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ABSTRACT

The potential of three-dimensional molecular generation for structure-based drug
discovery is hampered by the scarcity of public protein-ligand complexes, which
causes models to overfit and fail to learn generalizable geometric priors. To ad-
dress this challenge, we employ the PAC-Bayes information bottleneck framework
to systematically quantify the information density of three generation paradigms:
Scaffold Hopping (SH), Side-Chain Decoration (SC), and De Novo Design (DN).
Our analysis reveals that SH possesses the highest information density, which
tightens the model’s generalization bound and enhances its transferability com-
pared to conventional de novo generation. Motivated by this finding, we pro-
pose IBEX, a novel decoupled generation framework. IBEX is trained exclusively
on the information-rich SH task to structure its latent representation of chemical
space, which is then directly applied to de novo generation in a zero-shot transfer
setting. Subsequently, a rapid physical refinement module utilizes the L-BFGS
algorithm to optimize each conformer’s geometry and binding compatibility by
adjusting five short-range interaction terms and six degrees of freedom. Evalu-
ated in a rigorous zero-shot setting on the CBGBench CrossDocked2020-based
dataset, IBEX demonstrates substantial improvements over the TargetDiff base-
line. It increases the docking success rate from 53% to 64% and improves the
average Vina score from -7.41 to -8.07 kcal/mol. Notably, IBEX achieves a su-
perior median Vina energy in 57 out of 100 binding pockets. Furthermore, IBEX
enhances drug-likeness by approximately 25% while maintaining state-of-the-art
validity and diversity, all corresponding to a demonstrably reduced generaliza-
tion error. Our results validate that this decoupled approach, which synergizes
information-dense pre-training with physical refinement, enables robust zero-shot
structure generation and cross-pocket generalization in data-limited regimes.

1 INTRODUCTION

Small-molecule discovery is leaving the classical “virtual screening and lead optimization” and
moving toward target-aware design driven by three-dimensional generative models |Sadybekov &
Katritch| (2023). Drug chemistry, however, faces a severe data bottleneck: fewer than 2 x 10° ex-
perimentally validated protein—ligand complexes are public[Wang et al.| (2005)), while vision Betker
et al.| (2023) and language models |Devlin et al.| (2019); |[Brown et al.| (2020) rely on corpora that
are three orders of magnitude larger. The high cost of acquiring new complexes forces us to mine
as much information as possible from each limited example. Protein—ligand co-folding models pri-
marily memorize training-set biases rather than learning genuine binding preferences Skrinjar et al.
(2025); Nittinger et al.| (2025). They remain insensitive to complete pocket-residue mutagenesis
or side-chain polarity inversion Masters et al.| (2024). AlphaFold3 is a structure-prediction system
for macromolecular complexes |[Abramson et al.| (2024). Although it captures broad protein—ligand
interaction regularities from structural data, it is not a generative model over chemical space and
therefore cannot be used to perform target-conditioned molecular generation.

Most current 3D diffusion models follow a de novo protocol. They mask the entire ligand and
regenerate it inside the protein pocket. Each sample therefore gives only a coarse prior— indicating
possible atomic placements— and rarely conveys the core geometric rules that link pocket shape to



Under review as a conference paper at ICLR 2026

V. —_—
Context: Si
Generation: Side chain

/‘Context:"SEe(s'fpmﬁfim‘ané{tion

e

chain Tnformation

Generation: Scaffold

Scaffold Side chain
~ P )
SH Task [ C \ _ DNTask
{1 t/
" , &\

,4‘:?-'

Context N

Generation: Entire molecule

Figure 1: Workflow of the Bemis—Murcko decomposition. Starting from the full ligand structure,
the algorithm (i) identifies all ring systems and the linkers that connect them, (ii) removes peripheral
side chains that are not part of a ring or linker, and (iii) collapses any fused ring junctions to generate

the unique Bemis—Murcko scaffold.

molecular scaffold. End-to-End schemes that merge generation and docking inherit this weakness.
Gradient signals become diluted, physical interpretability drops, and binding poses are often sub-
optimal. Even the best standalone docking tools still show limited placement accuracy and strong

reliance on known motifs.

Although the training paradigm significantly
influences the learning efficiency of molecular
generation models, the underlying information-
theoretic principles governing this relationship
remain largely unexplored. To address this
gap, we systematically quantify the informa-
tion efficiency of three prevalent generation
paradigms: de-novo generation, side-chain dec-
oration, and scaffold hopping(Figure [T). Our
analysis, which evaluates the conditional infor-
mation content of each task and the signal-to-
noise ratio of the training gradients, reveals that
the scaffold hopping paradigm possesses su-
perior information density and enhances gra-
dient discriminability. This empirical finding
is supported by a solid theoretical foundation;
from a PAC-Bayes perspective, higher informa-
tion density tightens the information bottleneck
bound, which effectively increases the “effec-
tive sample size” and thereby promotes model
generalization.

Motivated by these insights, we introduce
IBEX (Information-Bottleneck-EXplored), a
novel decoupled generation framework. The
core of IBEX is an asymmetric training and
inference strategy wherein the generator is
trained exclusively on the information-rich
scaffold hopping task to structure its latent rep-
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Figure 2: Conceptual overview of the IBEX
pipeline, which uses three masking strategies (SC,
SH, DN) under a PAC-Bayesian information bot-
tleneck. The SH task shows the best generaliza-
tion, indicated by the tightest train-test gap.

resentation of chemical space. The resulting model can then be deployed for full-mask de novo gen-
eration tasks in a zero-shot transfer setting, requiring no additional fine-tuning. A separate physical
optimization module subsequently refines the geometry and interactions of the generated molecules,
circumventing optimization challenges such as vanishing gradients that are common in traditional
end-to-end methods. Experimental results demonstrate that the IBEX framework achieves robust
zero-shot generation performance, empirically validating the theoretical superiority of scaffold hop-
ping as an information-efficient training paradigm and offering a novel methodology for modern

drug discovery.
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Our main contributions are as follows:

1) We provide the first information-theoretic quantification and establish an efficiency hierarchy for
molecular generation tasks. We demonstrate through PAC-Bayes theory that the scaffold hopping
task more effectively tightens the generalization bound and increases the effective sample size, pro-
viding a solid theoretical basis for designing efficient generative models.

2) We propose IBEX, a zero-shot transfer framework based on an asymmetric train-inference strat-
egy. This design leverages the profound chemical knowledge learned from high-information-density
tasks to achieve robust zero-shot transfer, significantly enhancing the model’s generalization capa-
bilities and flexibility.

3) We pioneer a novel molecular design architecture that completely decouples information gener-
ation from physical refinement. This decoupled design clarifies the objective of each stage, stabi-
lizes the optimization process, and effectively circumvents gradient conflicts and vanishing gradients
commonly encountered in traditional end-to-end methods, offering a new architectural paradigm for
addressing molecular generation under complex physical constraints.

2 RELATED WORK

Molecular generative modelling has advanced rapidly in recent years. Broadly, contemporary ap-
proaches fall into two categories: target-agnostic models that explore chemical space without refer-
ence to specific proteins, and farget-aware models that design ligands in the presence of an explicit
binding site or pocket.

Target-Free Molecular Generation. Target-free generators are judged mainly by chemical va-
lidity, diversity, and drug-likeness. SE(3)-equivariant diffusion generates either graphs or full 3D
coordinates without protein by reversing a noise process |Xu et al.|(2022); Hoogeboom et al.|(2022);
Morehead & Cheng| (2024). GraphAF combines flows with autoregression for goal-directed sam-
pling |Shi et al.| (2020), while GraphDF uses discrete flows to better cover the combinatorial space
Luo et al.| (2021b). Scaffold-aware variants narrow the search by fixing or first generating a core:
Lim et al. retain a user-specified scaffold during atom-wise growth [Lim et al.| (2020); Sc2Mol di-
vides the task into VAE scaffold discovery followed by Transformer decoration |Liao et al|(2023);
and fragment-hierarchical methods such as MolPAL and Junction-Tree VAE build coarse fragments
or trees before atomic refinement (Graff & Coley| (2022); Jin et al.[(2018)).

Target-Aware Molecular Generation. Structure-based drug-design models condition generation
on pocket geometry. DiffSBDD pioneered pocket-aware denoising diffusion/Schneuing et al.|(2024),
TargetDiff added an affinity term to bias toward tight binders|Guan et al.|(2023), and DiffBP removed
sequential bias via whole-molecule denoising [Lin et al.| (2025); hierarchical extensions D3FG and
DecompDiff diffuse functional groups or scaffold-arm decompositions for improved geometry and
synthesizability Lin et al.|(2023); /Guan et al.|(2024). Autoregressive pocket-conditioned approaches
place atoms step-wise: Pocket2Mol uses an E(3)-equivariant GNN [Peng et al.|(2022), GraphBP de-
ploys a local flow model [Liu et al.| (2022a), ResGen incorporates residue-level encoding [Zhang
et al.[(2023a), and TamGen employs a GPT-style chemical language model for rapid SMILES gen-
eration [Wu et al.| (2024)). Fragment-centric variants further constrain chemistry while maintaining
flexibility: FLAG sequentially inserts predefined fragments into the pocket [Zhang & Liu| (2023),
MOolICRAFT performs continuous 3D optimization before collapsing to a discrete ligand |Qu et al.
(2024), and linker methods such as Delinker and FragGrow extend anchored pharmacophores Imrie
et al.| (2020); Zhang et al.|(2024).

3 METHODS

Notation and preliminaries. To formally define the three molecular generation paradigms inves-
tigated in this study, namely Scaffold Hopping (SH), Side Chain Decoration (SC), and De Novo
Design (DN), we first establish a common framework based on molecular decomposition. Follow-
ing the three-step Bemis-Murcko simplification procedure (Figure[I)), any given ligand M bound to
pocket P is decomposed into its constituent scaffold and side chain fragments. This decomposition
allows for a precise definition of each task. The Side Chain Decoration (SC) task is a conditional
generation problem where the model must predict the appropriate side chains given the molecular
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scaffold as input. Conversely, the Scaffold Hopping (SH) task requires the model to predict a novel
scaffold that accommodates a given set of side chains. Finally, the De Novo Design (DN) task is an
unconditional problem that involves generating the entire molecule from scratch without any prede-
fined fragments. The primary objective of this study is to explore the intrinsic information content
associated with each of these generation paradigms. Although models are pre-trained under these
distinct conditional frameworks, their ultimate performance is evaluated on the task of unconditional
de novo molecule generation. Ring systems and their connecting linkers are enumerated, peripheral
atoms are excised, and fused junctions are merged, leaving a canonical scaffold S (yellow) and a
complementary side-chain set C (blue). Conditioning on these fragments yields the task indicator
T € {SH,DN, SC}: SH receives C and proposes alternative scaffolds, SC fixes S and generates
diverse C’, whereas DN samples an entire ligand without prior structural constraints.

Each task has an associated dataset D = {(P;, M;)}\7, with empirical joint density ¢7(P, M);
N7 = |D7| denotes its size. A shared SE(3)-equivariant diffusion generator Gy and a dock-
ing/refinement module Dy act on all tasks, and their performance is evaluated via empirical and

population risks R and R. Information-theoretic quantities such as differential entropy H(-) and
mutual information I(-; -) are reported in natural-log units.

A ligand and pocket are represented by their atom sets as follows |Guan et al.| (2023):

S = {0 v DI S = (v ), 0
where N,; and Np are the ligand-atom and pocket-atom counts. Each atom carries Cartesian co-
ordinates x € R® and an element-type one-hot vector v.€ R’ from a vocabulary of size K.
For ligand atoms, the binary flag ¢ marks whether the atom is fixed by the task context (¢ = 1);
for pocket atoms, b indicates backbone membership, and r € RX is a one-hot vector over K’
amino-acid residues. Stacking these features row-wise yields the matrices m = [Xr, Vs, ] €
RNvXB+E+1) and p = [Xp, Vp, bp,rp] € RNPXGHEHI+KY) "which serve as the inputs to G
and Dy.

3D Pocket-aware Diffusion as a generator. The generator keeps TargetDiff backbone and intro-
duces two forward noise channels—Gaussian for coordinates and categorical for atom types. For
each pair (P, M) a spatial mask Mg C {1,..., Ny} is sampled; indices in Mg are regenerated,
the rest form the context Mciy. Let xo = My, € R3*Megt| and vy = M, € R¥ X|Migt| be their
clean coordinates and types. The forward noising at step ¢ is

at(x¢ | x0) = N(Varxo, (1 —ag)I), q(ve|vo) =Clarvo+ (1 —a)/K), 2

where a; = Hizl s 1s the cumulative variance schedule and C(+) denotes a categorical distribution
over the K atom types|Guan et al.|(2023); Lin et al.| (2025). Protein coordinates are weakly perturbed
for regularisation |Yang et al.| (2024):

Xp=xp+e, e~N(0,0.1°0). (3)

The reverse process uses two heads: sj(P,x;,t) predicts the coordinate score, and sy (P, vy, t)
predicts type logits. The total loss is the sum of coordinate and type objectives:

L(0) = Ey,(p,ar) [)\tHS)é — Vx, log q:(x | XO)”Z]a 4)
Ly(0) =E¢ (p,m) [’yt CrossEntropy (sfo, VO)], 5)

with \; = 02/a?, 02 = 1 — oy, and ~; mirroring the type-noise variance. At inference, ancestral
sampling yields a coarse pose My = Gy (P) whose heavy atoms fall inside a 10 A sphere centred
on the pocket.

Physics-guided Position Refinement (PR). Given a coarse ligand proposal M, from the generator,
we refine its placement in the pocket using a lightweight, gradient-based search over rigid-body
degrees of freedom. During this search, the ligand is treated as a rigid object; only global rotations
and translations are updated, whereas internal covalent geometry, atom types, and formal charges
remain fixed. This design isolates pose quality from generative uncertainty and concentrates limited
gradient signal on a six-dimensional space (3 translation, 3 rotation).
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The refinement process minimizes a differentiable surrogate of the binding free energy, which is
constructed from five short-range physical contact terms common to empirical scoring functions.
The total physical energy, Epnys, is expressed as a weighted sum:

Ephys(P7 M) = WT(Egl + EgZ + Erep + Ehyd + Ehd)a (6)

where the individual components model key intermolecular interactions. Specifically, two Gaussian
terms, F, and Ey), are used to fit the attractive part of the van der Waals potential. The repulsive
component of the van der Waals forces is modeled by a hard-sphere penalty term, Ei,. Additionally,
Ehyq accounts for hydrophobic interactions, and Eyg represents directional hydrogen bonding. In this
framework, lower energy values indicate a more favorable predicted binding affinity. Weights W7
are held fixed across all experiments and were set once on a small calibration panel [Trott & Olson
(2010). Let X € R3*N# be ligand coordinates in the generator frame and R € SO(3), t € R? be
the current rigid transform |Cai et al.|(2024). The refined pose is

X' =RX+t1". (7)

We parameterise R by an axis—angle 3-vector (Rodrigues) and optimise the 6-vector u =
(05,0y,0,, Wy, wy,w,). Small updates compose via exponential maps; for clarity, we write this as
Ry41 = exp(w; )Ry with wy, = (w,,wy,w.) and skew operator (-)*. The physics score is com-
puted by an external energy evaluator. Because analytic gradients are unavailable, we approximate
VuEphys by forward finite differences. Let E(u) = Ephys(P, M (u)). For step size e,

OE _ E(u+ece;) — E(u)
ou; € '

®)

We set € = 1073 in all runs after scale normalisation of u.

We run a Limited-memory BFGS search optimiser with fixed learning rate (0.1)Zhang et al.|(2023b).
At iteration k: 1) Evaluate E(uy) and its finite-difference gradient. 2) Perform an L-BFGS update
to propose uy41. 3) Update the ligand pose; recompute the energy. 4) Track the best energy so far.

We run at most T}, . iterations (T,ax = epochs command-line argument). The initial ug = 0 uses
the generator pose. Let Finic and Eqp be the energies before and after refinement. If Eqpe < Fipie we
accept the refined pose; otherwise we keep the initial one. Both the kept structure and the tracked
scores are saved for later analysis. This rule prevents noisy gradients from degrading good initial

Side Chain Decoration Task De novo Task Scaffold Hopping Task
Distance — p= 5.02 3500 Distance — = 4.98 3500 Distance — p= 4.92 3500
R Atoms  — p=25.05 B Atoms  — p=2591 Atoms  — p=27.10
i 3000 fw 3000 3000
H 2500 & 2500 2500
< 60 : 60
2 2000 2 2000 2000
& )
g H
2 1500 2o 1500 1500
£
£ 1000 s 1000 1000
Z 20 E 20
H 500 2 500 500
0 0 0
0 0 0
425 450 475 500 525 550 575 6.00 425 450 475 500 525 550 575 6.00 425 450 475 500 525 550 575 6.00
Mean Di Mean Di Mean Dista
Inter Atom p = 0.14 14000 Inter Atom p = 0.12 14000 Inter Atom p = 0.23 14000
E 14 Inter Type p =100 E 14 Inter Type p=0.59 E 14 Inter Type p =199
< 8 <
= 12000 z 12000 = 12000
z 2 12 $ 2
H i H
£ 10000 I 10000 £ 10000
o I o
208 8000 Zos 8000 g 08 8000
g g H
206 000 Soe 6000 £ 06 6000
& = &
= H =
204 4000 204 4000 4000
2 g
Lo So2 2
2 2000 3 2000 2000
z 00 E ‘ 2000 z 00
0.0 00 0.0
0 o 0
i s 0 0 5 10 s 20 0 5 i s 0
Involved Atoms per Context Atom Involved Atoms per Ligand Atom Involved Atoms per Context Atom

Figure 3: Hexagon-bin density maps for SC, DN, and SH. Top panels: mean edge length (d) vs.
mean number of neighbours per context atom (7). Bottom panels: mean number of interacting
atoms ( k) vs. mean number of interaction types (). DN values are averaged over all ligand atoms.
Insets show task-level means. SH spans the broadest range and attains the highest means on all four
axes, indicating richer geometric and chemical context than DN and SC.
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Figure 4: Training and validation dynamics of IBEX models on three generation tasks. Panels
show atom-type classification loss, position-reconstruction loss, total validation loss, and gradi-
ent signal-to-noise ratio (G-SNR) as functions of training steps for the Scaffold Hopping (red),
Side-chain Decoration (blue), and De novo (green) tasks

4 RESULTS

CrossDocked2020 Francoeur et al.|(2020) is one of the most widely used benchmarks for structure-
based drug design, providing paired three-dimensional structures of protein pockets and docked lig-
ands. Existing methods have adopted different data splits and evaluation protocols. CBGBench |[Lin
et al.| (2024) follows the split defined by LiGAN |Ragoza et al| (2022) and 3DSBDD |Luo et al.
(2021a) and prevents label leakage by constructing the side chain and scaffold tasks only after an in-
dependent train/test partition. Models are evaluated from four complementary perspectives: interac-
tion quality, chemical properties, geometric accuracy, and substructure validity. The benchmark inte-
grates a diverse panel of state-of-the-art generators, including LiGAN, 3DSBDD, VoxBind Pinheiro
et al.[ (2024)), diffusion models (TargetDiff \Guan et al.| (2023)), DiffSBDD |[Schneuing et al.| (2024),
DecompDiff |Guan et al.|(2024), DiffBP Lin et al.|(2025)), D3FG [Lin et al.| (2023, MolCRAFT |Qu
et al.| (2024)), UniMoMo |[Kong et al.| (2025)), and autoregressive models (Pocket2Mol Peng et al.
(2022), GraphBP Liu et al.|(2022a), FLAG [Zhang & Liu|(2023)).
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Figure 5: Train—test comparison on 18 normalised metrics for three IBEX settings. For each IBEX
variant we track eighteen chemistry-aware metrics covering binding energy, physicochemical prop-
erties, geometric complementarity, and distribution alignment. Every metric k£ is min—max nor-
malised to [0, 1] (monotonic in the beneficial direction), and the profile distance is the Euclidean
norm ||1 — V|2 between a sample’s normalised vector v € [0, 1]'® and the ideal all-ones target.
The radar overlays Train (blue) and Test (orange) envelopes; the number beneath each chart reports
the test distance, and GAP is the absolute train—test difference. The SH task exhibits the tightest
Train—Test overlap, the smallest profile distance on the held-out set, and the narrowest GAP, illus-
trating how increased task difficulty promotes robust generalization.

Task-dependent Information-Bottleneck Analysis. For each protein—ligand complex, we connect
every pair of heavy atoms whose Euclidean separation is below 6 A and treat the resulting links
as virtual edges (Corso et al.| (2022); [Zhou et al.| (2023). The complex is then compressed into a
four-dimensional summary Z = (7, d, t, k) that lies on two orthogonal planes: Distance plane.
(a) Neighbour density 72: the mean number of atoms found within the sphere of each context atom;
(b) Mean edge length d: the average virtual-edge distance. These two axes quantify, respectively,
the strength of short-range physical electrostatic forces. Interaction plane. (c) Type richness #:
the mean count of distinct interaction categories—hydrophobic, hydrogen bond, water-bridge, m—m
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stack, m—cation, halogen, metal—triggered by a context atom |Salentin et al.| (2015)); (d) Contact
multiplicity k: the mean number of protein atoms that realise those interactions. These two met-
rics capture the chemical complexity and the interaction strength [Huang et al| (2024). For DN
generation, the model possesses no ligand-derived context atoms; all four statistics are therefore
computed over every ligand atoms. SH and SC restrict the tally to a predefined context subset, lead-
ing to visibly broader hex-bin distributions for SH in both planes (Figure 3). Under the PAC-Bayes
information-bottleneck frameworkWang et al.| (2022), the mutual information I(Z; X') between the
latent Z and the original complex X controls generalization|Lyu et al.|(2023). Normalising by latent
dimension yields the information density p = I(Z; X )/4. SH attains the highest p, tightening the
PAC-Bayes bound on test risk by 38% and 47% relative to DN and SC, respectively, consistent with
the hypothesis that harder tasks confer richer priors Boopathy et al.[(2023b)).

Capacity driven convergence on the hardest task. Figure [ displays atom, position, validation,
and gradient signal to noise ratio (G—-SNR) curves for the three tasks under the same parameter
budget C Rohlfs|(2025). The PIB framework models learning as a balance between empirical error
and the information stored in the weights In foy, Wang et al.[(2022). Among the tasks, SH carries
the largest information demand In fo because it must invent new scaffolds while matching pocket
geometry. PIB predicts that a large In foy, prolongs the fit phase. We observe an early activation of
effective capacity in IBEX at 2 x 10° steps, where the variance of G-SNR falls to 1.6 x 10~°. This
drop marks the start of the compression phase in which redundant weight bits are removed yet the
loss keeps decreasing. SC and DN remain longer in the fit regime and show a grokking plateau that
postpones generalization performance [Power et al.|(2022); Liu et al. (2022b)). The early compression
on the hardest task indicates that IBEX allocates capacity in a content aware way and achieves the
lowest validation loss |Huang et al.| (2023); |Birol1 et al.| (2024).

Task-Difficulty Drives Robust Generalization. Classic bias—variance lore warns that complex
tasks overfit more readily, but recent theory suggests the opposite once models are heavily over-
parametrised. Recent work formalizes a generalization-difficulty |Boopathy et al,| (2023a) score
showing that harder tasks force stronger inductive bias and thus improve out-of-distribution fidelity.
Information-theoretic analyses further link lower weight information density to tighter PAC-Bayes
bounds, while results on benign overfitting indicate that perfect training accuracy need not harm
generalization when the bias is appropriate Bartlett et al.| (2020). Figure [5] shows that the SH
task—the most structurally constrained—achieves the lowest test divergence (1.38) and the smallest
gap (0.03), whereas the DN task records 1.58 and 0.25 respectively. Anchoring functional moieties
and forcing the model to reinvent molecular cores inject richer pocket-ligand information at every
step, sharpening optimization signals and implicitly regularising the network.

Task Difficulty under Geometric Constraints.
Matched ligand sets were generated with four diffusion
baseline: IBEX (SH), DecompDiff (Scaffold-Arms),
TargetDiff and MolCRAFT (no geometric constraint). o
Each output was screened by RDKit |Bento et al.| (2020) :
topology checks to detect unclosed rings. A higher fail- T
ure rate signals a harder but more informative task Jiang

et al.| (2024). SH task exposes the network to explicit side

chain—pocket interactions during training but leaves these T ; AL
atoms un-denoised; at test time, the model must denoise 000
them from scratch, increasing conflict yet enriching the
learned representation. This supports our claim that SH
operates in the high-information regime. Location beats
quantity. Retaining side chain context boosts mutual
information and thus effective capacity, outweighing a
lower overall mask ratio.

IBEX Delivers Consistently Superior Docking Energies. A critical analysis of the results in
Table[T|reveals a significant discrepancy between the initial predicted binding affinity, or Vina Score,
and the post-simulation score from molecular docking, the Vina Dock, across many contemporary
generative models. We posit that this performance gap arises from the models’ tendency to overfit
the training data by prioritizing atomic proximity to key residues. This strategy, while yielding
favorable initial scores, often neglects holistic molecular properties such as internal strain and global
complementarity with the binding pocket. Consequently, the Vina Dock score, which reflects an
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Figure 6: Harder geometry implies
higher I,,, supporting the ordering
above. IBEX exhibits the highest fail-
ure rate.
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Table 1: Aggregate docking and physicochemical metrics for recent generative pipelines. The best-
performing method is shown in bold and the second and third-best are underlined.

Model ‘Ablation‘ Vina Score‘ Vina Min ‘ Vina Dock ‘ Chemical property

|SH PR |Eyina IMP |Eyina IMP |Eyina IMP MPBG LBE |QED LogP SA LPSK Validity

LiGAN - - | -6.47 62.13|-7.14 70.18| -7.70 72.71 4.22 0.3897|0.46 0.56 0.66 4.39 0.42
3DSBDD - - - 399 | -3.75 17.98| -6.45 31.46 9.18 0.3839|048 0.47 0.63 472 0.54
GraphBP - - - 0.00 - 1.67 | -4.57 10.86 -30.03 0.3200| 0.44 3.29 0.64 4.73 0.66
Pocket2mol | - - | -5.23 31.06|-6.03 38.04|-7.05 48.07 -0.17 0.4115|0.39 2.39 0.65 458 0.75
TargetDiff - - | -5.71 38.21|-6.43 47.09|-7.41 5199 538 0.3537/049 1.13 0.60 4.57 0.96
DiffSBDD - - - 12.67| -2.15 22.24|-5.53 29.76 -23.51 0.2920|0.49 -0.15 0.34 4.89 0.71
DiffBP - - - 8.60 - 19.68| -7.34 49.24 6.23 0.3481|0.47 5.27 0.59 447 0.78
FLAG - - - 0.04 - 344 | -3.65 11.78 -47.64 0.3319|0.41 0.29 0.58 4.93 0.68
D3FG - - - 3.70 | -2.59 11.13|-6.78 2890 -8.85 0.4009|0.49 1.56 0.66 4.84 0.77
DecompDiff| - - | -5.18 19.66| -6.04 34.84|-7.10 48.31 -1.59 0.3460|0.49 1.22 0.66 4.40 0.89
MoICARFT | - - | -6.15 54.25(-6.99 56.43|-7.79 56.22 8.38 0.3638|0.48 0.87 0.66 4.39 0.95
VoxBind - - |-6.16 41.80(-6.82 50.02|-7.68 5291 9.89 0.3588|0.54 2.22 0.65 470 0.74
UniMoMo - - | -5.72 30.40(-6.08 39.23|-7.25 51.59 7.50 0.3473|0.55 1.55 0.70 4.68 -
IBEX vV / |-3.09 37.67|-523 47.34|-8.09 63.69 14.69 0.3813|0.60 2.73 0.63 4.82 0.96
IBEX-DN X X |-571 38.21|-6.43 47.09|-7.41 5199 538 0.3537{049 1.13 0.60 4.57 0.96
IBEX-SC X X |-3.53 18.54| -473 21.89|-6.20 24.81 -10.22 0.3416]0.35 0.85 0.63 4.38 0.54
IBEX-SH v X |-1.96 31.03|-5.06 46.58|-8.07 63.50 14.87 0.3809|0.60 2.73 0.63 4.82 0.96
IBEX v / |-3.09 37.67|-523 47.34| -8.09 63.69 14.69 0.3813|0.60 2.73 0.63 4.82 0.96
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Figure 7: Per-target docking performance of five generative pipelines on 100 held-out CBGBench
receptors. Each coloured point is the median AutoDock Vina binding energy of the candidate set
produced for one target by IBEX, D3FG, DecompDiff, MolCRAFT, and TargetDiff.

optimized ligand conformation, serves as a more rigorous and physically meaningful metric for
assessing the true binding potential of generated molecules. This limitation is evident in models such
as Pocket2mol and VoxBind, which show substantial performance degradation upon docking. Other
benchmarks exhibit distinct weaknesses; for instance, D3FG’s fragment-based prior does not ensure
strong binding energies, the FLAG model compromises interaction quality for energy optimization,
and both LiGAN and DiffBP are constrained by low chemical validity. In contrast, our proposed
IBEX model demonstrates superior and consistent performance, achieving state-of-the-art efficacy
while maintaining top-tier chemical properties. While its initial Vina Score is not the highest, its
physically more realistic Vina Dock score of -8.09 is exceptional. This is further substantiated by a
significant improvement in the docking success rate (IMP), which increased from a baseline of 53%
with TargetDiff to 64%. This suggests that molecules generated by IBEX assimilate knowledge
of the overall protein structure, enabling strong interactions with the target. Ablation experiments
confirm that the scaffold hopping is crucial for these performance improvements, while the side-
chain decoration contributes minimally. Furthermore, a comparison on the CBGBench, illustrated in
Figure[7] confirms that IBEX generates molecules with exceptionally balanced and high-performing
docking characteristics relative to other generative models.

IBEX Balances Strong Binding with Practical Feasibility. Figure [§] presents docking poses and
two-dimensional structures for four receptors. IBEX shows the lowest Vina score in every pocket.
These energies correlate with tighter placement inside the catalytic cavity. Ligands generated by De-
compDiff and MolCRAFT either extend beyond the binding pocket or leave the hydrophobic clefts
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unfilled. IBEX orients polar atoms toward canonical hydrogen-bond donors or acceptors. Aromatic
scaffolds sit flush with hydrophobic shelves. This geometry preserves high drug-likeness and mod-
est synthetic cost. DecompDiff can reach low energies but its molecules carry long flexible chains
that lower QED and raise SA. MolCRAFT maintains a cleaner chemical profile, yet it often leaves
void space, which weakens binding. TargetDiff shows the weakest complementarity and acts only as
an architectural control. IBEX and TargetDiff share the same network and sampling schedule. The
only change is that IBEX is trained with scaffold-hopping pairs under an information-bottleneck
objective. The observed gains therefore, stem from the training scheme rather than from model size
or inference heuristics. These findings indicate that pocket-aware context steers generative diffusion
toward chemically sensible and potent binders.
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Figure 8: Docklng poses and drug- hkeness of medlan score candldates on four CBGBench test
pockets. Rows list the crystal reference and the molecule from DecompDiff, MolCRAFT, Target-
Diff, and IBEX. Each ligand is depicted with its predicted pose (green sticks) and associated Vina
energy, alongside its planar formula annotated with QED, SA, and Lipinski compliance.

Batch Generative Performance Evaluation. In Ta-
ble 2] the metrics reported were obtained by generat- Table 2: Comparison of Diversity.
ing 100 molecules for each of the 100 test pockets;

whenever fewer than 100 structures were produced, 1~ ~ - | Validity Unique Tanimoto Similar

the denominator was still fixed at 100. Validity de-
notes the fraction of chemically valid molecules, LIGAN 042 03757 03249 0.3459
Unique counts the number of non-duplicate valid PD(;;'EETZMOL 8';; 8';;33 g'(l);gé g'gégg
molegules', Tanzmoto reports the mean pairwise fin- DEcoMPDIFF | 089 0.8420 01394  0.1469
gerprn}t ‘s1m11'a.rlty among a}l genferated molecules, oo 096 09524 01063 0.0976
and Similar is the mean similarity between each 0 cRAFT | 095 08828 01251 0.1154
generated molecule and the reference ligand of its  voxBNnD 074 07418 0.1051  0.0998

pocket. LiGAN exhibits very low validity and di- [BEX 096 09507 0.1126 0.0761

versity, often producing identical or nearly identical
molecules, and autoregressive baselines show the same limitation. To examine out-of-distribution
performance, we further generated 2000 molecules for the previously unseen pocket 9F7W
(2024) using Pocket2Mol and our IBEX model; after deduplication Pocket2Mol retained only
217 unique molecules, whereas IBEX preserved 1706, underscoring the superior diversity delivered
by diffusion-based generators. Owing to its novel training regime, IBEX sustains state-of-the-art
validity, uniqueness, and diversity even in this zero-shot de novo setting.

5 CONCLUSION

We introduce IBEX, an information-bottleneck-explored coarse-to-fine pipeline, and demonstrate
both theoretically and experimentally its feasibility in extracting maximal information from ex-
tremely scarce datasets. This work establishes a theoretical and practical foundation for future
structure-based drug design paradigms by seamlessly integrating information theory with physics-
based optimization.
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