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ABSTRACT

The goal of L-step speculative decoding is to accelerate autoregressive decoding
of a target model by using a cheaper draft model to generate a candidate path
of L tokens. Based on a verification algorithm involving target and draft model
probabilities, a prefix of the candidate sequence is accepted, and an additional
correction token is sampled from a residual distribution to ensure that the final
output adheres to the target distribution. While standard speculative decoding uses
a verification algorithm which is independent at each token on the path, a recent
extension called block verification uses a joint condition involving all sampled
on-path probabilities. Block verification (BV) was shown to be optimal over all
verification algorithms which use only on-path probabilities, improving on standard
speculative decoding. In this work, we first show that block verification is optimal
even over verification algorithms that use off-path probabilities, by constructing
an information-agnostic linear program (LP). Further, we can extend our LP to
the setting where the draft model samples multiple candidate paths, and use it to
construct a natural class of multi-path block verification generalizations. While
computing the optimal algorithm in this class is not tractable, by considering a
stricter class of greedy algorithms, we can formulate an efficient method called
greedy multi-path block verification (GBV). Empirically, GBV can improve block
efficiency by over 30% and reduce decoding walltimes by over 15% relative to BV.

1 INTRODUCTION

Large language models (LLMs) achieve strong results across code, language, and reasoning (Zhu
et al., 2024; Kasneci et al., 2023; Thirunavukarasu et al., 2023). Most LLM families, such as Qwen
(Bai et al., 2023), GPT (Radford et al., 2018; 2019; Brown et al., 2020; OpenAI, 2023), and Llama
(Touvron et al., 2023b;a) employ autoregressive decoding. When inference is performed with these
transformer-based architectures on GPUs, end-to-end latency is dominated by memory bandwidth
rather than compute (Fu et al., 2024).

Speculative sampling (Chen et al., 2023; Leviathan et al., 2023) aims to reduce such punitive costs
when sampling from a large target model. This procedure autoregressively decodes a candidate
sequence from a cheaper draft model, performs a forward pass over the candidate sequence with the
target model to obtain target distribution values, and then probabilistically alters the sequence through
a verification algorithm to ensure that the resulting output matches the target model distribution.
Because inference is bandwidth-bound, the target forward pass over the candidate sequence presents
negligible overhead over a standard forward pass. Thus, speculative sampling can decode many
tokens in a single target model call and speed up inference without affecting downstream performance.

In standard speculative sampling, the draft model proposes a length L draft block, and the ver-
ification algorithm independently accepts or rejects each token based on target and draft model
distributions values along the draft bock. The longest prefix with no rejections is chosen, and an
additional token is sampled from a residual distribution, ensuring that at least one token is always
generated. While this procedure significantly improves decoding efficiency, it suffers when there are
low acceptance rates at early tokens. If the first token is almost always rejected due to a poor draft
suggestion, then even if subsequent tokens are always accepted, there is no speedup.

To overcome this early-token bottleneck, recent work on block verification (BV) (Sun et al., 2024b)
replaces independent token-wise verification with independent prefix-wise verification, and selects
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the longest accepted prefix. An additional token is still sampled, but the residual distribution is
altered to ensure the output still matches the target distribution. This ensures that more tokens can be
accepted when earlier tokens are likely to be rejected. Block verification is empirically 5-8% faster
than standard speculative sampling. In fact, it is provably optimal over all verification algorithms that
only use target and draft probability distributions along the drafted candidate sequence, including
standard speculative sampling.

In this paper, we frame the optimal verification algorithm as a solution to a linear program (LP), and
extend the LP to the setting of multiple i.i.d. generated draft sequences. Our contributions are:

• Single-Path Information-Agnostic LP. We develop an LP that encodes feasible speedups
from verification algorithms that must still return a candidate sequence prefix and an
additional token, but are now given access to the full joint target and draft distributions, not
just on-path values. We show that block verification is still optimal in this setting. That is,
the prefix output requirement is the bottleneck to improving optimal decoding efficiency,
rather than off-path information access.

• Multi-Path Information-Agnostic LP. We extend the single-path LP to the setting where the
draft model i.i.d. samples K > 1 candidate sequences, considering verification algorithms
which return a prefix of one of the paths and an additional token. Unlike the K = 1
setting, we find that knowledge of off-path target and draft distributions can improve
decoding efficiency. We show that the optimal verification algorithm in this setting is to
probabilistically select one of the K paths, and then run block verification on that single
path with a skewed draft distribution.

• Greedy Approximation Schemes. The optimal solution to the multi-path LP involves a
complex nonlinear optimization problem over the joint target and draft distributions, and is
infeasible to solve directly. Thus, we explore a class of greedy approximations: algorithms
which globally rank all possible candidate sequences, select the highest-ranking of the K
paths, and run block verification on that path. We show that these can be viewed as outputs
of a greedy polymatroid algorithm in the multi-path LP.

• Greedy Multi-Path Block Verification. Many greedy approximation schemes require the
full joint target and draft distributions. However, when the global ranking is tree-based, only
on-path values are required. We devise a simple tree-based rule that results in wall-clock
speedups of over 15% relative to BV, and provide theoretical justification for this rule.

2 BACKGROUND

We first review standard speculative sampling and its extensions. We start with the case where only
one draft block is generated, and then cover multi-path extensions.

2.1 SINGLE-PATH

Denote the target model by Mp, and the draft model by Mq , which are assumed to share a common
vocabulary V . We use the sequence notation a1:k = (a1, . . . , ak) for tokens a1, . . . , ak ∈ V and
the inclusive slicing notation ai:j = (ai, . . . , aj), with the empty sequence convention ai,j = ∅ for
j < i. Given a context c, the target and draft models induce next-token distribution p(·|c) and q(·|c),
respectively. In autoregressive sampling, these further induce next-k-token distributions through
conditional factorization, which we denote:

qk(a1:k|c) =
k∏

i=1

q(ai|c, a1:i−1), pk(a1:k|c) =
k∏

i=1

p(ai|c, a1:i−1). (1)

In L-step speculative sampling, we autoregressively sample a draft block of L tokens from the draft
distribution qL and call the target model Mp on this block once, to obtain target and draft next-token
probabilities along the block. Through a randomized rule called the verification algorithm, we
accept the first τ ∈ {0, . . . , L} of these L tokens and sample an additional correction token, such
that this output matches the true target distribution. The block efficiency E[τ + 1] is the average
number of decoded tokens per Mp call; in the special case where the target and draft distributions are
identical, it achieves its maximum value of L+ 1. When a cheap draft model is used and L is not too
large, block efficiency is an accurate indicator of walltime speedup.
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Speculative sampling. The original schemes of Chen et al. (2023); Leviathan et al. (2023) first
generate a draft block a1:L ∼ qL(·|c). They independently accept each token ai with probability
min(1, p(ai|a1:i−1)/q(ai|a1:i−1)), and τ is the maximum value such that a1:τ consists of only
accepted tokens. Essentially, they choose the longest prefix of acceptances. Finally, they sample an
additional correction token y ∼ ptoken

res (·|c, a1:i) from a residual distribution if τ < L:

ptoken
res (·|c, a1:i) ∝ max{p(·|c, a1:i)− q(·|c, a1:i), 0}. (2)

If τ = L, they just sample y ∼ p(·|c, a1:L) directly from the target. This ensures that the final output
(a1:τ , y) matches the target distribution.

Draft extensions. Some recent works have improved upon block efficiency in speculative sampling
by altering the drafting phase, through retrieval or cascading (He et al., 2023; Chen et al., 2024),
hierarchical drafting (Sun et al., 2024a), distillation (Zhou et al., 2023; Liu et al., 2023), layer skipping
(Zhang et al., 2023; Elhoushi et al., 2024), or multi-token heads (Gloeckle et al., 2024; Samragh et al.,
2025)). In this paper, we instead focus on methods which improve block efficiency by altering the
verification algorithm.

Tree verification. In Hu & Huang (2024), the verification algorithm is strengthened by using a tree
Monte Carlo approach. This provably improves block efficiency from standard speculative sampling.
However, it is also provably worse than block verification.

Block verification (BV). To improve block efficiency in the verification stage, Sun et al. (2024b)
relax the token-independence assumption for acceptance in standard speculative sampling. First, they
sample the draft block a1:L ∼ qL(·|c), and recursively define on-path weights w:

w(∅|c) = 1, w(a1:i|c) = min

{
1,
w(a1:i−1|c)p(ai|a1:i−1)

q(ai|a1:i−1)

}
. (3)

Now, they independently accept each prefix a1:i with probability

hblock(a1:i|c) =
∑

x∈V max{p(x|c, a1:i)− q(x|c, a1:i), 0}
1− w(a1:i|c) +

∑
x∈V max{p(x|c, a1:i)− q(x|c, a1:i), 0}

(4)

for i < L, and a1:L with probability w(a1:L|c). They select the longest accepted prefix, of length τ ,
and sample a correction token y ∼ pblock

res (·|c, a1:i), a weighted version of ptoken
res , if τ < L:

pblock
res (·|c, a1:i) ∝ max{w(a1:i|c)p(·|c, a1:i)− q(·|c, a1:i), 0}. (5)

If τ = L, they sample y ∼ p(·|c, a1:L). Like in speculative sampling, the output (a1:τ , y) follows
the target distribution. Sun et al. (2024b) prove that block verification achieves the highest block
efficiency among any verification algorithm that only takes in on-path distribution values.

2.2 MULTI-PATH

There are also recent lines of work that extend L-step speculative sampling to the multi-path setting
(Sun et al., 2023; Spector & Re, 2023; Cai et al., 2024; Li et al., 2024). In this setting, K > 1
length-L draft blocks are sampled from qL. The target model Mp is again called once on all draft
blocks in parallel, to obtain target and draft next-token probabilities along all K paths. Then, using
a multi-path verification algorithm, a prefix of one of the blocks is accepted, and an additional
correction token from a residual distribution is sampled in order to match the target distribution.
Block efficiency is defined in the same way as previously. For moderate K and L, leveraging GPU
parallelization, there is generally little overhead in performing the batched forward pass across K
sequences, relative to a forward pass on one sequence (Agrawal et al., 2024; Dao et al., 2022).

3 SINGLE-PATH INFORMATION-AGNOSTIC LP

We first formally define the class of single-path verification algorithms. We denote V≤k = V0 ∪
V1 ∪ . . . ∪ Vk, where Vk is the set of length-k sequences of tokens in V , and thus V≤k is the set of
sequences of length ≤ k. We use L to denote the draft block length. For the remainder of the paper,
we use notation from Section 2, omitting the context c and subscripts on p, q when they are clear.
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Definition 3.1 (Single-path draft verification algorithm). A single-path verification algorithm Φ
takes in a sampled draft block X1:L ∼ qL(·), and the full L-step target and draft distributions pL and
qL, and returns a nonempty sequence in V≤L+1. It is valid under:

• Prefix-matching: the algorithm returns a (possibly empty) prefix X1:τ of the draft block
followed by an additional correction token Y , for some τ ∈ {0, . . . , L}.

• Target-matching: for any context c, any draft and target models Mp and Mq, and any
block length L, when we generate L− τ additional tokens Z ∼ pL−τ (·|X1:τ , Y ), we have
(X1:τ , Y, Z) ∼p pL+1(·), where ∼p denotes equality of distributions.

If we also require that Φ can only take in the on-path target and draft distributions p(·|X1:i), q(·|X1:i)
for i ∈ {0, . . . , L}, then it is called information-restricted.

Prefix-matching forces the verification algorithm output to only deviate from the draft block at its very
last token. Target-matching means that sampling from Mp autoregressively after verification, until a
total of L + 1 tokens are generated, gives the same result as just sampling L + 1 tokens from Mp

autoregressively without verification. This is equivalent to guaranteeing that running the verification
algorithm and appending its output to the context iteratively maintains the target distribution, even as
τ varies: see Lemma 2 in Appendix B of Sun et al. (2024b) for a formal proof.

Importantly, our definition is less strict than in Sun et al. (2024b), because they only consider the class
of valid single-path information-restricted verification algorithms, and prove that block verification is
optimal in this class. Surprisingly, we find that block verification is optimal in the class of all valid
single-path verification algorithms. To prove this, we first define node budgets, which represent how
much mass a verification algorithm has allocated along a path relative to the target distribution.
Definition 3.2. For any single-path verification algorithm Φ, we define node budgets

DΦ(a1:i) = 1−
i∑

j=1

P(X1:τ = a1:j−1, Y = aj)

p(a1:j)
∀a1:i ∈ V≤L+1. (6)

This can be represented by a function DΦ : V≤L+1 → R.

Using node budget variables, we define the single-path information-agnostic LP in Theorem 3.3,
which describes what values of DΦ a valid single-path verification algorithm Φ can induce. Here,
the chain of DΦ inequalities along paths encode the target-matching constraint, and the pointwise
upper bounds on DΦp encode prefix-matching. We defer the proof to Appendix B, as the special case
K = 1 of the multi-path LP in Theorem 4.3, which we prove in Appendix A.
Theorem 3.3. A single-path verification algorithm Φ is valid if and only if the node budgets
DΦ : V≤L+1 → R are feasible in the following LP:

max
∑

a1:i∈V≤L

DΦ(a1:i)p(a1:i) (7)

s.t. 1 = DΦ(a1:0) ≥ DΦ(a1:1) ≥ . . . ≥ DΦ(a1:L) ≥ DΦ(a1:L+1) = 0 ∀a1:L+1 ∈ VL+1, (8)

DΦ(a1:i)p(a1:i) ≤ q(a1:i) ∀a1:i ∈ V≤L. (9)
Furthermore, the objective value is precisely the block efficiency E[τ + 1] for Φ.

Because the feasibility conditions in the single-path LP only involve pointwise and pathwise inequali-
ties, it is not hard to compute the optimal objective value and node budgets for a valid single-path
verification algorithm, by using greedy allocation along paths. These node budgets match those
derived from block verification, and thus block verification is the optimal valid single-path algorithm.
Theorem 3.4. Block verification, which is a valid single-path verification algorithm ΦBV , achieves
the highest block efficiency of any valid single-path verification algorithm.

See Appendix C for a proof of Theorem 3.4. These results show that prefix-matching is the key
barrier to improving acceptance: even with access to the full joint target and draft distributions, prefix-
matching (pointwise upper bounds on DΦp terms) prevent us from getting better block efficiency (the
sum of DΦp terms) than block verification. This motivates our exploration of verification algorithms
which draft multiple candidate paths in the next section. In this setting, the valid prefix output space
grows, thereby loosening the prefix-matching requirement and improving block efficiency.
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4 MULTI-PATH INFORMATION AGNOSTIC LP

In this section, we show that off-path distribution information can improve block efficiency when
K > 1 draft paths are generated, even with prefix-matching and target-matching requirements. We
first define the class of multi-path verification algorithms, and extend Theorem 3.3 to these algorithms.
Definition 4.1 (K-path draft verification algorithm). A K-path verification algorithm Φ takes in K
i.i.d. sampled draft blocks X(1)

1:L, . . . , X
(K)
1:L ∼ qL(·|c), and the full L-step distributions pL and qL,

and returns a nonempty sequence in V≤L+1. It is valid under:

• Prefix-matching: the algorithm returns a (possibly empty) prefix X1:τ of some draft block
followed by an additional correction token Y , for some τ ∈ {0, . . . , L}.

• Target-matching: this is the same as in Definition 3.1.

If Φ can only take in the on-path target and draft distributions p(·|X(k)
1:i ), q(·|X

(k)
1:i ) for k ∈ [K] and

i ∈ {0, . . . , L}, k ∈ [K], then it is called information-restricted.

To the best of our knowledge, all existing valid multi-path verification algorithms (see Section 2.2)
are information-restricted. We are the first to consider theoretical efficiency limits in the absence of
information-restriction, and explicitly encode prefix-matching and target-matching into an LP.

To extend the single-path LP from Theorem 3.3 to this setting, we first define node budgets DΦ

in the same way as Definition 3.2. We also require the notion of an antichain, which is a set of
variable-length paths in V≤L where no path is a prefix of another. Antichains are useful because the
mass of an autoregressive distribution over an antichain can be computed by summing its probabilities
at all antichain elements, due to the disjointness of autoregressively sampling antichain elements.
Definition 4.2. An antichain of V≤L is a subset of V≤L where no sequence in the antichain is a
prefix of another. We denote the set of all antichains in V≤L by A(V≤L).

Now, to form the multi-path information-agnostic LP in Theorem 4.3, we replace the pointwise
upper bounds on DΦp by subset-sum upper bounds over antichains. As mentioned at the end of
Section 3, this corresponds to altering the prefix output space. The proof uses Hall-type feasibility
constraints, and is fairly involved. Due to space constraints, we defer the proof to Appendix A.
Theorem 4.3. A K-path verification algorithm Φ is valid if and only if the node budgets DΦ :
V≤L+1 → R are feasible in the following LP:

max
∑

a1:i∈V≤L

DΦ(a1:i)p(a1:i) (10)

s.t. 1 = DΦ(a1:0) ≥ DΦ(a1:1) ≥ . . . ≥ DΦ(a1:L) ≥ DΦ(a1:L+1) = 0 ∀a1:L+1 ∈ VL+1, (11)∑
a1:i∈T

DΦ(a1:i)p(a1:i) ≤ 1−

(
1−

∑
a1:i∈T

q(a1:i)

)K

∀T ∈ A(V≤L). (12)

Furthermore, the objective value is precisely the block efficiency E[τ + 1] for Φ.

This reduces to the single-path LP in the case K = 1. However, for K > 1, there is a important
distinction: the upper bound on sums of DΦp now represent a submodular function of T , unlike
the additive (modular) pointwise upper bounds on DΦp in Theorem 3.3. We now explain how this
submodularity naturally arises from a path selection rule in valid K-path verification algorithms. In
Lemma 4.4 (proof in Appendix D), we first prove a canonical decomposition of such algorithms into
randomized selection of one of the drafted K paths, followed by valid single-path verification.
Lemma 4.4. A valid K-path verification algorithm has the following equivalent definition. First,
given K paths sampled i.i.d. from q, randomly select one through a path selection rule Γ, which can
depend on off-path probability values. Say this path follows the distribution qΓ over VL. Then, run a
valid single-path verification algorithm on this path with target values p and draft values qΓ.

We call qΓ the skewed draft distribution induced by Γ. Because this is a distribution over VL, just
as for pL, qL, we can naturally extend it to an induced distribution over each Vi for 0 ≤ i ≤ L:

qΓ(a1:i) =
∑

ai+1:L∈VL−i

qΓ(a1:L) ∀a1:i ∈ V≤L. (13)
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This further induces an autoregressive distribution in the same way as p, q:

qΓ(ak+1:i|a1:k) =
qΓ(a1:i)

qΓ(a1:k)
∀a1:i ∈ V≤L. (14)

Not all distributions can be realized as the skewed draft distribution of a path selection rule, given a
fixed draft q and path count K. In fact, as in Lemma 4.5, the realizable distributions are those which
satisfy a submodular inequality like that in Theorem 4.3. For a proof, see Appendix E.

Lemma 4.5. Fix K, a draft distribution q, and a distribution r. Then r = qΓ for some randomized
path selection rule Γ over K drafts sampled i.i.d. from q if and only if

∑
a1:i∈T

r(a1:L) ≤ 1−

(
1−

∑
a1:i∈T

q(a1:i)

)K

∀T ∈ A(V≤L). (15)

This shows that Lemma 4.4 corresponds to linearizing the submodular constraints in Theorem 4.3.
Indeed, consider replacing the submodular upper bounds in the multi-path LP with the additive
(modular) upper bounds

∑
a1:i∈T q

Γ(a1:i). By the upper bound in Lemma 4.5, any solution to this
linearized LP will satisfy the original multi-path LP. In fact, this linearized LP is precisely the
single-path LP1where the draft distribution is the skewed draft qΓ rather than the original q. This
corresponds to running valid single-path verification with target p and draft qΓ, as in Lemma 4.4.

For a given qΓ, using the result of Theorem 3.4, the optimal valid single-path verification algorithm
to run here is precisely block verification. This leads to an explicit description of the optimal valid
multi-path verification algorithm in Theorem 4.6. We prove this in Appendix F.

Theorem 4.6. The optimal valid multi-path verification algorithm randomly chooses one of the K
i.i.d. blocks with Γ and then runs single-path block verification on that path with target values p
and draft values qΓ, for some path selection rule Γ. Furthermore, the optimal choice of Γ can be
determined by solving the following optimization problem:

max
∑

a1:i∈V≤L

min
0≤k≤i

p(ak+1:i|a1:k)qΓ(a1:k) (16)

s.t. qΓ(a1:L) ≤ 1−

(
1−

∑
a1:L∈T

q(a1:L)

)K

∀T ⊆ VL. (17)

This optimization problem is intractable to solve exactly, since it requires knowledge of the full
joint and target distributions. Furthermore, even if the optimal qΓ can be computed, there is no
guarantee that we can compute an efficient path selection rule Γ which induces this skewed draft
distribution. Therefore, we turn to approximation-based schemes. As Lemma 4.7 shows, we can
obtain a near-optimal solution by making all ratios qΓ/p close to one. For a proof, see Appendix G.

Lemma 4.7. For a fixed qΓ, the objective value in Theorem 4.6 is lower bounded by

(L+ 1) · min
a1:i∈V≤L

qΓ(a1:i)

p(a1:i)
(18)

This shows that when qΓ = p is feasible in Theorem 4.6, we can get an optimal block efficiency of
L+1, i.e. we always accept a full length-L path and an additional token. However, even determining
a rule Γ that achieves qΓ near p is difficult. Thus, in the next section, we restrict ourselves to a
more tractable class of greedy algorithms, where one can both explicitly compute the randomized
rule Γ and the resulting distribution values qΓ. This explicit characterization is necessary to apply
Lemma 4.4, because block verification requires exact draft probability values qΓ along the selected
path, and it is impossible to exactly sample from qΓ without an explicit randomized rule Γ.

1See Appendix B for an explanation of how the sums reduce to pointwise inequalities like in Theorem 3.3.
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5 GREEDY MULTI-PATH BLOCK VERIFICATION

We now design an explicit path selection rule Γ where the skewed draft distribution qΓ is heuristically
close to p and simple to compute, using only on-path probability values. This leads to our main
algorithm: greedy multi-path block verification. We first define greedy verification algorithms.
Definition 5.1. A greedy multi-path valid verification algorithm forms a global ranking on paths
in VL, and always selects the highest-ranked drafted path in the path selection rule Γ (Lemma 4.4).

In the context of the multi-path LP, each greedy multi-path valid verification algorithms can be viewed
as the output of a greedy polymatroid algorithm (Schrijver et al., 2003) on the submodular feasibility
constraints in Theorem 4.3, with the algorithm-selected order being the same as the global ranking.
Due to space constraints, we expand on this connection in detail in Appendix H.

If the global ordering of paths is VL = {P1, . . . , PM}, then one selects Pi from Γ if and only if all
K drafted paths lie in {P1, . . . , Pi}, but do not all lie {P1, . . . , Pi−1}. Thus, we can explicitly write:

qΓ(Pi) =

 i∑
j=1

q(Pi)

K

−

i−1∑
j=1

q(Pi)

K

. (19)

Again, computing this for arbitrary global orderings may require off-path probability values. However,
when the paths are ordered through a tree-based rule, only on-path values are needed. Tree-based
rules create a global ranking by generating local orderings at all prefixes in V≤L, and then combine
them to induce a lexicographic ordering over all length-L paths.
Definition 5.2. A global ranking of paths in VL is tree-based if the ranking can be obtained as
follows. Define an injective function πa1:i : V → R at each a1:i ∈ V≤L, only using the values
p(·|a1:i), q(·|a1:i). Then, assign to each path a1:L ∈ VL the L-tuple O(a1:L) = (πa1:i−1(ai))

L
i=1.

Finally, rank the paths a1:L ∈ VL in increasing lexicographic order of O(a1:L).

Now, the question remains of how to choose the local orderings πa1:i . Our key observation is that
from Equation (19), and the convexity of X 7→ XK , we get

qΓ(P1)

q(P1)
≤ qΓ(P2)

q(P2)
≤ . . . ≤ qΓ(PM )

q(PM )
. (20)

That is, qΓ/q increases along the global ranking. Hence, to make qΓ/p heuristically close to one,
we would also like p/q to increase along the global ranking. Again, enforcing this strict global
requirement is difficult, as it requires knowledge of the full joint pL and qL. Therefore, we further
relax this to a tree-based ranking, by making each local ordering follow p/q in increasing order:

πa1:i
(x) =

p(x|a1:i)
q(x|a1:i)

. (21)

We denote the path selection rule induced by these πa1:i as Γg . Now, we can efficiently compute each
qΓg (a1:i) using Equation (19). By definition of the lexicographic ordering, the second sum consists
of all paths b1:L where for some 0 ≤ j ≤ i− 1, we have b1:j = a1:j and πa1:j

(bj+1) < πa1:j
(aj+1).

The first sum contains all these paths, as well as all paths b1:L with b1:i = a1:i. This leads to the
following closed form expression for qΓg :

qΓg (a1:i) =

q(a1:i) + i−1∑
j=0

q(a1:j)
∑

πa1:j
(t)<πa1:j

(aj+1)

q(t)

K

(22)

−

i−1∑
j=0

q(a1:j)
∑

πa1:j
(t)<πa1:j

(aj+1)

q(t)

K

. (23)

In fact, given a fixed a1:i−1, we can efficiently compute all qΓg (a1:i) for ai ∈ V . Using the above
expression, these |V| quantities have the exact same terms except at q(a1:i) and the j = i− 1 term
in the summation. We can compute the former over all ai ∈ V in O(|V|) time by multiplying the
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Algorithm 1: Greedy Multi-Path Block Verification

Input: Draft blocks X(1)
1:L, . . . , X

(K)
1:L , target and draft probabilities p

(
·|X(k)

1:i

)
, q
(
·|X(k)

1:i

)
1 for k = 1, . . . ,K do

2 Define kth path ranking Ok by
[
p
(
X

(k)
i |X(k)

1:i−1)/q(X
(k)
i |X(k)

1:i−1

)]L
i=1

3 Select k0 with maximal ranking Ok0
by lexicographic ordering

4 for i = 1, . . . , L do
5 Compute qΓg

(
·|X(k0)

1:i

)
from p

(
·|X(k0)

1:i

)
, q
(
·|X(k0)

1:i

)
using Equation (23)

6 Run block verification on X(k0)
1:L with target and draft probabilities p

(
·|X(k0)

1:i

)
, qΓg

(
·|X(k0)

1:i

)

conditional distribution q(·|a1:i−1) by q(a1:i−1). The latter is a sum of q(t) over all t ∈ V with
πa1:i−1

(t) < πa1:i−1
(ai), so we can use a cumulative sum over the ordering on V induced by πa1:i−1

.
From these |V| values, we can compute conditional probabilities qΓg (·|a1:i) using Equation (14).

Finally, now that we have an explicit path selection rule Γg and corresponding skewed draft qΓg

values, both of which are efficient to compute and only depend on on-path probabilities, we can
follow Lemma 4.4 and use block verification with qΓg for the valid single-path verification algorithm.
This results in greedy multi-path block verification, which we explicitly enumerate in Algorithm 1.
In the case K = 1, this is equivalent to single-path block verification with draft distribution q and
target distribution p, because Γg only has one path to select, and thus qΓg = q.

6 EXPERIMENTS

We now test greedy multi-path block verification for K = 1, 2, 3, 4 paths. As mentioned in Section 5,
the case K = 1 is equivalent to single-path block verification from Sun et al. (2024b), so it is our
baseline approach. For all experiments, we select a block length of L = 8. We evaluate single-batch
temperature-1 sampling from two target-draft model pairs: OPT 6.7B/350M and OPT 6.7B/125M
(Zhang et al., 2022). For each pair, we evaluate our algorithm on three datasets: GSM8K, HumanEval,
and MATH500 (Chen et al., 2021; Hendrycks et al., 2021; Cobbe et al., 2021). We take 500 random
problems from the test split of each dataset (HumanEval only has 164). We run our experiments on a
Paperspace machine with an A100-80GB and an Intel Xeon Gold 6342 CPU (12 cores, 2.80 GHz).
We measure block efficiency as the number of generated tokens per call to the target model (higher is
better), and walltime as average milliseconds per token generated (lower is better).

Model pair Dataset Block efficiency (tokens/Mp-call)

K = 1 K = 2 K = 3 K = 4

OPT 6.7B/350M
GSM8K 3.294 3.827 3.867 3.884
HumanEval 3.157 3.538 3.809 3.863
MATH500 3.227 3.721 3.856 3.896

OPT 6.7B/125M
GSM8K 2.937 3.407 3.526 3.562
HumanEval 2.653 3.023 3.233 3.503
MATH500 2.814 3.274 3.392 3.493

Table 1: We compute the block efficiency (tokens per target model call) for decoding with greedy
multi-path block verification, for target-draft model pairs OPT 6.7B/350M and OPT 6.7B/125M on
up to 500 prompts from each of the datasets GSM8K, HumanEval, and MATH500. Larger numbers
are better. In all settings, efficiency improves as K increases from 1 (block verification baseline) to 4.

Our block efficiency results are shown in Table 1. Across all model pairs and datasets, increasing the
number of draft paths K monotonically improves block efficiency. From K = 1 to K = 4, block
efficiency gains range from 17.91% to 32.04%, with an average 23.08% gain across all six model pair
and dataset combinations. However, we also observe diminishing returns for higher K: on average,
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there is a 14.98% increase from K = 1 to K = 2, a 4.40% increase from K = 2 to K = 3, and a
2.54% increase from K = 3 to K = 4. Thus, while greedy multi-path block verification significantly
improves block efficiency, the most impactful gains come in the K = 2 setting.

Model pair Dataset Walltime (ms/token)

K = 1 K = 2 K = 3 K = 4

OPT 6.7B/350M
GSM8K 44.482 39.592 38.862 48.473
HumanEval 46.955 43.373 41.017 50.656
MATH500 45.851 40.473 38.889 48.440

OPT 6.7B/125M
GSM8K 34.479 30.862 30.109 39.831
HumanEval 38.824 35.648 33.627 41.297
MATH500 36.022 32.166 31.163 40.329

Table 2: We compute the walltimes (ms/token) for decoding with greedy multi-path block verification,
for target-draft model pairs OPT 6.7B/350M and OPT 6.7B/125M on up to 500 prompts from each
of the datasets GSM8K, HumanEval, and MATH500. Smaller numbers are better. In all settings,
walltimes improve as K increases from 1 (block verification baseline) to 3, but drop off at K = 4.

While block efficiency improvements are significant, they do not perfectly align with our walltime
results in Table 2. Here, gains are no longer monotonic from K = 1 to K = 4. There are significant
improvements from K = 1 to K = 3, with an average reduction in walltime by 13.34% across
all settings. For OPT 6.7B/350M and MATH500, this even reaches a 15.19% reduction. However,
K = 4 always performs worse than the baseline K = 1, with an average increase of 9.39% in
walltime. This is due to the increased computation cost of performing the batched target forward pass
over K = 4 paths (see Section 2.2), which negates block efficiency gains.

We also analyze decoding efficiency across datasets. The relative gains in block efficiency from
K = 1 to K = 4 are highest for HumanEval (27.20% average across model pairs), followed by
MATH500 (22.43%) and GSM8K (19.60%). For walltimes, the best setting K = 3 reduces walltime
relative to the baseline K = 1 by 12.65% for GSM8K, 14.34% for MATH500, and 13.02% for
HumanEval (averaged across model pairs). While HumanEval benefits most from extra paths in block
efficiency, these do not directly translate to walltime gains.

Furthermore, we examine the impact of target and draft model sizes. Averaged across datasets, the
larger draft (350M) achieves 13.72% higher block efficiency than the smaller draft (125M) for K = 3.
However, the smaller draft achieves a 20.14% lower average walltime than the larger draft in the
same setting. While a larger draft model can improve acceptance rates and block efficiency, this
comes at the expense of increased latency in draft sequence generation.

For practical usage, we recommend the setting L = 8,K = 3. This achieves nearly all of the block
efficiency gains of K = 4, without incurring a significant spike in latency due to batched target calls.
In all settings, K = 3 presents the fastest walltime. In multi-batch settings, K = 2 is also a viable
alternative, as it has around a 10% average walltime reduction compared to block verification. Our
results demonstrate that greedy multi-path block verification significantly reduces end-to-end latency
in autoregressive decoding.

7 CONCLUSION

We developed a single-path information-agnostic linear program (LP) which encodes feasible
speedups for valid verification algorithms in speculative sampling, and showed that block veri-
fication remains optimal even with access to off-path probabilities. We further extended our LP
to the setting where multiple draft paths are generated. While this multi-path LP is not feasible to
solve exactly, by approximating it with a class of greedy verification algorithms, we developed a
generalization of block verification, called greedy multi-path block verification. This significantly
improves decoding efficiency relative to block verification. Future work could further explore the
class of greedy verification schemes, or explore alternative approximation to the multi-path LP.
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REPRODUCIBILITY STATEMENT

The majority of our work is theoretical, with proofs in Appendices A to G. While we do not release
code, we provide enough detail in Section 5 to reproduce our greedy multi-path block verification
algorithm. We also provide details around our machine setup, datasets, and model pairs in Section 6.
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A PROOF OF MULTI-PATH INFORMATION-AGNOSTIC LP

In this section, we prove the multi-path information-agnostic LP in Theorem 4.3. Our proof begins
with a key lemma that dictates when one can sample from one distribution given data from another,
with the conditional distribution (often called the transport) to induce the former restricted to a
given support. In our context, the restricted support represents the prefix-matching requirement, the
distribution from which we are given data is induced by i.i.d. sampling paths from the draft model,
and the distribution from which we would like to sample is that of the verification algorithm output.

Lemma A.1 (Bipartite Transport Feasibility). Let G = (A ∪B,E ⊆ A×B) be a bipartite graph,
with probability distributions a(·) and b(·) over A and B, respectively. Then the following conditions
are equivalent, where N(·) denotes neighborhoods:

1. There exists a joint distribution π(·, ·) over A×B with marginal distributions a(·) and b(·),
such that π(x, y) = 0 for all (x, y) ̸∈ E.

2. For any S ⊆ A, we have
∑

x∈S a(x) ≤
∑

y∈N(S) b(y).

Proof. Condition 1 is equivalent to the feasibility of the following LP in variables πx,y ≥ 0:∑
x∈A

πx,y = b(y) ∀y ∈ B,
∑
y∈B

πx,y = a(x) ∀x ∈ A, πx,y = 0 ∀(x, y) ̸∈ E. (24)

We can incorporate the zero equality condition into the sum equalities to turn this into:∑
x∈N(y)

πx,y = b(y) ∀y ∈ B,
∑

y∈N(x)

πx,y = a(x) ∀x ∈ A. (25)

Now, Gale’s feasibility theorem for bipartite supply-demand networks (Gale, 1957) implies this LP is
feasible in nonnegative variables if and only if∑

x∈S

a(x) ≤
∑

y∈N(S)

b(x) ∀S ⊆ A,
∑
x∈A

a(x) =
∑
y∈B

b(x). (26)

The equality condition is automatically satisfied, since a(·), b(·) are probability distributions, so both
sides become one. Thus, Condition 1 is equivalent to Condition 2.

Using this, we can prove the following lemma, which dictates what distributions are feasible for a
K-path verification algorithm Φ which satisfies prefix-matching. We do not enforce target-matching
yet, so this algorithm is not necessarily valid. For any K-path verification algorithm Φ, denote RΦ(·)
as the distribution of the output of Φ, which is supported over V≤L+1 \ V0, i.e. all nonempty paths
of length ≤ L+ 1. We need the nonempty requirement as we must output at least one token. As we
prove in Lemma A.2, a collection of subset-sum inequalities over a particular bipartite graph exactly
describes the set of RΦ which can be realized by some Φ satisfying prefix-matching.

Lemma A.2 (Prefix-Matching). Construct the bipartite graph G with left vertices V ≤L+1 \ V0, right
vertices (VL)K , and edges E consisting of all pairs(

a1:i,
(
a
(1)
1:L, . . . , a

(K)
1:L

))
∈
(
V≤L+1 \ V0

)
×
(
VL
)K

, a1:i−1 ∈
{
a
(1)
1:i−1, . . . , a

(K)
1:i−1

}
. (27)

The values RΦ(a1:i) for a1:i ∈ V≤L+1 \ V0 are feasible for a K-path verification algorithm Φ that
satisfies prefix-matching if and only if they are nonnegative, sum to one, and

∑
a1:i∈S

RΦ(a1:i) ≤
∑

(
a
(1)
1:L,...,a

(K)
1:L

)
∈N(S)

K∏
k=1

q
(
a
(k)
1:L

)
∀S ⊆ V ≤L+1 \ V0, (28)

where N(·) denotes a neighborhood in G.
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Proof. The sum to one equality and nonnegative requirements are equivalent to requiring that RΦ is
a valid probability distribution. Now, given that RΦ is a valid probability distribution, we observe
that the prefix-matching requirement is equivalent to the following: given K i.i.d. sampled paths

X
(1)
1:L, . . . , X

(K)
1:L ∼ q(·), (29)

there is a conditional distribution (randomized rule) π(·|X(1)
1:L, . . . , X

(K)
1:L ) over V≤L+1 \ V0 which

is supported only over prefixes of these paths plus an additional token, such that sampling from π
results in the distribution RΦ . Given the construction of the graph G, we can alternatively express
the restricted support requirement on π(·|·) as π(vl|vr) = 0 for all left vertices vl and right vertices
vr with (vl, vr) ̸∈ E. Thus, by turning this conditional distribution into a joint distribution, as RΦ

is a distribution over left vertices and i.i.d. sampling from q(·) is a distribution over right vertices,
Lemma A.1 directly applies to show that prefix-matching is equivalent to∑

a1:i∈S

RΦ(a1:i) ≤
∑

(
a
(1)
1:L,...,a

(K)
1:L

)
∈N(S)

K∏
k=1

q
(
a
(k)
1:L

)
∀S ⊆ V ≤L+1 \ V0. (30)

The product term is the probability of sampling K paths i.i.d from q. This completes the proof.

Now, we move onto the target-matching requirement. Again, we can establish a necessary and
sufficient condition for a K-path verification algorithm Φ to satisfy target-matching terms of the RΦ

values. Now, the condition is path-wise summation requirement.
Lemma A.3 (Target-Matching). The values RΦ(a1:i) for a1:i ∈ V≤L+1 \ V0 are feasible for a
K-path verification algorithm Φ that satisfies prefix-matching if and only if they are nonnegative,
sum to one, and

L∑
i=0

RΦ(a1:i+1)

p(a1:i+1)
= 1 ∀a1:L+1 ∈ VL+1. (31)

Proof. Target-matching asserts that sampling from pL+1(·) is equivalent to sampling the output
(X1:τ , Y ) ∼ RΦ of the verification algorithm and then sampling an additional L − τ tokens from
Z1:L−τ ∼ pL−τ (·|X1:τ , Y ). For a given path a1:L+1 ∈ VL+1, the probability of sampling this path
from the former method is pL+1(a1:L+1). The probability of sampling it from the latter method is

P(X1:τ = a1:τ , Y = aτ+1, Z1:L−τ = aτ+2:L+1) (32)

=

L∑
i=0

P(τ = i,X1:τ = a1:τ , Y = aτ+1, Z1:L−τ = aτ+2:L+1) (33)

=

L∑
i=0

P(τ = i,X1:τ = a1:i, Y = ai+1, Z1:L−τ = ai+2:L+1) (34)

=

L∑
i=0

P((X1:τ , Y ) = a1:i+1)p(ai+2:L+1|a1:i+1) (35)

=

L∑
i=0

RΦ(a1:i+1) ·
p(a1:L+1)

p(a1:i+1)
. (36)

Setting these two equal for all paths a1:L+1 and dividing out the p(a1:L+1) = pL+1(a1:L+1) term
gives the desired condition.

By combining the prefix-matching and target-matching lemmas, we can now write down the multi-
path LP, in a form which is slightly more complicated than in Theorem 4.3, and is in terms of variables
RΦ rather than the node budgets DΦ. We will use the notion of a parent set and minimal set.
Definition A.4. For each S ⊆ V ≤L+1 \ V0, the parent set par(S) ⊆ V≤L of S consists of all
a1:i ∈ V≤L where a1:i+1 ∈ S for some ai+1 ∈ V . For each S ⊆ V ≤L, the minimal set min(S) ⊆ S
of S consists of all a1:i ∈ S where no proper prefix of a1:i appears in S, i.e. a1:0, . . . , a1:i−1 ̸∈ S.
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Note that an antichain (Definition 4.2) is precisely a subset S ⊆ V≤L where min(S) = S, and any
minimal set min(S) is also an antichain because min(min(S)) = min(S). We will use parent and
minimal sets to remove redundant inequalities in the Lemma A.2.
Lemma A.5 (Unsimplified Multi-Path LP). The values RΦ(a1:i) for a1:i ∈ V≤L+1 \ V0 are feasible
for a valid K-path verification algorithm Φ if and only if they are nonnegative, sum to one, and are
feasible in

max

L+1∑
i=1

∑
a1:i∈Vi

iRΦ(a1:i), (37)

s.t.
L∑

i=0

RΦ(a1:i+1)

p(a1:i+1)
= 1 ∀a1:L+1 ∈ VL+1, (38)

∑
a1:i∈T

L+1∑
j=i+1

∑
ai+1:j∈Vj−i

RΦ(a1:j) ≤ 1−

(
1−

∑
a1:i∈T

q(a1:i)

)K

∀T ∈ A(V≤L). (39)

Furthermore, the objective value is precisely the block efficiency E[τ + 1] for Φ.

Proof. First, fix a subset S ⊆ V≤L+1 \ V0. The neighborhood N(S) ⊆ (VL)K induced by the
graph G in Lemma A.2 is the set of K-tuples of length-L paths where at least one path has a prefix
in par(S). So, the complement of N(S) consists of all K-tuples of length-L paths where no path
has a prefix in par(S). Now, note that a path has a prefix in par(S) if and only if it has a prefix in
min(par(S)). Because min(par(S)) is an antichain (i.e. no two distinct elements in it are a prefix of
the same path), disjointness shows that the probability that a length L-path sampled from q(·) has a
prefix in min(par(S)) is

∑
a1:i∈min(par(S)) q(a1:i). Using these observations, we simplify:

∑
(
a
(1)
1:L,...,a

(K)
1:L

)
∈N(S)

K∏
k=1

q
(
a
(k)
1:L

)
= 1−

∑
(
a
(1)
1:L,...,a

(K)
1:L

)
̸∈N(S)

K∏
k=1

q
(
a
(k)
1:L

)
(40)

= 1−

1−
∑

a1:i∈min(par(S))

q(a1:i)

K

. (41)

Thus, the prefix-matching inequalities from Lemma A.2 become:

∑
a1:i∈S

RΦ(a1:i) ≤ 1−

1−
∑

a1:i∈min(par(S))

q(a1:i)

K

∀S ⊆ V ≤L+1 \ V0. (42)

We now make the key observation that many of these inequalities are redundant. For any a1:i with
a proper (i.e. not full) prefix in min(par(S)), we can add a1:i to S without changing min(par(S)),
keeping the right hand side constant. This also increases the left hand side (since RΦ is nonnegative).
Thus, the strictest of these inequalities are precisely those where S includes all paths with a proper
prefix in min(par(S)). For a fixed T = min(par(S)), this makes S the set of all a1:j where a1:i ∈ T
for some i < j. Since all antichains are achievable as some min(par(S)), this turns the above
collection of inequalities into

∑
a1:i∈T

L+1∑
j=i+1

∑
ai+1:j∈V≤j−i

RΦ(a1:j) ≤ 1−

(
1−

∑
a1:i∈T

q(a1:i)

)K

∀T ∈ A(V≤L). (43)

This covers the prefix-matching. The target-matching requirement remains the same as in Lemma A.3.
Thus, all that remains is to show the objective values is the block efficiency. This holds as RΦ(a1:i)
is the probability that Φ outputs a1:i, and the total number of tokens generated with this output is i,
so summing over all possible outputs a1:i ∈ V≤L+1 \ V0 gives the desired result.

Finally, we can prove the multi-path LP in Theorem 4.3. The only remaining step to derive this is to
turn the variables RΦ into variables DΦ representing node budgets.
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Proof. By the definition of DΦ in Definition 3.2, we see that

DΦ(a1:i) = 1−
i∑

j=1

RΦ(a1:i)

p(a1:i)
∀a1:i ∈ V≤L+1. (44)

The target-matching condition simply implies that each DΦ(a1:L+1) = 0. Now, observe that

RΦ(a1:i) = DΦ(a1:i−1)p(a1:i)−DΦ(a1:i)p(a1:i) ∀a1:i ∈ V≤L. (45)

for all. Thus, incorporating the nonnegativity constraint on RΦ, we get

1 = DΦ(a1:0) ≥ DΦ(a1:1) ≥ . . . ≥ DΦ(a1:L) ≥ DΦ(a1:L+1) = 0 ∀a1:L+1 ∈ VL+1. (46)

Next, observe that for any a1:i ∈ V≤L, we have the following telescoping identity:
L+1∑

j=i+1

∑
ai+1:j∈Vj−i

RΦ(a1:j) (47)

=

L+1∑
j=i+1

∑
ai+1:j∈Vj−i

DΦ(a1:j−1)p(a1:j)−
L+1∑

j=i+1

∑
ai+1:j∈Vj−i

DΦ(a1:j)p(a1:j) (48)

=

L∑
j=i

∑
ai+1:j+1∈Vj+1−i

DΦ(a1:j)p(a1:j+1)−
L+1∑

j=i+1

∑
ai+1:j∈Vj−i

DΦ(a1:j)p(a1:j) (49)

= DΦ(a1:i)p(a1:i) +

L∑
j=i+1

∑
ai+1:j+1∈Vj+1−i

DΦ(a1:j)p(a1:j+1) (50)

−
L∑

j=i+1

∑
ai+1:j∈Vj−i

DΦ(a1:j)p(a1:j)− 0 (51)

= DΦ(a1:i)p(a1:i) +

L∑
j=i+1

DΦ(a1:j)

 ∑
ai+1:j+1∈Vj+1−i

p(a1:j+1)−
∑

ai+1:j∈Vj−i

p(a1:j)

 (52)

= DΦ(a1:i)p(a1:i) +

L∑
j=i+1

DΦ(a1:j) (p(a1:i)− p(a1:i)) = DΦ(a1:i)p(a1:i). (53)

This means the condition that all RΦ sum to one is automatically satisfied by applying this identity
for i = 0. This also reduces the antichain condition in the unsimplified multi-path LP to∑

a1:i∈T

DΦ(a1:i)p(a1:i) ≤ 1−

(
1−

∑
a1:i∈T

q(a1:i)

)K

∀T ∈ A(V≤L). (54)

This covers all conditions, so all that remains is to show that the objective reduces to the desired
expression. This holds by interchanging the order of summation, and using the telescoping identity:
L+1∑
i=1

∑
a1:i∈Vi

iRΦ(a1:i) =

L+1∑
i=1

i−1∑
j=0

∑
a1:i∈Vi

RΦ(a1:i) (55)

=

L∑
j=0

L+1∑
i=j+1

∑
a1:i∈Vi

RΦ(a1:i) (56)

=

L∑
j=0

L+1∑
i=j+1

∑
a1:j∈Vj

∑
aj+1:i∈Vj−i

RΦ(a1:i) (57)

=

L∑
j=0

∑
a1:j∈Vj

L+1∑
i=j+1

∑
aj+1:i∈Vj−i

RΦ(a1:i) =
∑

a1:j∈V≤L

DΦ(a1:j)p(a1:j). (58)

This completes the reduction to the desired form for the multi-path LP.
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B PROOF OF SINGLE-PATH INFORMATION-AGNOSTIC LP

Using the multi-path in Theorem 4.3, it is easy to prove the single-path LP in Theorem 3.3 by reducing
it to the case K = 1. This works because a valid single-path verification algorithm is precisely the
same as a valid K-path verification algorithm in the case K = 1.

Proof. It suffices to show that whenK = 1, the multi-path information-agnostic LP from Theorem 4.3
reduces to the single-path LP. Indeed, the antichain condition becomes∑

a1:i∈T

DΦ(a1:i)p(a1:i) ≤
∑

a1:i∈T

q(a1:i) ∀T ∈ A(V≤L). (59)

This forces the pointwise conditions DΦ(a1:i)p(a1:i) ≤ q(a1:i), since by taking the singleton
antichains T = {a1:i}. Furthermore, these pointwise conditions imply the antichain conditions
through summation. All other conditions and the objective function remain the same. Hence, we
obtain the desired single-path LP.

C PROOF OF BLOCK VERIFICATION OPTIMALITY

Using the single-path LP, we can prove that block verification is optimal in the class of valid single-
path verification algorithms (Theorem 3.4). We will use results from Sun et al. (2024b). The idea is to
show that DΦBV

for the single-path block verification algorithm ΦBV are tight in the single-path LP.

Proof. From Lemma 4 in Appendix B of Sun et al. (2024b), we have for each path a1:i ∈ V≤L that
P(τ ≥ i|X1:i = a1:i) = w(a1:i) (60)

under ΦBV , where weights w are defined in Equation (3). Now, because ΦBV is a valid verification
algorithm, we can use the telescoping identity from the proof of Theorem 4.3 at the end of Appendix A
(with RΦBV

defined similarly as the distribution of the output of ΦBV ) to show

DΦBV
(a1:i)p(a1:i) =

L+1∑
j=i+1

∑
ai+1:j∈Vj−i

RΦBV
(a1:j) (61)

=

L+1∑
j=i+1

∑
ai+1:j∈Vj−i

P(τ = j − 1, X1:j−1 = a1:j−1, Y = aj) (62)

=

L+1∑
j=i+1

P(τ = j − 1, X1:i = a1:i) = P(τ ≥ i,X1:i = a1:i) (63)

= P(τ ≥ i|X1:i = a1:i)P(X1:i = a1:i) = w(a1:i)q(a1:i). (64)
Thus, to show block verification is optimal, it suffices to show that for any valid single-path verification
algorithm Φ and path a1:i ∈ V≤L, we have DΦ(a1:i)p(a1:i) ≤ w(a1:i)q(a1:i), as then the objective
value for Φ (the block efficiency, i.e. the sum of these DΦp terms) cannot exceed the objective value
for ΦBV (the sum of the DΦBV

p terms) in the single-path LP. The proof is by induction on i. For the
base case i = 0, this is clear as w(a1:0)q(a1:0) = 1 = DΦ(a1:0)p(a1:0). Now, suppose this statement
holds for i. To prove it for i+ 1, we use the single-path conditions to obtain
DΦ(a1:i+1)p(a1:i+1) ≤ DΦ(a1:i)p(a1:i+1) (65)

= DΦ(a1:i)p(a1:i)p(ai+1|a1:i) (66)
≤ w(a1:i)q(a1:i)p(ai+1|a1:i) (67)

= q(a1:i+1) ·
p(ai+1|a1:i)
q(ai+1|a1:i)

· w(a1:i) (68)

≤ q(a1:i+1) ·min

{
1,
p(ai+1|a1:i)
q(ai+1|a1:i)

· w(a1:i)
}

= q(a1:i+1)w(a1:i+1). (69)

The last inequality holds by using the pointwise DΦp ≤ q bound from the single-path LP. This
completes the induction, and thus the proof that block verification is optimal.
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D PROOF OF PATH SELECTION DECOMPOSITION

In this section, we prove Lemma 4.4, which states that any valid K-path verification algorithm can
be decomposed into a randomized path selection rule which chooses one of the K paths, and then a
valid single-path verification algorithm that operates on an skewed draft distribution.

Proof. Let Φ denote the valid verification algorithm. This takes inK paths P1, . . . , PK i.i.d. sampled
from q(·), and samples a nonempty path in V≤L+1 using a conditional distribution π(·|P1, . . . , PK),
which can depend on off-path target and draft distribution values. This is constrained to only output
(X1:τ , Y ) where X1:τ is a prefix of one of P1, . . . , PK and Y ∈ V . Thus, we can conditionally
factorize π into a prefix selection rule π1 on prefixes of P1, . . . , PK conditioned over P1, . . . , PK ,
and an additional token rule π2 on V conditioned over P1, . . . , PK , X1:τ :

π(X1:τ , Y |P1, . . . , PK) = π1(X1:τ |P1, . . . , PK)π2(Y |P1, . . . , PK , X1,τ ). (70)

For each prefix a1:i of some path in P1, . . . , PK , denote its multiplicity m(a1:i) ≥ 1 as the number
of paths that contain it as a prefix. For example, m(∅) = K. Then, we define a path selection rule π3
on [K] conditioned over P1, . . . , PK , as:

π3(k0|P1, . . . , PK) =

L∑
i=0

π1((Pk0
)1:i|P1, . . . , PK)m((Pk0

)1:i)
−1. (71)

To see this is a valid probability distribution, observe that for each distinct a1:i appearing as a prefix
of one of P1, . . . , PK , when we sum the above formula over all k0 ∈ [K], we have exactly m(a1:i)
terms in the sum above with (Pk0

)1:i = a1:i, each of which are π1(a1:i|P1, . . . , PK)m(a1:i)
−1.

Thus, the terms containing a1:i cancel to π1(a1:i|P1, . . . , PK), and summing this over all distinct
a1:i gives a result of 1, because π1 is a valid distribution. Also, define a prefix selection rule π4 on
prefixes of Pk0 conditioned over P1, . . . , PK , k0 ∈ [K]:

π4((Pk0)1:i|P1, . . . , PK , k0) =
π1((Pk0)1:i|P1, . . . , PK)m((Pk0)1:i)

−1∑L
i=0 π1((Pk)1:i|P1, . . . , PK)m((Pk)1:i)−1

, (72)

which is also a valid probability distribution. We see that when sampling k0 ∼ π3(·|P1, . . . , Pk) and
then X1:τ ∼ π4(·|P1, . . . , PK , k0), we have

P(X1:τ = a1:i|P1, . . . , PK) (73)

=
∑

k0∈[K]

π3(k0|P1, . . . , Pk)π4(a1:i|P1, . . . , PK , k0) (74)

=
∑

k0∈[K],(Pk0
)1:i=a1:i

π3(k0|P1, . . . , Pk)π4(a1:i|P1, . . . , PK , k0) (75)

=
∑

k0∈[K],(Pk0
)1:i=a1:i

π1(a1:i|P1, . . . , PK)m(a1:i)
−1 (76)

= m(a1:i)π1(a1:i|P1, . . . , PK)m(a1:i)
−1 = π1(a1:i|P1, . . . , PK). (77)

Thus, sampling from π3 and then π4 is equivalent to sampling from π1, so sampling from π is
equivalent to sampling in the order π3, π4, π2. Now, let π5 be the distribution formed by sampling
from π4 and then π2. Then sampling from π is equivalent to sampling in the order π3, π5, where π3
is a path selection rule conditioned on P1, . . . , PK , and π5 returns (X1:τ , Y ) conditioned only the
selected path and P1, . . . , PK . Now, denote qπ3 as the true distribution of the path select by π3. Then
the output of Φ follows the distribution induced by sampling a single path from qπ3 , and sampling
from π5 conditioned only on that single path (the conditioning over P1, . . . , PK will cancel). To meet
target-matching and prefix-matching, π5 must correspond to a valid single-path verification algorithm
with draft distribution qπ3 and target distribution p. This completes the proof of the decomposition
into a path selection rule π3 and a valid single-path verification algorithm with draft values being the
true distribution of the π3-selected path.
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E PROOF OF SKEWED DRAFT DISTRIBUTION FEASIBILITY

Here, we prove Lemma 4.5, which describes when a distribution can be realized as a skewed draft
distribution qΓ from a given draft q and path countK. The proof is a direct application of Lemma A.1.

Proof. Define the bipartite graph G with left vertices (VL)K , right vertices VL, and edges E
consisting of pairs ((P1, . . . , PK), Pk) for all P1, . . . , PK ∈ VL and k ∈ [K]. Our distribution over
left vertices is i.i.d. sampling from q, and our distribution over right vertices is r. We would like to
find when there is a joint distribution on (VL)K × VL supported on E, whose marginals are the left
and right vertex distributions. Lemma A.1 shows such a distribution exists if and only if∑

P∈S

r(P ) ≤
∑

(P1,...,PK)∈N(S)

K∏
k=1

q(Pk) ∀S ⊆ VL. (78)

Here, N(·) denotes neighborhoods in G. Thus, N(S) consists of all (P1, . . . , PK) where some
Pk ∈ S. This means the complement of N(S) is precisely (VL \ S)K , so the above becomes

∑
P∈S

r(P ) ≤ 1−

 ∑
P∈VL\S

q(P )

K

∀S ⊆ VL. (79)

We are almost at our desired condition, except we need to show this holds for all antichains S ∈
A(VL). Indeed, for an antichain S, consider the set PS ⊆ VL of length-L paths with a prefix in the
antichain. No path in PS can have two distinct elements in S as a prefix. Thus, the mass of q over S
is the same as the mass of q over PS :∑

a1:i∈S

q(a1:i) =
∑

a1:i∈S

∑
ai+1:L∈VL−i

q(a1:L) =
∑

a1:L∈PS

q(a1:L) (80)

The same holds for r, because it is also a distribution over VL. Thus, the antichain conditions reduce
to the conditions for S ⊆ VL above, as desired.

F PROOF OF OPTIMAL MULTI-PATH ALGORITHM DESCRIPTION

Now, we prove Theorem 4.6, which describes the optimal multi-path valid verification algorithm as a
solution to a nonlinear optimization problem.

Proof. The first part of the theorem is a direct consequence of the fact that block verification is the
optimal single-path valid verification algorithm (Theorem 3.4), and any valid multi-path verification
algorithm can be decomposed into path selection and valid single-path verification (Lemma 4.4).
Now, we prove the second part of the theorem, using this description. Recall from the proof of
Lemma 4.5 in Appendix E that a distribution qΓ can be realized from a given draft q and path count
K with a path selection rule if and only if

qΓ(a1:L) ≤ 1−

(
1−

∑
a1:L∈T

q(a1:L)

)K

∀T ⊆ VL. (81)

This covers the feasibility condition, so all that remains is to show the objective function in the
theorem equals the block efficiency for block verification run on qΓ. By using the expression for
DΦBV

p in the proof of Theorem 3.4 in Appendix C, the objective value in the single-path LP
(Theorem 3.3) simplifies to∑

a1:i∈V≤L

DΦBV
(a1:i)p(a1:i) =

∑
a1:i∈V≤L

w(a1:i)q
Γ(a1:i), (82)

where the weights w are defined as in Equation (3), but with q replaced by qΓ. Thus, all that remains
is to show that

w(a1:i)q
Γ(a1:i) = min

0≤k≤i
p(ak+1:i|a1:k)qΓ(a1:k). (83)
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The proof is by induction on i. For i = 0, this is clear as both sides are one. Now, suppose this
statement holds for i. To show it is true for i+ 1, observe that

w(a1:i+1)q
Γ(a1:i+1) = min

{
1,

p(ai+1|a1:i)
qΓ(ai+1|a1:i)

w(a1:i)

}
qΓ(a1:i+1) (84)

= min
{
qΓ(a1:i+1), p(ai+1|a1:i)qΓ(a1:i)w(a1:i)

}
(85)

= min

{
qΓ(a1:i+1), p(ai+1|a1:i) · min

0≤k≤i
p(ak+1:i|a1:k)qΓ(a1:k)

}
(86)

= min

{
qΓ(a1:i+1), min

0≤k≤i
p(ak+1:i+1|a1:k)qΓ(a1:k)

}
(87)

= min
0≤k≤i+1

p(ak+1:i+1|a1:k)qΓ(a1:k). (88)

This completes the proof.

G PROOF OF OPTIMAL MULTI-PATH LOWER BOUND

We now prove Lemma 4.7, which lower bounds the objective value in Theorem 4.6.

Proof. Denote the minimum value of qΓ/p as

ϵ = min
a1:i∈V≤L

qΓ(a1:i)

p(a1:i)
. (89)

Then for each a1:i ∈ V≤L and 0 ≤ k ≤ i, we have the lower bound

p(ak+1:i|a1:k)qΓ(a1:k) =
qΓ(a1:k)

p(a1:k)
· p(a1:i) ≥ ϵ · p(a1:i). (90)

Thus, we have the desired lower bound on the objective value:∑
a1:i∈V≤L

min
0≤k≤i

p(ak+1:i|a1:k)qΓ(a1:k) ≥
∑

a1:i∈V≤L

ϵ · p(a1:i) = (L+ 1)ϵ. (91)

H GREEDY POLYMATROID CONNECTION

Here, we describe the connection between greedy multi-path valid verification algorithms (Defini-
tion 5.1) and the greedy polymatrid algorithm. We start with Theorem 4.6, but only consider the
feasibility condition:

qΓ(a1:L) ≤ 1−

(
1−

∑
a1:L∈T

q(a1:L)

)K

∀T ⊆ VL. (92)

As previously mentioned, the right hand side is a submodular function ψ(T ) in T . Note that the
inequality must also be an equality at T = VL to ensure that qΓ is a probability distribution. Thus, to
find some feasible qΓ satisfying these submodular constraints, we can use the greedy polymatroid
algorithm from Schrijver et al. (2003), which aims to maximize the sum of qΓ terms given the above
constraints. First, we fix any ordering {P1, . . . , PM} on VL. Then, a feasible solution is

qΓ(Pi) = ψ({P1, . . . , Pi})− ψ({P1, . . . , Pi−1}). (93)

This is precisely what Equation (19) reduces to when the path selection rule Γ is induced by the
reversed global ordering {PM , . . . , P1}. Thus, greedy multi-path valid verification algorithms are
simply outputs of the greedy polymatroid algorithm for the multi-path LP feasibility conditions.
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