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Abstract

As the use of large embedding models in recommendation systems and language
applications increases, concerns over user data privacy have also risen. DP-SGD,
a training algorithm that combines differential privacy with stochastic gradient
descent, has been the workhorse in protecting user privacy without compromis-
ing model accuracy by much. However, applying DP-SGD naively to embedding
models can destroy gradient sparsity, leading to reduced training efficiency. To
address this issue, we present two new algorithms, DP-FEST and DP-AdaFEST,
that preserve gradient sparsity during private training of large embedding mod-
els. Our algorithms achieve substantial reductions (10° x) in gradient size, while
maintaining comparable levels of accuracy, on benchmark real-world datasets.

1 Introduction

Large embedding models have emerged as a fundamental tool for various applications in recommenda-
tion systems [CKH™ 16, WFFW 17, GTY 17, ZZS* 18, NMS*19, WSC"21] and natural language
processing [MSC™ 13, PSM 14, DCLT19]. Those models map categorical or string-valued input at-
tributes with large vocabularies to fixed-length vector representations using embedding layers, which
enable integrating non-numerical data into deep learning models. These models are widely deployed
in personalized recommendation systems and achieve state-of-the-art performance in language tasks
such as language modeling, sentiment analysis, and question-answering.

In the meantime, the use of large embedding models raises significant concerns about privacy
violations, as it often entails the processing of sensitive individual information such as personally
identifiable information, browsing habits, and dialogues [CTW 21, HSC22, GHZ"22]. Various
techniques have been proposed to enable private data analysis. Among those, differential privacy
(DP) [DMNS06, DKM™'06] is a widely adopted notion that could formally bound the privacy
leakage of individual user information while still allowing for the analysis of population-level
patterns. For training deep neural networks with DP guarantees, the most widely used algorithm
is DP-SGD [ACG™16]. It works by clipping the per-example gradient contribution, and noising the
average gradient updates during each iteration of stochastic gradient descent (SGD). DP-SGD has
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demonstrated its effectiveness in protecting user privacy while maintaining model utility in a variety
of applications [PTS*21, LTLH21, DFAP21, TB21, KCS™22, YNB22, DBH"22, DGK23].

However, applying DP-SGD to large embedding models presents unique technical challenges. These
models typically contain non-numerical feature fields like user/product IDs and categories, as well as
words/tokens that are transformed into dense vectors through an embedding layer. Due to the large
vocabulary sizes of those features, the process requires embedding tables with a substantial number
of parameters. In contrast to the number of parameters, the gradient updates are usually extremely
sparse because each mini-batch of examples only activates a tiny fraction of embedding rows. This
sparsity is heavily leveraged for industrial applications [GGDS 19, WWL22] that efficiently handle
the training of large-scale embeddings. For example, Google TPUs [AF22], a family of accelerators
designed specifically for training large-scale deep networks, have dedicated hardware such as the
SparseCore [JKL 23] to handle large embeddings with sparse updates. It is shown [Sna22] that this
leads to significantly improved training throughput compared to training on GPUs, which did not
have specialized optimization for sparse embedding lookups at the time. On the other hand, DP-SGD
completely destroys the gradient sparsity as it requires adding independent Gaussian noise to all the
coordinates. This creates a road block for private training of large embedding models as the training
efficiency would be significantly reduced compared to non-private training.

Our contributions. In this paper, we present new algorithms that target the issue of diminished
gradient sparsity encountered when employing DP-SGD with large embedding models due to the
addition of dense noise; this issue represents a significant practical obstacle for leveraging, during
DP training, the hardware accelerators commonly used in non-private training of large embedding
models. While there are previous studies of the abstract problems of sparse vectors in DP, we
study the practical problem of privately training large embedding models, and through systematic
evaluations, demonstrate that significant gradient size reduction is achievable in DP training of
real-world large-scale embedding models (e.g., recommender systems, language models with > 30M
embedding parameters) with minimal loss in utility. Our contributions can be summarized as follows:

> We propose two new algorithms to preserve gradient sparsity in DP-training of large embedding
models while maintaining their utility (Section 3). The first algorithm, Filtering-Enabled Sparse
Training (DP-FEST), selectively adds noise to pre-selected embedding rows during training. To
improve the adaptivity to varying training dynamics across mini-batches and to accommodate
online training, our second algorithm, Adaptive Filtering-Enabled Sparse Training (DP-AdaFEST),
adaptively computes a gradient contribution map for each mini-batch, and only injects noise into
the gradients of top contributors (in a manner that complies with the DP requirements).

> We demonstrate the effectiveness of our algorithms on four benchmark datasets for online advertis-
ing and natural language understanding. Our results indicate that these algorithms can meet a wider
range of application-specific demands for utility and efficiency trade-offs at a more granular level
(Section 4.2). Notably, they achieve a substantially sparser gradient, with a reduction in gradient
size of over 106 x compared to the dense gradient produced by vanilla DP-SGD, while maintaining
comparable levels of accuracy.

> We further showcase the potential applicability and effectiveness of our algorithms to the setting of
online learning with streaming data, a common setup in practice, which highlights the versatility
and broad impact of our algorithms (Section 4.3).

2 Preliminaries

2.1 Embedding Layers and Gradient Sparsity

Models with large embedding layers are widely used in application scenarios that need to process high-
dimensional sparse inputs such as words/tokens in language models [MSC™ 13, PSM 14, DCLT19]
and categorical features associated with users or items in recommendation systems [CKH™ 16,
WFFW17, GTY 17, ZZS*18, NMS™ 19, WSC*21].

Let ¢ be the number of possible values of an input feature (aka vocabulary size in text models);
the feature values are also called feature buckets (string-valued categorical features are commonly
preprocessed via hashmap bucketization). An input x with the ¢th feature value can be represented as
a one-hot vector e; € R® that is 1 on the ith coordinate and 0 everywhere else. Let W € R¢*¢ be the
parameters of the embedding layer (i.e., the embedding table), where the output dimension d is the
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(a) An illustration of embedding lookup. (b) Embedding gradient sparsity in Ads model.

Figure 1: Illustration of embedding lookup (a) and gradient sparsity of the Criteo pCTR model (b). We analyze
the gradient sparsity, averaged over 50 update steps, of the top five categorical features (out of a total of 26) with
the highest number of buckets, as well as the sparsity of all categorical features. For more information about this
dataset and model, see Section 4.1.1.

embedding size. The output of the embedding layer is computed as z = W T x, which is a linear map.
Due to efficiency considerations, in practice, embedding layers are rarely implemented via matrix
multiplication (matmul) on one-hot encoded inputs.

For a one-hot input x = e;, the embedding output is the ith row of the embedding table: z = Wi, :].
Figure 1a illustrates the embedding table lookup operation. Let 0L/0z € R? be the partial derivative
of the loss with respect to the embedding output. The gradient of the embedding table is VW =
X ® OL/0z, where ® is the outer product. For a one-hot input x = e;, the result of this outer product
is a sparse matrix whose ith row equals 9L /0z. For mini-batch SGD training, the number of non-zero
rows in the batch averaged gradient of the embedding table is upper bounded by the batch size, which
is typically orders of magnitude smaller than c. Consequently, the gradient sparsity (the fraction of
zero gradient coordinates) for large embedding models is very high (Figure 1b).

Due to this structured sparsity, in practice, both forward and backward computations of an embedding
layer are implemented efficiently with gathers and scatters', without expensive matmul. This
difference from vanilla linear layers is crucial in real-world applications as the embedding tables
are usually very large, with the vocabulary size c ranging from tens of thousands (language models)
to millions (recommendation systems). Moreover, in some large recommendation system models,
there are hundreds of different categorical features, each with a different embedding table. Therefore,
maintaining the gradient sparsity is critical for any training process.

For notational simplicity, the description above focuses on single-variate features, which only activate
one feature value at a time. In practice, multi-variate features activating multiple values are also used.
In this case, it is common for the embedding layer to output the average or sum vectors corresponding
to each activated value. We also note that in recommendation systems, each categorical feature
generally has a separate embedding table; But for text models, all the words/tokens in an input
document share the same embedding table.

2.2 Differentially Private Stochastic Gradient Descent

Differential privacy (DP) [DMNS06, DKM T06] is a mathematical framework for ensuring the privacy
of individuals in datasets. It can provide a strong guarantee of privacy by allowing data to be analyzed
without revealing sensitive information about any individual in the dataset. Formally, a randomized
algorithm A satisfies (£, §)-DP if for any two neighboring datasets D and D’ (i.e., datasets such that
one can be obtained from the other by adding/removing one example), and any subset S of outputs, it
holds for privacy parameters ¢ € Rs and ¢ € [0, 1) that

Pr[A(D) € S§] < € -Pr[A(D') € S] +6.

DP Stochastic Gradient Descent (DP-SGD) [ACG™16] is a recipe for training a deep learning model
with DP by modifying the mini-batch stochastic optimization process through the use of per-example
gradient clipping and Gaussian noise injection. When training an ML model f parameterized by 6
with the per-example loss function (-, -)?> on dataset D, each optimization step ¢ involves randomly

! Gather/scatter refers to a memory addressing technique that enables simultaneous collection (gathering)
from or storage (scattering) of data to multiple arbitrary indices. Refer to this wiki page for more details.
2The specific loss depends on the particular task and model (e.g. cross-entropy loss for classification).
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sampling a mini-batch B;. Given B,;, DP-SGD starts by computing the per-example gradient for each
(zi,y:) € By, where z; is the feature vector and y; is the corresponding label, as follows:

gt (:Eiv yz) — V@tf (fet (xi)7 y’b) .

It then clips the gradient ¢5-norm to a maximum ¢5-norm of C' as:

1ol = (o) /o (1, 18l )

Finally, it produces the private gradient g; by injecting Gaussian noise into the sum of the clipped
per-example gradients as:

& a7 (18 (@i, yi)le + N (0,0°C?1)) )

where NV (0, 02C?I) is a Gaussian distribution with mean 0 and covariance o?C?1, and the noise
multiplier o is computed from (e, §) by inverse privacy accounting (e.g., [ACG ™ 16]).

Although DP-SGD has been demonstrated to be an effective algorithm for training ML models with
DP, (1) requires adding noise to all the coordinates of the gradient, which would completely destroy
any existing sparsity structure in the original gradients. This densification of sparse gradients is
especially problematic for large industrial-scale embedding models, where the sparsity is heavily
leveraged to improve efficiency, e.g., using dedicated APIs [GGDS19, AF22, WWL 122, Sna22].

3 Sparsity-Preserving DP-SGD

In this section, we introduce two algorithms for preserving the gradient sparsity of DP-SGD when
training large embedding models. Our main intuition is that in real-world datasets, some buckets of
categorical features may be much more frequent, and therefore contain more significant or relevant
information, than others. However, vanilla DP-SGD adds noise to the model’s parameter gradients,
even to those with minimal impact on the model’s accuracy, which is not only wasteful but also can
reduce the training efficiency by disrupting gradient sparsity (as discussed earlier in Section 2.2).

3.1 Filtering-Enabled Sparse Training (DP-FEST)

A simple solution to this problem is frequency filtering, where we pre-select the top-k£ most informative
(i.e., frequent) buckets of each categorical feature before training, and add Gaussian noise only to
the gradients of these selected buckets during training; this is akin to training a smaller embedding
model using a subset of the buckets. Frequency filtering significantly reduces the noise added to the
gradients by restricting the noise to only the most impactful subset of features.

There are two possible ways of selecting the top-k buckets. First, if there is prior information on
bucket frequency available publicly (e.g., token frequency in the pre-training set of the model for
language tasks), then it can be used to select the top-k buckets. If such prior knowledge is unavailable,
we can run DP top-k selection on the training dataset by adapting the algorithm of [DR21]; see
Appendix B.1 for details.

3.2 Adaptive Filtering-Enabled Sparse Training (DP-AdaFEST)

The limitation of frequency filtering in DP-FEST is its inability to adapt to varying activation patterns
across different mini-batches during training. This issue becomes particularly problematic when
dealing with streaming data, such as those used in recommendation systems. In such scenarios, the
application of frequency filtering poses a challenge as it impedes training until a substantial amount
of data is gathered to accurately estimate the frequency information.

To address this issue, we propose DP-AdaFEST, an adaptive method for selecting the most informative
buckets using mini-batch information, as outlined in Figure 2 and Algorithm 1. For each mini-batch,
DP-AdaFEST first computes the per-example gradient and a gradient contribution map, which is a
binary vector indicating which categorical feature buckets have been activated for each example in the
mini-batch (Line 5). These per-example gradient contributions are then aggregated (with per-example
clipping applied) across the mini-batch in order to construct the batch-wise gradient contribution,
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Figure 2: Illustration of the process of DP-AdaFEST on a synthetic categorical feature which has 20 buckets.
We compute the number of examples contributing to each bucket, adjust the value based on per-example total
contributions (including those to other features), add Gaussian noise, and retain only those buckets with a noisy
contribution exceeding the threshold for (noisy) gradient update.

Algorithm 1: DP-AdaFEST: Adaptive Filtering Applied Sparse Training.

Input :Learning rate 7, batch size B, number of training steps 7", dataset D, clipping norms C1, Cs,
threshold parameter 7, noise multipliers o1, o2.
Output : DP-trained model parameters 6.
Initialize model parameters 6 randomly;
fort =1to 7 do
Sample a mini-batch B; of size B from D;
for i = 1to B do
| Compute per-example gradient g; and gradient contribution map v;, where v; [j] := 1[gi[, :] # OJ;

Compute the private contribution map Vi =37, 5 [vi], +C1 - N (0,07 - I);
for i = 1to B do

| gilj,:] < 0, forall j such that V;[j] < 7 ;
Gy = ZiGBt [gi}cz + Co N (O7 0'% - diag ((1{Vt[]']27} )je[c] ® ld));
Update the model parameters: 6 <— 0 — nG;

and Gaussian noise with scale o is added to the resulting vector to ensure DP (Line 6).> The noisy
batch-wise gradient contribution is then thresholded using a parameter 7 to exclude non-significant
gradient entries to which only a few examples in the mini-batch contribute (Line 8); This thresholding
mechanism helps focus on the most relevant and informative features while reducing the impact of
noisy or insignificant contributions. Finally, the algorithm updates the model parameters by adding
gradient noise with scale o only to the “surviving” gradient entries (Lines 9 and 10). By dynamically
adapting feature selection based on bucket contributions in each mini-batch during training, our
algorithm achieves adaptive feature selection and maintains the desired DP guarantees. Note that we
apply the standard DP-SGD with noise multiplier o5 to update parameters in non-embedding layers.

3.3 Privacy Accounting

The privacy accounting of DP-AdaFEST can be done in a similar way to that of DP-SGD. The main
observation is that the privacy cost of Algorithm 1 is dictated by the Gaussian noise mechanism
steps in Lines 6 and 9. In particular, the privacy cost of a single iteration is equivalent to that of the
composition of two Gaussian mechanisms with noise scale o; and o5 respectively, which in turn is
equivalent to the privacy cost of a single Gaussian mechanism of noise scale o = (o] 24 oy 2)71/ 2,
Thus, overall, the privacy cost of the entire algorithm is no more than that of DP-SGD with noise scale
o, and identical other parameters of batch size and number of steps. Finally, we adopt the standard
approach of analyzing the Poisson subsampled Gaussian mechanism [ACG™ 16], using numerical
algorithms based on privacy loss distributions [KJH20, GLW21, GKKM22, DGK™22]. In particular,
we use the open-source implementation available in Google’s DP library [Goo20]. We provide more
details in Appendix C for completeness.

3When implemented naively, this step has a memory consumption that scales with the number of embedding
rows. In Appendix B.2, we discuss an alternative method for sampling the surviving coordinates of the mask in
a memory-efficient manner.



An important caveat to the privacy analysis is that we follow a common practice of analyzing all
the algorithms where the mini-batches are Poisson subsampled, wherein each example is included
independently with a certain probability, even though, the actual implementation involves selecting
mini-batches of fixed sizes after shuffling. See Section 4.3 of [PHK 23] for more context. But since
this caveat applies to all algorithms similarly, we consider their relative comparison to be fair.

3.4 Bias-Variance Trade-offs

Apart from the computational advantage, to understand the question of when DP-AdaFEST would
lead to more accurate models as compared to DP-SGD, we look through the lens of bias-variance
trade-offs in stochastic convex optimization. Consider a convex objective £L(+) over R”, for which
we have a gradient oracle, that given 6, returns a stochastic estimate g(#) of V.L(0). We say that the
gradient oracle has bias o and variance o2 if g(0) = VL(6) + ¢(0) such that || E C(G)[UQ < o and
E|[¢(8) — E¢(0)]|3 < o holds for all . When optimizing over a convex set  C R, projected
gradient descent with step size 7 is defined as iteratively performing ;11 <+ Il (6 — ng(6)),
where IIx (-) is the projection onto XC. We recall the following guarantee on the expected excess loss
obtained using standard analysis of projected stochastic gradient descent (see e.g. [Haz22]).

Lemma 3.1. For an L-Lipschitz loss function, and a gradient oracle with bias o and variance o2,

projected gradient descent over a set IC with diameter R, with step size n = ——5— achieves
((L+@)2402)T

B[ (350,6)] - 207) < & /T+al+0? +ak

Suppose the loss is L-Lipschitz. Ignoring the potential bias introduced due to clipping, DP-SGD
of noise scale o uses a gradient oracle with zero bias (& = 0) and variance Do?. On the other
hand, consider a hypothetical setting where DP-AdaFEST truncates -y fraction of the gradient due to
masking in Line 8, resulting in the final gradient that is supported on & coordinates (h < D). In this
case, the bias introduced is L, but the variance introduced is only ho?. Plugging into the above
excess risk bound, we would expect DP-AdaFEST to achieve a smaller excess loss when

VI2(1+ )2+ ho? +vLVT < VL2 + Do?. 2)

This implies that a smaller truncated fraction within DP-AdaFEST could potentially yield superior
utility compared to vanilla DP-SGD. Even though the discussion above is for the average iterate, and
in the convex setting, our experiments corroborate this observation in training deep learning models.

4 Experiments

In this section we evaluate the performance of our sparsity-preserving training algorithms and
compare them against vanilla DP-SGD on both the recommendation and language understanding tasks
(Section 4.1). To understand adaptivity, we evaluate our algorithms on a time-series version of the
data (Section 4.3); the non-time-series evaluations are in Section 4.2. We further demonstrate the
applicability of our methods on language models in Section 4.4. The impact of hyper-parameters on
the trade-off between utility and embedding gradient size is discussed in Section 4.5.

4.1 Setup
4.1.1 Datasets and Models

Click-through rate prediction tasks. We evaluate our algorithms on the widely-used Criteo
predicted click-through rate (pCTR) dataset*, which includes over four billion ad impressions over
24 days. Each impression is represented by 13 numerical features and 26 categorical features. The
objective is to predict how likely a user clicks on an ad based on these features.

The pCTR model we experiment with is a neural network that uses embedding layers for categorical
features and log transformations for numerical features, followed by several fully connected layers.
We use binary cross-entropy loss as the training objective and report the AUC as the evaluation metric.
For further details about the training setup, please refer to Appendix D.1.

We evaluate two Criteo variants with different purposes:

*https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset
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Figure 3: A comparison of the best gradient size reduction achieved by DP-AdaFEST, DP-FEST, and DP-SGD
with exponential selection [ZMH21] compared to DP-SGD at different thresholds for utility difference. A higher
curve indicates a better utility/efficiency trade-off. DP-AdaFEST consistently outperforms DP-FEST.
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Figure 4: A comparison between DP-AdaFEST, DP-FEST, and the combined algorithm (DP-AdaFEST+) on the
Criteo-Kaggle dataset for different values of €. The combined algorithm significantly outperforms either alone.
Figure 6 demonstrates similar findings on the Criteo-time-series dataset.

> Criteo-Kaggle’, a subset of examples released by Kaggle (~45 million examples in total), is
widely used in previous studies of click-through rate modeling. We use this to benchmark the
performance of our algorithms. Note that timestamps are absent in Criteo-Kaggle.

> Criteo-time-series, also commonly known as "Criteo-1TB", is the entire Criteo dataset of over 4
billion examples and has the auxiliary information indicating which day the data was collected.
To simulate a real-world online training scenario, we train the model on the first 18 days of data
and evaluate it on subsequent days (i.e., days 19-24); more details on the training process are in
Section 4.3.

Language understanding tasks. For language understanding tasks, we employ language models
from the BERT family [DCLT19], specifically the RoBERTa model [LOG™19]. This model has a
vocabulary size of 50, 265 subword tokens and has been pre-trained on public web data.

We fine-tune the RoBERTa model for downstream classification tasks from the GLUE bench-
mark [WSM™19], including SST-2 [SPW"13], QNLI [RZLL16], and QQP [IYW™17]. Follow-
ing [YNB'22], we adopt Low-Rank Adaptation (LoRA) [HSW 22] to introduce trainable rank
decomposition matrices into each transformer block of the language model. This approach sig-
nificantly reduces the number of parameters required for downstream tasks while also improving
the privacy-utility trade-off (see Appendix D.1). A notable difference in our approach compared
to [YNB22] is that we also train the word embedding layers in DP fine-tuning to enable bucket
selection. This leads to significant accuracy improvements in the model, as shown in Table 6.

4.1.2 Baseline and Algorithms

We evaluate the performance of vanilla DP-SGD, and the three sparsity-preserving algorithmic variants,
DP-SGD with exponential selection [ZMH21], DP-FEST and DP-AdaFEST, on both the click-through
rate prediction and language understanding tasks. We use a fixed batch size of 2, 048 for the former
and 1,024 for the latter. For all tasks, we set the privacy parameter ¢ to 1/N, where N is the number
of training examples for the respective task.

4.2 Evaluation on Non-Time-Series Data
We begin by considering datasets with no timestamp—Criteo-Kaggle, SST-2, QNLI, and QQP.

The decision to prioritize gradient sparsity (a key factor impacting efficiency) or utility in DP training
usually depends on the task and available computational resources. However, it can be challenging
for vanilla DP-SGD to cater to different needs of gradient sparsity or utility since it lacks mechanisms
for trading off between these objectives. In contrast, DP-SGD with exponential selection [ZMH21],

Shttp://labs.criteo.com/2014/02/kaggle-display-advertising- challenge-dataset


http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset

—— DP-AdaFEST ~ —— DP-FEST (all days) ~—— DP-FEST (day 1) —— DP-FEST (streaming-based)

Streaming period T' =1

Streaming period T = 2 Streaming period T' = 4

10000 10000 10000

5000 5000 5000

i
i
i
i
i
i
i
i
i
i
:
—0.004 —0.002 0.000 0.002  0.004 —0.004 —0.002 0.000 0.002  0.004 —0.004 —0.002 0.000 0.002  0.004

Utility gain(+)/loss(-) compared to DP-SGD Utility gain(+)/loss(-) compared to DP-SGD Utility gain(+)/loss(-) compared to DP-SGD

0 0 0

Best gradient size reduction
Best gradient size reduction
Best gradient size reduction

Streaming period 7' = 8 Streaming period 7' = 16 Streaming period 7" = 18

10000 10000 10000

5000 5000 5000

—0.004 —0.002 0.000 0.002 0.004

0

Best gradient size reduction
Best gradient size reduction
Best gradient size reduction

)
—0.004 —0.002 0.000 0.002 0.004

—0.004 —0.002 0.000 0.002 0.004
Utility gain(+)/loss(-) compared to DP-SGD Utility gain(+)/loss(-) compared to DP-SGD Utility gain(+)/loss(-) compared to DP-SGD

Figure 5: A comparison between DP-AdaFEST and DP-FEST for time-series data, using the Criteo-time-series
dataset with different streaming periods 7" and € = 1.0. DP-AdaFEST consistently achieves a higher gradient
reduction than DP-FEST at the same level of utility.

DP-AdaFEST and DP-FEST can all offer diverse options for balancing utility and efficiency via the
sparsity-controlling parameters (see Figure 8 in Appendix D.2), while our proposals DP-AdaFEST
and DP-FEST offer much better privacy-utility loss.

While both DP-FEST and DP-AdaFEST offer ways to balance efficiency and utility in DP training,
DP-AdaFEST stands out as the more versatile and customizable algorithm. With three adjustable
hyper-parameters, DP-AdaFEST offers more diverse results compared to DP-FEST’s single knob, &,
which controls the number of preserved top buckets. The effectiveness of DP-AdaFEST is evident
in Figure 3, where it achieves significantly higher gradient size reduction than DP-FEST while
maintaining the same level of utility. Specifically, on the Criteo-Kaggle dataset, DP-AdaFEST reduces
the gradient computation cost of vanilla DP-SGD by more than 5 x 10° times while maintaining a
comparable AUC (of AUC loss less than 0.005). This reduction translates into a more efficient and
cost-effective training process (Appendix D.2.1 shows wall-clock time improvements). Although
the best reduction for language tasks is usually smaller since the vocabulary is already relatively
condensed, the adoption of sparsity-preserving DP-SGD effectively obviates the dense gradient
computation. Furthermore, in line with the bias-variance trade-off presented in Section 3.4, we note
that DP-AdaFEST occasionally exhibits superior utility compared to DP-SGD when the reduction in
gradient size is minimal (i.e., 7 in Equation (2) is small). Conversely, when incorporating sparsity,
DP-SGD with the exponential mechanism faces challenges in maintaining utility. In all configurations,
it fails to achieve a tolerable level of utility loss.

We further explore the potential of integrating DP-AdaFEST with DP-FEST to enhance performance,
which involves pre-selecting a subset of buckets using DP-FEST and subsequently training on this
subset using DP-AdaFEST. Figure 4 shows that the combined algorithm (DP-AdaFEST+) outperforms
either alone in utility/efficiency trade-off, with the best gradient size reduction being further improved
to > 10°x. This can be attributed to the complementary strengths of the two algorithms: DP-AdaFEST
offers a more flexible approach to feature selection at the batch level, while DP-FEST provides a
simple yet effective means for feature selection according to the global frequency information.
Besides, the combined algorithm expands the range of choices for balancing gradient sparsity and
utility through the combination of hyper-parameters from both DP-FEST and DP-AdaFEST.

4.3 Evaluation on Time-Series Data

Time-series data are notoriously challenging due to non-stationarity. In this section, we investigate if
our algorithms can adapt to distribution shifts, characteristic of time-series data.

We conduct experiments using the Criteo-time-series dataset, which comprises real-world user-click
data collected over 24 days (18 days for training and the rest for evaluation). To simulate the online
data streaming scenario, we introduce the concept of a streaming period, a time interval during which
the model is updated as new data is received. Experiments indicate a notable disparity between
DP training (using vanilla DP-SGD) and non-DP training, with the former demonstrating increased
susceptibility to distribution shifts (Table 5 in Appendix D.2).

Figure 5 presents the utility and efficiency trade-off of DP-AdaFEST and DP-FEST for time-series
data. To explore the efficacy of DP-FEST, we investigate different sources of vocabulary frequency,
including the information from the first day, all days, and streaming-based (i.e., running sum updated



per streaming period). The experimental results indicate that using streaming-based frequency infor-
mation for DP-FEST is almost as effective as using all-day frequency information and significantly
better than using information only from the first day. Additionally, DP-AdaFEST consistently outper-
forms DP-FEST, achieving more than twice the gradient reduction at the same level of utility. These
findings further demonstrate the importance of adapting to the dynamic nature of time-series data at a
more fine-grained level, with DP-AdaFEST able to adapt at the batch level and DP-FEST only able to
adapt at the streaming period level.

—— DP-AdaFEST
10° i —— DP-FEST
DP-AdaFEST+

We further examine the advantages of combin-
ing DP-AdaFEST and DP-FEST to enhance the util-
ity/efficiency trade-off on the Criteo-time-series
dataset. We use a streaming period of 1 and
streaming-based frequency information for DP-FEST.
Figure 6 demonstrates a consistent superiority of the 0004 —0.002 0000 0002  0.004
combined approach over individual methods, which Vtilty gain(:+)/loss() compared to DPSGD

aligns with the findings presented in Section 4.3. Figure 6: The combined approach (DP-AdaFEST+)
outperforms either alone on Criteo-time-series.
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4.4 Applicability to Language Models

We further demonstrate the applicability of our method to language models by comparing it with
LoRA [HSW™22] and reporting its performance with multilingual models.

DP-AdaFEST is a better choice than LoRA for embedding layers. LoRA was introduced as a
method to efficiently adapt matrices of dimensions n x d in language models by utilizing a rank-r
approximation, where the initial use case considers the attention layers where n = d. The rank-r
approximation helps in reducing the memory requirements by a factor of m x d/(m + d) xr <
min(m, d)/r. However, the applicability of LoRA to embedding layers is limited for several reasons:

> Limited improvement for unbalanced n and d: Embedding layers typically involve a large
vocabulary size (n often in the millions) and a smaller embedding dimension (d typically in the
hundreds). In this context, LoORA’s potential benefits are limited.

> Inability to harness APIs: For private training of the embedding layer, DP-AdaFEST allows for
efficient embedding lookup operations (row fetching) using custom APIs; In contrast, LoRA still
relies on computationally costly matrix multiplication and cannot effectively utilize these APIs.

> Limited to fine-tuning use cases: LoRA is designed for adapting pre-trained models, while our
DP-AdaFEST is versatile, functioning seamlessly in both pre-training and fine-tuning scenarios.

To more effectively demonstrate the first argument - - - -

: Utility loss Gradient size reduction
at.)ove,.Table 1 compares the best embedding gra- compared to DP-SGD | DP-AdaFEST ~ LoRA
dient size reductions achieved by DP-AdaFEST and
LoRA against DP-SGD for SST-2 with ¢ = 1.0, 0.001 14.59x 3.91x

, 0.005 53.90x 23.64x
on the ROBERTa model. We vary LoRA’s rank r
. 0.01 53.90x 47.28%
from {4, 8,16,32,64,128}. DP-AdaFEST consis-
tently outperforms LoRA in gradient size reduction Table 1: Gradient size reduction by LoRA and
at similar utility levels. DP-AdaFEST for RoBERTa’s word embeddings.

Increased gradient size reduction by DP-AdaFEST for larger vocabularies. Our evaluation in
Section 4.2 primarily centered around the ROBERTa model, which has a vocabulary of around
50,000 entries. However, it is important to note that many high-vocabulary models exist, with
vocabulary sizes 5 to 20 x larger than RoBERTa. For these models, DP-AdaFEST could offer even
more pronounced benefits.

Utility loss Gradient size reduction
compared to DP-SGD | RoBERTa (|V[:50k) XLM-R (|V]:250k)
0.001 14.59x 17.21x
0.005 53.90x 64.75x
0.01 53.90x 152.94 %

Table 2: DP-AdaFEST offers more pronounced gradient size reduction for models with larger vocabulary (i.e.,
higher |V|). RoBERTa results are achieved on SST-2 with ¢ = 1.0, and the XLM-R [CKG*20] results are
achieved on the Cross-Lingual Natural Language Inference (XNLI) dataset [CRL " 18] with ¢ = 1.0.
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Figure 7: Effect of hyper-parameters on utility and embedding gradient size, including the ratio of noise added
to the contribution map to the one added to the sparse gradient o1 /o2, and the thresholding value 7. The joint
impact of two hyper-parameters on utility and embedding gradient size can be found in Figure 9 in Appendix D.2.

4.5 Effect of Hyper-Parameters

Finally, we study the effect of hyper-parameters on the utility and gradient size trade-off in
DP-AdaFEST. Specifically, we explore the effects of the ratio of noise added to the contribution
map and the noise added to the sparse gradient (i.e., o1 /02), and the thresholding value 7.

Effect of 01 /o2. We find that a larger ratio of o1 /o9 leads to a higher accuracy (Figure 7). Indeed,
the contribution map can tolerate higher levels of noise, leading to a more accurate representation
of the sparse gradient. For both Criteo-Kaggle and SST-2 datasets, a noise ratio of 5 or 10 delivers
the best utility. On the other hand, a larger o1 /09 results in a higher gradient density because
the contribution map can tolerate higher noise levels, resulting in more zero-contribution buckets
bypassing the threshold and increasing false negatives. Therefore, choosing an appropriate o1 /o2 is
critical to achieving optimal model accuracy and gradient density.

Effect of 7. The choice of the thresholding value, 7, is also crucial for determining the balance
between gradient sparsity and model accuracy in DP-AdaFEST. Figure 7 reveals that increasing the
value of 7 usually leads to a decrease in the gradient size, which results in a sparser gradient. We
also find that when 7 is small, increasing it does not significantly impact the model’s performance.
However, setting an excessively high value of 7 (e.g., 7 > 500 for a batch size of 1024) can cause a
sharp drop in the model’s accuracy, especially when the noise ratio o1 /o9 is small; In such cases,
important contributions may be zeroed out, resulting in a loss of information in the gradient. Again,
it is critical to choose 7 to best balance gradient sparsity and model accuracy in DP-AdaFEST.

5 Conclusions

In this work we present new algorithms—DP-FEST and DP-AdaFEST—for preserving gradient
sparsity in DP training, particularly in applications involving large embedding models. Our algorithms
achieve significant reductions in gradient size while maintaining accuracy on real-world benchmark
datasets. We also provide recommendations on hyper-parameter settings.

Limitations and future work. Despite the advancements made in our proposed algorithms, there
are still limitations and areas for future work. One such area is the exploration of customized
hardware acceleration for sparse DP training, which has the potential to significantly improve the
training efficiency of our models. By leveraging specialized hardware, we can further optimize
the computational performance and speed up the training process. Additionally, combining our
algorithms with other privacy-preserving techniques (e.g., Federated Learning) could lead to new
insights and applications.
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A Related Work

Embedding is a fundamental ML technique used in modern deep learning to represent non-numerical
features as dense numerical vectors in a key-value store format. In particular, embedding layers
play a crucial role in recommendation systems [CKH" 16, WFFW17, GTY 17, ZZS* 18, NMS™ 19,
WSCT21], with models relying heavily on them for effective predictions; they usually have a small
number of parameters in their dense layers but their embedding layers can contain billions of entries
and multiple billions of parameters. However, these embedding layers differ significantly from those
used in other deep learning tasks, such as natural language processing [MSC™13, PSM14, DCLT19],
where models such as BERT [DCLT19] use fewer entries in their embedding layers but compensate
with several hundred million parameters in their dense feed-forward and attention layers.

The exponential growth of data is leading to embedding tables reaching sizes spanning multiple
gigabytes to terabytes, which presents unique training challenges. For instance, fitting Google’s
1.2TB model [MNW*22], Baidu’s 10TB model [ZXJ20], and Meta’s 12 TB model [MHH22]
onto a single compute node or accelerator requires significant effort. Therefore, optimizing the
forward (sparse lookup) and backward (gradient backpropagation) passes for embedding layers is
critical to unlock the high compute throughput of embedding models, particularly for recommendation
systems. Recent research has focused on designing optimized embedding layers [AF22, JKL"23]
and developing efficient sparse optimizers [GGDS19, WWL22]. Furthermore, data parallelism
techniques, such as distributing embedding tables across multiple compute nodes, have been explored
in order to improve performance [Sna22].

However, optimizing embedding models trained with DP is an unexplored area. A recent
work [DGK 23] demonstrates the effectiveness of vanilla DP-SGD in the context of recommen-
dation tasks; however, this study does not address new challenges such as the need for efficient
sparse gradient computation and adaptive noise addition to comply with privacy guarantees. An-
other attempt [NCS™22] seeks to introduce sparsity in DP-trained large embedding models through
post-processing DP-SGD gradients. However, this method falls short of providing the necessary DP
guarantees. The closest effort to ours is the DP-SGD with exponential selection algorithm [ZMH21],
which dynamically selects embedding buckets to update based on their gradient norms. However,
their evaluation is limited to small-scale Word2Vec [MCCD13] models, with results mainly presented
for a fixed large ¢ = 30. Furthermore, our experimental results in Section 4 demonstrate that their
approach leads to a significant loss in utility when applied to large-scale recommendation tasks.

Additionally, prior research has also made efforts to improve the efficiency of DP-trained language
models. For instance, [LTLH21] observes that embedding layers can significantly contribute to
memory consumption during DP training of large language models. They therefore introduce
ghost clipping to reduce the memory impact of embedding layers by avoiding per-example gradient
generation. While our primary focus is on improving model efficiency, our methods also result in
reduced memory usage as a secondary benefit due to gradient size reduction. Besides, [YNB122]
proposes using parameter-efficient fine-tuning techniques in DP training but does not explore effective
training of large embedding layers under DP: They freeze the embedding layers during DP fine-
tuning and explore DP’s compatibility with parameter-efficient fine-tuning methods, such as LoRA
[HSWT22] and Adapter [HGJT19], for attention layers. It is worth noting that, as discussed in
Section 4.4, when LoRA is applied to embedding layers, the gradient size reduction achieved is
inferior to the reductions introduced by our proposed methods.

In addition, it is worth mentioning that partition selection is also a technique for feature selection; its
primary goal is to confidentially identify elements, along with their respective frequencies, that occur
at least a specified number of times [KKMN09, DVGM22, GGK20, CGSS21, CWG22, SDH23].
However, in our current work, we introduce a new algorithm as it is more compatible with DP-SGD.

B Methodology

B.1 DP Top-k Selection

Assuming there are c unique buckets in L, our goal is to return the top-k frequent buckets from L
in a private way. In our scenario, each user’s data can modify the count of a single bucket from a
given feature by at most 1, ensuring that a user contributes to at most one bucket. Therefore, the
{~-sensitivity of the counting function for each feature is 1. To achieve DP top-k selection, we
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utilize the algorithm introduced in [DR21] (see Algorithm 2). The algorithm begins by counting the
frequency h € N¢ of each bucket in the list. Next, it injects Gumbel noise into ~ and subsequently
returns the top-k buckets based on the noisy frequency.

Algorithm 2: One-shot DP Top-k Selection [DR21].

Input :The number of unique buckets c, a list of bucket occurrences of size [, L € [c}l, privacy budget ¢,
the number of selected buckets k.

Output : Top-k frequent buckets selected, with DP, from L.

Compute the bucket frequency in L;

2 fori=1to!ldo

IS

wn

L h[L[i]] < R[L[i]] + 1,
Add Gumbel noise to the bucket frequency, h < h + X, where X; ~ Gumbel(1/e);
r + argmaxy{h; : i € [¢|}, where arg max;, returns the indices of the largest k elements in a vector;

6 Return r

In our experiments, when selecting the top-k buckets from all p features, we distribute the privacy
budget ¢ and selection budget k equally among the p features. We then perform DP Top-int(k/p)
selection, allocating a budget of ¢/p for each feature. Finally, we concatenate the outputs from
different features to obtain the final set of selected buckets. We set € = 0.01 in our experiments and
deduct the value from the total privacy budget accordingly as the budget for DP training.

B.2 Memory Efficient Filtering

Implementing the computation of the contribution map and thresholding (Lines 6 and 8 in Algorithm 1)
can naively take O(c) time and space, since v;’s are c-dimensional. This can be prohibitively
expensive when c is much larger than the size of the gradients. Here we sketch a different approach
for computing the contribution map in time and space cost that is linear in the size of the gradient.

Let V; = > i, ilc,. Forall j € [c], we have that Pr[V;[j] > 7] = ¥ (T*Vt[j})’ where

ySp)
o1-Ct

U(t) := Przn(0,1)[Z > t] is the survival function of the Gaussian distribution.

With this notation, a more efficient algorithm is as follows: For each j such that V; [4] # 0, we sample
the bits V;[j] accordingly. Let ¢/ be the number of coordinates j such that V;[j] = 0 and for simplicity,
we assume w.l.o.g. that these coordinates are contiguous. For sampling the other coordinates of V;,
we rely on the following generic approach for sampling a long binary vector, with each bit being 1
with probability p = ¥(7/07C?). Namely, we observe that the difference between the positions of
two consecutive 1s is distributed as a geometric random variable Geom(p), with probability mass
function p(1 — p)*~1. Thus, we sample these indices directly by sampling the differences iteratively
from Geom(p), until the sum of these exceeds ¢’. This step runs in time that is linear in the number
of false positives, which in expectation is ¢’p, which is proportional to the number of non-zeros in Gy.

C Privacy Analysis

C.1 Dominating Pairs for Privacy Analysis

The e®-hockey stick divergence between P and Q) is given as Z.< (P||Q) = supg P(S) — e Q(S5).
Observe that a mechanism M satisfies (£, §)-DP if for all adjacent datasets D ~ D’ it holds that
De=(M(D)||M(D")) < 6.

Definition C.1 (Definition 7 in [ZDW22]). A pair (P, Q) of random variables over {2 dominates a
pair (P’, Q") of random variables over Q' (denoted (P’, Q') < (P, Q)) if for all £ € R, it holds that
De=(P'[|Q") < Ze= (P|Q).

Remark. The notion of “dominates” is symmetric, namely if (P, Q') < (P, Q) then (Q’, P') =<
(Q, P). This follows because Z.-(Q||P) = (1 — e®) + e*D,-- (P||Q).

To provide an example, we recall the Gaussian mechanism Mg, ..., which takes as input vectors
T1,...,2, € RY with ||2;]l2 < 1 and returns Y, z; + N(0,021,), where o denotes the noise
multiplier.
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Lemma C.2 (Gaussian mechanism). For any adjacent datasets D ~ D', it holds that

(M(D), M(D")) = (N(1,02), N(0,0%)).
We use two key behaviors of dominating pairs, namely under composition and Poisson subsampling.

Composition. For any mechanism M7, and mechanism Ms, let M = (M;, Ms) denote the com-
posed mechanism, namely, one that outputs (y1, y2) sampled as y; ~ M7 (D) and yo ~ Ma(D;y1).

Lemma C.3 (Theorem 10 in [ZDW22)). For any adjacent datasets D and D', if
(My(D), M1(D")) = (P1,Q1) and (Ma(D;y), M2(D';y)) < (P2, Q2) for all values of y, then
(M(D),M(D")) < (P1 x Py,Q1 X Q2), where Py x Py refers to the product distribution with
marginals Py and Ps.

Poisson Subsampling. For any v € (0,1], let S§_; denote the mechanism that takes as input a
dataset of arbitrary size, and returns a dataset by including each datapoint with probability ~ i.i.d. at
random.

Lemma C.4 (Theorem 11 in [ZDW22]). Let M be a mechanism and (P, Q) be a pair of distributions,
such that for any adjacent datasets D ~ D’ with D containing one more datapoint than D', it holds
that (M (D), M(D')) = (P,Q). Then for M = M o S;,,, it holds that (M (D), M(D')) <

Finally, we recall the basic composition theorem of DP.

Lemma C.5. If M satisfies (¢,9)-DP and M’ satisfies (¢',6")-DP, then the composed mechanism
(M, M') satisfies (¢ +€',6 + ¢')-DP.

C.2 Privacy Analysis of DP-SGD

We recall the privacy analysis of DP-SGD using privacy random variables, following [ACG™16], under
Poisson sub-sampling of mini-batches. Observe that the computation of noisy gradient in each step of
DP-SGD corresponds to an invocation of the Gaussian mechanism with noise multiplier of o. Hence,
by combining Lemmas C.2 to C.4, we have that for any adjacent datasets D and D’ with D containing
one more datapoint than D', it holds for M being DP-SGD that (M (D), M (D’)) = (P*T,Q*T)
where P = (1 —v)N(0,02) +vN(1,02), Q = N(0,0?)), and T denotes the number of steps.

Thus, it suffices to choose o such that max{Z.: (P*7||Q*T), Z.- (Q*T||P*T)} < 6 for desired
privacy parameters (g, d).

C.3 Privacy Analysis of DP-FEST

DP-FEST is simply the composition of two mechanisms: the first one being Algorithm 2 (that satisfies
(e1,0)-DP and DP-SGD with noise multiplier o. Using Lemma C.5, and the above analysis of DP-SGD,
it suffices to choose o such that max{D,- <, (P*T]|Q*T), Doc—<, (Q*T||P*T)} < 6 for desired
final privacy parameters of (e, ).

C.4 Privacy Analysis of DP-AdaFEST

DP-AdaFEST can be analyzed essentially identically to DP-SGD. We observe that each step of
DP-AdaFEST involves computing the private contribution map, and then the noisy gradient sub-
ject to the private contribution map. The private contribution map is computed via the Gaussian
mechanism with noise multiplier o1 and the noisy gradient is also computed via the Gaussian mecha-
nism with noise multiplier of o5. From [DRS19] (Corollary 3.3), it is known that the composition of
two Gaussian mechanisms with noise multipliers of 1 and o5 respectively is equivalent to a Gaussian
mechanism with noise multiplier o = (07 % + 05 )72, i.e., for Moy = (M}, .., M&2 ...)- it holds for
any adjacent datasets D ~ D' that (Mg (D), Mo(D’)) < (N(1,02),N(0,5?)). Hence, by combin-
ing with Lemmas C.3 and C.4, we have that for any adjacent datasets D and D’ with D containing one
more datapoint than D', it holds for M being DP-AdaFEST that (M (D), M (D")) < (P*T,Q*T)
where P = (1 —v)N(0,0?) + N (1,02), Q = N(0,0?)), and T denotes the number of steps.

Thus, it suffices to choose o such that max{Z.: (P*1||Q*T), Z.- (Q*T||P*T)} < 6 for desired
privacy parameters ¢, 6.

17



C.5 Numerical Privacy Accounting using Privacy Loss Distributions

Thus, in order to choose the noise parameters for all the above algorithms, the core primitive needed
is to compute the smallest o such that max{Z.: (P*7||Q*7), Z.-(Q*T||P*T)} < § for desired
privacy parameters ¢, §, where P = (1 — v)N(0,0?) + yN(1,0?), Q = N(0,0?)).

Several works have proposed numerical algorithms based on privacy loss distributions [KJH20,
GLW21, GKKM22, DGK™22] for privacy accounting and have in particular studied the specific pair
(P*T Q*T) above. In particular, we use the open-source implementation available in Google’s DP
library [Goo20] for this privacy accounting.

D Experimental Details and Other Results

D.1 Experimental Details

In this section, we provide experimental details for recommendation tasks and NLU tasks.

D.1.1 Click-Through Rate (CTR) Prediction Tasks

The pCTR model’s architecture. The pCTR model we use comprises a total of six layers. The
first layer utilizes an embedding layer to map each categorical feature to a dense feature vector.
Appendix D.1.1 gives the vocabulary size of each categorical feature. We determine the embedding
dimension using a heuristic rule of int(2V-2%), where V represents the number of unique tokens in
each categorical feature. The resulting dense features are combined with the log-transformed integer
features to create the first layer representation. We then apply four fully connected layers to this
representation, each with an output dimension of 598 and a ReLLU activation function. Finally, we
use another fully connected layer to compute the scalar prediction as the final output.

Feature name \ Vocabulary size Feature name \ Vocabulary size
categorical-feature-14 1,472 categorical-feature-27 27
categorical-feature-15 577 categorical-feature-28 1,550
categorical-feature-16 82,741 categorical-feature-29 44,262
categorical-feature-17 18,940 categorical-feature-30 10
categorical-feature-18 305 categorical-feature-31 5,485
categorical-feature-19 23 categorical-feature-32 2,161
categorical-feature-20 1,172 categorical-feature-33 3
categorical-feature-21 633 categorical-feature-34 56,473
categorical-feature-22 3 categorical-feature-35 17
categorical-feature-23 9,090 categorical-feature-36 15
categorical-feature-24 5,918 categorical-feature-37 27,360
categorical-feature-25 64, 300 categorical-feature-38 104
categorical-feature-26 3,207 categorical-feature-39 12,934

Table 3: Vocabulary size of 26 categorical features in the Criteo dataset.

Hyper-parameters. For DP-SGD, we fine-tune the clipping norm and report the best accuracy
achieved. When evaluating DP-FEST, we adjust the hyper-parameter k, which represents the number
of preserved top buckets, with values ranging from 100 to 300, 000. Regarding DP-AdaFEST, we
tune the following hyper-parameters:

> The ratio of noise added to the contribution map to the one added to the sparse gradient, o1 /05,
with options of 0.1 to 10.

> The thresholding value 7 € {0.5, 1.0, 5.0, 10.0, 20.0, 50.0, 100.0}.
> The clipping norm for gradient contribution C; € {1.0, 5.0, 10.0}.

D.1.2 NLU Tasks

Datasets. Our evaluation of NLU tasks uses three downstream classification tasks from the GLUE
benchmark [WSM*19]:
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> The SST-2 dataset [SPW T 13] is a sentiment analysis dataset. The task is to predict whether a
movie review is positive or negative.

> The QNLI dataset [RZLL16] is a question-answering dataset. Each example consists of a
question and a corresponding sentence, and the task is to predict whether the sentence contains
the answer to the question or not.

> The QQP dataset [ITYW ™ 17] is a collection of question pairs that are labeled as either duplicate
or not duplicate. The task is to predict whether a given pair of questions are duplicates or not.

Hyper-parameters. For DP-SGD, we fine-tune the clipping norm and report the best accuracy
achieved. When evaluating DP-FEST, we adjust the hyper-parameter k, which represents the number
of preserved top buckets, with values ranging from 1, 000 to 50, 000. Regarding DP-AdaFEST, we
tune the following hyper-parameters:

> The ratio of noise added to the contribution map to the one added to the sparse gradient, o1 /0,
with options of 0.1 to 10.

> The thresholding value 7 € {50, 100, 200, 500, 1, 000}.
> The clipping norm for gradient contribution C; € {50.0, 100.0, 500.0}.

D.2 More Experiment Results

D.2.1 Wall-Clock Time Reduction of Sparsity-Preserving DP-SGD Compared with DP-SGD

We conduct simulation experiments utilizing tf .keras.layers.Embedding®, the sparse embed-
ding API provided by Tensorflow that supports sparse lookup and sparse gradient computation, to
assess the efficiency improvement of sparsity-preserving DP training compared to vanilla DP-SGD.
Our simulations create an embedding layer with a fixed embedding dimension of 64 and batch size
of 1,024. We investigate the impact of changing the vocabulary size |V| on the wall-clock time
improvement. Table 4 reports the training time for 100 steps for DP-SGD and DP-AdaFEST, along
with the wall-clock time reduction factor. We observe significant wall-clock time improvement in
sparse updates, especially for larger vocabulary sizes: For instance, when the vocabulary size is 10M,
we are able to achieve > 150X wall-clock time improvement over vanilla DP-SGD; For evaluation in
Section 4, the Criteo models have a vocabulary of 1.7M, where our approach translates to a wall-clock
time improvement ranging from 20 to 40 x.

Vocabulary Size | DP-SGD | Ours | Wall-Clock Time Reduction Factor

1% 10° 0.985 | 0.324 3.045
2 x 10° 1.676 | 0.312 5.376
1 x 10° 6.607 | 0.318 20.746
2 x 10° 13.09 | 0.323 40.515
5 x 10° 31.326 | 0.332 94.340
1 x 107 62.473 | 0.353 176.760

Table 4: Wall-clock time improvement by our methods over DP-SGD under different vocabulary sizes.

This efficiency improvement comes from two sources:

> The cost of a sparse update (adding a sparse gradient tensor to the dense weight tensor) is
smaller than that of a dense update, and this gap increases with the tensor size. For example, in
the Tensorflow optimizers, scatter_add () is used when the gradient tensor is sparse to take
advantage of this.

> The computation overhead of generating a dense tensor of Gaussian noises at each step becomes
significant in large embedding layers and the cost also scales with the embedding layer size.

D.2.2 Recommendation Tasks

Sparsity-preserving DP-SGD offers customizable options for balancing efficiency and utility.
The scatter plot in Figure 8 showcases how both DP-AdaFEST and DP-FEST present a range of

*https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding
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possibilities for effectively balancing utility and efficiency by leveraging sparsity-controlling parame-
ters. We further note that both approaches yield an improved trade-off between privacy and utility
compared to the previously suggested DP-SGD with exponential selection [ZMH21].

¢+ DP-AdaFEST > DP-FEST DP-SGD w/ exponential selection (ZMH21) e DP-SGD %  Desired
Criteo-Kaggle, e = 1.0 Criteo-Kaggle, ¢ = 3.0 Criteo-Kaggle, ¢ = 8.0
0.78 0.78 0.78
* * *
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Figure 8: Comparison of the utility/efficiency trade-off between DP-SGD, DP-SGD w/ exponential selec-
tion [ZMH21], DP-FEST, and DP-AdaFEST on the Criteo-Kaggle dataset. DP-FEST, DP-AdaFEST, and DP-SGD
w/ exponential selection can offer a more customized approach for meeting varying requirements of gradient
sparsity and utility than DP-SGD, while DP-AdaFEST achieves the best trade-off.

Effect of the streaming period on pCTR model’s utility. In Table 5, we present the evaluation
AUC of Criteo-time-series under different streaming periods, with varying € values, for both vanilla
DP-SGD and non-private training. Our results indicate that, for DP training, the AUC values increase
as the streaming period increases, regardless of the value of ¢ (i.e., ¢ = 1.0, ¢ = 3.0, and € = 8.0).
Conversely, non-private training results in similar AUC values across different streaming periods,
which suggests that the model is less susceptible to distribution shifts in the data. This observation
implies that DP training is more vulnerable to such shifts, thus explaining the effectiveness of
DP-AdaFEST, which adapts to distribution shifts.

Streaming period \ e=1.0 e=3.0 e =8.0 Non-private (¢ = oc0)
1 0.7313 0.7323 0.7345 0.7846
2 0.7313 0.7324 0.7346 0.7848
4 0.7314 0.7326 0.7352 0.7847
8 0.7316 0.7328 0.7352 0.7820
16 0.7318 0.7331 0.7356 0.7848
18 0.7320 0.7332 0.7358 0.7848

Table 5: Evaluation AUC of Criteo-time-series model under vanilla DP-SGD and non-private training with
different streaming periods. The streaming period affects DP-SGD models but not non-private models.

Joint impact of hyper-parameters in DP-AdaFEST. In Figure 9, we present the interplay between
the noise ratio o1 /o5 and 7 on the utility and embedding gradient size for the Criteo-Kaggle dataset.
Our findings indicate that the optimal selection of hyper-parameters is critical for achieving a desirable
trade-off between high utility and small gradient size. Specifically, we observe that darker colors on
both heatmaps correspond to optimal hyper-parameter choices. Such choices are generally clustered
in the middle-lower regions of the heatmaps, where we see a prevalence of high values of 01 /02 and
medium values of 7. These results suggest that the choice of hyper-parameters should be approached

with great care and attention to detail, as it can have a significant impact on the performance of DP
models.
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Figure 9: Heatmap illustrating the joint impact of the noise ratio o1 /02 and 7 on the utility and embedding
gradient size for the Criteo-Kaggle dataset (¢ = 1.0).

D.2.3 NLU Tasks

Training word embedding layers in NLU improves accuracy. As shown in Table 6, allowing

gradient updates for word embedding layers in the NLU tasks improves the accuracy of DP training.

SST-2 QNLI

Non-private

94.31% 92.38%

|
DP-SGD, e = 1.0 91.85% 83.49%
DP-SGD, € = 1.0 (embedding frozen) 91.43% 83.11%
DP-SGD, ¢ = 3.0 92.43% 84.32%
DP-SGD, € = 3.0 (embedding frozen) 91.51% 84.02 %
DP-SGD, ¢ = 8.0 92.87% 86.34%
DP-SGD, € = 8.0 (embedding frozen) 92.66% 86.28%

Table 6: Accuracy comparison of non-private training and DP-SGD with and without frozen word embeddings on

four language understanding datasets with varying levels of privacy budget (¢).
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