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ABSTRACT

Supervised fine-tuning (SFT) is a cornerstone technique for adapting large lan-
guage models (LLMs) to specific domains and tasks. However, its propensity
to induce verbatim memorization of training data poses significant risks to safety,
privacy, and generalization. This paper presents an empirical analysis of the mech-
anisms underlying memorization within LLMs during SFT. Our findings confirm
that SFT is a direct driver of memorization, with a clear positive correlation be-
tween the number of training epochs and the rate of verbatim data recall. The
characteristics of the fine-tuning dataset are a critical determinant of memoriza-
tion. We demonstrate that models trained on broad, open-domain datasets exhibit
substantially more memorization than those trained on narrow, domain-specific
ones, highlighting a crucial trade-off between model versatility and data contain-
ment. Furthermore, we indicate that verbatim memorization is suppressed when
the training data includes inputs with high similarity paired with dissimilar out-
puts. We posit that this phenomenon is not a desirable mitigation strategy but
rather a symptom of the model being exposed to conflicting data signals. These
findings underscore the complex trade-offs in SFT and stress the importance of
understanding these underlying dynamics to develop LLMs that are both capable
and secure.

1 INTRODUCTION

Supervised fine-tuning (SFT) is a cornerstone technique for adapting large language models (LLMs)
to specific domains and tasks, serving as the primary method for aligning model behavior with hu-
man preferences and injecting specialized knowledge. However, this powerful technique has a sig-
nificant side effect: it often causes the model to verbatim memorize portions of its training data. This
propensity for memorization poses serious risks to model safety by potentially reproducing harmful
content, causing copyright infringement, compromises user privacy by leaking sensitive informa-
tion, and can impair generalization by encouraging rote learning over abstract pattern recognition.
While foundational research has conclusively demonstrated that LLMs memorize training data (Car-
lini et al., [2021)), the specific mechanisms and contributing factors that govern this behavior during
the SFT process remain underexplored, creating a critical need to move beyond simply detecting the
phenomenon to actively controlling it.

This paper directly addresses this gap by presenting a rigorous empirical analysis of the mechanisms
underlying memorization within SFT. Our investigation systematically tracks the temporal evolution
of memorization across training epochs while simultaneously analyzing contributing factors at two
distinct levels of granularity: at the global level, we analyze how macro-level dataset properties,
such as overall diversity, influence memorization. Concurrently, at the local level, we examine
micro-level data dynamics, specifically how a model responds to conflicting signals arising from an
instance’s immediate neighborhood—where highly similar inputs are paired with divergent outputs.
By also tracking these effects across training epochs, we dissect the trade-offs inherent in the fine-
tuning process. This investigation not only informs the development of more secure LLMs but also
illuminates fundamental properties of the fine-tuning process, compelling a re-examination of SFT
through the lens of its memorization behaviors.
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1.1 MEMORIZATION DETECTION AND MEASUREMENT

Memorization research began with establishing extraction attacks and three scaling laws (model
capacity, data duplication, context length) (Carlini et al., [2021). Detection methods were expanded
through membership inference attacks(Duan et al.l 2024)), prefix extraction (Hayes et al., |2025)),
neuron activation analysis (Slonskil 2024), etc.

The comprehensive paper (Xiong et al.,[2025) mentioned a number of factors to be tested, but in the
area of SFT memorization, there is a lack of comprehensive understanding. Memorization is also
blamed for negatively affecting the performance in general (Bayat et al., [2024), and in the SFT of
LLM (Chu et al., [2025), making the investigation of properties of SFT of LLM a timely need to
safety and as a reference factor to technology selection.

It is reported that LLM memorization is influenced by the duration of training gives increasing mem
accuracy versus epoch on memorization on randomly generated strings, but the setting of a small
dataset with more than 100 epochs of this experiment is unrealistic (Speicher et al., 2024]).

This justifies to test the trend of memorization in SFT in a more realistic settings to be supplementary
to this problem. If we want to quantify memorization, we should do it within a model size and epoch
that is widely accepted, and within a reasonable tuning of model size not too small and number of
epochs not too big.

1.2 MEMORIZATION VERSUS TRAINING DYNAMICS AND FINE-TUNING METHODS

Training epochs and temporal patterns are fundamental to learning dynamics, yet memorization
emergence throughout fine-tuning remains under-characterized. Most studies and tech reports mea-
sure endpoint retention rather than tracking when/why memorization occurs, despite temporal un-
derstanding being critical for prevention-based approaches.

1.3 DATASET CHARACTERISTICS AND DIVERSITY EFFECTS

Dataset diversity fundamentally affects model performance and generalization (Gong et al., 2023)),
yet memorization relationships remain poorly understood. Current approaches build and select
dataset based on diversity and has achieved some performance gain(Bukharin et al.| [2024) (Wang
et al., [2024).

Another follow-up study uses datasets with duplicated data to investigate memorization (Carlini
et al., [2023))-but the presence of completely duplicated data—letting alone artificially (intentionally)
duplicating a subset of the data for training is far from a realistic case—if we want to investigate
memorization, we should investigate in real data.

While Large Language Model (LLM) memorization is known to be more intense for knowledge-
based than for reasoning-based tasks (Wang et al., 2025), recent focus has shifted to quantifying the
diversity of the underlying data rather than relying on subjective labels (Zhao et al., 2024). Method-
ologies for this quantification are emerging, such as diversity coefficients for pre-training (Miranda
et al., [2025) and predictive diversity scores for fine-tuning (Yang et al., [2025). Despite the success
of these scores in predicting model performance, their connection to memorization is still an open
question. Furthermore, inspired by taxonomies that characterize properties of recall like confusion
(Prashanth et al.| [2025)), we are also interested in how these properties relate to memorization phe-
nomena.

1.4 Conflicting Training Signals

Machine learning research has established relationships between model performance, memorization,
and data removal, with the field of machine-unlearning (Ginart et al., 2019) dedicated to selectively
removing data influence while preserving model utility. In Large Language Models, existing work
has examined memorization’s impact on generalization (Bayat et al.| 2024)) and the adverse effects
of data ambiguity on fine-tuning performance (Xu et al., 2024). However, a critical connection
remains underexplored in LLMs: the relationship between data ambiguity and memorization mech-
anisms. When training data contains similar inputs with divergent outputs, models cannot identify
generalizable patterns and must resort to memorization. Investigating how this specific form of data
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ambiguity—-where proximate inputs yield conflicting outputs—-influences memorization mecha-
nisms in LLMs represents a vital extension of existing research and offers key insights into when
and why models abandon pattern learning in favor of rote memorization.

This heuristic understanding is complemented by insights from statistical learning theory, which
provides a more formal lens through which to view this problem. From this perspective, the diver-
sity of outputs conditioned on similar inputs bounds the Bayesian risk, hence the lowest possible
prediction error on exact training data for any classifier. A simple illustration of this is found in the
relationship between classification error and the conditional probability of a class given an input,
as detailed in foundational texts on pattern recognition (Devroye et al., [1996). The inherent ambi-
guity in the training data, where a single input = can be associated with multiple correct outputs
{y1, 2, ... }, introduces a fundamental level of irreducible error. This raises a compelling question
for future research: can a continuous or probabilistic version of these risk properties be developed
specifically for the phenomenon of memorization in Large Language Models?

1.5 Evaluation Frameworks

Evaluating large language models (LLMs) requires a comprehensive understanding of their behav-
ior, particularly memorization. However, current assessment of this phenomenon is fragmented
(Xiong et al., [2025). The field often lacks consistent definitions, relies on singular metrics, and
misses standardized benchmarks across various fine-tuning methods. While some research pro-
poses complexity-based metrics to assess variables|Morris et al.|(2025), a comprehensive and unified
framework for memorization remains underdeveloped.

This fragmentation is particularly problematic as memorization can be a nuanced, fine-grained issue.
For example, recent work indicates that entity-level memorization can be highly extractable (Zhou
et al.||2024). This implies that capturing these details requires a diverse and sometimes fine-grained
set of easily comparable metrics. Although tools to measure text diversity exist (Shaib et al.,[2025)),
they have not seen systematic application to LLM memorization contexts. Therefore, we propose
using a broader spectrum of metrics to quantify memorization, understand their uses, and analyze
their relationships.

Our work addresses these gaps through a systematic empirical analysis of memorization mechanisms
during supervised fine-tuning (SFT). We provide a comprehensive investigation into the effects of
training epochs, dataset diversity, and natural conflict resolution on what models memorize. To
properly quantify these effects in a realistic SFT scenario, we also employ a suite of metrics in-
cluding Edit Distance (Wagner & Fischer, |1974) and Effective Dimensionality, calculated using the
scikit-dimension package (Bac et al.,2021)), thereby providing a more thorough investigation than
what current research trends suggest.

2 METHODS

2.1 EXPERIMENT SETUP

Our primary datasets for this study are derived from alpaca-cleaned (Taori et al) |2023),
code-alpaca (Chaudharyl [2023), and finance-alpaca datasets (Bharti, 2024)), and a med-
ical QA dataset (Chen et al., |2024)) . We developed a preprocessing pipeline to standardize these
datasets, with the goal of producing a final version for each containing approximately 10 rows and
texts with not too short length.

We implemented a preprocessing pipeline that iterates through the alpaca—-cleaned Taori et al.
(2023)), code—-alpaca (Chaudhary, 2023), and finance-alpaca datasets (Bharti, 2024). For
the medical QA dataset, preprosessing script filters it to select the first 8192 patient cases that specify
an age, reformats the data into an instruction-input-output structure with pandas, and saves the result
as a JSON file. For each one, the script first loads the data from its JSON file and performs a detailed
statistical analysis on the text in the instruction, input, and output columns, calculating
metrics like minimum, median, mean, and maximum word/character counts, along with skewness.
It then visualizes these text length distributions. The core preprocessing step involves filtering each
dataset to retain only those entries where the combined word count of the instruction, input, and
output fields exceeds 35 words. Finally, if the resulting filtered dataset contains more than 10,016
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Table 1: Core Memorization Metrics
Metric Definition

Full Memorization Rate (F') The probability that the model output exactly matches the
reference data.
F= P(Sref = Sout)

Prefix Continuation Length (ny.) The number of consecutive matching tokens from the start
of the sequence until the first mismatch.

Tpre (Sref, Sout) = Max{k : seer[j] = souls] forall j € [1,k]}

Memorization Ratio (M) The proportion of the reference sequence that is memorized
from the beginning.
M= Npre
Nref

entries, it is randomly sampled down to that size, and the final, filtered dataset is saved as a new
JSON file.

We are performing Supervised Fine-Tuning (SFT) on the Llama-3.1-8B-Instruct model using the
flashattn2 booster for optimized attention and a b£1 6 compute type without quantization. The
training is conducted on the datasets described previously with a context length limit of 2048 tokens
and a batch size of /. This is a full-parameter fine-tuning run, as no LoRA adapter is being created.
The process uses a learning rate of /e-6 with a cosine scheduler and 3 warmup steps, applying
gradient clipping at a max norm of /.0. Although planned for 20 epochs, we executed the first 3
epochs, saving a checkpoint after each one.

2.2 QUANTIFICATION OF MEMORIZATION

To quantify memorization and related miscellaneous factors, we use notation as such:

Memorization occurs when the model output string sq, = LLM(sinpm) closely resembles the
training (reference) data s.;. For indexing, ¢ indexes data instances, j indexes tokens within se-
quences, lowercase n for lengths, uppercase IV for length distributions, distances prefixed with d
(€.8., dievenshtein (Sref, Sout)). We use the convention from metric spaces to use B(+,r) to denote a
neighborhood of radius r around a point.

We also employ metrics from two complementary areas, string processing and modern natural lan-
guage understandings.

Table 2: String Processing Metrics

Metric Notation / Description

Levenshtein distance L evenshtein ( Srefs Sout)
Longest common subsequence  LCS(Syef, Sout)

Largest shared n-grams Measures the longest contiguous block of n tokens shared
between two strings.

ROUGE scores A set of metrics for evaluating similarity based on overlap-
ping n-grams and subsequences.
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Table 3: Natural Language Understanding Metrics

Metric Definition

Text Sequence Embeddings  Vector representations of text sequences. Notation:

EMB(Sinput)

Measures how evenly the variance of embedding data is
spread across principal components. The \; are the eigen-
values from the PCA of the embedding data. A higher ratio
indicates data uses many dimensions effectively.

n 2
(Zi:l )‘i)
i A

Participation Ratio (Dpca)

DPCA(EMB(Sinput)) =

3 EXPERIMENTS AND RESULTS

3.1 MORE TRAINING, MORE MEMORIZATION

Higher epoch number usually yield higher memorization by different metrics. This property in F' is
shown in figure[I]
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Figure 1: More Epoch

3.2 BROADER DATA, MORE MEMORIZATION

We propose that models may remember more when trained on datasets with higher diversity, based
on the heuristic that a diverse dataset contains input-output pairs that are less related to each other.
This reduced correlation could allow independent optimization without mutual interference, analo-
gous to memorizing outputs conditioned on distinct inputs rather than overlapping patterns.
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To test this hypothesis, we need an objective method to quantify the “broadness” of the data set
beyond simple domain comparisons. Although different domains (finance vs. medicine) may in-
herently vary in scope, we require a more systematic approach to measure data diversity within and
across categories.

We compute embeddings for each dataset and apply Principal Component Analysis (PCA) to charac-
terize dimensionality. Our diversity metrics are the number of PCA components required to explain
90% of variance, and the participation ratio Dpca. These measures indicate whether inputs are
similar to each other or more spread out in the representation space.

We chose PCA over cosine similarity analysis because in high-dimensional normalized embed-
ding spaces, angle distributions with points uniformly distributed on the sphere concentrate heavily
around /2 due to hypersphere geometry, making cosine similarity less discriminative for measuring
data relationships for a dataset as a whole.

Participation Ratio, )
vs Full Memorization Ratio

0.020
epoch
3.0
0.015 2.5
.©
T
o 2.0
c
°
= 1.5
N 0.010
.g ®
£ = 1.0
(7]
= dataset
S @ alpaca-cleaned-filtered
L 0.005 ]
A code-alpaca-filtered
W finance-alpaca-filtered
€9 med_ga
A
0.000

150 175 200 225
Participation Ratio

Figure 2: Memorization is higher at higher Participation Ratio of Data

Testing across four datasets, we observe that memorization increases with both higher participation
ratios and greater numbers of components needed to capture 90% variance. This relationship re-
mains consistent when controlling for training epochs (1, 2, and 3), supporting the hypothesis that
data diversity enhances memorization through reduced interference between training examples.

3.3 BEHAVIOR WITHIN A SINGLE DATASET: CONFLICTING ENTRIES LIMITS
MEMORIZATION

For each point in the data set 7, we compute S;ppy:[] and find its neighbors in all data S;;,p, that
are within the distance of a threshold T'H S, denote the indices I := B(S;npue[i],7 = THS) We
compute the statistics of the distances d[i|[I]| = [dLevenshtein(Sout[t']; Sout[t]) Vi' € I], for the data
that has such neighbors, the density at high min(d[¢][I]) and high M must be low as a result of
confusion.
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The algorithm to characterize this feature is illustrated as follows

Algorithm 1 Analyzing Conflicting Entries and Their Impact on Memorization

Require: Training dataset D = {(Sinpu[i], srer[i]) 14

Require: Distance threshold 7 for neighbor detection
Require: Edit distance matrices dprefix, dsufiix (Precomputed)
1: Initialize neighbor sets A" = {} {For each data point}
2: Initialize statistics S = {} {Conflict measures}
3: fori=1to N do
4: Iprefix < B(Sinput[i], 7) = {J : dpreix[i, 7] < 7 and j # i} {Find prefix neighborhood}
5: Ineighbors —
6:  for j € Iy do
7.
8

if dsufﬁx [’L,]] < 7 then
: Ineighbors <~ Ineighbors U {.7}
9: end if
10:  end for
11:  NTi] < Ineighbors {Store neighbors with both prefix and suffix similarity }
12:  if [NTi]| > O then

13: dref[i] — [dLevenshtein(Sref[i]a sref[j]) : ] € N[Z]]
4 dpeinli] < [dpretixlis 7] : 5 € NTi]]
15: dsufﬁx[i] — [dsufﬁx [Z)j] 1J € N[ZH
16: Sli] « {

17: Thneighbors * |NM|;

18: d;‘égx s min(dprefix[2]),

19: dovetix © max(dprenix [{])

20: dll;reﬁx : E[dpreﬁx [Z]]’

21: dR - min(dye(d]),

22: dr - max(dre[?]),

23: dles  Eldrer[d]]

24:

25:  else

26: S|i] + {all statistics specified }
27:  end if

28: end for

29: return N, S {Neighbor lists and conflict statistics }

Hypothesis: Points with high confusion (similar inputs mapping to dissimilar outputs) will exhibit
low memorization density, as the model struggles to distinguish between conflicting training signals.

Density Analysis: We expect P(memorized | m; > Timin, M; > Tmax) to be lower than the baseline
memorization rate.

We plot the normalized minimum of edit distance between the output of a candidate and all other
outputs corresponding to the candidates within this neighborhood dﬁ}” against the memorization
ratio M := nyre/nrey. The conditional expectation (estimated from bins with widths 0.2) of the
Nd,,;y, decreases with respect to M. And the top-right corner of the density plot shows low density.

3.4 DISCUSSION

Our empirical investigation reveals a multi-faceted relationship between supervised fine-tuning
(SFT) and memorization, highlighting critical trade-offs for developing capable and secure LLMs.
The results confirm expected behaviors while also uncovering more complex dynamics, compelling
a more nuanced view of the SFT process.

3.4.1 EPOCHS, DIVERSITY, AND THE PROPENSITY FOR MEMORIZATION

The observation that memorization intensifies with additional training epochs is an expected, yet
foundational, result. This establishes a distinct “cost” associated with extended training, where each
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Figure 3: Alpaca-cleaned-filtered, Similar results are observed on the other data sets on the third
epoch as well

pass over the data reinforces rote learning alongside desired adaptations. This monotone relationship
provides a critical baseline against which our other findings can be interpreted.

More revealing is the strong correlation we identify between dataset diversity and memorization.
Our use of PCA-based metrics provides quantitative support for the heuristic that broader, more
varied datasets encourage memorization. This phenomenon can be understood through the lens of
learning interference. In narrow, domain-specific datasets (e.g., medical QA), a high degree of con-
ceptual overlap among data points incentivizes the model to learn underlying patterns. Conversely,
in broad, open-domain datasets (e.g., Alpaca), data points are often more isolated in the semantic
space. The model has less incentive to find unifying principles and can more readily memorize each
input-output pair as an isolated fact. This dynamic presents a significant trade-off for practition-
ers: a diverse dataset may enhance a model’s versatility, but it does so at the cost of heightened
memorization, increasing the risks of privacy leaks and the reproduction of undesirable content.
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3.4.2 THE PARADOX OF CONFLICTING TRAINING SIGNALS

A more complex finding is that verbatim memorization is suppressed when training data contains
similar inputs paired with dissimilar outputs. At first glance, this might appear to be a potential
mitigation strategy. We posit, however, that this is not a desirable mechanism but rather a symptom
of model confusion.

When a model is presented with conflicting signals—where nearly identical prompts correspond
to disparate target outputs—it cannot form a stable, generalizable mapping. The optimization pro-
cess is subjected to competing gradients, which prevents the model from converging to a confident
prediction for any single output. Consequently, it fails to reliably memorize any specific response.
This outcome is not indicative of a “forgetting” mechanism but rather of an impaired ability to learn
effectively from ambiguous or contradictory data. This phenomenon highlights a fundamental ten-
sion: while data consistency may facilitate memorization, data inconsistency can hinder learning
altogether, leading to unreliable model behavior. Therefore, attempting to leverage such conflicting
data points as a tool to reduce memorization might be counterproductive, degrading overall model
performance.

3.4.3 IMPLICATIONS FOR SAFE AND EFFECTIVE SFT

These findings have direct implications for the practical application of SFT.

1. Controlling Training Duration. Practitioners should treat training epochs as a finite re-
source that directly contributes to a "memorization budget.” Exceeding this budget, espe-
cially on sensitive data, may yield only marginal performance gains at a high cost to data
security.

2. Evaluating Dataset Diversity as a Risk Factor. Dataset diversity should be considered a
key risk factor in memorization audits. Our PCA-based approach offers a concrete method
for quantifying this risk prior to fine-tuning, allowing for more informed decisions about
dataset curation and the balance between model generality and data containment.

3. Using Data Conflicts as a Diagnostic Tool. The suppression of memorization via conflict-
ing signals should be leveraged as a diagnostic tool. Identifying these data points can help
curators pinpoint ambiguity, noise, or inherent task difficulty within their datasets. Re-
solving these conflicts, rather than introducing them, is essential for building robust and
predictable models.

In conclusion, managing memorization is not a matter of applying a single technique but requires
navigating a complex interplay of training duration, dataset characteristics, and intra-dataset dy-
namics. Our work contributes to a clearer understanding of this landscape, emphasizing that the
path toward creating models that are both highly capable and fundamentally secure lies in a more
profound and quantitative understanding of the data used to shape them.

4 CONCLUSION

This paper analyzes the memorization in Large Language Models (LLMs) during supervised fine-
tuning (SFT), addressing gaps in current research. Our findings confirm that SFT directly drives
memorization, with a positive correlation between training epochs and verbatim data recall. We
demonstrate that the characteristics of the fine-tuning dataset are crucial determinants: broad, open-
domain datasets induce substantially more memorization than narrow, domain-specific ones, high-
lighting a trade-off between model versatility and data containment. Furthermore, we observe that
verbatim memorization is suppressed when training data includes highly similar inputs paired with
dissimilar outputs, which we interpret as a symptom of conflicting data signals rather than a desir-
able mitigation strategy. These insights underscore the complex dynamics of SFT, suggesting that a
finer look at these properties helps understand memorization, but a finer look at the memorization
helps understand SFT as well.
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