
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GREEDY MULTI-PATH BLOCK VERIFICATION FOR
FASTER DECODING IN SPECULATIVE SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

The goal of L-step speculative decoding is to accelerate autoregressive decoding
of a target model by using a cheaper draft model to generate a candidate path
of L tokens. Based on a verification algorithm involving target and draft model
probabilities, a prefix of the candidate sequence is accepted, and an additional
correction token is sampled from a residual distribution to ensure that the final
output adheres to the target distribution. While standard speculative decoding uses
a verification algorithm which is independent at each token on the path, a recent
extension called block verification uses a joint condition involving all sampled
on-path probabilities. Block verification (BV) was shown to be optimal over all
verification algorithms which use only on-path probabilities, improving on standard
speculative decoding. In this work, we first show that block verification is optimal
even over verification algorithms that use off-path probabilities, by constructing
an information-agnostic linear program (LP). Further, we can extend our LP to
the setting where the draft model samples multiple candidate paths, and use it to
construct a natural class of multi-path block verification generalizations. While
computing the optimal algorithm in this class is not tractable, by considering a
stricter class of greedy algorithms, we can formulate an efficient method called
greedy multi-path block verification (GBV). Empirically, GBV can improve block
efficiency by over 30% and reduce decoding walltimes by over 15% relative to BV.

1 INTRODUCTION

Large language models (LLMs) achieve strong results across code, language, and reasoning (Zhu
et al., 2024; Kasneci et al., 2023; Thirunavukarasu et al., 2023). Most LLM families, such as Qwen
(Bai et al., 2023), GPT (Radford et al., 2018; 2019; Brown et al., 2020; OpenAI, 2023), and Llama
(Touvron et al., 2023b;a) employ autoregressive decoding. When inference is performed with these
transformer-based architectures on GPUs, end-to-end latency is dominated by memory bandwidth
rather than compute (Fu et al., 2024).

Speculative sampling (Chen et al., 2023; Leviathan et al., 2023) aims to reduce such punitive costs
when sampling from a large target model. This procedure autoregressively decodes a candidate
sequence from a cheaper draft model, performs a forward pass over the candidate sequence with the
target model to obtain target distribution values, and then probabilistically alters the sequence through
a verification algorithm to ensure that the resulting output matches the target model distribution.
Because inference is bandwidth-bound, the target forward pass over the candidate sequence presents
negligible overhead over a standard forward pass. Thus, speculative sampling can decode many
tokens in a single target model call and speed up inference without affecting downstream performance.

In standard speculative sampling, the draft model proposes a length L draft block, and the ver-
ification algorithm independently accepts or rejects each token based on target and draft model
distributions values along the draft bock. The longest prefix with no rejections is chosen, and an
additional token is sampled from a residual distribution, ensuring that at least one token is always
generated. While this procedure significantly improves decoding efficiency, it suffers when there are
low acceptance rates at early tokens. If the first token is almost always rejected due to a poor draft
suggestion, then even if subsequent tokens are always accepted, there is no speedup.

To overcome this early-token bottleneck, recent work on block verification (BV) (Sun et al., 2024b)
replaces independent token-wise verification with independent prefix-wise verification, and selects

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the longest accepted prefix. An additional token is still sampled, but the residual distribution is
altered to ensure the output still matches the target distribution. This ensures that more tokens can be
accepted when earlier tokens are likely to be rejected. Block verification is empirically 5-8% faster
than standard speculative sampling. In fact, it is provably optimal over all verification algorithms that
only use target and draft probability distributions along the drafted candidate sequence, including
standard speculative sampling.

In this paper, we frame the optimal verification algorithm as a solution to a linear program (LP), and
extend the LP to the setting of multiple i.i.d. generated draft sequences. Our contributions are:

• Single-Path Information-Agnostic LP. We develop an LP that encodes feasible speedups
from verification algorithms that must still return a candidate sequence prefix and an
additional token, but are now given access to the full joint target and draft distributions, not
just on-path values. We show that block verification is still optimal in this setting. That is,
the prefix output requirement is the bottleneck to improving optimal decoding efficiency,
rather than off-path information access.

• Multi-Path Information-Agnostic LP. We extend the single-path LP to the setting where the
draft model i.i.d. samples K > 1 candidate sequences, considering verification algorithms
which return a prefix of one of the paths and an additional token. Unlike the K = 1
setting, we find that knowledge of off-path target and draft distributions can improve
decoding efficiency. We show that the optimal verification algorithm in this setting is to
probabilistically select one of the K paths, and then run block verification on that single
path with a skewed draft distribution.

• Greedy Approximation Schemes. The optimal solution to the multi-path LP involves a
complex nonlinear optimization problem over the joint target and draft distributions, and is
infeasible to solve directly. Thus, we explore a class of greedy approximations: algorithms
which globally rank all possible candidate sequences, select the highest-ranking of the K
paths, and run block verification on that path. We show that these can be viewed as outputs
of a greedy polymatroid algorithm in the multi-path LP.

• Greedy Multi-Path Block Verification (GBV). Many greedy approximation schemes
require the full joint target and draft distributions. However, when the global ranking is
tree-based, only on-path values are required. We devise a simple tree-based rule that results
in wall-clock speedups of over 15% relative to BV, and provide theoretical justification for
this rule.

2 BACKGROUND

We first review standard speculative sampling and its extensions. We start with the case where only
one draft block is generated, and then cover multi-path extensions.

2.1 SINGLE-PATH

Denote the target model by Mp, and the draft model by Mq , which are assumed to share a common
vocabulary V . We use the sequence notation a1:k = (a1, . . . , ak) for tokens a1, . . . , ak ∈ V and
the inclusive slicing notation ai:j = (ai, . . . , aj), with the empty sequence convention ai,j = ∅ for
j < i. Given a context c, the target and draft models induce next-token distribution p(·|c) and q(·|c),
respectively. In autoregressive sampling, these further induce next-k-token distributions through
conditional factorization, which we denote:

qk(a1:k|c) =
k∏

i=1

q(ai|c, a1:i−1), pk(a1:k|c) =
k∏

i=1

p(ai|c, a1:i−1). (1)

In L-step speculative sampling, we autoregressively sample a draft block of L tokens from the draft
distribution qL and call the target model Mp on this block once, to obtain target and draft next-token
probabilities along the block. Through a randomized rule called the verification algorithm, we
accept the first τ ∈ {0, . . . , L} of these L tokens and sample an additional correction token, such
that this output matches the true target distribution. The block efficiency E[τ + 1] is the average
number of decoded tokens per Mp call; in the special case where the target and draft distributions are

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

identical, it achieves its maximum value of L+ 1. When a cheap draft model is used and L is not too
large, block efficiency is an accurate indicator of walltime speedup.

Speculative sampling. The original schemes of Chen et al. (2023); Leviathan et al. (2023) first
generate a draft block a1:L ∼ qL(·|c). They independently accept each token ai with probability
min(1, p(ai|a1:i−1)/q(ai|a1:i−1)), and τ is the maximum value such that a1:τ consists of only
accepted tokens. Essentially, they choose the longest prefix of acceptances. Finally, they sample an
additional correction token y ∼ ptoken

res (·|c, a1:i) from a residual distribution if τ < L:

ptoken
res (·|c, a1:i) ∝ max{p(·|c, a1:i)− q(·|c, a1:i), 0}. (2)

If τ = L, they just sample y ∼ p(·|c, a1:L) directly from the target. This ensures that the final output
(a1:τ , y) matches the target distribution.

Draft extensions. Some recent works have improved upon block efficiency in speculative sampling
by altering the drafting phase, through retrieval or cascading (He et al., 2023; Chen et al., 2024),
hierarchical drafting (Sun et al., 2024a), distillation (Zhou et al., 2023; Liu et al., 2023), layer skipping
(Zhang et al., 2023; Elhoushi et al., 2024), or multi-token heads (Gloeckle et al., 2024; Samragh et al.,
2025)). In this paper, we instead focus on methods which improve block efficiency by altering the
verification algorithm, and these can be integrated with any of the above works for further gains.

Tree verification. Monte Carlo tree verification from Hu & Huang (2024) provably improves the
block efficiency of standard speculative sampling. While the underlying tree structure might suggest
this is a multi-path method, we emphasize that it is a single-path algorithm, as the end of Section 5 in
Hu & Huang (2024) specifies a linear chain of draft tokens. This means it is provably worse than
block verification: see the third paragraph of Section 7 in Sun et al. (2024b).

Block verification (BV). To improve block efficiency in the verification stage, Sun et al. (2024b)
relax the token-independence assumption for acceptance in standard speculative sampling. First, they
sample the draft block a1:L ∼ qL(·|c), and recursively define on-path weights w:

w(∅|c) = 1, w(a1:i|c) = min

{
1,
w(a1:i−1|c)p(ai|a1:i−1)

q(ai|a1:i−1)

}
. (3)

Now, they independently accept each prefix a1:i with probability

hblock(a1:i|c) =
∑

x∈V max{p(x|c, a1:i)− q(x|c, a1:i), 0}
1− w(a1:i|c) +

∑
x∈V max{p(x|c, a1:i)− q(x|c, a1:i), 0}

(4)

for i < L, and a1:L with probability w(a1:L|c). They select the longest accepted prefix, of length τ ,
and sample a correction token y ∼ pblock

res (·|c, a1:i), a weighted version of ptoken
res , if τ < L:

pblock
res (·|c, a1:i) ∝ max{w(a1:i|c)p(·|c, a1:i)− q(·|c, a1:i), 0}. (5)

If τ = L, they sample y ∼ p(·|c, a1:L). Like in speculative sampling, the output (a1:τ , y) follows
the target distribution. Sun et al. (2024b) prove that block verification achieves the highest block
efficiency among any verification algorithm that only takes in on-path distribution values.

2.2 MULTI-PATH

There are also recent lines of work that extend L-step speculative sampling to the multi-path setting
(Sun et al., 2023; Spector & Re, 2023; Cai et al., 2024; Li et al., 2024). In this setting, K > 1
length-L draft blocks are sampled from qL. The target model Mp is again called once on all draft
blocks in parallel, to obtain target and draft next-token probabilities along all K paths. Then, using
a multi-path verification algorithm, a prefix of one of the blocks is accepted, and an additional
correction token from a residual distribution is sampled in order to match the target distribution.
Block efficiency is defined in the same way as previously. For moderate K and L, leveraging GPU
parallelization, there is generally little overhead in performing the batched forward pass across K
sequences, relative to a forward pass on one sequence (Agrawal et al., 2024; Dao et al., 2022).

We use the concept of a draft tree to enumerate all distinct prefixes among the K sampled paths. We
will compare our methods against two categories of multi-path verification algorithms which select a
node from the draft tree, i.e. a prefix of one of the blocks, in different ways.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

OTLP-based algorithms. These perform a top-down traversal of the draft tree. At each step, they
compute a feasible solution of an optimal transport linear program (OTLP) to determine the next
token and progress to a child node, terminating when they land off the draft tree. SpecTr (Sun et al.,
2023), NSS (Miao et al., 2024), and SpecInfer (Miao et al., 2024) are key examples, and recent
theoretical OTLP solvers (Khisti et al., 2025; Hu et al., 2025) further improve block efficiency.

Traversal verification. To the best of our knowledge, traversal verification in Weng et al. (2025) is
the only multi-path algorithm that traverses the draft tree from the bottom-up. Like our algorithm in
Section 5, this reduces to BV in the single-path K = 1 case. In our experiments, traversal verification
and our methods outperform OTLP-based methods, but are each effective in different (p, q) regimes.

3 SINGLE-PATH INFORMATION-AGNOSTIC LP

We first formally define the class of single-path verification algorithms. We denote V≤k = V0 ∪
V1 ∪ . . . ∪ Vk, where Vk is the set of length-k sequences of tokens in V , and thus V≤k is the set of
sequences of length ≤ k. We use L to denote the draft block length. For the remainder of the paper,
we use notation from Section 2, omitting the context c and subscripts on p, q when they are clear.
Definition 3.1 (Single-path draft verification algorithm). A single-path verification algorithm Φ
takes in a sampled draft block X1:L ∼ qL(·), and the full L-step target and draft distributions pL and
qL, and returns a nonempty sequence in V≤L+1. It is valid under:

• Prefix-matching: the algorithm returns a (possibly empty) prefix X1:τ of the draft block
followed by an additional correction token Y , for some τ ∈ {0, . . . , L}.

• Target-matching: for any context c, any draft and target models Mp and Mq, and any
block length L, when we generate L− τ additional tokens Z ∼ pL−τ (·|X1:τ , Y), we have
(X1:τ , Y, Z) ∼p pL+1(·), where ∼p denotes equality of distributions.

If we also require that Φ can only take in the on-path target and draft distributions p(·|X1:i), q(·|X1:i)
for i ∈ {0, . . . , L}, then it is called information-restricted.

Target-matching means that sampling fromMp autoregressively after verification, until a total of L+1
tokens are generated, gives the same result as just sampling L+ 1 tokens from Mp autoregressively
without verification. This is equivalent to guaranteeing that running the verification algorithm and
appending its output to the context iteratively maintains the target distribution, even as τ varies: see
Lemma 2 in Appendix B of Sun et al. (2024b) for a formal proof.

Prefix-matching forces the verification output to only deviate from the draft block at its last token.
This is a strict modeling requirement, not a technical convenience. To bypass prefix-matching while
maintaining the target distribution, one must access the next-token target distribution p(·|c) for
contexts c outside the draft tree. This is not possible without performing another Mp forward pass,
which would defeat the goal of speculative decoding: generating multiple tokens in one target call.

Importantly, our definition is less strict than in Sun et al. (2024b), because they only consider the class
of valid single-path information-restricted verification algorithms, and prove that block verification is
optimal in this class. Surprisingly, we find that block verification is optimal in the class of all valid
single-path verification algorithms. To prove this, we first define node budgets, which represent how
much mass a verification algorithm has allocated along a path relative to the target distribution.
Definition 3.2. For any single-path verification algorithm Φ, we define node budgets

DΦ(a1:i) = 1−
i∑

j=1

P(X1:τ = a1:j−1, Y = aj)

p(a1:j)
∀a1:i ∈ V≤L+1. (6)

This can be represented by a function DΦ : V≤L+1 → R.

Using node budget variables, we define the single-path information-agnostic LP in Theorem 3.3,
which describes what values of DΦ a valid single-path verification algorithm Φ can induce. Here,
the chain of DΦ inequalities along paths encode the target-matching constraint, and the pointwise
upper bounds on DΦp encode prefix-matching. We defer the proof to Appendix B, as the special case
K = 1 of the multi-path LP in Theorem 4.3, which we prove in Appendix A.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 3.3. A single-path verification algorithm Φ is valid if and only if the node budgets
DΦ : V≤L+1 → R are feasible in the following LP:

max
∑

a1:i∈V≤L

DΦ(a1:i)p(a1:i) (7)

s.t. 1 = DΦ(a1:0) ≥ DΦ(a1:1) ≥ . . . ≥ DΦ(a1:L) ≥ DΦ(a1:L+1) = 0 ∀a1:L+1 ∈ VL+1, (8)

DΦ(a1:i)p(a1:i) ≤ q(a1:i) ∀a1:i ∈ V≤L. (9)

Furthermore, the objective value is precisely the block efficiency E[τ + 1] for Φ.

Because the feasibility conditions in the single-path LP only involve pointwise and pathwise inequali-
ties, it is not hard to compute the optimal objective value and node budgets for a valid single-path
verification algorithm, by using greedy allocation along paths. These node budgets match those
derived from block verification, and thus block verification is the optimal valid single-path algorithm.

Theorem 3.4. Block verification, which is a valid single-path verification algorithm ΦBV , achieves
the highest block efficiency of any valid single-path verification algorithm.

See Appendix C for a proof of Theorem 3.4. These results show that prefix-matching is the key
barrier to improving acceptance: even with access to the full joint target and draft distributions, prefix-
matching (pointwise upper bounds on DΦp terms) prevent us from getting better block efficiency (the
sum of DΦp terms) than block verification. This motivates our exploration of verification algorithms
which draft multiple candidate paths in the next section. In this setting, the valid prefix output space
grows, thereby loosening the prefix-matching requirement and improving block efficiency.

4 MULTI-PATH INFORMATION AGNOSTIC LP

In this section, we show that off-path distribution information can improve block efficiency when
K > 1 draft paths are generated, even with prefix-matching and target-matching requirements. We
first define the class of multi-path verification algorithms, and extend Theorem 3.3 to these algorithms.

Definition 4.1 (K-path draft verification algorithm). A K-path verification algorithm Φ takes in K
i.i.d. sampled draft blocks X(1)

1:L, . . . , X
(K)
1:L ∼ qL(·|c), and the full L-step distributions pL and qL,

and returns a nonempty sequence in V≤L+1. It is valid under:

• Prefix-matching: the algorithm returns a (possibly empty) prefix X1:τ of some draft block
followed by an additional correction token Y , for some τ ∈ {0, . . . , L}.

• Target-matching: this is the same as in Definition 3.1.

If Φ can only take in the on-path target and draft distributions p(·|X(k)
1:i), q(·|X

(k)
1:i) for k ∈ [K] and

i ∈ {0, . . . , L}, k ∈ [K], then it is called information-restricted.

To the best of our knowledge, all existing valid multi-path verification algorithms (see Section 2.2)
are information-restricted. We are the first to consider theoretical efficiency limits in the absence of
information-restriction, and explicitly encode prefix-matching and target-matching into an LP.

To extend the single-path LP from Theorem 3.3 to this setting, we first define node budgets DΦ

in the same way as Definition 3.2. We also require the notion of an antichain, which is a set of
variable-length paths in V≤L where no path is a prefix of another. Antichains are useful because the
mass of an autoregressive distribution over an antichain can be computed by summing its probabilities
at all antichain elements, due to the disjointness of autoregressively sampling antichain elements.

Definition 4.2. An antichain of V≤L is a subset of V≤L where no sequence in the antichain is a
prefix of another. We denote the set of all antichains in V≤L by A(V≤L).

Now, to form the multi-path information-agnostic LP in Theorem 4.3, we replace the pointwise
upper bounds on DΦp by subset-sum upper bounds over antichains. As mentioned at the end of
Section 3, this corresponds to altering the prefix output space. The proof uses Hall-type feasibility
constraints, and is fairly involved. Due to space constraints, we defer the proof to Appendix A.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 4.3. A K-path verification algorithm Φ is valid if and only if the node budgets DΦ :
V≤L+1 → R are feasible in the following LP:

max
∑

a1:i∈V≤L

DΦ(a1:i)p(a1:i) (10)

s.t. 1 = DΦ(a1:0) ≥ DΦ(a1:1) ≥ . . . ≥ DΦ(a1:L) ≥ DΦ(a1:L+1) = 0 ∀a1:L+1 ∈ VL+1, (11)∑
a1:i∈T

DΦ(a1:i)p(a1:i) ≤ 1−

(
1−

∑
a1:i∈T

q(a1:i)

)K

∀T ∈ A(V≤L). (12)

Furthermore, the objective value is precisely the block efficiency E[τ + 1] for Φ.

This reduces to the single-path LP in the case K = 1. However, for K > 1, there is a important
distinction: the upper bound on sums of DΦp now represent a submodular function of T , unlike
the additive (modular) pointwise upper bounds on DΦp in Theorem 3.3. We now explain how this
submodularity naturally arises from a path selection rule in valid K-path verification algorithms. In
Lemma 4.4 (proof in Appendix D), we first prove a canonical decomposition of such algorithms into
randomized selection of one of the drafted K paths, followed by valid single-path verification.

Lemma 4.4. A valid K-path verification algorithm has the following equivalent definition. First,
given K paths sampled i.i.d. from q, randomly select one through a path selection rule Γ, which can
depend on off-path probability values. Say this path follows the distribution qΓ over VL. Then, run a
valid single-path verification algorithm on this path with target values p and draft values qΓ.

We call qΓ the skewed draft distribution induced by Γ. Because this is a distribution over VL, just
as for pL, qL, we can naturally extend it to an induced distribution over each Vi for 0 ≤ i ≤ L:

qΓ(a1:i) =
∑

ai+1:L∈VL−i

qΓ(a1:L) ∀a1:i ∈ V≤L. (13)

This further induces an autoregressive distribution in the same way as p, q:

qΓ(ak+1:i|a1:k) =
qΓ(a1:i)

qΓ(a1:k)
∀a1:i ∈ V≤L. (14)

Not all distributions can be realized as the skewed draft distribution of a path selection rule, given a
fixed draft q and path count K. In fact, as in Lemma 4.5, the realizable distributions are those which
satisfy a submodular inequality like that in Theorem 4.3. For a proof, see Appendix E.

Lemma 4.5. Fix K, a draft distribution q, and a distribution r. Then r = qΓ for some randomized
path selection rule Γ over K drafts sampled i.i.d. from q if and only if

∑
a1:i∈T

r(a1:L) ≤ 1−

(
1−

∑
a1:i∈T

q(a1:i)

)K

∀T ∈ A(V≤L). (15)

This shows that Lemma 4.4 corresponds to linearizing the submodular constraints in Theorem 4.3.
Indeed, consider replacing the submodular upper bounds in the multi-path LP with the additive
(modular) upper bounds

∑
a1:i∈T q

Γ(a1:i). By the upper bound in Lemma 4.5, any solution to this
linearized LP will satisfy the original multi-path LP. In fact, this linearized LP is precisely the
single-path LP1where the draft distribution is the skewed draft qΓ rather than the original q. This
corresponds to running valid single-path verification with target p and draft qΓ, as in Lemma 4.4.

For a given qΓ, using the result of Theorem 3.4, the optimal valid single-path verification algorithm
to run here is precisely block verification. This leads to an explicit description of the optimal valid
multi-path verification algorithm in Theorem 4.6. We prove this in Appendix F.

Theorem 4.6. The optimal valid multi-path verification algorithm randomly chooses one of the K
i.i.d. blocks with Γ and then runs single-path block verification on that path with target values p

1See Appendix B for an explanation of how the sums reduce to pointwise inequalities like in Theorem 3.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

and draft values qΓ, for some path selection rule Γ. Furthermore, the optimal choice of Γ can be
determined by solving the following optimization problem:

max
∑

a1:i∈V≤L

min
0≤k≤i

p(ak+1:i|a1:k)qΓ(a1:k) (16)

s.t.
∑

a1:L∈T

qΓ(a1:L) ≤ 1−

(
1−

∑
a1:L∈T

q(a1:L)

)K

∀T ⊆ VL. (17)

This optimization problem is intractable to solve exactly, since it requires knowledge of the full
joint and target distributions. Furthermore, even if the optimal qΓ can be computed, there is no
guarantee that we can compute an efficient path selection rule Γ which induces this skewed draft
distribution. Therefore, we turn to approximation-based schemes. As Lemma 4.7 shows, we can
obtain a near-optimal solution by making all ratios qΓ/p close to one. For a proof, see Appendix G.
Lemma 4.7. For a fixed qΓ, the objective value in Theorem 4.6 is lower bounded by

(L+ 1) · min
a1:i∈V≤L

qΓ(a1:i)

p(a1:i)
(18)

This shows that when qΓ = p is feasible in Theorem 4.6, we can get an optimal block efficiency of
L+1, i.e. we always accept a full length-L path and an additional token. However, even determining
a rule Γ that achieves qΓ near p is difficult. Thus, in the next section, we restrict ourselves to a
more tractable class of greedy algorithms, where one can both explicitly compute the randomized
rule Γ and the resulting distribution values qΓ. This explicit characterization is necessary to apply
Lemma 4.4, because block verification requires exact draft probability values qΓ along the selected
path, and it is impossible to exactly sample from qΓ without an explicit randomized rule Γ.

5 GREEDY MULTI-PATH BLOCK VERIFICATION

We now design an explicit path selection rule Γ where the skewed draft distribution qΓ is heuris-
tically close to p and simple to compute, using only on-path probability values. This leads to our
main algorithm: greedy multi-path block verification (GBV). We first define greedy verification
algorithms.
Definition 5.1. A greedy multi-path valid verification algorithm forms a global ranking on paths
in VL, and always selects the highest-ranked drafted path in the path selection rule Γ (Lemma 4.4).

In the context of the multi-path LP, each greedy multi-path valid verification algorithms can be viewed
as the output of a greedy polymatroid algorithm (Schrijver et al., 2003) on the submodular feasibility
constraints in Theorem 4.3, with the algorithm-selected order being the same as the global ranking.
Due to space constraints, we expand on this connection in detail in Appendix H.

If the global ordering of paths is VL = {P1, . . . , PM}, then one selects Pi from Γ if and only if all
K drafted paths lie in {P1, . . . , Pi}, but do not all lie {P1, . . . , Pi−1}. Thus, we can explicitly write:

qΓ(Pi) =

 i∑
j=1

q(Pj)

K

−

i−1∑
j=1

q(Pj)

K

. (19)

Again, computing this for arbitrary global orderings may require off-path probability values. However,
when the paths are ordered through a tree-based rule, only on-path values are needed. Tree-based
rules create a global ranking by generating local orderings at all prefixes in V≤L, and then combine
them to induce a lexicographic ordering over all length-L paths.
Definition 5.2. A global ranking of paths in VL is tree-based if the ranking can be obtained as
follows. Define an injective function πa1:i

: V → R at each a1:i ∈ V≤L, only using the values
p(·|a1:i), q(·|a1:i). Then, assign to each path a1:L ∈ VL the L-tuple O(a1:L) = (πa1:i−1(ai))

L
i=1.

Finally, rank the paths a1:L ∈ VL in increasing lexicographic order of O(a1:L).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 1: Greedy Multi-Path Block Verification

Input: Draft blocks X(1)
1:L, . . . , X

(K)
1:L , target and draft probabilities p

(
·|X(k)

1:i

)
, q
(
·|X(k)

1:i

)
1 for k = 1, . . . ,K do

2 Define kth path ranking Ok by
[
p
(
X

(k)
i |X(k)

1:i−1)/q(X
(k)
i |X(k)

1:i−1

)]L
i=1

3 Select k0 with maximal ranking Ok0
by lexicographic ordering

4 for i = 1, . . . , L do
5 Compute qΓg

(
·|X(k0)

1:i

)
from p

(
·|X(k0)

1:i

)
, q
(
·|X(k0)

1:i

)
using Equation (23)

6 Run block verification on X(k0)
1:L with target and draft probabilities p

(
·|X(k0)

1:i

)
, qΓg

(
·|X(k0)

1:i

)

Now, the question remains of how to choose the local orderings πa1:i
. Our key observation is that

from Equation (19), and the convexity of X 7→ XK , we get
qΓ(P1)

q(P1)
≤ qΓ(P2)

q(P2)
≤ . . . ≤ qΓ(PM)

q(PM)
. (20)

That is, qΓ/q increases along the global ranking. Hence, to make qΓ/p heuristically close to one,
we would also like p/q to increase along the global ranking. Again, enforcing this strict global
requirement is difficult, as it requires knowledge of the full joint pL and qL. Therefore, we further
relax this to a tree-based ranking, by making each local ordering follow p/q in increasing order:

πa1:i
(x) =

p(x|a1:i)
q(x|a1:i)

. (21)

We denote the path selection rule induced by these πa1:i as Γg . Now, we can efficiently compute each
qΓg (a1:i) using Equation (19). By definition of the lexicographic ordering, the second sum consists
of all paths b1:L where for some 0 ≤ j ≤ i− 1, we have b1:j = a1:j and πa1:j

(bj+1) < πa1:j
(aj+1).

The first sum contains all these paths, as well as all paths b1:L with b1:i = a1:i. This leads to the
following closed form expression for qΓg :

qΓg (a1:i) =

q(a1:i) + i−1∑
j=0

q(a1:j)
∑

πa1:j
(t)<πa1:j

(aj+1)

q(t)

K

(22)

−

i−1∑
j=0

q(a1:j)
∑

πa1:j
(t)<πa1:j

(aj+1)

q(t)

K

. (23)

In fact, given a fixed a1:i−1, we can efficiently compute all qΓg (a1:i) for ai ∈ V . Using the above
expression, these |V| quantities have the exact same terms except at q(a1:i) and the j = i− 1 term
in the summation. We can compute the former over all ai ∈ V in O(|V|) time by multiplying the
conditional distribution q(·|a1:i−1) by q(a1:i−1). The latter is a sum of q(t) over all t ∈ V with
πa1:i−1

(t) < πa1:i−1
(ai), so we can use a cumulative sum over the ordering on V induced by πa1:i−1

.
From these |V| values, we can compute conditional probabilities qΓg (·|a1:i) using Equation (14).

Finally, now that we have an explicit path selection rule Γg and corresponding skewed draft qΓg

values, both of which are efficient to compute and only depend on on-path probabilities, we can
follow Lemma 4.4 and use block verification with qΓg for the valid single-path verification algorithm.
This results in greedy multi-path block verification (GBV), which we explicitly enumerate in
Algorithm 1. In the case K = 1, this is equivalent to single-path block verification with draft
distribution q and target distribution p, because Γg only has one path to select, and thus qΓg = q.

6 EXPERIMENTS

We now test GBV for K = 1, 2, 3, 4 paths2. As mentioned in Section 5, the case K = 1 is equivalent
to single-path block verification from Sun et al. (2024b), so it is our baseline approach. For all

2We release our code here with implementations of other multi-path methods.

8

https://anonymous.4open.science/r/Greedy_Block_Verification-B800

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

experiments, we select a block length of L = 8. We evaluate single-batch sampling from two
target-draft model pairs: OPT 6.7B/350M and OPT 6.7B/125M (Zhang et al., 2022). All temperatures
are set to 1.0. For each pair, we evaluate our algorithm on three datasets: GSM8K, HumanEval, and
MATH500 (Chen et al., 2021; Hendrycks et al., 2021; Cobbe et al., 2021). We take 500 random
problems from the test split of each dataset (HumanEval only has 164). We run our experiments on a
Paperspace machine with an A100-80GB and an Intel Xeon Gold 6342 CPU (12 cores, 2.80 GHz).
We measure block efficiency as the number of generated tokens per call to the target model (higher is
better), and walltime as average milliseconds per token generated (lower is better).

Model pair Dataset Block efficiency (tokens/Mp-call)

K = 1 K = 2 K = 3 K = 4

OPT 6.7B/350M
GSM8K 3.294 3.827 3.867 3.884
HumanEval 3.157 3.538 3.809 3.863
MATH500 3.227 3.721 3.856 3.896

OPT 6.7B/125M
GSM8K 2.937 3.407 3.526 3.562
HumanEval 2.653 3.023 3.233 3.503
MATH500 2.814 3.274 3.392 3.493

Table 1: We compute the block efficiency (tokens per target model call) for decoding with GBV, for
target-draft model pairs OPT 6.7B/350M and OPT 6.7B/125M on up to 500 prompts from each of the
datasets GSM8K, HumanEval, and MATH500. Larger numbers are better. In all settings, efficiency
improves as K increases from 1 (block verification baseline) to 4.

Our block efficiency results are shown in Table 1. Across all model pairs and datasets, increasing the
number of draft paths K monotonically improves block efficiency. From K = 1 to K = 4, block
efficiency gains range from 17.91% to 32.04%, with an average 23.08% gain across all six model pair
and dataset combinations. However, we also observe diminishing returns for higher K: on average,
there is a 14.98% increase from K = 1 to K = 2, a 4.40% increase from K = 2 to K = 3, and a
2.54% increase from K = 3 to K = 4. Thus, while GBV significantly improves block efficiency, the
most impactful gains come in the K = 2 setting.

Model pair Dataset Walltime (ms/token)

K = 1 K = 2 K = 3 K = 4

OPT 6.7B/350M
GSM8K 44.482 39.592 38.862 48.473
HumanEval 46.955 43.373 41.017 50.656
MATH500 45.851 40.473 38.889 48.440

OPT 6.7B/125M
GSM8K 34.479 30.862 30.109 39.831
HumanEval 38.824 35.648 33.627 41.297
MATH500 36.022 32.166 31.163 40.329

Table 2: We compute the walltimes (ms/token) for decoding with GBV, for target-draft model pairs
OPT 6.7B/350M and OPT 6.7B/125M on up to 500 prompts from each of the datasets GSM8K,
HumanEval, and MATH500. Smaller numbers are better. In all settings, walltimes improve as K
increases from 1 (block verification baseline) to 3, but drop off at K = 4.

While block efficiency improvements are significant, they do not perfectly align with our walltime
results in Table 2. Here, gains are no longer monotonic from K = 1 to K = 4. There are significant
improvements from K = 1 to K = 3, with an average reduction in walltime by 13.34% across
all settings. For OPT 6.7B/350M and MATH500, this even reaches a 15.19% reduction. However,
K = 4 always performs worse than the baseline K = 1, with an average increase of 9.39% in
walltime. This is due to the increased computation cost of performing the batched target forward pass
over K = 4 paths (see Section 2.2), which negates block efficiency gains.

We also analyze decoding efficiency across datasets. The relative gains in block efficiency from
K = 1 to K = 4 are highest for HumanEval (27.20% average across model pairs), followed by
MATH500 (22.43%) and GSM8K (19.60%). For walltimes, the best setting K = 3 reduces walltime

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

relative to the baseline K = 1 by 12.65% for GSM8K, 14.34% for MATH500, and 13.02% for
HumanEval (averaged across model pairs). While HumanEval benefits most from extra paths in block
efficiency, these do not directly translate to walltime gains.

Furthermore, we examine the impact of target and draft model sizes. Averaged across datasets, the
larger draft (350M) achieves 13.72% higher block efficiency than the smaller draft (125M) for K = 3.
However, the smaller draft achieves a 20.14% lower average walltime than the larger draft in the
same setting. While a larger draft model can improve acceptance rates and block efficiency, this
comes at the expense of increased latency in draft sequence generation.

For practical usage, we recommend the setting L = 8,K = 3. This achieves nearly all of the block
efficiency gains of K = 4, without incurring a significant spike in latency due to batched target calls.
In all settings, K = 3 presents the fastest walltime. In multi-batch settings, K = 2 is also a viable
alternative, as it has around a 10% average walltime reduction compared to block verification. Our
results demonstrate that GBV significantly reduces end-to-end latency in autoregressive decoding.

6.1 OTHER MODEL FAMILIES AND DATASETS

While K = 4 has the highest block efficiency in our OPT experiments, this is not universally true.
In Appendix I, we widen our experimental coverage to include model families with much larger
target models (Qwen-3 32B/0.6B and Llama-3 70B/8B) and non-academic datasets (MGSM and
ToolBench). In all these settings, we find that block verification outperforms GBV with K > 1
in both block efficiency and walltime. We also provide a systems breakdown of relative draft and
target pass costs and the KV-cache footprint to explain cost breakdowns for larger models. These
results show how to best deploy GBV. For some families (OPT) K = 3 is optimal, whereas for others
(Qwen-3 and Llama-3) the best choice is to revert to block verification, i.e. GBV with K = 1.

6.2 TEMPERATURE AND DRAFT LENGTH ABLATIONS

In Appendix J, we expand our Qwen-3 32B/0.6B experiments for GSM8K in Appendix I from
temperature 1.0 target sampling to 0.2, 0.4, 0.6, and 0.8. We find that block verification performs
worse and GBV with K > 1 performs better at lower temperatures. At temperature 0.2, GBV with
K = 3 is over 0.6 tokens/s faster than block verification. Thus, even for model families where block
verification is better at temperature one, GBV with K > 1 can be better at low temperatures.

In Appendix K, we perform ablations on the draft length L. We find that increasing our L = 8 setting
to L = 16, 24 yields modest gains in block efficiency, but throughput degrades rapidly. Following a
systems breakdown similar to Appendix I, we explain this occurs because longer block lengths push
more relative work into the drafting bottleneck. We find the ideal choice of L is somewhere around 8.

6.3 COMPARISON TO MULTI-PATH METHODS

Finally, we compare GBV to multi-path verification algorithms SpecTr (Sun et al., 2023), SpecInfer
(Miao et al., 2024), and traversal verification (Weng et al., 2025). The rationale for using these
methods along with detailed results and discussion are in Appendix L. Traversal verification beats
GBV at temperature 1.0 by up to 1.0 tokens/s, GBV beats traversal verification at temperature 0.2 by
up to 1.6 tokens/s, and other methods lag behind. In its best setting of K = 2, temperature 0.2, GBV
achieves nearly 11.5 tokens/s, whereas no other method achieves over 10 tokens/s in any setting.

7 CONCLUSION

We developed a single-path information-agnostic linear program (LP) which encodes feasible
speedups for valid verification algorithms in speculative sampling, and showed that block veri-
fication remains optimal even with access to off-path probabilities. We further extended our LP
to the setting where multiple draft paths are generated. While this multi-path LP is not feasible to
solve exactly, by approximating it with a class of greedy verification algorithms, we developed a
generalization of block verification, called greedy multi-path block verification. This significantly
improves decoding efficiency relative to block verification. Future work could further explore the
class of greedy verification schemes, or explore alternative approximation to the multi-path LP.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The majority of our work is theoretical, with proofs in Appendices A to G. While we do not release
code, we provide enough detail in Section 5 to reproduce our greedy multi-path block verification
algorithm. We also provide details around our machine setup, datasets, and model pairs in Section 6.

REFERENCES

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S. Gula-
vani, Alexey Tumanov, and Ramachandran Ramjee. Taming throughput-latency tradeoff in llm
inference with sarathi-serve. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’24), 2024. URL https://www.usenix.org/system/files/
osdi24-agrawal.pdf.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models
are few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp.
1877–1901, 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chang, and Jie Huang. Cascade
speculative drafting for even faster llm inference. Advances in Neural Information Processing
Systems, 37:86226–86242, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Ostendorf, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast
and memory-efficient exact attention with io-awareness. In Advances in Neural Information
Processing Systems (NeurIPS 2022), 2022. URL https://openreview.net/pdf?id=
H4DqfPSibmx.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layerskip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference
using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

David Gale. A theorem on flows in networks. In Classic Papers in Combinatorics, pp. 259–268.
Springer, 1957.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. arXiv preprint arXiv:2404.19737,
2024.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

11

https://www.usenix.org/system/files/osdi24-agrawal.pdf
https://www.usenix.org/system/files/osdi24-agrawal.pdf
https://openreview.net/pdf?id=H4DqfPSibmx
https://openreview.net/pdf?id=H4DqfPSibmx

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

Zhengmian Hu and Heng Huang. Accelerated speculative sampling based on tree monte carlo. In
Forty-first International Conference on Machine Learning, 2024.

Zhengmian Hu, Tong Zheng, Vignesh Viswanathan, Ziyi Chen, Ryan A Rossi, Yihan Wu, Dinesh
Manocha, and Heng Huang. Towards optimal multi-draft speculative decoding. arXiv preprint
arXiv:2502.18779, 2025.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, Stephan Krusche, Gitta
Kutyniok, Tilman Michaeli, Claudia Nerdel, Juergen Pfeffer, Oleksandra Poquet, Michael Sailer,
Albrecht Schmidt, Tina Seidel, and Gjergji Kasneci. Chatgpt for good? on opportunities and
challenges of large language models for education. Learning and Individual Differences, 103:
102274, 01 2023. doi: 10.1016/j.lindif.2023.102274.

Ashish J Khisti, MohammadReza Ebrahimi, Hassan Dbouk, Arash Behboodi, Roland Memisevic,
and Christos Louizos. Multi-draft speculative sampling: Canonical decomposition and theoretical
limits. In The Thirteenth International Conference on Learning Representations, 2025.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Cheung, Zhijie Deng, Ion Stoica, and Hao Zhang.
Online speculative decoding. arXiv preprint arXiv:2310.07177, 2023.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pp. 932–949, 2024.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language un-
derstanding by generative pre-training. https://cdn.openai.com/research-covers/
language-unsupervised/language_understanding_paper.pdf, 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. https://cdn.openai.
com/better-language-models/language_models_are_unsupervised_
multitask_learners.pdf, 2019.

Mohammad Samragh, Arnav Kundu, David Harrison, Kumari Nishu, Devang Naik, Minsik Cho, and
Mehrdad Farajtabar. Your llm knows the future: Uncovering its multi-token prediction potential.
arXiv preprint arXiv:2507.11851, 2025.

Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer,
2003.

Benjamin Spector and Chris Re. Accelerating llm inference with staged speculative decoding. arXiv
preprint arXiv:2308.04623, 2023.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024a.

12

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36:30222–30242, 2023.

Ziteng Sun, Uri Mendlovic, Yaniv Leviathan, Asaf Aharoni, Jae Hun Ro, Ahmad Beirami, and
Ananda Theertha Suresh. Block verification accelerates speculative decoding. arXiv preprint
arXiv:2403.10444, 2024b.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature Medicine, 29:
1930–1940, 2023. doi: 10.1038/s41591-023-02459-w. URL https://www.nature.com/
articles/s41591-023-02459-w. Review Article, Published: 17 July 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Naman Goyal, Eric Hambro, Haoran Azhar, Alice Rodriguez, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2310.11387, 2023a.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Haoran Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023b.

Yepeng Weng, Qiao Hu, Xujie Chen, Li Liu, Dianwen Mei, Huishi Qiu, Jiang Tian, and Zhongchao
Shi. Traversal verification for speculative tree decoding. arXiv preprint arXiv:2505.12398, 2025.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
verify: Lossless large language model acceleration via self-speculative decoding. arXiv preprint
arXiv:2309.08168, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative
decoding via knowledge distillation. arXiv preprint arXiv:2310.08461, 2023.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Shujian Huang, Lingpeng Kong, Jiajun Chen,
and Lei Li. Multilingual machine translation with large language models: Empirical results and
analysis, 2024. URL https://arxiv.org/abs/2304.04675.

13

https://www.nature.com/articles/s41591-023-02459-w
https://www.nature.com/articles/s41591-023-02459-w
https://arxiv.org/abs/2304.04675

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOF OF MULTI-PATH INFORMATION-AGNOSTIC LP

In this section, we prove the multi-path information-agnostic LP in Theorem 4.3. Our proof begins
with a key lemma that dictates when one can sample from one distribution given data from another,
with the conditional distribution (often called the transport) to induce the former restricted to a
given support. In our context, the restricted support represents the prefix-matching requirement, the
distribution from which we are given data is induced by i.i.d. sampling paths from the draft model,
and the distribution from which we would like to sample is that of the verification algorithm output.

Lemma A.1 (Bipartite Transport Feasibility). Let G = (A ∪B,E ⊆ A×B) be a bipartite graph,
with probability distributions a(·) and b(·) over A and B, respectively. Then the following conditions
are equivalent, where N(·) denotes neighborhoods:

1. There exists a joint distribution π(·, ·) over A×B with marginal distributions a(·) and b(·),
such that π(x, y) = 0 for all (x, y) ̸∈ E.

2. For any S ⊆ A, we have
∑

x∈S a(x) ≤
∑

y∈N(S) b(y).

Proof. Condition 1 is equivalent to the feasibility of the following LP in variables πx,y ≥ 0:∑
x∈A

πx,y = b(y) ∀y ∈ B,
∑
y∈B

πx,y = a(x) ∀x ∈ A, πx,y = 0 ∀(x, y) ̸∈ E. (24)

We can incorporate the zero equality condition into the sum equalities to turn this into:∑
x∈N(y)

πx,y = b(y) ∀y ∈ B,
∑

y∈N(x)

πx,y = a(x) ∀x ∈ A. (25)

Now, Gale’s feasibility theorem for bipartite supply-demand networks (Gale, 1957) implies this LP is
feasible in nonnegative variables if and only if∑

x∈S

a(x) ≤
∑

y∈N(S)

b(x) ∀S ⊆ A,
∑
x∈A

a(x) =
∑
y∈B

b(x). (26)

The equality condition is automatically satisfied, since a(·), b(·) are probability distributions, so both
sides become one. Thus, Condition 1 is equivalent to Condition 2.

Using this, we can prove the following lemma, which dictates what distributions are feasible for a
K-path verification algorithm Φ which satisfies prefix-matching. We do not enforce target-matching
yet, so this algorithm is not necessarily valid. For any K-path verification algorithm Φ, denote RΦ(·)
as the distribution of the output of Φ, which is supported over V≤L+1 \ V0, i.e. all nonempty paths
of length ≤ L+ 1. We need the nonempty requirement as we must output at least one token. As we
prove in Lemma A.2, a collection of subset-sum inequalities over a particular bipartite graph exactly
describes the set of RΦ which can be realized by some Φ satisfying prefix-matching.

Lemma A.2 (Prefix-Matching). Construct the bipartite graph G with left vertices V ≤L+1 \ V0, right
vertices (VL)K , and edges E consisting of all pairs(

a1:i,
(
a
(1)
1:L, . . . , a

(K)
1:L

))
∈
(
V≤L+1 \ V0

)
×
(
VL
)K

, a1:i−1 ∈
{
a
(1)
1:i−1, . . . , a

(K)
1:i−1

}
. (27)

The values RΦ(a1:i) for a1:i ∈ V≤L+1 \ V0 are feasible for a K-path verification algorithm Φ that
satisfies prefix-matching if and only if they are nonnegative, sum to one, and

∑
a1:i∈S

RΦ(a1:i) ≤
∑

(
a
(1)
1:L,...,a

(K)
1:L

)
∈N(S)

K∏
k=1

q
(
a
(k)
1:L

)
∀S ⊆ V ≤L+1 \ V0, (28)

where N(·) denotes a neighborhood in G.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. The sum to one equality and nonnegative requirements are equivalent to requiring that RΦ is
a valid probability distribution. Now, given that RΦ is a valid probability distribution, we observe
that the prefix-matching requirement is equivalent to the following: given K i.i.d. sampled paths

X
(1)
1:L, . . . , X

(K)
1:L ∼ q(·), (29)

there is a conditional distribution (randomized rule) π(·|X(1)
1:L, . . . , X

(K)
1:L) over V≤L+1 \ V0 which

is supported only over prefixes of these paths plus an additional token, such that sampling from π
results in the distribution RΦ . Given the construction of the graph G, we can alternatively express
the restricted support requirement on π(·|·) as π(vl|vr) = 0 for all left vertices vl and right vertices
vr with (vl, vr) ̸∈ E. Thus, by turning this conditional distribution into a joint distribution, as RΦ

is a distribution over left vertices and i.i.d. sampling from q(·) is a distribution over right vertices,
Lemma A.1 directly applies to show that prefix-matching is equivalent to∑

a1:i∈S

RΦ(a1:i) ≤
∑

(
a
(1)
1:L,...,a

(K)
1:L

)
∈N(S)

K∏
k=1

q
(
a
(k)
1:L

)
∀S ⊆ V ≤L+1 \ V0. (30)

The product term is the probability of sampling K paths i.i.d from q. This completes the proof.

Now, we move onto the target-matching requirement. Again, we can establish a necessary and
sufficient condition for a K-path verification algorithm Φ to satisfy target-matching terms of the RΦ

values. Now, the condition is path-wise summation requirement.
Lemma A.3 (Target-Matching). The values RΦ(a1:i) for a1:i ∈ V≤L+1 \ V0 are feasible for a
K-path verification algorithm Φ that satisfies prefix-matching if and only if they are nonnegative,
sum to one, and

L∑
i=0

RΦ(a1:i+1)

p(a1:i+1)
= 1 ∀a1:L+1 ∈ VL+1. (31)

Proof. Target-matching asserts that sampling from pL+1(·) is equivalent to sampling the output
(X1:τ , Y) ∼ RΦ of the verification algorithm and then sampling an additional L − τ tokens from
Z1:L−τ ∼ pL−τ (·|X1:τ , Y). For a given path a1:L+1 ∈ VL+1, the probability of sampling this path
from the former method is pL+1(a1:L+1). The probability of sampling it from the latter method is

P(X1:τ = a1:τ , Y = aτ+1, Z1:L−τ = aτ+2:L+1) (32)

=

L∑
i=0

P(τ = i,X1:τ = a1:τ , Y = aτ+1, Z1:L−τ = aτ+2:L+1) (33)

=

L∑
i=0

P(τ = i,X1:τ = a1:i, Y = ai+1, Z1:L−τ = ai+2:L+1) (34)

=

L∑
i=0

P((X1:τ , Y) = a1:i+1)p(ai+2:L+1|a1:i+1) (35)

=

L∑
i=0

RΦ(a1:i+1) ·
p(a1:L+1)

p(a1:i+1)
. (36)

Setting these two equal for all paths a1:L+1 and dividing out the p(a1:L+1) = pL+1(a1:L+1) term
gives the desired condition.

By combining the prefix-matching and target-matching lemmas, we can now write down the multi-
path LP, in a form which is slightly more complicated than in Theorem 4.3, and is in terms of variables
RΦ rather than the node budgets DΦ. We will use the notion of a parent set and minimal set.
Definition A.4. For each S ⊆ V ≤L+1 \ V0, the parent set par(S) ⊆ V≤L of S consists of all
a1:i ∈ V≤L where a1:i+1 ∈ S for some ai+1 ∈ V . For each S ⊆ V ≤L, the minimal set min(S) ⊆ S
of S consists of all a1:i ∈ S where no proper prefix of a1:i appears in S, i.e. a1:0, . . . , a1:i−1 ̸∈ S.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Note that an antichain (Definition 4.2) is precisely a subset S ⊆ V≤L where min(S) = S, and any
minimal set min(S) is also an antichain because min(min(S)) = min(S). We will use parent and
minimal sets to remove redundant inequalities in the Lemma A.2.
Lemma A.5 (Unsimplified Multi-Path LP). The values RΦ(a1:i) for a1:i ∈ V≤L+1 \ V0 are feasible
for a valid K-path verification algorithm Φ if and only if they are nonnegative, sum to one, and are
feasible in

max

L+1∑
i=1

∑
a1:i∈Vi

iRΦ(a1:i), (37)

s.t.
L∑

i=0

RΦ(a1:i+1)

p(a1:i+1)
= 1 ∀a1:L+1 ∈ VL+1, (38)

∑
a1:i∈T

L+1∑
j=i+1

∑
ai+1:j∈Vj−i

RΦ(a1:j) ≤ 1−

(
1−

∑
a1:i∈T

q(a1:i)

)K

∀T ∈ A(V≤L). (39)

Furthermore, the objective value is precisely the block efficiency E[τ + 1] for Φ.

Proof. First, fix a subset S ⊆ V≤L+1 \ V0. The neighborhood N(S) ⊆ (VL)K induced by the
graph G in Lemma A.2 is the set of K-tuples of length-L paths where at least one path has a prefix
in par(S). So, the complement of N(S) consists of all K-tuples of length-L paths where no path
has a prefix in par(S). Now, note that a path has a prefix in par(S) if and only if it has a prefix in
min(par(S)). Because min(par(S)) is an antichain (i.e. no two distinct elements in it are a prefix of
the same path), disjointness shows that the probability that a length L-path sampled from q(·) has a
prefix in min(par(S)) is

∑
a1:i∈min(par(S)) q(a1:i). Using these observations, we simplify:

∑
(
a
(1)
1:L,...,a

(K)
1:L

)
∈N(S)

K∏
k=1

q
(
a
(k)
1:L

)
= 1−

∑
(
a
(1)
1:L,...,a

(K)
1:L

)
̸∈N(S)

K∏
k=1

q
(
a
(k)
1:L

)
(40)

= 1−

1−
∑

a1:i∈min(par(S))

q(a1:i)

K

. (41)

Thus, the prefix-matching inequalities from Lemma A.2 become:

∑
a1:i∈S

RΦ(a1:i) ≤ 1−

1−
∑

a1:i∈min(par(S))

q(a1:i)

K

∀S ⊆ V ≤L+1 \ V0. (42)

We now make the key observation that many of these inequalities are redundant. For any a1:i with
a proper (i.e. not full) prefix in min(par(S)), we can add a1:i to S without changing min(par(S)),
keeping the right hand side constant. This also increases the left hand side (since RΦ is nonnegative).
Thus, the strictest of these inequalities are precisely those where S includes all paths with a proper
prefix in min(par(S)). For a fixed T = min(par(S)), this makes S the set of all a1:j where a1:i ∈ T
for some i < j. Since all antichains are achievable as some min(par(S)), this turns the above
collection of inequalities into

∑
a1:i∈T

L+1∑
j=i+1

∑
ai+1:j∈V≤j−i

RΦ(a1:j) ≤ 1−

(
1−

∑
a1:i∈T

q(a1:i)

)K

∀T ∈ A(V≤L). (43)

This covers the prefix-matching. The target-matching requirement remains the same as in Lemma A.3.
Thus, all that remains is to show the objective values is the block efficiency. This holds as RΦ(a1:i)
is the probability that Φ outputs a1:i, and the total number of tokens generated with this output is i,
so summing over all possible outputs a1:i ∈ V≤L+1 \ V0 gives the desired result.

Finally, we can prove the multi-path LP in Theorem 4.3. The only remaining step to derive this is to
turn the variables RΦ into variables DΦ representing node budgets.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. By the definition of DΦ in Definition 3.2, we see that

DΦ(a1:i) = 1−
i∑

j=1

RΦ(a1:i)

p(a1:i)
∀a1:i ∈ V≤L+1. (44)

The target-matching condition simply implies that each DΦ(a1:L+1) = 0. Now, observe that

RΦ(a1:i) = DΦ(a1:i−1)p(a1:i)−DΦ(a1:i)p(a1:i) ∀a1:i ∈ V≤L. (45)

for all. Thus, incorporating the nonnegativity constraint on RΦ, we get

1 = DΦ(a1:0) ≥ DΦ(a1:1) ≥ . . . ≥ DΦ(a1:L) ≥ DΦ(a1:L+1) = 0 ∀a1:L+1 ∈ VL+1. (46)

Next, observe that for any a1:i ∈ V≤L, we have the following telescoping identity:
L+1∑

j=i+1

∑
ai+1:j∈Vj−i

RΦ(a1:j) (47)

=

L+1∑
j=i+1

∑
ai+1:j∈Vj−i

DΦ(a1:j−1)p(a1:j)−
L+1∑

j=i+1

∑
ai+1:j∈Vj−i

DΦ(a1:j)p(a1:j) (48)

=

L∑
j=i

∑
ai+1:j+1∈Vj+1−i

DΦ(a1:j)p(a1:j+1)−
L+1∑

j=i+1

∑
ai+1:j∈Vj−i

DΦ(a1:j)p(a1:j) (49)

= DΦ(a1:i)p(a1:i) +

L∑
j=i+1

∑
ai+1:j+1∈Vj+1−i

DΦ(a1:j)p(a1:j+1) (50)

−
L∑

j=i+1

∑
ai+1:j∈Vj−i

DΦ(a1:j)p(a1:j)− 0 (51)

= DΦ(a1:i)p(a1:i) +

L∑
j=i+1

DΦ(a1:j)

 ∑
ai+1:j+1∈Vj+1−i

p(a1:j+1)−
∑

ai+1:j∈Vj−i

p(a1:j)

 (52)

= DΦ(a1:i)p(a1:i) +

L∑
j=i+1

DΦ(a1:j) (p(a1:i)− p(a1:i)) = DΦ(a1:i)p(a1:i). (53)

This means the condition that all RΦ sum to one is automatically satisfied by applying this identity
for i = 0. This also reduces the antichain condition in the unsimplified multi-path LP to∑

a1:i∈T

DΦ(a1:i)p(a1:i) ≤ 1−

(
1−

∑
a1:i∈T

q(a1:i)

)K

∀T ∈ A(V≤L). (54)

This covers all conditions, so all that remains is to show that the objective reduces to the desired
expression. This holds by interchanging the order of summation, and using the telescoping identity:
L+1∑
i=1

∑
a1:i∈Vi

iRΦ(a1:i) =

L+1∑
i=1

i−1∑
j=0

∑
a1:i∈Vi

RΦ(a1:i) (55)

=

L∑
j=0

L+1∑
i=j+1

∑
a1:i∈Vi

RΦ(a1:i) (56)

=

L∑
j=0

L+1∑
i=j+1

∑
a1:j∈Vj

∑
aj+1:i∈Vj−i

RΦ(a1:i) (57)

=

L∑
j=0

∑
a1:j∈Vj

L+1∑
i=j+1

∑
aj+1:i∈Vj−i

RΦ(a1:i) =
∑

a1:j∈V≤L

DΦ(a1:j)p(a1:j). (58)

This completes the reduction to the desired form for the multi-path LP.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B PROOF OF SINGLE-PATH INFORMATION-AGNOSTIC LP

Using the multi-path in Theorem 4.3, it is easy to prove the single-path LP in Theorem 3.3 by reducing
it to the case K = 1. This works because a valid single-path verification algorithm is precisely the
same as a valid K-path verification algorithm in the case K = 1.

Proof. It suffices to show that whenK = 1, the multi-path information-agnostic LP from Theorem 4.3
reduces to the single-path LP. Indeed, the antichain condition becomes∑

a1:i∈T

DΦ(a1:i)p(a1:i) ≤
∑

a1:i∈T

q(a1:i) ∀T ∈ A(V≤L). (59)

This forces the pointwise conditions DΦ(a1:i)p(a1:i) ≤ q(a1:i), since by taking the singleton
antichains T = {a1:i}. Furthermore, these pointwise conditions imply the antichain conditions
through summation. All other conditions and the objective function remain the same. Hence, we
obtain the desired single-path LP.

C PROOF OF BLOCK VERIFICATION OPTIMALITY

Using the single-path LP, we can prove that block verification is optimal in the class of valid single-
path verification algorithms (Theorem 3.4). We will use results from Sun et al. (2024b). The idea is to
show that DΦBV

for the single-path block verification algorithm ΦBV are tight in the single-path LP.

Proof. From Lemma 4 in Appendix B of Sun et al. (2024b), we have for each path a1:i ∈ V≤L that
P(τ ≥ i|X1:i = a1:i) = w(a1:i) (60)

under ΦBV , where weights w are defined in Equation (3). Now, because ΦBV is a valid verification
algorithm, we can use the telescoping identity from the proof of Theorem 4.3 at the end of Appendix A
(with RΦBV

defined similarly as the distribution of the output of ΦBV) to show

DΦBV
(a1:i)p(a1:i) =

L+1∑
j=i+1

∑
ai+1:j∈Vj−i

RΦBV
(a1:j) (61)

=

L+1∑
j=i+1

∑
ai+1:j∈Vj−i

P(τ = j − 1, X1:j−1 = a1:j−1, Y = aj) (62)

=

L+1∑
j=i+1

P(τ = j − 1, X1:i = a1:i) = P(τ ≥ i,X1:i = a1:i) (63)

= P(τ ≥ i|X1:i = a1:i)P(X1:i = a1:i) = w(a1:i)q(a1:i). (64)
Thus, to show block verification is optimal, it suffices to show that for any valid single-path verification
algorithm Φ and path a1:i ∈ V≤L, we have DΦ(a1:i)p(a1:i) ≤ w(a1:i)q(a1:i), as then the objective
value for Φ (the block efficiency, i.e. the sum of these DΦp terms) cannot exceed the objective value
for ΦBV (the sum of the DΦBV

p terms) in the single-path LP. The proof is by induction on i. For the
base case i = 0, this is clear as w(a1:0)q(a1:0) = 1 = DΦ(a1:0)p(a1:0). Now, suppose this statement
holds for i. To prove it for i+ 1, we use the single-path conditions to obtain
DΦ(a1:i+1)p(a1:i+1) ≤ DΦ(a1:i)p(a1:i+1) (65)

= DΦ(a1:i)p(a1:i)p(ai+1|a1:i) (66)
≤ w(a1:i)q(a1:i)p(ai+1|a1:i) (67)

= q(a1:i+1) ·
p(ai+1|a1:i)
q(ai+1|a1:i)

· w(a1:i) (68)

≤ q(a1:i+1) ·min

{
1,
p(ai+1|a1:i)
q(ai+1|a1:i)

· w(a1:i)
}

= q(a1:i+1)w(a1:i+1). (69)

The last inequality holds by using the pointwise DΦp ≤ q bound from the single-path LP. This
completes the induction, and thus the proof that block verification is optimal.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D PROOF OF PATH SELECTION DECOMPOSITION

In this section, we prove Lemma 4.4, which states that any valid K-path verification algorithm can
be decomposed into a randomized path selection rule which chooses one of the K paths, and then a
valid single-path verification algorithm that operates on an skewed draft distribution.

Proof. Let Φ denote the valid verification algorithm. This takes inK paths P1, . . . , PK i.i.d. sampled
from q(·), and samples a nonempty path in V≤L+1 using a conditional distribution π(·|P1, . . . , PK),
which can depend on off-path target and draft distribution values. This is constrained to only output
(X1:τ , Y) where X1:τ is a prefix of one of P1, . . . , PK and Y ∈ V . Thus, we can conditionally
factorize π into a prefix selection rule π1 on prefixes of P1, . . . , PK conditioned over P1, . . . , PK ,
and an additional token rule π2 on V conditioned over P1, . . . , PK , X1:τ :

π(X1:τ , Y |P1, . . . , PK) = π1(X1:τ |P1, . . . , PK)π2(Y |P1, . . . , PK , X1,τ). (70)

For each prefix a1:i of some path in P1, . . . , PK , denote its multiplicity m(a1:i) ≥ 1 as the number
of paths that contain it as a prefix. For example, m(∅) = K. Then, we define a path selection rule π3
on [K] conditioned over P1, . . . , PK , as:

π3(k0|P1, . . . , PK) =

L∑
i=0

π1((Pk0
)1:i|P1, . . . , PK)m((Pk0

)1:i)
−1. (71)

To see this is a valid probability distribution, observe that for each distinct a1:i appearing as a prefix
of one of P1, . . . , PK , when we sum the above formula over all k0 ∈ [K], we have exactly m(a1:i)
terms in the sum above with (Pk0

)1:i = a1:i, each of which are π1(a1:i|P1, . . . , PK)m(a1:i)
−1.

Thus, the terms containing a1:i cancel to π1(a1:i|P1, . . . , PK), and summing this over all distinct
a1:i gives a result of 1, because π1 is a valid distribution. Also, define a prefix selection rule π4 on
prefixes of Pk0 conditioned over P1, . . . , PK , k0 ∈ [K]:

π4((Pk0)1:i|P1, . . . , PK , k0) =
π1((Pk0)1:i|P1, . . . , PK)m((Pk0)1:i)

−1∑L
i=0 π1((Pk)1:i|P1, . . . , PK)m((Pk)1:i)−1

, (72)

which is also a valid probability distribution. We see that when sampling k0 ∼ π3(·|P1, . . . , Pk) and
then X1:τ ∼ π4(·|P1, . . . , PK , k0), we have

P(X1:τ = a1:i|P1, . . . , PK) (73)

=
∑

k0∈[K]

π3(k0|P1, . . . , Pk)π4(a1:i|P1, . . . , PK , k0) (74)

=
∑

k0∈[K],(Pk0
)1:i=a1:i

π3(k0|P1, . . . , Pk)π4(a1:i|P1, . . . , PK , k0) (75)

=
∑

k0∈[K],(Pk0
)1:i=a1:i

π1(a1:i|P1, . . . , PK)m(a1:i)
−1 (76)

= m(a1:i)π1(a1:i|P1, . . . , PK)m(a1:i)
−1 = π1(a1:i|P1, . . . , PK). (77)

Thus, sampling from π3 and then π4 is equivalent to sampling from π1, so sampling from π is
equivalent to sampling in the order π3, π4, π2. Now, let π5 be the distribution formed by sampling
from π4 and then π2. Then sampling from π is equivalent to sampling in the order π3, π5, where π3
is a path selection rule conditioned on P1, . . . , PK , and π5 returns (X1:τ , Y) conditioned only the
selected path and P1, . . . , PK . Now, denote qπ3 as the true distribution of the path select by π3. Then
the output of Φ follows the distribution induced by sampling a single path from qπ3 , and sampling
from π5 conditioned only on that single path (the conditioning over P1, . . . , PK will cancel). To meet
target-matching and prefix-matching, π5 must correspond to a valid single-path verification algorithm
with draft distribution qπ3 and target distribution p. This completes the proof of the decomposition
into a path selection rule π3 and a valid single-path verification algorithm with draft values being the
true distribution of the π3-selected path.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E PROOF OF SKEWED DRAFT DISTRIBUTION FEASIBILITY

Here, we prove Lemma 4.5, which describes when a distribution can be realized as a skewed draft
distribution qΓ from a given draft q and path countK. The proof is a direct application of Lemma A.1.

Proof. Define the bipartite graph G with left vertices (VL)K , right vertices VL, and edges E
consisting of pairs ((P1, . . . , PK), Pk) for all P1, . . . , PK ∈ VL and k ∈ [K]. Our distribution over
left vertices is i.i.d. sampling from q, and our distribution over right vertices is r. We would like to
find when there is a joint distribution on (VL)K × VL supported on E, whose marginals are the left
and right vertex distributions. Lemma A.1 shows such a distribution exists if and only if∑

P∈S

r(P) ≤
∑

(P1,...,PK)∈N(S)

K∏
k=1

q(Pk) ∀S ⊆ VL. (78)

Here, N(·) denotes neighborhoods in G. Thus, N(S) consists of all (P1, . . . , PK) where some
Pk ∈ S. This means the complement of N(S) is precisely (VL \ S)K , so the above becomes

∑
P∈S

r(P) ≤ 1−

 ∑
P∈VL\S

q(P)

K

∀S ⊆ VL. (79)

We are almost at our desired condition, except we need to show this holds for all antichains S ∈
A(VL). Indeed, for an antichain S, consider the set PS ⊆ VL of length-L paths with a prefix in the
antichain. No path in PS can have two distinct elements in S as a prefix. Thus, the mass of q over S
is the same as the mass of q over PS :∑

a1:i∈S

q(a1:i) =
∑

a1:i∈S

∑
ai+1:L∈VL−i

q(a1:L) =
∑

a1:L∈PS

q(a1:L) (80)

The same holds for r, because it is also a distribution over VL. Thus, the antichain conditions reduce
to the conditions for S ⊆ VL above, as desired.

F PROOF OF OPTIMAL MULTI-PATH ALGORITHM DESCRIPTION

Now, we prove Theorem 4.6, which describes the optimal multi-path valid verification algorithm as a
solution to a nonlinear optimization problem.

Proof. The first part of the theorem is a direct consequence of the fact that block verification is the
optimal single-path valid verification algorithm (Theorem 3.4), and any valid multi-path verification
algorithm can be decomposed into path selection and valid single-path verification (Lemma 4.4).
Now, we prove the second part of the theorem, using this description. Recall from the proof of
Lemma 4.5 in Appendix E that a distribution qΓ can be realized from a given draft q and path count
K with a path selection rule if and only if

qΓ(a1:L) ≤ 1−

(
1−

∑
a1:L∈T

q(a1:L)

)K

∀T ⊆ VL. (81)

This covers the feasibility condition, so all that remains is to show the objective function in the
theorem equals the block efficiency for block verification run on qΓ. By using the expression for
DΦBV

p in the proof of Theorem 3.4 in Appendix C, the objective value in the single-path LP
(Theorem 3.3) simplifies to∑

a1:i∈V≤L

DΦBV
(a1:i)p(a1:i) =

∑
a1:i∈V≤L

w(a1:i)q
Γ(a1:i), (82)

where the weights w are defined as in Equation (3), but with q replaced by qΓ. Thus, all that remains
is to show that

w(a1:i)q
Γ(a1:i) = min

0≤k≤i
p(ak+1:i|a1:k)qΓ(a1:k). (83)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The proof is by induction on i. For i = 0, this is clear as both sides are one. Now, suppose this
statement holds for i. To show it is true for i+ 1, observe that

w(a1:i+1)q
Γ(a1:i+1) = min

{
1,

p(ai+1|a1:i)
qΓ(ai+1|a1:i)

w(a1:i)

}
qΓ(a1:i+1) (84)

= min
{
qΓ(a1:i+1), p(ai+1|a1:i)qΓ(a1:i)w(a1:i)

}
(85)

= min

{
qΓ(a1:i+1), p(ai+1|a1:i) · min

0≤k≤i
p(ak+1:i|a1:k)qΓ(a1:k)

}
(86)

= min

{
qΓ(a1:i+1), min

0≤k≤i
p(ak+1:i+1|a1:k)qΓ(a1:k)

}
(87)

= min
0≤k≤i+1

p(ak+1:i+1|a1:k)qΓ(a1:k). (88)

This completes the proof.

G PROOF OF OPTIMAL MULTI-PATH LOWER BOUND

We now prove Lemma 4.7, which lower bounds the objective value in Theorem 4.6.

Proof. Denote the minimum value of qΓ/p as

ϵ = min
a1:i∈V≤L

qΓ(a1:i)

p(a1:i)
. (89)

Then for each a1:i ∈ V≤L and 0 ≤ k ≤ i, we have the lower bound

p(ak+1:i|a1:k)qΓ(a1:k) =
qΓ(a1:k)

p(a1:k)
· p(a1:i) ≥ ϵ · p(a1:i). (90)

Thus, we have the desired lower bound on the objective value:∑
a1:i∈V≤L

min
0≤k≤i

p(ak+1:i|a1:k)qΓ(a1:k) ≥
∑

a1:i∈V≤L

ϵ · p(a1:i) = (L+ 1)ϵ. (91)

H GREEDY POLYMATROID CONNECTION

Here, we describe the connection between greedy multi-path valid verification algorithms (Defini-
tion 5.1) and the greedy polymatrid algorithm. We start with Theorem 4.6, but only consider the
feasibility condition:

qΓ(a1:L) ≤ 1−

(
1−

∑
a1:L∈T

q(a1:L)

)K

∀T ⊆ VL. (92)

As previously mentioned, the right hand side is a submodular function ψ(T) in T . Note that the
inequality must also be an equality at T = VL to ensure that qΓ is a probability distribution. Thus, to
find some feasible qΓ satisfying these submodular constraints, we can use the greedy polymatroid
algorithm from Schrijver et al. (2003), which aims to maximize the sum of qΓ terms given the above
constraints. First, we fix any ordering {P1, . . . , PM} on VL. Then, a feasible solution is

qΓ(Pi) = ψ({P1, . . . , Pi})− ψ({P1, . . . , Pi−1}). (93)

This is precisely what Equation (19) reduces to when the path selection rule Γ is induced by the
reversed global ordering {PM , . . . , P1}. Thus, greedy multi-path valid verification algorithms are
simply outputs of the greedy polymatroid algorithm for the multi-path LP feasibility conditions.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

I OTHER MODEL FAMILIES AND DATASETS

Here, we expand our original evaluations for OPT-6.7B/350M/125M on GSM8K, HumanEval, and
MATH500. We broaden our model family coverage to include model pairs Qwen-3 32B/0.6B
and Llama-3 70B/8B, which allows us to test the efficacy of our approach on much larger target
models. Due to memory constraints, the Llama-3 experiments were run on a Paperspace machine with
4xA6000 and an Intel Xeon Gold 5315Y CPU (32 cores, 3.20 GHz). We further expand the Qwen-3
dataset coverage to include 500 prompts from MGSM and ToolBench, to measure performance
on diverse, non-academic tasks. Our block efficiency results for L = 8 and temperature 1.0 target
sampling are shown in Table 3, and walltime numbers are in Table 4.

Interestingly, for Qwen-3, the single-path block verification baseline, i.e. K = 1, is most effective.
On GSM8K, block efficiency is 4.32 tokens/Mp-call at K = 1, but decreases to 3.91, 3.57, and 3.43
for K = 2, 3, 4 respectively, while walltime increases from 79.6 to 92.8, 100.5, and 106.1 ms/token.
Similar trends hold across HumanEval, MATH500, MGSM, and ToolBench. Likewise, for Llama-3,
K = 1 again appears to be the optimal setting. Nevertheless, unlike Qwen-3, there can be meaningful
gains at higher K. On GSM8K, the walltime decreases by nearly 10% from K = 3 to K = 4.

Model pair Dataset Block efficiency (tokens/Mp-call)

K = 1 K = 2 K = 3 K = 4

Qwen-3 32B/0.6B

GSM8K 4.322 3.910 3.571 3.429
HumanEval 4.204 3.423 3.331 2.960
MATH500 4.342 3.917 3.693 3.411
MGSM 4.329 3.973 3.468 3.445
ToolBench 3.090 2.706 2.791 2.681

Llama-3 70B/8B GSM8K 4.943 4.430 4.271 4.625
HumanEval 5.993 4.806 4.473 4.370

Table 3: We compute the block efficiency (tokens per target model call) for decoding with GBV, for
target-draft model pairs Qwen-3 32B/0.6B and Llama-3 70B/8B on up to 500 prompts from each of
the datasets GSM8K, HumanEval, and MATH500, MGSM, and ToolBench (only the first two for
Llama-3). Larger numbers are better. In almost all settings, efficiency decreases monotonically as K
increases from 1 (block verification baseline) to 4.

Model pair Dataset Walltime (ms/token)

K = 1 K = 2 K = 3 K = 4

Qwen-3 32B/0.6B

GSM8K 79.638 92.823 100.547 106.123
HumanEval 84.166 106.051 109.215 124.554
MATH500 81.517 91.133 97.880 106.575
MGSM 80.992 90.312 102.296 105.387
ToolBench 113.563 132.477 128.405 133.973

Llama-3 70B/8B GSM8K 114.123 133.188 136.272 123.545
HumanEval 96.063 124.540 131.889 135.186

Table 4: We compute the walltimes (ms/token) for decoding with GBV, for target-draft model pairs
Qwen-3 32B/0.6B and Llama-3 70B/8B on up to 500 prompts from each of the datasets GSM8K,
HumanEval, and MATH500, MGSM, and ToolBench (only the first two for Llama-3). Smaller
numbers are better. In almost all settings, walltime increases monotonically as K increases from 1
(block verification baseline) to 4.

In our Llama-3 70B/8B experiments, we profiled draft tree size and saw that it grows roughly linearly
with K, at around 9, 16, 24, 29 for K = 1, 2, 3, 4. Across the K sweep, the fraction of walltime spent
in draft and target passes remains nearly constant (around 50% draft and 40% target), and the peak
target and draft KV-cache footprints remain in a narrow band (target is around 80 MB on GSM8K
and 110 MB on HumanEval, with the draft being around 40 MB for both).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

This shows that increasing K scales FLOPs and KV traffic in proportion to the larger tree, rather than
changing the draft bottleneck. Even if block efficiency is high, end-to-end walltime degrades with K.

For Qwen-3 32B/0.6B, we performed the same profiling with similar results. Again, draft tree size
grows approximately linearly with K. The peak KV-cache footprint also stays in a narrow band as
K increases, with the target ranging from roughly 60 to 120 MB across datasets and the draft from
around 30 to 50 MB. Further, draft and target pass times also remain nearly constant relative to the
walltime. However, compared to Llama-3, the key difference is that 70% of time is spent in drafting
and only around 20% is in the batched target forward pass, with only small variations across K.

The target forward pass dominates the cost for Llama-3 significantly more than for Qwen-3. We also
observe worse walltimes for the same block efficiencies. For example, Qwen-3 on ToolBench sees
essentially the same walltimes for K = 1 and K = 2 as Llama-3 on GSM8K, even though Llama-3
has significantly higher block efficiencies than Qwen-3 (around 1.9 and 1.7 higher tokens/Mp-call
for K = 1 and K = 2). Differences in hardware setups may additionally explain and influence these
relative target and draft costs.

J TEMPERATURE ABLATIONS

To measure the impact of temperature on walltime speedups in GBV, we evaluate GBV on Qwen-
3 32B/0.6B for GSM8K (500 prompts) with temperatures 0.2, 0.4, 0.6, 0.8, also including the
temperature 1.0 run from Table 3. Our results are shown in Table 5.

Importantly, we find that GBV performs better at low temperature settings, which directly opposes
block verification trends. Whereas standard block verification (the K = 1 rows) walltimes increase
from under 80 ms/token to over 90 ms/token from temperatures 0.2 to 1.0, GBV with K = 3 sees
its walltimes decrease from over 100 ms/token at temperature 1.0 to under 86 ms/token for lower
temperatures (0.2, 0.4, 0.6), with its highest throughput at temperature 0.6. These results also show
that temperature 1.0 sampling achieves over 10% lower throughput than all other GBV K = 3
settings, so our results in Section 6 actually reflect GBV in its worst-performing setting.

Even as we noted in Appendix I and Table 3 that standard BV may outperform GBV for Qwen-3
32B/0.6B, this finding no longer holds at low temperatures. For example, GBV with K = 3 achieves
a throughput of around 5.6% higher tokens/s than BV when the target temperature is 0.2. Even at
slightly higher temperatures of 0.4 and 0.6, GBV achieves a higher block efficiency than BV, and
achieves similar throughput. Thus, even for model pairs where GBV withK > 1 does not outperform
BV at temperature 1.0 sampling, it may still be preferable over BV at low temperatures.

K Mp Temp. Block Efficiency Throughput Walltime
(tokens/Mp-call) (tokens/s) (ms/token)

1 0.2 3.867 11.034 90.626
1 0.4 4.313 12.407 80.598
1 0.6 4.308 12.368 80.851
1 0.8 4.430 12.761 78.362
1 1.0 4.322 12.557 79.638

3 0.2 4.219 11.661 85.759
3 0.4 4.333 11.911 83.954
3 0.6 4.492 12.149 82.311
3 0.8 4.161 11.341 88.173
3 1.0 3.571 9.946 100.547

Table 5: We evaluate how temperature impacts the block efficiency, throughput, and walltime for
GBV with K = 1, 3 when run on Qwen-3 32B/0.6B with GSM8K (500 prompts) and L = 8. We use
temperature 0.2, 0.4, 0.6, 0.8, and 1.0 sampling from the target model. While BV (K = 1) performs
best at high temperatures (0.8, 1.0), GBV (K = 3) works better at low temperatures (0.2, 0.4, 0.6).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

K DRAFT LENGTH ABLATIONS

Here, we provide ablation experiments on L, the draft block length. We extend our L = 8 results for
Qwen-3 32B/0.6B on GSM8K with temperature 1.0 target sampling to larger draft lengths: L = 16
and L = 24. Our results are shown in Table 6.

As L increases, block efficiency improves only modestly, while throughput degrades rapidly. For
example, at K = 1, the block efficiency increases from 4.32 for L = 8 to 5.67 and 5.79 for L = 16
and L = 24, but the walltime grows from roughly 80 ms/token to 103 ms/token and 140 ms/token.
The effect is worse for K ≥ 2, where moving from L = 8 to L = 24 more than doubles the walltime.

The draft and target costs also shift substantially: the draft time, as a percentage of the end-to-end
walltime, grows from about 71% at L = 8 to 80% and 86% at L = 16, 24, while the target share
drops to as low as 10%. Coupled with our analysis of the draft bottleneck in Appendix I, this indicates
longer blocks increase aggregate cost by pushing more work into the draft bottleneck.

L K Block Efficiency Walltime Draft Cost Target Cost
(tokens/Mp-call) (ms/token) (%walltime) (%walltime)

8

1 4.322 79.638 71.5 21.3
2 3.910 92.823 71.3 21.0
3 3.571 100.547 71.1 21.1
4 3.429 106.123 70.8 21.3

16

1 5.667 102.970 81.7 13.2
2 4.016 149.775 81.0 13.3
3 3.915 155.406 80.5 13.6
4 3.742 163.200 80.1 13.9

24

1 5.794 140.411 86.0 9.9
2 4.275 196.937 85.0 10.2
3 3.945 218.631 84.3 10.8
4 3.628 240.142 83.4 11.5

Table 6: We evaluate GBV with 1 ≤ K ≤ 4 for Qwen-3 32B/0.6B temperature 1.0 sampling on
GSM8K (500 prompts), over varying draft block lengths L = 8, 16, 24. We report block efficiency,
walltime, and draft and target forward pass runtimes as percentages of end-to-end walltime. We find
that around L = 8 is an ideal length for avoiding more pronounced draft bottlenecks.

L MULTI-PATH COMPARISON

To empirically compare GBV to other multi-path methods, we implement six other speculative
decoding algorithms in our code: standard speculative decoding (Leviathan et al., 2023; Chen et al.,
2023), block verification (Sun et al., 2024b), NSS (Miao et al., 2024), SpecInfer (Miao et al., 2024),
SpecTr (Sun et al., 2023), and traversal verification (Weng et al., 2025). SpecInfer provably improves
NSS and block verification provably improves standard speculative decoding, so we only benchmark
GBV against SpecInfer, SpecTr, and block verification.

We run comparison experiments for Llama-3 70B/8B on GSM8K (the same 500 prompts as previous
experiments) for L = 8. We test K = 2, 3 as well as temperature 0.2, 1.0 sampling from the target
model. Our block efficiency, throughput, and walltime numbers are shown in Table 7. Due to poor
preliminary decoding rates and Llama-3 70B memory footprint, we do not run SpecTr and SpecInfer,
the worst-performing temperature 1.0 algorithms, at temperature 0.2.

For temperature 1.0 sampling, GBV and traversal verification perform significantly better than SpecTr
and SpecInfer. For both K = 2, 3, GBV achieves over 1.1 token/s higher throughput than SpecTr
and over 1.6 token/s higher than SpecInfer. While traversal verification does outperform GBV in
these settings, coming out on top, the incremental gains are less significant: GBV achieves around
0.6 fewer token/s for K = 2 and 0.9 fewer token/s for K = 3.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Mp Temp. K Method Block Efficiency Throughput Walltime
(tokens/Mp-call) (tokens/s) (ms/token)

1.0 2

GBV 4.430 7.508 133.188
SpecTr 3.716 6.355 157.365

SpecInfer 3.259 5.603 178.480
Traversal 4.760 8.114 123.245

1.0 3

GBV 4.271 7.338 136.272
SpecTr 3.540 6.211 161.002

SpecInfer 3.239 5.686 175.879
Traversal 4.779 8.260 121.065

0.2 2 GBV 6.730 11.415 87.602
Traversal 5.650 9.773 102.319

0.2 3 GBV 5.663 9.775 102.299
Traversal 5.763 9.962 100.379

Table 7: We compare GBV, SpecTr, SpecInfer, and traversal verification for Llama-3 70B/8B on
GSM8K (500 prompts). We report block efficiency and throughput (higher is better), and walltime
(lower is better), for K = 2, 3 and temperature 0.2, 1.0 sampling from the target model. While
traversal verification outperforms other methods for temperature 1.0, GBV achieves over 1.5 tokens/s
higher throughput at temperature 0.2.

On the other hand, at lower temperatures like 0.2, the trend flips: GBV now performs better than
traversal verification. While throughput and block efficiency gains are negligible for K = 3 (only
around 0.1 more tokens/Mp-call and 0.2 higher token/s), the benefits for K = 2 are significant: GBV
achieves with over 1.6 higher token/s than traversal verification, and over 1.1 higher tokens/Mp-call.
In fact, GBV at temperature 0.2 with K = 2 achieves the highest throughput by far out of all tested
settings: no other method for Llama-3 70B/8B achieves over 10 tokens/s throughput. This suggests
that GBV outperforms traversal verification for low temperatures and sharper p distributions.

25

	Introduction
	Background
	Single-Path
	Multi-Path

	Single-Path Information-Agnostic LP
	Multi-Path Information Agnostic LP
	Greedy Multi-Path Block Verification
	Experiments
	Other Model Families and Datasets
	Temperature and Draft Length Ablations
	Comparison to Multi-Path Methods

	Conclusion
	Proof of Multi-Path Information-Agnostic LP
	Proof of Single-Path Information-Agnostic LP
	Proof of Block Verification Optimality
	Proof of Path Selection Decomposition
	Proof of Skewed Draft Distribution Feasibility
	Proof of Optimal Multi-Path Algorithm Description
	Proof of Optimal Multi-Path Lower Bound
	Greedy Polymatroid Connection
	Other Model Families and Datasets
	Temperature Ablations
	Draft Length Ablations
	Multi-Path Comparison

