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Abstract

Accurate and scalable machine-learned inter-atomic potentials (MLIPs) are essen-
tial for molecular simulations ranging from drug discovery to new material de-
sign. Current state-of-the-art models enforce roto-translational symmetries through
equivariant neural network architectures, a hard-wired inductive bias that can often
lead to reduced flexibility, computational efficiency, and scalability. In this work,
we introduce TransIP: Transformer-based Inter-Atomic Potentials, a novel train-
ing paradigm for interatomic potentials achieving symmetry compliance without
explicit architectural constraints. Our approach guides a generic non-equivariant
Transformer-based model to learn SO(3)-equivariance by optimizing its represen-
tations in the embedding space. Trained on the recent Open Molecules (OMol25)
collection, a large and diverse molecular dataset built specifically for MLIPs and
covering different types of molecules (including small organics, biomolecular
fragments, and electrolyte-like species), TransIP effectively learns symmetry in
its latent space, providing low equivariance error. Further, compared to a data
augmentation baseline, TransIP achieves 40% to 60% improvement in performance
across varying OMol25 dataset sizes. More broadly, our work shows that learned
equivariance can be a powerful and efficient alternative to augmentation-based
MLIP models.

1 Introduction

Atomistic simulations are a fundamental task in chemistry and materials science [1, 2], with Density
Functional Theory (DFT) serving as a basis for accurately calculating interatomic forces and energies.
However, the utility of DFT is severely restricted by its computational costs, which typically scale
cubically with system size, rendering large-scale or long-timescale simulations intractable. This has
motivated machine-learned interatomic potentials (MLIPs) to overcome this limitation by learning
the potential energy surface from data, offering orders-of-magnitude speed-ups compared to DFT
calculations [3-7].

Equivariant neural networks have become a central paradigm for MLIPs due to their ability to encode
the three-dimensional structure of molecular graphs [§—11]. These architectures are designed to
explicitly respect roto-translational symmetries (SE(3) equivariance) by construction, often employing
compute-intensive mechanisms like spherical harmonics or equivariant message passing [12—15].
However, due to the design difficulties and limited expressive power of these architectures [16, 17], a
recent trend in predictive and generative modeling is to use unconstrained models when enough data
is available [18-21].

In this paper, we introduce TransIP (Transformer-based Interatomic Potentials), a training paradigm
that achieves molecular symmetry for interatomic potentials wirhour imposing architectural SO(3)
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Figure 1: TransIP: Transformer-based Interatomic Potentials.

constraints. TransIP steers a standard transformer toward SO(3) equivariance via an additional
contrastive objective, allowing the model to retain the scalability and hardware efficiency of attention
mechanisms while learning symmetry from data.

Our contributions are as follows:

* We propose an MLIP training pipeline with a general transformer-based model to obtain
SO(3) equivariance through training rather than hard-wired equivariant layers.

* We introduce an architecture-agnostic contrastive loss function that promotes SO(3) equiv-
ariance in the embedding space of an unconstrained model. By aligning latent features across

SO(3) transformations in the model’s backbone, we show that TransIP scales better across
different datasets and model sizes compared to traditional data augmentation techniques.

* On a diverse molecular benchmark, Open Molecules 25 [22] (that includes small organics,
biomolecular fragments, electrolyte-like species), we show that TransIP outperforms data
augmentation techniques often by a large margin, which might provide an alternative for the
future of augmentation-based MLIP models.

2 Symmetry in Embedding Space

2.1 Problem Formulation

Molecular representations. Let M denote the space of molecular configurations. Each molecule
m € M is represented by atomic features x = (r, z, ¢, s), where r € RI™I%3 are atomic coordinates,



z € NI™| are atomic numbers, ¢ € Z is the total molecular charge, and s € N is the spin multiplicity,
with |m| denoting the number of atoms in molecule m.

Our goal is to learn an embedding function fy : M — R? that maps molecular configurations to a
d-dimensional latent space, and a prediction function g, : R? — R that acts in the embedding space
R? and outputs molecular properties (e.g., energy). Both fg and g, are neural networks parameterized
by 6 and ¢, respectively.

Symmetry groups. We define a symmetry group G that acts on a set X’ as a group of bijective
functions from X to itself, and the group operation is function composition. We say a function f is
equivariant w.r.t. the group G if for every transformation g € GG and every input x € X,

f(@(9)(x)) = p(g)(f(x)) (M

The group representations ¢ and p specify how we apply the elements of the group G on input
and output data. As a concrete case, we can define G as a rotation group SO(3) over molecular
configurations M, with g € SO(3) representing an element of G that acts on a molecule m by
rotating the coordinates of each atom in 3D space. Formally, for a molecule m = (r, z, q, s) with
coordinates r = (ry, ..., r|m‘), r; € R3, the input action rotates each atom:

(gb(g) m) = ((er, .oy Rrypy), 2, q, s).

Here R is a 3 x 3 rotation matrix (orthogonal with det R = 1); z, ¢, s are unchanged. An associated
output representation rotates vector-valued quantities—e.g., for forces F = (Fy, ..., F),|), p(g)F =
(RFq, ..., RF,, )—while scalar outputs such as energies remain invariant, p(g)E = E.

2.2 Implicit Equivariance in Embedding Space

We seek an embedding function f that behaves equivariantly with respect to the symmetry group G,
meaning there exists a transformation p(g) : R? — R< such that:

f((g)(m)) = p(g)(f(m)) Vg G meM 2)

Common approaches enforce equivariance constraints through specialized architectures. Instead, we
want the embedding function f to learn symmetry without equivariance constraints. However, with G
being the rotation group SO(3) on M and the output of f being a high-dimensional vector, there is no
direct representation of p(g) to act in the space of RY. Thus, rather than specifying p(g) analytically,
we propose to learn the group transformation on an embedding vector in R? using a neural network
T, : SO(3) x R? — R? parameterized by 7. T can be understood as a non-linear function that learns
the group action implicitly on a latent vector, by providing the group representation on the input data.

3 Learning Inter-Atomic Potentials without Explicit Equivariance

In this section, we introduce our training framework: TransIP (Transformer-based Inter-atomic
Potentials), a new approach that achieves SO(3)-equivariance through learned transformations in
an embedding space without explicit equivariance constraints. Our method, illustrated in Figure 1,
consists of three key components: (i) an unconstrained Transformer backbone that processes molecular
configurations, (ii) a learned transformation network that performs group actions in the embedding
space, and (iii) a contrastive objective that enforces latent equivariance (equiv.) during training.

3.1 TransIP: Transformer-based Interatomic Potentials

Atom as tokens. We model each molecule as a variable-length sequence of tokens, where each
token represents an atom. Unlike conventional graph neural networks that construct edges based on
distance cutoffs or neighbours’ atoms, we process all atoms within a molecule through self-attention,
bounded by a maximum context length N . For batch processing, we use padding masks to prevent
cross-molecule attention, ensuring each molecule is processed independently.

In addition, we apply rotary position embeddings (ROPE) [23] to the queries q; € R¥” and keys
k; € R%/" of each attention head, where i, denote the sequence positions of atoms within a



molecule, d is the model dimension, and A is the number of attention heads. The attention weights
are computed as:

4 = RoPE(q;,i), k; = RoPE(k;, )

a4 k;
«;; = softmax (ql L+ mij>

V/h

where RoPE(+, -) is the rotary position encoding operator, and m,; € {0, —oo} is the attention mask
that blocks padding tokens and enforces within-molecule attention. This approach eliminates the
need for explicit distance cutoffs while maintaining flexibility in modeling molecular interactions.

Transformer Backbone. We implement the embedding function f : M — R? as a Transformer
encoder that processes atom-level tokens. Each atom ¢ is initialized with a token representation:

h” = h,(2:) @ rie(17)

where 5, : N—R? and &, : R3 —R¢ are learnable MLPs that embed atomic numbers and centered
coordinates (with r; + r; — ﬁ > j r;), and @ denotes concatenation. These tokens are processed

through L Transformer layers with masked self-attention within each molecule, producing final
per-atom embeddings H = [hy, ..., h‘m|]T € RImIxd,

Global Molecular Properties. Following Levine et al. [22], we incorporate global molecular
properties (total charge ¢ and spin multiplicity s of a molecule m) through learnable embeddings,
and form a graph-level bias:

C(q7 5) = Hchg(Q) + Hspin(s) S Rd
where Kchg and Kgpin are learnable embedding functions for charge and spin, respectively. This global

bias is broadcast-added at each Transformer layer: H(®) « H®) + 1¢(q,s)".

Energy and Force Predictions. For molecular property prediction, we employ a permutation-
invariant aggregator a : R/™1*? - R9 followed by an energy prediction head g, : RESR:

E,(m) = g,(a(H))
Forces are computed as conservative gradients of the energy with respect to atomic positions:

F(m) = —V,.E,(m) € RIm>3

3.2 Learned Latent Equivariance

Transformation Network. We propose a transformation network 7, : SO(3) x R? — R that
learns how group actions (e.g., rotations) act on molecular embeddings. We implement 7, as a
multilayer perceptron that takes as input the group representation in the input domain ¢(g) and the
molecular embedding f(m). Formally,

T-(¢(9), f(m)) = MLP([¢(g), f(m)])

where [-, -] denotes concatenation and MLP; is a multilayer perceptron with parameters 7.

Contrastive Objective for Latent Equivariance: To learn the molecular symmetry without
architectural constraints, we define our latent equivariance loss as:

‘clfl{((b(g)vmva T) = Hf((b(g)(m)) - 7;'(¢(g)’f(m))”2 (3)

This loss encourages the embedding function f to behave equivariantly with respect to the symmetry
group G, as mediated by the transformation network 7. During training, we sample a molecule m
from the dataset and a rotation element ¢ uniformly from SO(3) and minimize the expected latent
loss:

min EmNM,gNSO(B) [Eleq((b(g)v m, f7 T)] (4)



3.3 Training Objective

Our training objective combines three complementary losses for accurate prediction of energy and
forces as well as implicitly learning molecular symmetry.

Prediction Losses. For energy and force predictions, we use:

Lg= Wll |E,(m) — E*|  (per-atom mean absolute error (MAE)) 5)
Lp= ﬁ |F(m) — F*||% (per-molecule mean squared error (MSE)) 6)
where E* and F* are ground-truth energies and forces, and || - || » denotes the Frobenius norm. For

energies, we use referenced targets as described by Levine et al. [22].

Combined Objective. Training combines three weighted terms: (i) the latent equivariance target
Lj0q defined in Eq. 3; (ii) energy loss Lg; and (iii) force loss £ . The total objective is

Liotal = AELE + APLE + Neg Lieg @)

where Ag, Ap, and )., are hyperparameters for each loss. The optimal hyperparameters are given in
Table 3 of Appendix B.

4 Related Work

ML Interatomic Potentials. Using machine learning (ML) methods to predict energies and forces
of different molecular systems and materials has been an active area of research [24-29]. Due
to the intricate 3D structures of atomistic systems, equivariant message-passing neural networks
have been an essential backbone in this domain. For example, Gasteiger et al. [30], Klicpera et al.
[31] introduced equivariant directional message passing between pairs of atoms with a spherical
harmonics representation. In contrast, Batzner et al. [4] developed equivariant convolution with
tensor-products and Batatia et al. [5] built higher-order messages with equivariant graph neural
networks [32]. Additionally, Passaro and Zitnick [33] reduced the computational complexity of SO(3)
convolution and replaced it with SO(2) convolutions, which have been used as a backbone for MLIPs
[11]. More recently, [34] presented Orb-v3 models with improved computational efficiency, built on
Graph Network Simulators [35].

Unconstrained ML models. While current-state-of-the-art MLIP models primarily rely on equivari-
ant GNNs, unconstrained models are actively used in other domains. For example, integrating data
augmentation via image transformations has been used in different vision tasks, from classification
[36-38] to segmentation [39, 40]. For geometric data, the use of unconstrained models and diffusion
Transformers (without explicit equivariance constraints) has been a recent trend in generative tasks,
e.g., AlphaFold 3 for biomolecular structure prediction [19] as well as molecular conformation and
materials generation [18, 20, 21]. In contrast, several works have been introduced to overcome the
limitations of strictly equivariant GNNs by enforcing symmetry via frame averaging over geometric
inputs [41-45]; learning canonicalization functions that map inputs to a canonical orientation be-
fore prediction [46—49]; or learning equivariance through data augmentation with molecule-specific
graph-based architectures [50, 51]. However, in this work, we demonstrate that an unconstrained
general-purpose Transformer model can serve as a backbone for MLIPs, which replaces graph-based
inductive biases with a scalable latent equivariance objective that implicitly learns equivariant features
without explicit equivariance constraints.

S Experimental Setup

Dataset. We train and evaluate our proposed method TransIP on the Open Molecules 2025 (OMol25)
collection [22], a large-scale molecular DFT dataset for ML interatomic potentials. OMol25 covers
83 atomic elements and diverse chemistries (such as neutral organics, biomolecules, electrolytes,
and metal complexes). Following Levine et al. [22], we use the official 4M training split (3,986,754)
and the out-of-distribution composition validation split Val-Comp (2,762,021). Val-Comp consists of
molecules gathered from various datasets and domains, such as biomolecules, neutral organics, and
metal complexes.
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Figure 2: Val-Comp performance across dataset sizes (1M / 2M / 4M): force metrics (MAE, cosine
similarity) and energy-per-atom MAE.

Model Configurations. We evaluate TransIP across three model scales: Small (14M parameters),
Medium (85M parameters), and Large (302M parameters). All models use MLP-based coordinate
embeddings and RoPE positional encodings. The transformation network 7 is a 2-layer MLP with
GELU activations and 2d hidden dimension.

Training Setup. Using the standardized FAIRCHEM Python package [52], we train TransIP on the
OMol25 dataset using an AdamW optimizer with learning rate 5 x 10~#, weight decay 103, and
gradient norm clipping at 200. We use a cosine learning rate schedule with linear warmup over the
first 1% of training, followed by cosine decay down to 1% of the initial 1r. The loss weights are set
to Ag = 5 for energies and A = 15 for forces. For the latent equivariance objective A, we sweep
the values in {1, 5, 10, 100} and selected A, = 5 based on validation performance.

Scalability Experiments. We conduct two sets of experiments to assess TransIP’s scaling behavior:

* Data scaling: We train the Small (14M parameter) model on three dataset sizes (1M, 2M,
4M molecules) for 5 epochs using 8 NVIDIA 80GB GPUs, comparing TransIP with learned
equivariance against an unconstrained Transformer version with SO(3) data augmentation
(TransAug).

* Model size scaling. @ We compare TransIP and TransAug with different model sizes
(Small/Medium/Large) trained on the same number of samples from the OMol25 4M dataset
and report the evaluation metrics as a function of the processed number of atoms per second.

* Extended training: We train TransIP (Small) on the OMol25 4M dataset for 40 epochs
using 64 NVIDIA 80GB GPUs to evaluate its performance against standardized equivariant
baselines.

Baselines. We compare TransIP against: (i) an unconstrained TransIP variant trained with SO(3)
rotation augmentation to assess the impact of learned latent equivariance versus data augmentations,
and (ii) state-of-the-art equivariant models on OMol25: eSCN [11] in small/medium configurations
with both direct and energy-conserving force variants as well as GemNet-0C [53].

Evaluation metrics. Following the OMol25 official benchmark, we report: Force MAE (eV/A),
Force cosine similarity, Energy per atom MAE (eV/atom), and Total energy MAE (eV). Detailed
metric definitions are provided in Appendix B.4.

6 Results and Discussion

6.1 Scaling data size

To assess how performance scales with different training dataset sizes, we compare our latent
equivariance-based model (TransIP) against an unconstrained baseline that uses SO(3) data aug-
mentation (TransAug). Both models use a (small) 14M parameter Transformer architecture. Given
our tight compute budget, we train on 1M, 2M, and 4M OMol25 molecules for 5 epochs and report
validation (Val-Comp) results.

Performance in a limited data regime. Figure 2 shows that TransIP delivers large gains when trained
on 1M samples and outperforms TransAug across all evaluation metrics with a large margin. The
learned latent equivariance objective provides substantial improvements in force MAE (0.255 eV/A vs
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Figure 3: Latent equivariance (embedding) error vs validation performance: force metrics (MAE,
cosine similarity) and energy-per-atom MAE.

0.6 eV/A MAE) and directional consistency (0.7 vs 0.44 force cosine similarity). Energy predictions
also benefit from the latent equivariance objective, with TransIP achieving 0.0581 eV/atom compared
to TransAug’s 0.1203 eV/atom. These results suggest that learning equivariance in a latent space is a
more effective scheme to incorporate molecular symmetry than data augmentation, particularly when
training data is limited.

Performance in a larger data regime. As we scale to 2M and 4M molecules, both models (TransIP
and TransAug) improve across the evaluation metrics. However, on larger datasets, TransIP still
achieves better force MAEs and cosine similarity metrics compared to TransAug. This might indicate
that the learned transformation network can successfully capture the geometric relationships necessary
for accurate force predictions. Notably, energy prediction performance converges between the two at
larger data scales, with both methods achieving comparable per-atom MAE values. This convergence
suggests that while learned equivariance provides crucial benefits for force-related metrics in all
data regimes, its advantages for energy prediction become less pronounced as the model can learn
invariant energy representations from sufficient augmented data.

6.2 Learned latent equivariance

We investigate how learned equivariance affects the embedding space in relation to validation
performance as the data scale increases. Figure 3 plots each metric against latent equiv. error for
TransIP (Small) trained for 5 epochs on 1M, 2M, and 4M molecules (see Table 2 for a detailed
definition of each model configuration).

Lower latent equivariance error leads to better accuracy. We found that the learned equiv. error
serves as a strong predictor of model performance. Across all metrics, we observe a clear monotonic
trend: lower equiv. error is associated with better performance (Figure 3). However, energy and force
predictions respond differently to improvements in equivariance. Energy predictions show near-linear
scaling with equiv. error, indicating that energy accuracy is directly limited by equivariance quality.
This strong coupling aligns with energies being scalar invariants that depend primarily on learning
correct symmetry-preserving features. In contrast, force predictions exhibit a two-regime behavior:
initial improvements in equivariance (1IM—2M) yield modest force improvements, while further
tightening of equivariance (2M—4M) produces disproportionate gains. This might indicate that
forces require both accurate equivariant features and sufficient data diversity to learn the energy
landscape’s geometry.

These results demonstrate that implicitly learning equivariance through our learned transformation
network provides an efficient inductive bias, accelerating learning. The 48% reduction in equiv. error
from 1M to 4M training examples translates to 40-60% performance improvements, being more
efficient than what would be expected from data scaling alone.

Learning equivariance leads to faster inference. To measure the inference efficiency of our method,
we compare TransIP and TransAug with different model sizes (Small/Medium/Large) trained on 4M
samples and report the evaluation metrics as a function of the processed number of atoms per second.
However, due to limited compute, we compare models under a fixed training budget (i.e., with the
same number of samples), which is 10k, 25k, and 100k steps for our Small, Medium, and Large
models, respectively.

From the results in Figure 4, we see that TransIP scales smoothly with parameter count despite limited
training: As model size grows, performance improves across all metrics. In contrast, TransAug
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Table 1: Comprehensive Val-Comp energy and force MAE results.

Biomolecules Electrolytes Metal Complexes Neutral Organics Total
Model Epochs Energy | Forces| Energy| Forces| Energy| Forces| Energy| Forces| Energy| Forces |
eSEN-sm-d. 80 0.00088 0.00812 0.00193 0.01264 0.00337 0.04044 0.00216 0.02017 0.00219 0.01301
eSEN-sm-cons. 80 0.00086  0.00617 0.00161 0.01116 0.00272 0.03533 0.00150 0.01692 0.00189 0.01110
eSEN-md-d. 80 0.00047 0.00338 0.00118 0.00651 0.00253 0.02731 0.00121 0.00926 0.00132 0.00678
GemNet-OC-r6 80 0.00040  0.00584 0.00139 0.00937 0.00274 0.03360 0.00188 0.01655 0.00141  0.00983
GemNet-OC 80 0.00025 0.00520 0.00104 0.00842 0.00266 0.03276 0.00164 0.01559 0.00113  0.00898
TransAug 5 0.0166 0.2193 0.0175 0.1619 0.0207 0.1506 0.0289 0.2188 0.0235 0.1803
TransIP 5 0.0173 0.1811 0.0159 0.1296 0.0185 0.1325 0.0235 0.1650 0.0223 0.1466
TransIP 40 0.0138 0.1215 0.0127 0.0940 0.0152 0.1056 0.0185 0.1254 0.0179 0.1038

TransIP (in progress) 80 - - - - - - - _

exhibits poorer scaling—larger models perform worse than smaller ones, with the Large model
configuration yielding the lowest performance. This might indicate that augmentation alone does
not provide a sufficiently informative and stable inductive bias for large-capacity models trained for
molecular force field prediction.

6.3 Architectural equivariance versus learned equivariance

Table 1 compares the energy and force prediction performance of TransIP (Small) against TransAug
(Small) as well as several well-known equivariant baselines for the OMol 2M Val-Comp evaluation
dataset. The results of this comparison demonstrate that TransIP outperforms TransAug (trained for 5
epochs) in all but one evaluation metric, particularly differentiating itself in terms of force prediction.
We further report the performance of TransIP trained for 40 epochs and, due to limited compute, we
are currently training the model for a full 80 epochs (for fair comparison to each equivariant baseline).
Results with TransIP after 40 training epochs suggest steady improvement is likely to be observed
during the remainder of the model’s training epochs.

7 Conclusion

In this work, we introduced TransIP for modeling interatomic potentials with a modern Transformer-
based architecture and a scalable latent equivariance objective. Empirical results across a variety
of chemical systems as well as model and dataset scales suggest that TransIP’s latent equivariance
objective enables better performance scaling than popular data augmentation-based alternatives to
learning geometric equivariance. Further, we find that improvements in learning latent equivariance
are strongly related to improved modeling of interatomic potentials, suggesting a complementary
nature between the two prediction objectives. With sufficient compute, future work could involve
studying the performance of TransIP in larger data, modeling, and runtime regimes in addition to the
behavior of TransIP in a context amenable to the double-descent phenomenon [54].

While equivariant models for molecular machine learning have recently gained much research interest,
with the large amount of data being generated and the need for larger model sizes, it is also important
that models used for interatomic potentials be highly scalable. Through our work, we have shown
that the generic Transformer is capable of modeling molecules accurately but is also able to learn
equivariance effectively through our novel latent objective, all while being highly scalable. By making
our code openly available to the research community, we hope that our work inspires future research
that explores ways to leverage the simpler and more scalable Transformer architecture to better model
equivariant molecular properties through learned equivariance.
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A What TransIP Learns

To understand the structure of learned equivariance, we ask whether the effect of rotating different
inputs can be explained by a single group action in the latent space; i.e., whether there exists a
representation p(g) : R?—R? such that

f(@(g)(m)) =~ p(g) f(m),

where fy : M —R? denotes the embedding network, and g € SO(3) acts on a molecule m via the
input representation ¢(g) (rotation of atomic coordinates). Because p(g) is unknown, we compute an
approximate group action p(g) € O(d) by solving an orthogonal Procrustes problem on embeddings
from 100 validation samples (obtained from a trained TransIP model). Writing

flmy)? f(@(g)(ma)T
Z = ) Zy = )
fma) " F(é(g)(mn)) "

we first pool-whiten the two views (shared mean and standard deviation per channel) and then solve
~ T =02
plg) = argmin || Z2Q — Z, |2,
QeO0(d)

which has the closed form p(g) = UV T forthe SVD of ZTZ, = ULV T,
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Figure 5: Group action in the embedding space. (a) Per-molecule residuals before alignment,
[I£(m) — f(d(g)(m))||2, and after applying a single global orthogonal map p(g) estimated by an
orthogonal Procrustes problem on pool-whitened latents, ||p(g) f (m) — f(¢(g)(m))]|2. (b) Entrywise
comparison: hexbin density of (p(g) f(m)) ) vs. f(¢(g)(m))(.), pooled over molecules’ embeddings.

In Figure 5a, we report per-molecule residuals before alignment, || f(m) — f(é(g)(m)) ||2, and
after applying the global orthogonal map, || p(g) f(m) — f(é(g)(m)) ||2. A left—right drop in the
distribution indicates that a single orthogonal transform explains most of the rotation-induced change
in the embedding. In Figure 5b, we compare the channel-level relation by plotting a hexbin density

of all pairs
Pl) fm)w, — (fle(g)m))r,  k=1,...,d, m € val.

where color encodes the log count of points in each hexagonal bin. A tight diagonal concentration
after the single global alignment p(g) might suggest that the two views are almost identical at
entrywise-level and the group action in latent space is approximately orthogonal and shared across
different molecules.

Takeaways. Figure 5a shows that the magnitude of the rotation-induced discrepancy of different
molecules drops after a single orthogonal alignment, and Figure 5b shows that the aligned channels
match entrywise, concentrating along the identity. These results indicate that TransIP learns an
embedding where input rotations act approximately as a shared orthogonal transformation, even
though explicit equivariance was not enforced in the architecture.
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B Implementation Details

B.1 Model Architecture

Table 2 provides the complete architectural specifications for TransIP’s model versions.

Table 2: TransIP model configurations. All versions share the same embedding method and activation
functions.

Configuration Small (S) Medium (M) Large (L)
Hidden dimension (d) 384 768 1024
Number of layers (L) 8 12 24
Number of heads 6 12 16
Total parameters 14M 85M 302M
Shared configurations:

Coordinate embedding MLP

Activation function GELU

Context length 1024

Projection dropout 0.01

Attention dropout 0.0

Transformation network T:

Number of layers 2

Hidden dimension 2xd

Activation GELU

B.2 Training Hyperparameters

Table 3 provides TransIP’s optimal hyperparameters.

Table 3: Training hyperparameters used for all TransIP experiments.

Hyperparameter  Value

Optimization:

Optimizer AdamW
Learning rate 5x 1074
Weight decay 1x1073

Gradient clip norm 200

Learning rate schedule:

Scheduler type Cosine
Warmup fraction 0.01
Min LR factor 0.01
Loss weights:

Energy (A\g) 5
Forces (\r) 15

Equivariance (A\q) 5 (selected from {1, 5, 10, 100})

B.3 Data Processing and Augmentation
TransIP processes molecular data with the following pipeline:

* Coordinate centering: Atomic coordinates are centered by subtracting the center of mass:
1
r, < Ir; — Tml Z j r;

* Equivariance pairs: For training with learned equivariance, we create pairs (m, ¢(g)(m))
where g is sampled uniformly from SO(3) per molecule.
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B.4 Evaluation Metrics

We evaluate model performance using the following metrics:

Force Mean Absolute Error (MAE):

N
1 o

F MAE = — F,,—F; V/A 8

orce 3] E E |F; Tal  (€V/A) (®)

i=1 ae{z,y.z}

Force Cosine Similarity:

i

1 F, - F?
Force CosSim = — » ———— )
Im| & [Fa[l[F7]]
Energy per Atom MAE:
1
Energy/atom MAE = ﬁ|E — E*| (eV/atom) (10)
m
Total Energy MAE:
Total Energy MAE = |E — E*| (eV) (11)

where F and E denote predicted forces and energies, F* and E* are ground truth values, and |m]| is
the total number of atoms. For energies, we use referenced targets following [22].

B.5 Computational Resources
* 5-epoch experiments: 8 NVIDIA 80GB GPUs.

* 80-epoch experiments: 64 NVIDIA 80GB GPUs.
B.6 Validation Splits

For 5-epoch runs, we evaluate on domain-specific validation subsets sampled from the OMol25
validation (Val-Comp) dataset:

* Metal complexes, Electrolytes, biomolecules, reactivity, and neutral organics (including
ANI2x, OrbNet-Denali, GEOM, Trans1x, RGD): 20,000 samples from each subset.

* SPICE: 9,630 samples (complete subset).
* Full validation set: 20,000 samples.

We use the full (2M) Val Comp dataset to evaluate TransIP and TransAug in Table 1.

C Additional Results

In this section, we include additional scaling results for TransIP and TransAug.

Val Total 7500 Val Total Val Total pa—
3500 —=— TransIP TransAug
TransAug | ™
3000 _ 6ooo 30281
< 3 3
2 £ E
= 2500 = 4500 =
¢ < £ 1o
= s w
* 2000 L 3000 .\
o000
(85M} o
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— &8 hd
E En

ik 10
1.236 1.457 M M am Val atoms per second
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Latent Equiv. eror ~ x107 Training dataset size

Figure 6: Total energy results. Left: Latent equiv. error vs. validation performance. Middle:
Validation performance across dataset sizes (1M/2M/4M). Right: Speed/accuracy trade-off (atoms/s
vs. performance).
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Figure 7: Metal Complexes scaling across training dataset sizes (1M / 2M / 4M). The top row presents
force metrics, while the bottom row displays energy metrics.
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force metrics, while the bottom row displays energy metrics.
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Figure 9: Biomolecules scaling across training dataset sizes (1M / 2M / 4M). The top row presents
force metrics, while the bottom row displays energy metrics.
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Figure 10: Neutral Organics scaling across training dataset sizes (1M / 2M / 4M). The top row
presents force metrics, while the bottom row displays energy metrics.
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Figure 11: SPICE scaling across training dataset sizes (1M / 2M / 4M). The top row presents force

metrics, while the bottom row displays energy metrics.
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Figure 12: Reactivity scaling across training dataset sizes (1M / 2M / 4M). The top row presents
force metrics, while the bottom row displays energy metrics.
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