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Abstract

Brain MRI segmentation results should always undergo a quality control (QC) process,
since automatic segmentation tools can be prone to errors. In this work, we propose
two deep learning-based architectures for performing QC automatically. First, we used
generative adversarial networks for creating error maps that highlight the locations of
segmentation errors. Subsequently, a 3D convolutional neural network was implemented to
predict segmentation quality. The present pipeline was shown to achieve promising results
and, in particular, high sensitivity in both tasks.
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1. Introduction

Brain MRI segmentations can be affected by errors and their quality control (QC) is usually
carried out visually, which can be very subjective and time consuming. Previous studies
have proposed deep learning-based methods for performing automatic QC on medical image
segmentation results (Robinson et al., 2018; Valindria et al., 2017; Galdran et al., 2018; Roy
et al., 2018). However, these solutions do not point out the errors’ locations, which would
be useful to understand their impact on research results and speed up their correction.
In this work, we propose a method that automatically (1) locates segmentation errors by
employing conditional generative adversarial networks (cGANs), (2) classifies segmentation
quality by using a convolutional neural network (CNN).
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Figure 1: Schematic representation of the method for generating error maps. It is shown
for the axial view, but the same idea is applied on all three views.

2. Methods

Given a series of input MRI images I and their segmentations S, our goal is to learn a
mapping from a certain S to the original MRI I. For this purpose, a pix2pix model (Isola
et al., 2017) was defined for each image view (axial, coronal and sagittal). Each model
receives as input a segmentation slice indicating gray matter (GM), white matter (WM)
and cerebrospinal fluid (CSF). These segmentations were generated with FreeSurfer 6.0
(Fischl, 2012). By contrast, the output of each pix2pix model is an MRI slice that is
expected to match the input segmentation. The generated and the original MRI slice can
be compared after intensity normalization. Their difference highlights the regions where
they do not match, i.e. where segmentation errors can be present (see Figure 1). The
difference images from all slices and all views can then be aggregated together in a 3D error
map. These maps are finally refined with post-processing steps, including thresholding and
Gaussian smoothing.

The generated error map and the original MRI image are fed as input into a 3D CNN
to predict if the segmentation is good (output 0) or bad (output 1). The CNN was modeled
using six convolutional layers (with 3 × 3 × 3 kernels and, respectively, 32, 32, 64, 64, 128
and 128 units) intermingled with batch normalization layers. These are finally followed by
a global average pooling layer and two dense layers (with, respectively, 128 and 1 unit).

We used images of size 256 × 256 × 256 mm3 from two diagnostic groups (healthy
and Alzheimer’s patients) and three cohorts: ADNI (Jack et al., 2008), GENIC (Machado
et al., 2018) and H70 (Rydberg Sterner et al., 2019). We selected 1600 subjects whose
segmentations had been visually rated as accurate. From each of these subjects, 10% of the
segmented image slices (from all views) were randomly included in the training set of the
cGANs. The model was then tested on other 600 subjects having segmentation errors and
190 subjects with accurate segmentations. Subsequently, the error maps and original MRI
images were down-sampled to half resolution to be used as inputs for the classification CNN.
A class-balanced dataset was obtained by randomly selecting 300 subjects having accurate
segmentations and 300 presenting errors. The performance of the CNN was investigated
using 10-fold cross-validation on these balanced data.
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Figure 2: Examples of slices of 3D error maps. For each view, the segmentation result (red
= GM, green = WM, blue = CSF) and its error map are shown. In (a), a large segmentation
error was accurately detected. In (b), a false positive (caused by subject-specific anatomical
features) was found in the error map (red arrow). In (c), a small CSF misclassification (red
arrows) was identified on a segmentation that had been visually rated as good. In (d), the
method fails at highlighting part of several cortical overestimations (red arrows).

3. Results

The cGAN-based method was generally effective in locating segmentation errors. It suc-
cessfully detected particularly large errors in Alzheimer’s brains, whose segmentations are
usually more challenging because of their neurodegenerative patterns (Figure 2a). The ef-
fectiveness of the method was also evident in some cases where small errors were identified
in segmentations that had been rated as accurate with visual QC (Figure 2c). On the
other hand, a few false positives (i.e. highlighted regions that do not actually correspond
to errors) were identified in most subjects (Figure 2b). Moreover, the error maps are based
on intensity differences, so errors in regions with high contrast (e.g. WM vs. CSF) were
better highlighted than those in areas having similar intensity (e.g. cortex vs. meninges),
as shown in Figure 2d.

To investigate the performance of the classification CNN, we computed the area under
the ROC curve, which was equal to 0.85. By setting a classification threshold of 0.4, the
highest accuracy (i.e. 0.80) was obtained, with a recall of 0.83 and a precision of 0.77. By
lowering the threshold to 0.3, a high recall of 0.96 was observed against a precision of 0.56.

4. Conclusions and future work

The proposed deep learning-based pipeline was shown to be promising for both automatic
QC and localization of brain MRI segmentation errors with high sensitivity. This tool
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could thus be used not only to check segmentation quality, but also to speed up the error
correction and to evaluate the reliability of segmentation results in certain brain regions.

One limitation is the high presence of false positives (segmentations wrongly classified as
bad) in both the error maps and the quality classification. We believe that a high sensitivity
to bad segmentations is yet preferable to a high specificity, because it limits the use of wrong
segmentation results in research studies. However, we still aim at increasing the precision
by extending the post-processing steps on the error maps and testing other networks for
the quality classification. Moreover, for comparing the generated and original MRI slice,
we will test other techniques that are less intensity-dependent.
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