)) and since it clearly
holds that sgnF (x) = sgnF ′(x) for all x ∈ F−1((0,∞)), it follows that F−1((−∞, 0)) and
F ′−1((−∞, 0)) are homeomorphic. Let p ∈ RD such that Φ(p) = F ′. Then, since Φ(p) is topo-
logically stable it follows by Proposition 26 that there is an open set in RD containing u such that
Φ(u)−1((−∞, 0)) ∩K is homeomorphic to Φ(p)−1((−∞, 0)) ∩K for all u ∈ U , where K is the
unit cube.

5.4 UPPER BOUND

In this section we will provide a formal proof for the upper bounds.

Proposition 3. Let F : Rd → R be a neural network of architecture (d, n1, . . . , nL, 1). Then it
holds that β0(F ) ≤

∑
(j1,...,jL)∈J

∏L
ℓ=1

(
nℓ

jℓ

)
and for all k ∈ [d− 1] that

βk(F ) ≤
(∑

(j1,...,jL)∈J

∏L
ℓ=1

(
nℓ

jℓ

)
d− k

)
,

where J =
{
(j1, . . . , jL) ∈ ZL : 0 ≤ jℓ ≤ min{d, n1 − j1, . . . , nℓ−1 − jℓ−1} for all ℓ = 1, . . . , L

}
.

Proof. Theorem 1 in (Serra et al., 2017) states that F has at most
∑

(j1,...,jL)∈J

∏L
l=1

(
nl

jl

)
linear re-

gions. Let P be the canonical polyhedral complex of F and let Pk+1 = {P ∈ P | dim(P ) ≤ k + 1}
be the k + 1-skeleton of P . Furthermore let P−

k+1 := {P ∩ F−1((−∞, 0]) | P ∈ Pk+1},P+
k+1 :=

{P ∩ F−1([0,∞)) | P ∈ Pk+1} be the subcomplexes of the subdivision of Pk+1 where F takes
on exclusively non-positive respectively non-negative function values and P=

k+1 := {P ∩ F−1(0) |
P ∈ Pk+1}. Let P0

k+1 :=
(
P=
k+1 ∩ P−

k+1

)
\ P+

k+1 be the set of polyhedra where F takes on func-
tion value 0 and they are not exclusively bounded by elements of P−

k . We can lift every element in
P0
k+1 ⊆ P−

k+1 onto a higher dimension such that

(i) the poset structure of the lifted polyhedral complex agrees with the initial poset structure
restricted to P0

k+1,

(ii) the maximal (w.r.t. inclusion) polyhedra are lifted into polyhedra of dimension k + 1, and

(iii) if two polyhedra are included in the same polyhedron, their dimensions are increased by
the same amount, that is, the codimension of the maximal polyhedron P ∈ P0

k+1 they are
both included in.

We denote by P̃0
k+1 the polyhedral complex of the thickened up polyhedra and by C the polyhedral

complex that results my modifying from P0
k+1 in the polyhedral complex P−

k+1 ∪P+
k+1 in the same

way and adjusting the position of the remaining polyhedra. For every element P ∈ Pk+1(k + 1) at
most one of the two following conditions can hold due to the fact that F is affine linear on P :

(i) P ∩ F−1((−∞, 0]) is adjacent to a maximal polyhedron in P̃0
k+1, or
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(ii) P ∩ F−1([0,∞)) is a (k + 1)-face of P+
k+1.

Let D := P̃0
k+1(k + 1) ∪ P+

k+1(k + 1), then it follows that

#D ≤ #Pk+1(k + 1) ≤
(∑

(j1,...,jL)∈J

∏L
l=1

(
nl

jl

)
d− k

)
.

The second inequality follows from considering the (k+ 1)-faces as the intersection of d− k linear
regions (which are of dimension d). Furthermore, by construction it holds that βk(F ) = βk(|C \D|),
where |C \D| denotes the support. To see this, note that F−1((−∞, 0)) =

⋃
{P ◦ | P ∈ P−

d \P=
d }∪⋃

{P−
d (0) \ P=

d (0)} and F−1((−∞, 0)) ∩ P−
k =

⋃
{P ◦ | P ∈ P−

k \ P=
k } ∪ {P−

k (0) \ P=
k (0)},

which implies that βk(F ) = βk(F
−1((−∞, 0)) ∩ P−

k ). The construction of C and D ensure that
F−1((−∞, 0)) ∩ P−

k is homotopy equivalent to |C \ D|.
For the sake of simplicity, we compute βk(|C \ D|) using cellular homology. Ideally, we would like
to equip C with a canonical CW-complex structure, i.e., the k-cells of the CW-complexes precisely
correspond to the k-faces of the respective polyhedral complex, and attachment maps are given by
face incidences. However, C contains unbounded polyhedra. In particular, an unbounded polyhe-
dron cannot correspond to a CW-cell. Conveniently, one can sidestep this issue by observing the
following: There exists a large enough number M such that {P ∩ [−M,M ]n : P ∈ C} is ho-
motopy equivalent to C, (by deformation retracting the unbounded faces to their restrictions under
[−M,M ]n). In particular, we may assume without loss of generality that C is a compact polyhedral
complex equipped with a finite CW-complex structure as described above.

We show that βk(|C \ D|) ≤ #D by induction on the number of (k + 1)-faces of D. If D has no
(k + 1) faces, then the inequality holds vacuously, since βk(|C|) = 0.

When proving the induction step, we proceed to delete full-dimensional polyhedra, resulting in
the creation of new polyhedral/CW-complexes. For our purposes, deleting the polyhedra accounts
to deleting the smaller-dimensional faces as well that bound no other full-dimensional polyhedra
(which we call redundant in the following), we delete such faces as well.

To show the induction step, let D = D′ ∪ {P}. By the induction hypothesis we know that β(|C \
D′|) ≤ #D′. Let B be the support of C \ D and A the support of C \ D′.

Our goal is to embed the cellular homology group Hk(B) into Z ⊕ Hk(A). Such an embedding
readily implies that βk(B) ≤ 1 + βk(A). From this, the induction step follows:

βk(B) ≤ 1 + βk(A) ≤ 1

To prove the induction step, we first delete the k+1-dimensional face itself (that is, without deleting
the redundant faces, resulting in a polyhedral complex whose support we denote byB′), and observe
by the elaborate definition of cellular homology groups that this induces a map ϕ1 : Hk(B

′) →
Z⊕Hk(A). One can additionally observe that this map is an embedding: Notice that the homology
arises from the (relative) homologies of the chain complex

. . .→ Ck+1
∂k+1−−−→ Ck

∂k−→ Ck−1 → . . .

Deleting the k+1-face decreases the image of the boundary map ∂k+1 and hence increases the k-th
homology; however, it is straightforward to observe that

ϕ1 : Hk(B
′) ∼= ker ∂k/im ∂k+1 → [σ]⊕ ker ∂k/im ∂k+1∪[σ] ∼= Z⊕Hk(A)

which maps a homology class [
∑

τ∈Ck
cττ ] from the domain to (cσ, [

∑
τ∈Ck/[σ]

cττ ]) is an embed-
ding, where σ is the generator corresponding to the deleted k + 1-face.

To finish off the construction of the embedding, we finally define ϕ2 : Hk(B) → Hk(B
′), i.e., the

map induced by deleting maximal faces of B′ formerly incident to the deleted polyhedron. This
operation might reduce the kernel of the k-th boundary map, and hence potentially decrease the k-th
Betti number. It is, however, again straightforward to observe that the map is injective in any case,
in a similar fashion as above.

The claimed embedding is now ϕ1 ◦ ϕ2, finishing the proof for k ∈ [d− 1].
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