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Abstract

Most modern unsupervised domain adaptation (UDA) approaches are rooted in
domain alignment, i.e., learning to align source and target features to learn a
target domain classifier using source labels. In semi-supervised domain adaptation
(SSDA), when the learner can access few target domain labels, prior approaches
have followed UDA theory to use domain alignment for learning. We show that
the case of SSDA is different and a good target classifier can be learned without
needing explicit alignment. We use self-supervised pretraining and consistency
regularization to achieve well separated target clusters, aiding in learning a low
error target classifier, allowing our method to outperform recent state of the art
approaches on large, challenging benchmarks like DomainNet and VisDA-17. Code
for our experiments can be found at jhttps://github.com/venkatesh-saligrama/PAC,

1 Introduction

The problem of visual domain adaptation arises when a learner must leverage labeled source domain
data to classify instances in the target domain, where it has limited access to ground-truth annotated
labels. An example of this is the problem of learning to classify real-world images based on hand-
sketched depictions. The problem is challenging because discriminative features that are learnt while
training to classify source domain instances may not be meaningful or sufficiently discriminative
in the target domain. As described in prior works, this situation can be viewed as arising from a
“domain-shift”, where the joint distribution of features and labels in the source domain does not follow
the same law in the target domain.

We propose a novel method for semi-supervised domain adaptation (SSDA), where the learner, in
addition to unlabeled target examples, is granted access to a few labeled target domain examples
for training. Our method is based on enhancing clusterability of target domain features independent
of the source domain. Prior SSDA methods [28 [15] [16] draw upon approaches developed within
the context of visual domain adaptation using labelled source images and unlabelled target images
[L, 214130, 134} 138]]. These works in turn are based on adversarial domain alignment, and draw upon
Ben-David et al. [2]’s elegant theory of domain adaptation. Generalization bounds in Ben-David et
al. [2] suggest that, good adaptation is possible if the divergence between induced source and target
domain feature distributions is small.

While domain alignment is a meaningful goal in the absence of labels, we believe that the situation is
dramatically different in the presence of a few target domain labels. For our work, we draw inspiration
from Castelli and Cover [3]], who showed that in binary classification problems, a learner with no
knowledge of underlying feature distributions, can benefit exponentially from labelled examples.
Specifically, with « unlabelled examples and ¢ labelled ones, they showed the learners probability of
error approaches Bayes error as

Perr = Pyayes = O (%) +exp (—=D(q1,g2)C + 0(0)) W
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Figure 1: A diagram of our Pretraining and Consistency (PAC) approach. We first train our backbone
for the self-supervised task of predicting rotations (left). This backbone is then used as a warm start
for our classification model, which uses labelled data with the cross entropy criterion and consistency
regularization for the unlabelled data (right).

where D(q1, ¢2) or the Bhattacharya distance is a measure of separation between the class distribu-

tions ¢; and ¢o. Notice that the error probability decays exponentially with the product of inter-class
distance and number of labels. As such, our key insight is that we can forego domain alignment if we
learn representations that result in compact, well-separated clusters in the target domain. The identity
of these clusters can then be deduced from few labels.

Our contributions in this paper are two-fold: (1) We propose a novel semi-supervised domain
adaptation method PAC (pretraining and consistency), based on label consistency and rotation
prediction for pretraining, which performs comparably or better than state of the art on SSDA across
multiple datasets. In contrast to prior works, we forego domain alignment, and pose objectives
that improve target clusterability. (2) We perform ablative analysis on individual components of
our method, illustrating their behavior, and their impact on performance. Our analysis provides an
understanding of these components and shows how they can be combined with other techniques.

2 Pretraining and Consistency (PAC)

Notating some variables: Available to the model are two sets of labelled images : Dy = {(xf, y7)}i=1,
the labelled source images and D, = {(x!, y!)}1"*,, the few labelled target images, and additionally
the set of unlabelled target images D,, = {z}}*,. The goal is to predict labels for these images
in D,,. The final classification model consists of t two components : the feature extractor F' and the
classifier C'. F' generates features F'(«) for an input image & which the classifier uses produce output
class scores C(F(z)) € RE, where K is the number of categories that the images in the dataset
could belong to. In our experiments, F' is a convolutional network and produces features with unit

ly-norm, Le. ||F(x)||, = 1 (following [28])). C' consists of one or two fully connected layers.
An overview of PAC is shown in Fig[I] Our final model is trained in two stages:

Pretraining with Rotation Prediction. We first train our feature extractor F' with the self-supervised
task of predicting image rotations (Fig[T] (left)) on both the source and target datasets, i.e., all images
in Dy, D, and D,,. Without using image category labels, we train a 4-way classifier to predict one out
of 4 possible angles (0°, 90°, 180°, 270°) that an input image has been rotated by. This backbone is
then used as the initialization for training the final classifier in the next stage.

Consistency Regularized Classifier Training. Consistency regularization promotes the final model
C o F to produce the same output for both an input image « and a perturbed version  + 6. We
introduce these perturbations using image level augmentations — RandAugment [8]] along with
additional color jittering. Given an unlabelled image = € D,,, we first compute the model’s predicted
class distributions

pe = p(yla; F, C') = softmax(C'(F(x)))
= p(y|x + §; F, C) = softmax(C(F(x + 9)))



P, is then confidence thresholded using a threshold 7 and the following is used as the consistency
regularization loss.

L:CR(:B) = ]]-[Ikneal)((pz(k) > T}H(pxa qgc) ()

where 1 is an indicator function and H (pz, ¢z) = > _jc x —Px (k) log(q.(k)) is cross-entropy. Note
that p,(-) has been used to index into the K elements of p,. Intuitively, an unperturbed version of
image « is used to compute pseudo-targets for the perturbed version x 4 §, which is only used when
the pseudo-target has high confidence (maxy, p. (k) > 7). We also note here that the target p,. is
treated as a constant for gradient computation with respect to the network parameters. For the labelled
examples from D, and D;, we use the same perturbations but with ground truth labels as targets.

The model is optimized using minibatch-SGD, with minibatches M, M; and M, sampled from
D, D; and D,, respectively. The final optimization criterion used is

1 _
C=pm 2, M g 2
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where 7 € R¥ is the one-hot representation of y € [K] or (i) = 1[i = y] and H (7, x) has been
overloaded to mean H (g, C(F(x))).

3 Experiments

Datasets. From DomainNet[25], we used 4 domains (Clipart, Paintings, Real and Sketch) following
[28], each with 126 classes resulting in an avg 36500 images per domain. In VisDA-17 [26] the
source domain (the VisDA "train" split) consists of 152,398 synthetic images from 12 categories, and
the target domain (the VisDA "validation" split) consists of 55,388 real images. We used 1 and 3-shot
settings for evaluation, which contained 1 and 3 labelled examples in the target domain. Additionally,
for VisDA-17, we evaluated with settings where 1 and 5% of the target examples were labelled.

Implementation Details. All our experiments were implemented in PyTorch [24] using W&B [4]]
for tracking experiments. For evaluations on the DomainNet dataset, we used an Alexnet and a
Resnet-34 [[14] backbone, while on VisDA-17 we evaluated our method with a ResNet-34 backbone.
1 or 2 fully connected layers we used for the classifier C'. Optimization was done via SGD with a
momentum 0.9. Complete details of all experiments are in the supplementary.

3.1 Results

Comparison to other approaches. We compare PAC with different recent SSDA approaches :
MME [28]], BiAT [15], Meta-MME [19], APE [16]], LIRR [18], and CDAC [20] using results reported
by these papers. Besides this, we also include in the tables, baseline approaches using adversarial
domain alignment—DANN [11], ADR [29] and CDAN [21], that were evaluated by Saito et al. [28].
The baseline “S+T"” is a method that simply uses all labelled data available to it to train the network
using cross-entropy loss.

In Table [I, we compare the accuracy of PAC with different recent approaches on DomainNet.
Remarkably our simple approach outperforms other SSDA approaches by 3-5% on this benchmark
with different backbones (with the exception of CDAC, with which it is competitive on most scenarios).
In TableE], besides our method, we report results of S+T and MME on VisDA-17, that we replicated
from the implementation of [28]]. We see that PAC shows strong performance, with close to 10%
improvement in accuracy over MME in the 3-shot scenario, and 4% improvement over LIRR.

Ablative analysis. In Table[3] we see what rotation prediction pretraining and consistency regulariza-
tion do for final target classification performance separately. The two components provide boosts to
the final performance individually, with the combination of both performing best. We see that in most
cases consistency regularization helps performance significantly, especially in the 3-shot scenarios.

For more analyses including a feature space comparison of methods, effects of different pretraining
and perturbation methods and PAC’s sensitivity to different number of target examples, see the
supplementary.



RtoC RtoP PtoC CtoS StoP RtoS PtoR MEAN

Net Method I-shot  3-shot  l-shot  3-shot  l-shot  3-shot  I-shot  3-shot  l-shot  3-shot  l-shot  3-shot  l-shot  3-shot | l-shot  3-shot
S+T 433 471 424 450 401 449 336 364 357 384 29.1 333 558 587 | 40.0 434
DANN 433 461 416 438 391 410 359 365 369 389 325 334 536 573|404 424
ADR 43.1 462 414 444 393 43,6 328 364 33.1 389 29.1 324 559 573|392 427
CDAN 463 468 457 450 383 423 275 295 302 337 288 313 567 587 | 39.1 410
Alexnet MME 489 556 48.0 49.0 467 51.7 363 394 394 430 333 379 568 60.7 | 442 482
Meta-MME - 56.4 - 50.2 - 51.9 - 39.6 - 43.7 - 38.7 - 60.7 - 48.7
APE 477 546 490 505 469 5211 385 426 385 422 338 387 575 614 | 446 489
BiAT 542 586 492 506 440 520 377 419 396 421 372 420 569 58.8 | 455 494
CDAC 569 614 559 575 51.6 589 448 507 48.1 517 441 467 638 668 | 52.1 56.2
PAC 554 61.7 546 569 47.0 598 469 529 386 439 387 482 567 59.7 | 483 547
S+T 556 600 606 622 568 594 50.8 550 560 595 463 50.1 718 739|568 60.0
DANN 582 59.8 614 628 563 596 528 554 574 599 522 549 703 722 | 584 60.7
ADR 571 607 613 619 570 607 510 544 560 599 490 511 720 742|576 604
CDAN 650 69.0 649 673 637 684 531 578 634 653 545 59.0 732 785 | 625 66.5
Resnet-34 | MME 700 722 677 697 69.0 717 563 618 648 668 610 619 761 785 | 664 689
Meta-MME - 73.5 - 70.3 - 72.8 - 62.8 - 68.0 - 63.8 - 79.2 - 70.1
APE 704 766 708 721 729 767 567 631 645 66.1 630 678 766 794 | 678 717
BIiAT 73.0 749 680 688 71.6 746 579 615 639 675 585 62.1 770 786 | 67.1 69.7
CDAC 774 796 742 751 755 793 67.6 699 710 734 692 725 804 819 | 73.6 76.0
PAC 749 786 730 743 726 760 658 69.6 679 694 687 702 767 793 | 714 739

Table 1: Accuracy on the DomainNet dataset (%) for one-shot and three-shot settings on 4 domains,
R: Real, C: Clipart, P: Painting, S: Sketch. PAC, though simple, is strong enough to be competitive
with or outperform other state of the art approaches on most scenarios. Top 2 accuracies in each
column are highlighted in bold

Overall Accuracy

Method I-shot 3-shot 1-pct S-pct
S+T 57.7 599 762 829
MME 69.7 70.7  80.5 84.1
LIRR - - 81.7 845
LIRR+CosC - - 823 85.1
PAC 75.2 804 86.0 88.9

Table 2: Results on VisDA-17. PAC outperforms MME and LIRR, both current state of the art
approaches, by a sizeable margin. CosC stands for cosine classifier and “1-pct” and “5-pct” denote
scenarios where 1% and 5% of the target images are labelled respectively.

Target Accuracy
Rot™ CR Alexnet Resnet-34
1 -shot 3-shot 1-shot 3-shot

29.1 333 463 50.1

v 351 379 541 56.1
v 325 459 643 689

v v 387 482 687 70.2

Table 3: Ablation study for pretraining predicting rotations (Rot™) and consistency regularization
(CR) on the real to sketch scenario of Domainnet using both Alexnet and Resnet-34 backbones.

4 Conclusion

We showed that consistency regularization and pretraining using rotation prediction are powerful
techniques in SSDA. Our method, using simply a combination of these without requiring any domain
alignment, could outperform recent state of the art on this task, most of which use adversarial
alignment. With our approach we demonstrated that domain alignment is not a necessity for SSDA,
and that achieving well-separated target clusters allows for low classifier error with a few labelled
examples. We presented a thorough analysis of both the aforementioned techniques showing how
they can improve target clustering and why they are better than other options for similar approaches.
We hope our analysis can help inform future SSDA work.
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Supplementary

A Feature Space Comparison of Methods.

In Fig [2| we plot the 2-D TSNE [22]] embeddings for features generated by 5 differently trained
Alexnet backbones. The embeddings are plotted for all points from 5 randomly picked classes. The
source domain points which are light colored circles, come from real images of Office-Home and the
target domain points which are dark colored markers come from clipart images. The labelled target
examples are marked with X’s. The two plots on the left compare differently pretrained backbones
and the three on the right use backbones at the end of different SSDA training processes. In the
plots we can see that pretraining the backbone for rotation prediction starts to align and cluster
points according to their classes a little better than what a backbone pretrained just on Imagenet can
do. Out of the final classifiers on the right, we see that both PAC and MME create well separated
classes in feature space allowing for the classifier to have decision boundaries in low-density regions.
MME explicitly minimizes conditional entropy which may draw samples even further apart from the
classifier boundaries, as compared to our method which simply tries to ensure that the classifier does
not separate an example and its perturbed version.

Imagenet pretrained Rotation pretrained S+T MME PAC

LT3

Figure 2: 2-D TSNE embeddings of features from 5 randomly chosen classes. Lighter colors represent
source domain points and darker ones represent corresponding target domain points. The dark colored
X’s are labelled target domain points (3 per class). Pretraining with rotation prediction begins to
cluster points of the same class a little better over a backbone pretrained only on Imagenet. Our
method on the right, separates classes just as well as MME. Refer to Section [3.1] for discussion. (Best
viewed with color and under zoom)

In Table ] we quantitatively analyze the features using different metrics : The .A-distance is a
distance metric between the two domains in feature space computed using an SVM trained to classify
domains as done in [3]]. The higher the error of the SVM domain classifier, the lower is the .A-distance.
The other two metrics are accuracies of distance based nearest neighbor (NN) classifiers in feature
space. The first one, “NN Acc. (Target)” is the accuracy of a classifier that assigns any unlabelled
target example, the class label of the target labelled examples closest to it on average in the feature
space. “NN Acc. (Source)” similarly uses only the source examples, all of which are labelled, to
compute the class label for an unlabelled target example. Finally BD is an empirical inter-class
Bhattacharyya distance estimate (details in supp.). Comparing the pretrained backbones, we see that
rotation pretraining improves the feature space both by bringing closer the features across the two
domains (as indicated by the low A-distance) and aligning them so that features within a class are
closer (indicated by the higher NN accuracies). When it comes to final feature spaces of the SSDA
methods, we see that MME, being a domain alignment method, reduces .A-distance more than PAC.
However, PAC is able to better maintain the class-defined neighborhood of features, as indicated
by the higher accuracies. Also, PAC has higher inter-class divergence (BD), which leads to lower
error according to Eq. (1) in the main paper. This shows that in SSDA, for learning good target
classification, low divergence between domains is not a necessity.

B PAC performance with different target shots.

In Figure 3] we plot the target accuracy of 4 methods on the real to clipart adaptation scenario of
Office-Home, for different number of labelled target examples. The method “CR” represents the
consistency regularization part of PAC, meaning it starts with an Imagenet pretrained backbone, same



NN Acc. NN Acc.

Backbone  A-dist (Target)  (Source) BD
Imagenet pt.  1.57 26.8 26.0 -
Rotation pt. 1.28 36.2 34.6 -

S+T 1.49 43.0 43.3 2.01
MME 1.24 51.2 51.5 4.03
PAC 1.45 56.4 56.8 13.43

Table 4: Feature space metrics for different Alexnet backbones on the real to clipart adaptation
scenario of Office-Home. We see that rotation prediction helps improve the initial feature space. Also
amongst the SSDA methods, PAC maintains a better class defined neighborhood both within and
across domains, even though the two domains are not aligned as closely as in the case of MME.

as S+T and MME [28]]. We see that with its domain alignment approach, MME performs well at O
shots. However, along with pretraining using rotation prediction, which has some alignment effect,
PAC does not lag far behind. As the number of labelled examples increase, we see all methods enjoy
a significant boost in performance, where the error has an exponential relation to the number of
labelled examples as indicated by Eq. 1 (main paper). Since PAC and CR have better feature space
clustering, i.e., they have a higher inter-class divergence D, they see a bigger reduction in error.

Performance with varying Number of Target Labels
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Figure 3: Performance with different number of labelled target examples. MME benefiting from
domain alignment performs best at O shots. With more labelled examples, there is an exponential
decrease in target error (Eq. 1), with PAC and CR benefiting most due to better target clustering, i.e.,
high inter-class divergence D

C More questions

How does pretraining with rotation prediction compare to a constrastive method? Contrastive
pretraining methods [[13} 16, [7] have been shown to attain remarkable performance in learning features
from unlabelled images that are useful for tasks like image recognition and object detection. We
evaluate how momentum contrast (MoCo) [13] and SimSiam [7] perform for pretraining our feature
extractor on both source and target images, compared with rotation prediction. Table[5|compares most
of the same metrics as Table [ with the addition of final model (training with labels and consistency
regularization) performance on target classification. We see that, both MoCo and SimSiam improve
the imagenet pretrained features to some extent helping the final classification performance. However,
this improvement is not as high as in the case of rotation prediction pretraining. We see that MoCo
has marginally better class-defined structure across domains, but a poorer structure in the target
domain indicated by the accuracies of the distance based NN classifiers. Interestingly, we see that
nearest neighbors classifiers perform much poorer in the case of SimSiam pretraining as compared to



Backbone NN Acc. NN Acc.

pretraining A-dist (Target)  (Source) Final Acc.
Imagenet 1.57 26.8 26.0 54.1
MoCo 1.31 314 34.8 56.3
SimSiam 1.53 19.3 17.1 56.6
Rotation 1.28 36.2 34.6 58.8

Table 5: Feature space metrics and final method performance for differently pretrained Alexnet
backbones on the real to clipart adaptation scenario of Office-Home. MoCo and SimSiam help over
Imagenet pretraining, but not as much as rotation prediction.

other cases, while the pretraining still benefits final SSDA accuracy. This might indicate that this
pretraining helps with optimization in some manner while not clustering the initial feature space as
much.

Different image perturbation methods

B Val Accuracy
W Test Accuracy
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Figure 4: Performance of our method with different augmentation/perturbation methods on real
to clipart adaptation of Office-Home. Adversarial perturbation helps, but not as much as image
augmentation approaches do. A combination of color jittering and RandAugment performed the best.

Which perturbation technique is best for consistency? We compared three different image aug-
mentation approaches : RandAugment [8]] involves a list of 14 different augmentation schemes
like translations, rotations, shears, color/brightness enhancements etc., 2 out of which are chosen
randomly anytime an image is augmented. We also evaluated color jittering, since common objects
in our datasets are largely invariant to small changes in color. Finally we tried a combination of
both, and found that this performed best for our method. Fig [ shows the comparison of the final
target accuracies achieved using an Alexnet backbone on the real to clipart adaptation scenario of
Office-Home. Besides perturbations based on augmentation, we also evaluated adversarial image
perturbation via virtual adversarial training (VAT) [23]]. When using VAT, we found improvements
over the simple “S+T" method (48.3% using VAT vs 44.6% without), but as seen from Fig[d] we
found this was much lower than image augmentation approaches. This is quite likely because image
augmentation imposes a more meaningful neighborhood on images where class labels do not change,
while adversarial perturbation does not have this guarantee.

Can pretraining and consistency help other methods? An indication towards the affirmative is
seen when we train MME with pretraining and consistency on the 3-shot real to sketch scenario of
DomainNet using a Resnet-34 backbone. The results are shown in Table[6] where we can see that
pretraining and consistency both individually help MME’s performance, and their combination helps
it the most.



Rot™ CR Accuracy

61.9

v 65.8
v 70.4

v v 71.5

Table 6: Pretraining and consistency with MME.

It was explained how pretraining improves initial feature space, but prior work has also used
“pretext” tasks like rotation prediction alongside classification for training [37,33]. How does
pretraining compare to that? A comparison of this can be found in table[7} which reports the 3-shot
SSDA target accuracies of the two methods on the DomainNet dataset. As can be seen, pretraining
using rotation prediction provides more of a performance benefit as compared to using rotation
prediction as an auxiliary task like [37, 33]]. The latter can help regularize final target classifier
training, but likely does not have the benefits that pretraining provides the method via a better initial
feature space for training.

Method | C2s P2C P2R R2C R2P R2S S2P | Mean

S+T + Rot™ pred 547 595 741 604 623 518 592 | 60.3
S+T (Rot™ pred pretrained backbone) | 59.1 653 74.0 64.1 639 56.1 61.7 | 63.5

Table 7: Comparison of rotation prediction for pretraining vs as an auxilliary training task using
target accuracies on 3-shot SSDA on different scenarios of DomainNet.

What if pretraining uses rotation prediction only on target? We train the backbone only on target
domain data for pretraining with rotation prediction, and then train it like PAC using consistency
regularization. On the 3-shot real to clipart SSDA scenario of Office-Home using an Alexnet
backbone, this achieves a final target accuracy of 57.5% compared to 58.9% of PAC. This is indicative
of target-only rotation prediction helping the initial feature extractor, but not as much as in the case
when source domain data is used along with it.

n Accuracy Accuracy
Rot CR (with source) (only target)
v 56.6 35.5
v v 58.9 36.7

Table 8: Ablating source domain information.

How big is the role of source domain data in final target performance? To see this, we train our
method with no access to source domain data. This is similar to the semi-supervised learning problem.
Target accuracy with only 3 labelled target examples and access to all other unlabelled examples, on
the clipart domain of Office-Home using an Alexnet backbone, are in the last column of Table
For reference, the accuracies of our method with source domain data from the real domain (i.e. R2C
adaptation scenario) are provided in the 3"¢ column.

D PAC sensitivity to confidence threshold

Our consistency regularization approach uses soft targets based on outputs of the classifier only in
cases where the confidence of labelling is high. In Fig[5] we compare the sensitivity of our method
to this threshold. We see that higher confidence thresholds up to 0.9 help final target classification
performance.
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Figure 5: Sensitivity of our method to different thresholds used for consistency regularization.
Accuracies reported are on the 3-shot real to sketch scenario of DomainNet using a Resnet-34
backbone.

E Results on Office and Office-Home

Office-Home [35] is a dataset with 65 categories of objects found in typical office and home en-
vironments. It has 4 different visual domains (Art, Clipart, Product, and Real), and we evaluate
our methods on all 12 different adaptation scenarios. The 4 domains have close to 3800 images on
average. Office [27] dataset has objects of 31 different categories in 3 different domains—amazon,
webcam and dslr, with approx. 2800, 800 and 500 images respectively. Following [28] we evaluated
only on the 2 cases with amazon as the target domain, since the other two domains have a lot fewer
images.

Table [I0] shows the results of PAC on the different scenarios of Office-Home, the average accuracy
over all these scenarios was also reported in Table 3 in the main paper. Table [9]shows the accuracy of
PAC on two scenarios of Office. We see that PAC performs comparably to state of the art. It lags
behind a little in the 1-shot scenarios as compared to 3-shot ones.

F Experiment details

All our experiments were implemented in PyTorch [24] using W&B [4] for managing experiments.

F.1 PAC experiments

We used three different backbones for evaluation in different experiments—Alexnet [[17], VGG-16
[32] and Resnet-34 [[14]. Our backbones before being trained using the rotation prediction task, are
pretrained on the Imagenet [9] dataset, same as other methods used for comparison. While using
an Alexnet or VGG-16 feature extractor, we use 1 fully connected layer as the classifier, and while
using the Resnet-34 backbone, we use a 2-layer MLP with 512 intermediate nodes. The classifier C'
uses a temperature parameter set to 0.05 to sharpen the distribution it outputs using a softmax. For
consistency regularization, the confidence threshold 7 was set to 0.9 across all experiments, having
validated on the real to sketch scenario of DomainNet.

Same as [28]], we train the models using minibatch-SGD, with s source examples, s labelled target
examples and 2s unlabelled target examples that the learner “sees” at each training step. s = 24 for
the VGG and Resnet backbones, while s = 32 for Alexnet. The SGD optimizer used a momentum
parameter 0.9 and a weight decay (coefficient of {5 regularizer on parameter norm) of 0.0005. For
all experiments, the parameters of the backbone are updated with a learning rate of 0.001, while
the parameters of the classifier are updated with a learning rate 0.01. Both of these are decayed as
training progresses using a decay schedule similar to [10]]. Learning rate at step ¢ (7;) is set as below:
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Dto A Wito A
Network | Method 1-shot 3-shot 1-shot 3-shot
S+T 50.0 62.4 50.4 61.2
DANN 54.5 65.2 57.0 64.4
ADR 50.9 61.4 50.2 61.2
CDAN 48.5 61.4 50.2 60.3

Alexnet | ENT 50.0 66.2 50.7 64.0
MME 55.8 67.8 57.2 67.3
APE 69.0 67.6

BiAT 54.6 68.5 57.9 68.2
CDAC 63.4 70.1 62.8 70.0
PAC 54.7 66.3 53.6 65.1

S+T 68.2 73.3 69.2 73.2
DANN 70.4 74.6 69.3 75.4
ADR 69.2 74.1 69.7 73.3
VGG CDAN 64.4 71.4 65.9 74.4

ENT 72.1 75.1 69.1 75.4
MME 73.6 77.6 73.1 76.3
PAC 72.4 75.6 70.2 76.0

Table 9: Results on Office. We evaluate using the two scenarios where the target domain is amazon

Network | Method | RtoC RtoP RtwA PtoR PtoC PtoA AtoP AtC AtwR CtoR CtoA CtoP | Mean
One-shot

S+T 37.5 63.1 44.8 54.3 31.7 31.5 48.8 31.1 533 485 339 50.8 44.1
DANN 425 64.2 45.1 56.4 36.6 32.7 43.5 34.4 51.9 51.0 33.8 49.4 45.1
ADR 37.8 63.5 454 53.5 325 322 49.5 31.8 53.4 49.7 342 50.4 44.5
CDAN 36.1 62.3 422 52.7 28.0 27.8 48.7 28.0 51.3 41.0 26.8 49.9 41.2

Alexnet | g 268 658 458 563 235 219 474 221 534 308 181 536 | 388
MME | 420 69.6 483 587 378 349 525 364 570 541 395 591 | 492
BiAT R : - B - : . - - : . . 49.6
PAC 496 698 459 575 425 304 531 358 519 482 260 57.6 | 474
S+T 395 753 612 716 370 520 636 375 695 645 Sl4 659 | 574

DANN 52.0 75.7 62.7 72.7 459 51.3 64.3 44.4 68.9 64.2 52.3 65.3 60.0
ADR 39.7 76.2 60.2 71.8 37.2 51.4 63.9 39.0 68.7 64.8 50.0 65.2 57.3
VGG CDAN 433 75.7 60.9 69.6 374 44.5 67.7 39.8 64.8 58.7 41.6 66.2 559

ENT 23.7 71.5 64.0 74.6 21.3 44.6 66.0 224 70.6 62.1 25.1 67.7 51.6

MME 49.1 78.7 65.1 74.4 46.2 56.0 68.6 45.8 72.2 68.0 57.5 71.3 62.7

PAC 56.4 78.8 64.6 73.1 54.7 553 69.8 435 69.5 65.3 453 69.6 62.2
Three-shot

S+T 44.6 66.7 47.7 57.8 444 36.1 57.6 38.8 57.0 54.3 375 57.9 50.0

DANN 472 66.7 46.6 58.1 44.4 36.1 57.2 39.8 56.6 54.3 38.6 57.9 50.3
ADR 45.0 66.2 46.9 57.3 38.9 36.3 57.5 40.0 57.8 534 37.3 57.7 49.5
CDAN 41.8 69.9 432 53.6 35.8 32.0 56.3 34.5 53.5 49.3 27.9 56.2 46.2

Alexnet | ENT 449 704 471 603 412 346 607 378 605 580 318 634 | 509
MME | 512 730 503 616 472 407 639 438 614 599 447 647 | 552
APE 519 746 512 616 479 421 655 445 609 581 443 648 | 556
BiAT - - - - - - - - - - - - 56.4
CDAC | 549 758 518 643 513 436 651 475 631 630 449 656 | 56.8
PAC 589 724 475 619 532 396 638 499 600 545 363 648 | 552
S+T 496 786 636 727 472 559 694 475 734 697 562 704 | 629

DANN 56.1 779 63.7 73.6 52.4 56.3 69.5 50.0 72.3 68.7 56.4 69.8 63.9
ADR 49.0 78.1 62.8 73.6 47.8 55.8 69.9 49.3 73.3 69.3 56.3 71.4 63.1
VGG CDAN 50.2 80.9 62.1 70.8 45.1 50.3 74.1 46.0 71.4 65.9 529 71.2 61.8

ENT 483 81.6 65.5 76.6 46.8 56.9 73.0 44.8 75.3 72.9 59.1 77.0 64.8
MME 56.9 82.9 65.7 76.7 53.6 59.2 75.7 54.9 75.3 72.9 61.1 76.3 67.6
PAC 63.5 82.3 66.8 75.8 58.6 57.1 759 56.7 722 70.5 57.7 75.3 67.7

Table 10: Results on all adaptation scenarios of Office-Home.
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For experiments on the Office and Office-Home dataset, we trained PAC using both an Alexnet and
a VGG-16 backbone, and the models were trained for 10000 steps with the stopping point chosen
using best validation accuracy.

For the experiments on DomainNet, we use both Alexnet and Resnet-34 backbones, while for VisDA-
17, we use only Resnet-34. All models in these experiments were trained for 50000 steps, using
validation accuracy for determining the best stopping point.

F.2 Pretraining

As mentioned above, we pretrain our models for rotation prediction starting from Imagenet pretrained
weights. A comparison of PAC with a backbone trained with rotation prediction starting from imagenet
pretraining (final target accuracy = 58.9%) vs one that does not use any imagenet pretraining (final
target accuracy = 43.7%), revealed that there is important feature space information in imagenet
pretrained weights that rotation prediction could not capture on its own. This comparison was done
using an Alexnet on the real to clipart adaptation scenario of Office-Home.

Following Gidaris et al. [12], we trained the model on all 4 rotations of a single image in each
minibatch. Each minibatch contained s images each from source and target domains, which translates
to 4s images considering all rotations. The Alexnet backbones are trained using a learning rate of
0.01 and s = 128. The Resnet-34 and VGG backbones are both trained using s = 16 and a learning
rate of 0.001. We found that beyond a certain point early on in training, the number of steps of
training for rotation prediction did not make a big difference to the final task accuracy, and finally the
chosen number of training steps was 4000 for Alexnet, 2000 for VGG-16 and 5000 for Resnet-34
backbones.

F.3 Other Experiments

MoCo pretraining. Using the Alexnet backbone, we trained momentum contrast [[13] for 5000
training steps, where in each step the model saw 32 images each from the real and the clipart domains
of Office-Home. The queue length used for MoCo was 4096 and the momentum parameter was
0.999.

SimSiam pretraining. Using the Alexnet backbone, we trained SimSiam [[7] for 200 epochs (or
6800 training steps) on a mix of the source (real) and target (clipart) sets of Office-Home, with a
batch size of 256.

Virtual Adversarial Training. For adding a VAT criterion to our model, we closely followed the
VAT criterion in VADA [31]]. We used a radius of 3.5 for adversarial perturbations and a coefficient
of 0.01 for the VAT criterion, which is the KL divergence between the outputs of the perturbed and
the unperturbed input from the target domain.

Empirical Bhattacharyya Distance Estimate. We use this estimate to compare target domain
inter-class separation in Table ] For computing an approximation, we made the assumption that
features for each class in the target domain are distributed as gaussians with identity covariance and
used the closed form Bhattacharyya Distance (BD) between two multivariate gaussians [36]. The
estimate then reduces to:

1 1
BD = > gllmi— mll;
(2) i jemo
i#]

where p; is the mean of class ¢ features of images in the target domain (D; U D,,).
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