
Under review as a conference paper at ICLR 2023

LAYER-WISE BALANCED ACTIVATION MECHANISM

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel activation mechanism called LayerAct mechanism to de-
velop layer-wise balanced activation functions that converge faster and perform
better than existing activation functions. During the backpropagation in neural
networks, the scale of activation function determines how much the parameters
will be trained using each sample. This fact indicates that training of a neural
network can be biased against samples when the distribution of activation is im-
balanced among samples. With a simple experiment on the unnormalized network
with rectified linear units (ReLUs) for activation, we show that there is a relation-
ship between the sum of the activation scale and the training loss, which indicates
that an imbalanced activation scale among samples can result in a bias in learn-
ing. The layer normalization (LayerNorm) can be used to avoid such problems
of bias in learning by balancing the layer-wise distribution of inputs for activation
functions. However, LayerNorm loses the mean and variance statistics of acti-
vated instances among samples during re-scaling and re-centering. Our proposed
LayerAct mechanism balances the layer-wise distribution of activation outputs
for all samples without re-scaling and re-centering; this way, LayerAct functions
avoid not only the problem of bias in learning, but also the dilution problem of
key statistics. LayerAct functions allow negative activation outputs when the ac-
tivated signals have to be negative; thus, the machine can avoid bias shifts during
learning, enabling rich representations at the end. Moreover, the proposed Lay-
erAct mechanism can be used with the batch normalization (BatchNorm). Ex-
periments show that LayerAct functions outperform the unbalanced element-level
activation functions on two benchmark image classification datasets, CIFAR10
and CIFAR100. Given the essential role of activation in traditional multi-layer
perceptrons (MLPs), convolutional neural networks (CNNs), and modern deep
learning frameworks, our original work on the layer-wise activation fundamentally
addressing the core mechanism of learning through multiple layers will contribute
in developing high-performance machine learning frameworks.

1 INTRODUCTION

The success of deep neural networks (DNNs) partly relies on the activation function that identifies
nonlinear relationships in data, and the activation controls training of a network by determining
each parameter’s scale of gradient in forward and back-propagation. Most of the existing activation
functions have an element-level activation mechanism as they operate on a single element of the
input vector in a layer individually (Nair & Hinton, 2010; Maas et al., 2013; Ramachandran et al.,
2017). Such an element-level activation mechanism leads to imbalanced distributions of activation
when the distribution of inputs to the layer is imbalanced among training samples, which results in
an imbalanced distribution of gradient scale in back-propagation. In case of using rectified linear
units (ReLUs, Nair & Hinton (2010)) with gradient scale of 0 or 1, the training samples with many
activated elements naturally contribute more parameters to be optimized than other samples with
a small number of activated elements. As such, the element-level activation mechanism of back-
propagation induces a bias in the training of a network against samples; more parameters in the
network are fitted to some training samples more than others. LayerNorm (Ba et al., 2016) that
balances the distribution of activation and scale of gradient can address such a bias problem by re-
scaling and re-centering, but the representation of activation becomes similar across all samples as
the mean and variance of the layer become not different among samples (Lubana et al., 2021).

1



Under review as a conference paper at ICLR 2023

In this paper, we propose a novel layer-level activation mechanism to develop layer-wise balanced
activation (LayerAct) functions, which balance the distribution of activation among samples with-
out re-scaling or re-centering the inputs directly. Unlike the general mechanism of the activation
functions that the nonlinearity criterion (i.e., scale function) does not change as it depends only on
the single element of a layer, the criterion of LayerAct functions relies on the distribution of all
inputs of a layer. This way, LayerAct functions do not lose the diversity of statistics among sam-
ples as they do not directly re-scale or re-center the inputs. With such a mechanism of layer-level
activation, LayerAct enables a layer-wise balanced distribution of activation, whether the distribu-
tion of inputs is imbalanced or not, with different statistics of activation outputs among samples.
This property makes all training samples have a fair amount of influence on training parameters in
back-propagation, thereby ensuring rich representations.

LayerAct functions also comply with key requirements of activation functions and their beneficial
properties. Recent studies, such as exponential linear units (ELUs, Clevert et al. (2015)) or flexible
rectified linear units (FReLUs, Qiu et al. (2018)), emphasize the important properties of an acti-
vation function: (i) the function should enable negative values in activation and (ii) the activation
mean should be “zero-like” (i.e., push the mean of activation to zero as possible). To achieve these
properties, existing activation functions involve additional learnable parameters (Clevert et al., 2015;
Qiu et al., 2018), which increase the complexity of the network. However, LayerAct functions allow
negative values and the zero-like mean without any additional parameters as the distribution of the
given inputs to the functions determines. As such, LayerAct functions with layer-wise activation
fundamentally address the core mechanism of learning through multiple layers.

This is an original study to tackle the imbalanced activation across the elements of a network layer,
to devise the concept of layer-wise balanced activation, and to develop a mechanism and activation
functions to enable it. To present the necessity and contribution of our proposed LayerAct mecha-
nism, the remainder of this paper is organized as follows. Section 2 reviews preliminaries and related
studies on activation and normalization, as well as formulates our motivation. Section 3 explains the
proposed LayerAct mechanism and functions. In Section 4, we show a simple experiment with the
MNIST dataset that there is a relationship between the sum of activation scale and the loss during
training. The implication of this experimental result, “the training of a network can be biased among
samples if the scale of activation function in a layer is not balanced”, empirically shows the necessity
of layer-level balanced activation for efficient and effective training. Accordingly, we compare Lay-
erAct functions with other activation functions using two image datasets, CIFAR10 and CIFAR100.
As expected, LayerAct functions showed faster convergence and better performance than existing
element-level activation functions. We believe the proposed LayerAct mechanism will contribute
in developing high-performance machine learning frameworks, given the indispensable use and sig-
nificance of activation in traditional multi-layer perceptrons (MLPs), convolutional neural networks
(CNNs), and modern deep learning research and practice.

2 BACKGROUND AND MOTIVATION

2.1 ACTIVATION SCALE IN NETWORKS

Consider the lth layer in an MLP with linear projection and an activation function. The computation
of the layer with input vector xl, weight matrix W l and non-linear function f as the activation
function is defined as follows:

yl = W lTxl, al = f
(
yl
)

(1)
where yl and al are the output vector of linear projection and activation of the lth layer, respectively.
The output vector yl of linear projection is the input of the activation function. For some activation
functions with the element-level activation mechanism, the output of the activation function can be
expressed as al = yls

(
yl
)
, which is the multiplication of yl and non-linear activation scale s(yl).

For example, the activation scale of ReLUs and sigmoid linear units (SiLUs; Elfwing et al. (2018))
for the ith element are presented as follows:

sReLU
(
yli
)
=

{
1, if yli ≥ 0

0, if yli < 0
, sSiLU

(
yli
)
= sig

(
yli
)

(2)

where yli is the ith element of yl; sig is the sigmoid function, and sReLUs and sSiLUs are non-
linear scale functions of ReLUs and SiLUs, respectively. In such an activation function, the scale

2



Under review as a conference paper at ICLR 2023

function is the one that carries out the non-linearity output of activation in forward-propagation.
In back-propagation, the activation scale function controls the distribution of gradients for training
parameters. Therefore, the activation scale s

(
yli
)

represents the effect of activation function on
parameters related to the ith element of the lth layer.

2.2 MOTIVATION OF THIS WORK

In the previous section, we discussed the activation scale of element-level activation. Here, when
the distribution of activation scale s

(
yl
)

is imbalanced between samples, it causes imbalanced ac-
tivation outputs and gradients in forward and back-propagation, respectively. More specifically,
the activation scale of lth layer resizes the gradients from the (l + 1)

th layer and passes it to the
(l − 1)

th layer when a gradient-descent-based optimization algorithm is used. In back-propagation,
the gradient passed from the lth layer to the (l − 1)

th layer under the chain rule is:

∂L

∂al−1
=

∂yl

∂xl

∂al

∂yl
∂L

∂xl+1
,

∂al

∂yl
= s

(
yl
)
+

∂s
(
yl
)

∂yl
(3)

where L is the loss of network, while al−1 = xl and al = xl+1 as an activation output is the input
for the next layer. Thus, we can expect that if a sample has a very small sum of activation scale at
a certain training epoch, then the parameters placed behind the lth layer will likely to have small
gradients than other samples during the epoch, which causes a bias of training between samples. We
refer to this phenomenon as imbalanced activation.

2.3 NORMALIZATION IN NETWORKS

Normalization has become an essential technique for DNNs with the great success of BatchNorm
(Ioffe & Szegedy, 2015; Lubana et al., 2021). BatchNorm makes the network stable during training
in forward and back propagation by re-scaling and re-centering the inputs (Bjorck et al., 2018). In
addition, BatchNorm avoids channel-wise collapse, which indicates the problem of linear activation,
by balancing channel-wise elements (Daneshmand et al., 2020). However, the use of BatchNorm
requires a sufficiently large batch size, and it cannot solve the bias problem among samples (Labatie
et al., 2021).

Meanwhile, LayerNorm normalizes elements in the layer-dimension, instead of the batch-dimension
to address the batch-dependency of BatchNorm. Specifically, LayerNorm normalizes the elements
of a layer with the layer-wise mean and standard deviation defined as follows:

nl
i =

gli
σl

(
yli − µl

)
+ bli, µl =

H∑
i=1

yli, σl =

√√√√ H∑
i=1

(
yli − µl

)2
(4)

where H is the number of elements in yl; nl
i is the ith normalized element, and gli and bli are the

learnable parameters of gain and bias of normalization. The distribution of nl follows N(bl, gl
2
) for

all samples, which leads to the balanced distribution of activation scale sl(nl). Such a layer-level
balancing mechanism can solve the bias problem among samples in training. However, LayerNorm
loses all the mean and variance statistics of linear projection; thus, the final outputs of the lth layer
across samples become similar (Lubana et al., 2021). To avoid this dilution problem, a layer-level
balancing mechanism should be performed without directly re-scaling or re-centering the input of
activation.

3 THE PROPOSED LAYERACT MECHANISM AND FUNCTIONS

In this section, we introduce a novel layer-level activation mechanism that addresses the aforemen-
tioned limitations of existing methods for activation and normalization, which has the following
beneficial properties: i) able to preserve the distribution of inputs yl and balance the distribution
of activation outputs, as well as ii) to maintain the different statistics between samples. Fig.1 and
Table.1 show the difference between the element-level activation mechanisms with and without Lay-
erNorm, and our proposed mechanism for layer-wise balanced activation.

3



Under review as a conference paper at ICLR 2023

Table 1: This table compares the layer-level activation mechanism that we propose in this paper
with the conventional element-level activation mechanisms with and without LayerNorm. ✓and X
denote if the corresponding method has the specific property or not. BatchNorm is not compared as
its objective is not a layer-level balancing; rather, BatchNorm is a complementary with the LayerAct
mechanism proposed in this work.

Maintaining
statistics

Layer-wise balanced
output of activation

Negative
output of activation

Element-level activation
without LayerNorm ✓ X

Depends on the
activation function

Element-level activation
with LayerNorm X

Depends on the
activation function

Depends on the
activation function

Proposed mechanism of
layer-level activation ✓ ✓

Depends on the
distribution of inputs

(a) Unnormalized network (b) Network with LayerNorm (c) Network with LayerAct

Figure 1: Upper: the mechanisms of the (a) element-level activation without normalization,
(b) element-level activation with LayerNorm, and (c) proposed layer-level activation (LayerAct).
Lower: Non-zero activated distribution of two samples (green and red) with the element-level acti-
vation cases versus the layer-level activation case. While the criterion of activation does not change
between samples in the element-level activation, the criterion of proposed LayerAct mechanism fits
to the layer-wise distribution of the samples.

3.1 LAYERACT MECHANISM

The proposed LayerAct mechanism is defined as the multiplication of the input yl and the activation
scale s(nl) which has the layer-wise normalized input nl

i. The forward and backward passes of
LayerAct functions are defined as follows:

ali
LayerAct

= ylis
(
nl
i

)
, nl

i =

(
yli − µl

)
σl

(5)

∂ali
LayerAct

∂yli
= s

(
nl
i

)
+

H∑
j=1

ylj
∂s

(
nl
j

)
∂nl

j

∂nl
j

∂yli
(6)

where µl and σl are the layer-wise mean and standard deviation of Eq.4, respectively. No matter
how different the distributions of linear projection

(
yl
)

for the samples in the dataset, the scale
functions with normalized input vectors nl fall into a single distribution for all samples. The shape
of non-linearity of all samples becomes same at layer-level, while the activation output of a LayerAct
function al

LayerAct still maintains the different statistics between samples as yli is neither re-scaled
nor re-centered (See Fig. 1c). This layer-level activation mechanism to take care of samples equally
can reduce the variance of training loss among samples, and therefore making the training process

4



Under review as a conference paper at ICLR 2023

converge faster than element-level activation mechanisms and achieving higher performance at the
end of training. Moreover, LayerAct allows negative activation outputs according to the distribution
of inputs, which is known to be useful for training DNNs (Clevert et al., 2015; Qiu et al., 2018).

The normalization techniques, including LayerNorm, use affine transformation function as Eq.4
(Ioffe & Szegedy, 2015; Ba et al., 2016; Wu & He, 2018). However, Xu et al. (2019) argued that the
affine transformation parameters (gain and bias) of LayerNorm may cause over-fitting, and do not
improve the performance of a network. We use the layer-wise normalized term nl as the input of
activation scale function, and the parameters might act the same as in the case of using LayerNorm.
Thus, we will discuss whether the gain and bias would work in LayerAct functions well or not in
Section 4 with experimental results.

3.2 DESIGNING LAYERACT FUNCTIONS

Proper design of the activation scale functions is very important in designing a neural-network-based
learning framework, and the non-linearity of LayerAct functions relies on the form of scale function.
Thus, we propose must have properties of LayerAct functions as follows.

Continuous. The activation functions should be continuous at every point for stable inference. In
contrast to some piece-wise activation functions under element-level activation mechanisms that can
have discrete scale functions at 0 but still themselves are continuous, LayerAct functions are discrete
if the scale functions are discrete.

Bounded. The scale of activation s
(
nl
i

)
should be bounded between 0 and 1. If the scale is lower

than 0, there is a possibility that the same activation output ali
LayerAct will derive from more than

one activation input which means that the expressiveness is decreased as passing the activation
function. If the scale is larger than 1, it is obvious that the gradient (Eq.6) may explode during the
back-propagation.

Gradual. Considering Eq.6, the first derivative (i.e. gradient) of activation scale function affects
the gradient in back-propagation directly. If the first derivative of the scale function is too large, the
gradient would explode with the same reason of the Bounded property we discussed above, so the
scale function has to be gradual.

With the consideration above, Sigmoid and HardSigmoid functions are suitable for the scale func-
tion of LayerAct. Both functions are continuous, bounded exactly between 0 and 1, and the first
derivatives are also continuous and stable with the maximum 1/4 and 1/6, respectively. We pro-
pose the following two LayerAct functions, LA-SiLUs and LA-HardSiLUs, which are layer-level
transformed versions of SiLUs and HardSiLUs:

ali
LA-SiLUs

= ylisig
(
nl
i

)
(7)

ali
LA-HardSiLUs

=


yli, if nl

i ≥ 3

yli
(
nl
i/6 + 1/2

)
, if − 3 ≤ nl

i < 3

0, if nl
i < −3

(8)

4 EXPERIMENTS AND RESULTS

In this section, we show the experimental results on three image datasets, MNIST (gray image,
10 classes, 60k trained and 10k tested), CIFAR10 (color images, 10 classes, 50k training and 10k
testing) and CIFAR100 (color images, 100 classes, 50k training and 10k tested). For training, we
used 10% of the training dataset as a validation set. Fully-connected MLPs and Convolutional
Neural Network (CNN) based models are used for MNIST and the other datasets, respectively. We
initialized the weight of the networks following He et al. (2015). For the detailed settings of these
experiments, see Appendix A.2.

4.1 EXPERIMENTAL ANALYSIS ON ACTIVATION SCALE

To identify if the imbalance between samples does affect the training, we performed a simple exper-
iment with the MNIST dataset and 4-layer MLPs with different numbers of element units per layer

5



Under review as a conference paper at ICLR 2023

(a) 20X4 MLP (b) 40X4 MLP (c) 100X4 MLP

(d) 20X4 MLP with BN (e) 40X4 MLP with BN (f) 100X4 MLP with BN

Figure 2: The correlation between the sum of activation scale and the training loss of classification
task on the MNIST dataset. AX4 denotes 4 layers with A element units per layer. The figures show
three best cases according to the final training loss among 5-runs.

Table 2: Performance comparison of LayerAct functions and other element-level activation func-
tions on CNN for CIFAR10. The test accuracy(%) is shown as best/mean among the 5 runs. Best
results are in bold.

Activation CNN CNN with BN CNN with LN
ReLU 87.08 / 86.98 89.72 / 89.21 83.9 / 83.28
SiLU 87.85 / 87.65 90.69 / 90.23 88.07 / 87.71
HardSiLU 87.48 / 87.35 90.41 / 90.02 88.08 / 87.54
LA-SiLU 88.04 / 87.818 90.65 / 90.26 -
LA-HardSiLU 88.26 / 87.92 90.95 / 90.08 -
Affine LA-SiLU 88.62 / 88.35 90.71 / 90.39 -
Affine LA-HardSiLU 88.16 / 87.89 89.62 / 89.08 -

(20, 40, and 100) for classification. As a correlation analysis can measure the linear relationship
between two variables, we analyzed the correlation between the sum of activation scale and training
loss while training the network. If there is any positive or negative correlation during training, it
means that the imbalanced activation scale has a certain relationship with the training loss.

Fig.2 shows the trend of correlation between the sum of activation scale and the training loss of
same networks with different random seeds for weight initialization. There are positive or negative
relationships between the sum of activation scale and the loss. In some networks, such a relationship
also maintained after training is over, meaning that the network could not overcome the bias in
training among samples even at the end of training. The LayerAct mechanism proposed in this paper
can ensure a balanced sum of activation scale between samples to avoid the bias in training at every
epoch. This way, the new activation mechanism can achieve a low variance of loss among samples,
faster convergence, and eventually better performance than element-level activation mechanisms.

6



Under review as a conference paper at ICLR 2023

(a) unnormalized CNN (b) CNN with BatchNorm

Figure 3: Plot of training loss of CNN. The best model of the activation function is selected. These
figures show that LayerAct functions converge faster than element-level activation functions at the
early stage of training.

4.2 EXPERIMENTAL RESULTS ON CIFAR10 AND CIFAR100

Here, we show the experimental results with the CIFAR10 and CIFAR100 dataset. We used the
CNN, ResNet20, and ResNet44 (He et al., 2016) models as the benchmarking bases. For the detailed
structure of CNN, see Appendix A.1.

4.2.1 RESULTS ON CNN WITH LAYERACT AND AFFINE TRANSFORMATION

We used LA-SiLU and LA-HardSiLU, as LayerAct functions for the CIFAR10 dataset. Following
the findings from Xu et al. (2019) we investigate whether the affine transformation parameters (gain
and bias) of LayerNorm should be used for LayerAct or not (i.e., to show the capability of the
LayerAct mechanism without affine transformation). In Table 2, we denote the LayerAct functions
with affine transformation as Affine LayerAct.

The experimental results with CNN are shown in Tables 2. LayerAct functions outperformed the
element-level activation functions in both the best case and the mean of 5-runs. Fig.3 also shows that
LayerAct functions converge faster than the competitors. Revisiting Eq.2 and Eq.5, the difference
between element-level activation functions and LayerAct functions is whether the activation scale
is based on the unnormalized or layer-wise normalized input; in case of using LayerAct, the sum of
activation scale is balanced among the samples. This experimental result supports the findings we
discussed in Section 4.1.

Affine LA-SiLU is superior among the activation functions in unnormalized networks. However,
there was no big difference between LayerAct and Affine LayerAct functions on their performance,
while the functions without affine transformation showed a better result when used with BatchNorm.
Thus, we think that the use of affine transformation is worth when the network does not use Batch-
Norm, but it would be better to use LayerAct functions without affine transformation for the network

7



Under review as a conference paper at ICLR 2023

Table 3: Performance comparison of LayerAct functions and other element-level activation func-
tions on ResNet20 for CIFAR10 and CIFAR100. The test accuracy(%) is shown as best/mean among
the 5 runs. Best results are in bold.

Activation CIFAR10 CIFAR100
top1 top5

ReLU 91.68 / 91.41 66.25 / 65.98 89.81 / 89.62
SiLU 91.92 / 91.52 66.68 / 66.09 90.23 / 89.59

LA-SiLU 91.97 / 91.75 66.65 / 66.42 90.32 / 89.97
LA-HardSiLU 91.74 / 91.47 66.64 / 66.30 90.04 / 89.84

Table 4: Performance comparison of LayerAct functions and other element-level activation func-
tions on ResNet40 for CIFAR10 and CIFAR100. The test accuracy(%) is shown as best/mean among
the 5 runs. Best results are in bold.

Activation CIFAR10 CIFAR100
top1 top5

ReLU 92.59 / 92.38 68.68 / 68.44 90.47 / 90.29
SiLU 92.31 / 91.94 68.99 / 68.37 90.55 / 90.04

LA-SiLU 93.00 / 92.67 68.89 / 68.68 90.80 / 90.42
LA-HardSiLU 91.93 / 91.68 67.67 / 66.80 89.60 / 89.34

Table 5: The standard deviation of loss distribution between samples. The standard deviation is
shown as best/mean among the 5 runs. LayerAct functions show lower standard deviation values
than element-level activation functions.

Activation CIFAR10 CIFAR100
ResNet20 ResNet44 ResNet20 ResNet44

ReLU 1.51 / 1.53 1.54 / 1.64 2.57 / 2.62 3.18 / 3.24
SiLU 1.57 / 1.61 1.59 / 1.67 2.78 / 2.82 3.32 / 3.34

LA-SiLU 1.33 / 1.39 1.45 / 1.48 2.43 / 2.45 2.79 / 2.82
LA-HardSiLU 1.38 / 1.42 1.61 / 1.64 2.36 / 2.41 2.84 / 2.89

with BatchNorm as Affine LayerAct functions have more parameters (i.e., the gain and bias) with a
small or no advance in performance.

4.2.2 RESULTS ON RESNETS WITH LAYERACT

For ResNet, we used ReLU and SiLU as the competitors of LayerAct functions. Table 3 and Table 4
show that LA-SiLU outperforms element-level activation functions in most cases of ResNet20 and
ResNet44. We had argued that a layer-level activation mechanism can reduce the variance of loss
between samples in Section 3.1. In Table 5 shows the standard deviation of the test loss between
samples. LayerAct functions have lower standard deviation than others, which support that the
layer-level activation mechanism can reduce the bias in training between samples.

5 CONCLUDING REMARK

In this paper, we originally show the following contributions and implications for improving the
core mechanism of learning through multiple layers. First, it is clear that element-level activation
functions can cause an imbalanced activation among samples, and the parameter optimization is
eventually affected by this imbalance issue. We found a case of the biased activation’s effect on
training with a simple experiment that shows whether there is a negative or positive relationship
between the sum of activation scale and the training loss.

Second, as a solution to address this issue, we developed a novel layer-level activation mechanism,
and proposed two LayerAct functions. The LayerAct functions can balance the distribution of ac-
tivation scale among samples while maintaining the mean and variance statistics of inputs for rich
representation. Interestingly, the sensory system of biological neural networks has a layer-wise acti-

8



Under review as a conference paper at ICLR 2023

(a) ResNet20 (b) ResNet44

Figure 4: Plot of training loss of ResNet and CIFAR10. The best model of the activation function is
selected. These figures show that LayerAct functions converge faster than element-level activation
functions at the early stage of training.

vation mechanism (Shen et al., 2021) just as LayerAct functions. For example, fruit fly’s neurons to
detect odors has a consistent pattern; while the distribution of firing rate is exponential for all odors
(i.e., the distribution of neurons’ outputs has the same pattern between samples), only the mean of
the distribution is related to the odor concentration (Stevens, 2016).

Lastly, the proposed LayerAct functions outperformed the element-level activation functions in most
cases of image classification tasks. We also showed that LayerAct functions can reduce the variance
of loss between samples. Although we introduced two LayerAct functions in this paper, there are
possibilities to develop other LayerAct functions. We expect this work will contribute in developing
high-performance machine learning frameworks, given the indispensable use and essential role of
activation functions in traditional and modern machine learning frameworks, such as MLPs, CNNs,
ResNets, and any other models operating multiple layers with many elements.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normal-
ization. Advances in Neural Information Processing Systems, 31, 2018.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and Aurelien Lucchi. Batch
normalization provably avoids ranks collapse for randomly initialised deep networks. Advances
in Neural Information Processing Systems, 33:18387–18398, 2020.

9



Under review as a conference paper at ICLR 2023

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770–778, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456.
PMLR, 2015.

Antoine Labatie, Dominic Masters, Zach Eaton-Rosen, and Carlo Luschi. Proxy-normalizing ac-
tivations to match batch normalization while removing batch dependence. Advances in Neural
Information Processing Systems, 34:16990–17006, 2021.

Ekdeep S Lubana, Robert Dick, and Hidenori Tanaka. Beyond batchnorm: towards a unified under-
standing of normalization in deep learning. Advances in Neural Information Processing Systems,
34:4778–4791, 2021.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In International Conference on Machine Learning, volume 30, pp. 3.
Citeseer, 2013.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In International Conference on Machine Learning, 2010.

Suo Qiu, Xiangmin Xu, and Bolun Cai. Frelu: flexible rectified linear units for improving convo-
lutional neural networks. In International Conference on Pattern Recognition, pp. 1223–1228.
IEEE, 2018.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Yang Shen, Julia Wang, and Saket Navlakha. A correspondence between normalization strategies in
artificial and biological neural networks. Neural Computation, 33(12):3179–3203, 2021.

Charles F Stevens. A statistical property of fly odor responses is conserved across odors. Proceed-
ings of the National Academy of Sciences, 113(24):6737–6742, 2016.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference on
Computer Vision, pp. 3–19, 2018.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding and
improving layer normalization. Advances in Neural Information Processing Systems, 32, 2019.

A APPENDIX

Our source code can be accessed from our anonymous GitHub repository for reproduction1. Addi-
tional experiments and results will be archived in this repository continuously.

A.1 STRUCTURE OF CNN

The structure of CNN for Section 4.2.1 is shown in Table 6. Normalization and activation have been
used after the convolutional layer.

1https://github.com/LayerAct/LayerAct

10



Under review as a conference paper at ICLR 2023

Table 6: The structure of CNN for the CIFAR10 dataset.

Output size Network Structure
32X32, 16 Conv [1X1, 16], stride 1, padding 0
32X32 16 Conv [3X3, 16], stride 1, padding 1
32X32 32 Conv [3X3, 32], stride 1, padding 1

16X16 32 Maxpool 2X2, stride 2
16X16 32 Conv [1X1, 32], stride 1, padding 0

16X16 32 Conv [3X3, 32], stride 1, padding 1
16X16 64 Conv [3X3, 64], stride 1, padding 1

8X8 64 Maxpool 2X2, stride 2
8X8 64 Conv [1X1, 64], stride 1, padding 0

8X8 64 Conv [3X3, 64], stride 1, padding 1
8X8 128 Conv [3X3, 128], stride 1, padding 1

4X4 128 Maxpool 2X2, stride 2
4X4 128 Conv [1X1, 128], stride 1, padding 0

4X4 128 Conv [3X3, 128], stride 1, padding 1
4X4 256 Conv [3X3, 256], stride 1, padding 1

2X2 256 Maxpool 2X2, stride 2
2X2 256 Conv [1X1, 256], stride 1, padding 0

2X2 256 Conv [3X3, 256], stride 1, padding 1
2X2 512 Conv [3X3, 512], stride 1, padding 1

1X1 512 Maxpool 2X2, stride 2

Table 7: The devices used for experiments

Server 1 Server 2 Server 3

CPU Intel Xeon Gold
5220R@2.20GHz

Intel Xeon Gold
6242@2.80GHz

Intel Xeon Gold
5220@2.20GHz

GPU NVIDIA TITAN RTX NVIDIA A100 Tesla V100

A.2 EXPERMENTAL SETTING

A.2.1 EXPERIMENTAL ENVIRONMENT

We used three devices as shown in Table 7. The experiments on MNIST, CNN and CIFAR10
with ResNet44 were performed on device 1. Only the experiment on CIFAR10 with ResNet20
progressed using device 3, and the others were conducted using device 2. The version of Python and
the packages were the same in all devices as follows: Python 3.9.12, numpy 1.19.5, pytorch 1.11.0
and torchvision 0.12.0.

A.2.2 EXPERIMENTAL SETUP

The experimental setup is shown in Table 8

Table 8: Setup for experiments

MNIST CIFAR10 CIFAR100
Loss function CrossEntropyLoss(reduction=’mean’)
Max iteration 6400 64000

Batch size 128
Optimizer Momentum opimization (0.9)

Weight decay 0.0001
Learning rate 0.1 with normalization, otherwise 0.01
Learining rate

Scheduler
0.1 at

3200 and 4800
0.1 at

32000 and 48000

11


	Introduction
	Background and Motivation
	Activation scale in networks
	Motivation of this work
	Normalization in networks

	The proposed LayerAct mechanism and functions
	LayerAct mechanism
	Designing LayerAct functions

	Experiments and results
	Experimental analysis on activation scale
	Experimental results on CIFAR10 and CIFAR100
	Results on CNN with LayerAct and Affine Transformation
	Results on ResNets with LayerAct


	Concluding remark
	Appendix
	Structure of CNN
	Expermental setting
	Experimental environment
	Experimental setup



