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ABSTRACT

This paper focuses on test-driven development (TDD) tasks, where test cases
act as both instruction and verification for LLM code generation. We build a
TDD benchmark to evaluate frontier models, where reasoning models of OpenAI
achieve SOTA. We identify instruction following and in-context learning as the
critical abilities for all models to succeed at TDD tasks. We further reveal their
vulnerabilities to long instructions as an area of improvement.

1 INTRODUCTION

Code generation/completion is a classical LLM (large language model) task and one of its most
important applications. The focus of current research and benchmarks include algorithms(Austin
et al., 2021; Chen et al., 2021), tool use(Yan et al., 2024), debugging(Jimenez et al., 2024), etc.
Here, a coding task consists of two parts: formulation and verification. The formulation is the task
description in natural language, accompanied with code snippets when necessary. The verification
is a collection of tests to run against the code generated by LLM. If all tests pass, the evaluated LLM
is considered to succeed at the task.

In this paper, we explore a new avenue where tests are both task formulation and verification. Specif-
ically, a number of tests in its original code format are copied and pasted into the LLM prompt. A
simple prefix is attached instructing the LLM to generate code to pass all given tests. The generated
output is evaluated by the same tests. We call this a TDD (test-driven development) task, and for the
evaluation purpose, an essemble of TDD tasks a TDD benchmark.

Using the running example in (Beck, 2022), Tab. 1 illustrates how a multi-currency conversion
application is gradually built via TDD. Each row represents a feature request codified as a test.
Human developers approach TDD incrementally, one row per iteration. In each iteration, they write
new code to pass the current test, as well as all tests in previous iterations. LLMs approach TDD
at once. As demonstrated in this paper, they are able to write code to pass multiple tests in one
inference, i.e. aggregate multiple iterations into one batch.

Also wordings in the TDD Task column are akin to natural language instructions in classical coding
benchmarks. For human developers, these are considered best practices to bring clarity to their
coding work. On the other hand, LLMs are able to infer them from tests included in the prompt. As
such, one can let LLMs skip this step to directly output code, or ask them to explicitly spell out the
task via chain of thoughts.

We argue that TDD is the norm of modern application development across many domains, from
enterprises to startups, consuming numerous engineering hours. In these production environments,
tests are the de facto system specs overriding documentations. The maturity of a system can be
measured by the size and age gap of its test suite. As such, LLMs with strong TDD capabilities
would generate tremendous value to the software industry.

Since tests play pivotal roles in all coding benchmarks, we use Tab. 2 to compare them in three cate-
gories. The key differentiator between algorithmic and TDD benchmarks is the semantic mutability,
where tests evaluate solutions to the problem in the former, but define the problem itself in the latter.
The key differentiator between problem-solving and TDD benchmarks is the scope, where tests are
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Table 1: An example of test-driven development tasks

Test Name Verifications Feature TDD Task
testMultiplication Ensures multiplying a

dollar amount by an inte-
ger gives correct results

Basic dollar
multiplication

Defines a Dollar class
with amount and times()
method

testEquality Confirms that two
Money objects are equal
if they have the same
amount and currency

Equality
check for
Money ob-
jects

Adds an equals() method
for comparing amounts

testFrancMultiplication Verifies multiplication
functionality for francs

Introduction
of Francs

Creates a Franc class
similar to Dollar with
multiplication

testCurrency Checks that each Money
object correctly identi-
fies its currency

Currency
attribute

Adds a currency attribute
in Money class

testSimpleAddition Tests addition of two
Money objects within
the same currency

Simple addi-
tion of Money
objects

Implements plus() for
adding same-currency
Money objects

testIdentityRate Validates that the Bank
provides a 1:1 exchange
rate for the same cur-
rency

Bank class for
currency con-
version

Introduces Bank class
with exchange rates

testReduceMoney Ensures correct conver-
sion of sums between
different currencies

Addition with
conversion

Implements conversion
of sums across curren-
cies in Bank

testMixedAddition Verifies handling of
mixed currency addition
and conversion to target
currency

Complex ex-
pressions with
different cur-
rencies

Refactors to handle
mixed-currency expres-
sions with conversions

Table 2: Comparison of coding benchmarks

Algorithmic Bench-
marks

TDD Benchmarks Problem-Solving
Benchmarks

Example Palindrome Check
in HumanEval(Chen
et al., 2021) and
LeetCode

Multi-currency con-
version in Tab. 1

scikit-learn-14520 is-
sue in SWE-bench
(examplified in (Ope-
nAI, 2024))

Semantic Mutabil-
ity

Immutable to test
changes

Always mutable to
test changes as a
form of feature re-
quest

Sometimes mutable
to test changes as a
form of verification

Scope Function Module Application
Context Length Re-
quirement

Short Medium Long

Running Overhead Low (programming
language dependen-
cies)

Medium (program-
ming language and
framework depen-
dencies)

High (containerized
dependencies)

Source of Pre-train
Knowledge

Textbooks and online
documents

Open source repos Open source repos

Primary Applica-
tions

Coding interview and
brainstorming

Pre-launch feature
development

Post-launch patch
and bugfix

only a slice of the context (along with logs, source code, and the issue description) in the former, but
solely comprises the entire context in the latter.
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Below are original contributions of this paper.

• TDD Tasks and Benchmarks: We propose the definition of TDD tasks and built to our
knowledge the first TDD benchmark. This effort reveals the following insights.

• Critical Abilities for TDD Task Success: Pre-train coding knowledge is necessary but
insufficient for the success of TDD tasks. We identify the following critical abilities: in-
struction following, in-context learning, and reasoning. We expect this list to grow as the
investigation deepens.

• More tests cause worse performance: The SOTA is significantly lowered after more tests
are added, which limits the application scope of LLM-driven TDD. The suspect root cause
for the performance bottleneck, e.g., attention decay(Liu et al., 2024), is unconfirmed.

The rest of this paper is organized as follows. In Sec. 2, we introduce how the benchmark is built
and run. In Sec. 3, we show LLM performance and analyze their errors. In Sec. 4, we discuss the
degraded LLM performance under more test cases, and potential root causes. Finally, we discuss
related works in Sec. 5 and conclude the paper in Sec. 6.

2 BENCHMARK

2.1 SCOPE

We envision the flourishing of many affordably-trained coding LLMs or SLMs (small language
models)(Li et al., 2023; Lozhkov et al., 2024; Hui et al., 2024; Huang et al., 2024) with specialties
scoped by the template below.

{Programming Language,Framework,Domain,Task}

Given a software engineering project, the first three elements are decided before the project begins,
and do not change during the project. For the last element (task), the engineer regularly shuffles
among several tasks, such as comment generation, test generation, code generation, code interpre-
tation. As the above template has many instances, we argue for the need of many benchmarks, one
for each instance. As a start, this paper presents a benchmark for the following instance.

{JavaScript,React,Web App,TDD Code Generation}

In addition, our choice is backed by following considerations.

• Representation Founded in 2013, React(Meta, 2013) is one of the most popular open
source projects and a top choice for web app developers. High-quality React code is abun-
dant in any LLM pretraining corpuses. Hence, one can safely assume a general or coder
LLM to have sufficient React knowledge to complete the task without seeking exernal
knowledge.

• Scalability As demonstrated in Tab. 3, React code is succinct and compositional, able
to implement diverse functionalities in one file. This makes it very convenient for us to
innovate evaluations. First, we can define comprehensive tasks even if the LLM has limited
context window. Second, by varying test suite size, we can scale the instruction scope to
search for model limits and hill-climbing directions.

• Ecosystem The rich and stable ecosystem of React blesses us with many excellent tools.
They greatly facilitates the evaluation work especially the test verification.

2.2 TASK FORMULATION

Since the formulation of a TDD task primarily consists of verbatim test code, we use a sample web
app scenario to explain.

Consider a blogging website, in which a user adds comment to an existing blog post. This user
journey is simulated by the unit test in Table 4. Here, fetchMock.post is a lightweight setup to
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Table 3: Template of React-based solution

// Import Statements
...
import React from ’react’;

// Main component of the application
function App() {
...
// Business logics to handle user actions
const functionA = (...) -> {
...
};
const functionB = (...) -> {
...
};

// JSX-based UI layout
return (
<div>
// UI events are wired to the calling of functionA and functionB
</div>
);

};

// Export Statement
export default App;

mock a successful API response without running any additional software components. The follow-
ing await lines simulate user actions (text input, mouse click etc.). Finally, expect lines examine
the expected outcome, i.e. the mocked API should be invoked exactly once and the system response
of success should appear on the updated webpage. Similarly, the pairing failure case is shown in
Table 5, where a mocked API failure is expected to lead to error message on the updated webpage.

Table 4: Success case for adding a comment to a blog post

test("successfully adds a comment to a post", async () => {
fetchMock.post("/api/comments", 200);

await act(async () => {
render(<MemoryRouter><App /></MemoryRouter>);

});
await act(async () => {

fireEvent.change(screen.getByPlaceholderText(/Add a comment/i),
{ target: { value: "Great post!" } });

});
await act(async () => {

fireEvent.click(screen.getByText(/Submit/i));
});

expect(fetchMock.calls("/api/comments").length).toBe(1);
expect(screen.getByText(/Comment added successfully/i)).toBeInTheDocument();

}, 10000);

Table 5: Failure case for adding a comment to a blog post

test("fails to add a comment to a post", async () => {
fetchMock.post("/api/comments", 500);

// Lines identical to the success case are ignored.

expect(screen.getByText(/Failed to add comment/i)).toBeInTheDocument();
}, 10000);
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The prompt is straightforward: we feed test files to the LLM, expecting it to generate code passing
these tests. The token length of the prompt is around 0.5K.

Generate App.js to pass the tests below: (1)
{Tab. 4}{Tab. 5}. RETURN CODE ONLY.

The benchmark consists of 1000 such tasks. Each task uses a success case and failure case to
describe the scenario. These 1000 tasks are aggregated under 20 applications, e.g. blogging, e-
commerce, traveling. More details can be found Appendix A.

2.3 TASK VERIFICATION

To succeed at the task defined in Tab. 4 and 5, an LLM is expected to output code following the
template in Tab. 3. The code generates a single webpage decorated with a form-like UI element
allowing the test-simulated user to add comment. If all expectations in Tab. 4 and 5 are met, the tests
pass.

We use pass@k, a metric defined in (Chen et al., 2021) and commonly accepted by subsequent
works. Due to budget and rate limit constraints, each task is evaluated at most 10 times, i.e. n = 10.
Since k must be no larger than n, we measure pass@1, pass@5, and pass@10. More details on the
experiment setup can be found in Appendix B.

3 EVALUATION RESULTS

3.1 LLM PERFORMANCES

Tab. 6 summarizes the pass@k results of 18 frontier LLMs. We only measure pass@1 for o1 models
primarily due to their inference cost. But since the value of pass@k asymptotically increases with k,
there is no doubt that the o1 models lead non-reasoning LLMs by an obvious gap. Also worth noting
is the impressive performance of open-source LLMs, with deepseek-v2.5 as the top contender.

Table 6: pass@k results for frontier LLMs

Model pass@1 pass@5 pass@10
o1-preview 0.952 N/A N/A
o1-mini 0.939 N/A N/A
gpt-4o-2024-08-06 0.885 0.9047 0.909
claude-3.5-sonnet 0.8808 0.8845 0.886
deepseek-v2.5 0.834 0.8595 0.869
gpt-4o-mini 0.8271 0.8534 0.858
mistral-large-2 0.7804 0.8191 0.831
deepseek-coder-v2-instruct 0.7002 0.8009 0.827
gemini-1.5-pro 0.6813 0.7678 0.795
gemini-1.5-flash 0.57 0.6427 0.663
deepseek-coder-v2-lite-instruct 0.4606 0.6144 0.653
mixtral-8x22b-instruct 0.3074 0.4821 0.533
llama-v3-70b-instruct 0.3323 0.4462 0.489
llama-v3p1-405b-instruct 0.302 0.4053 0.437
llama-v3p1-8b-instruct 0.2512 0.3941 0.432
llama-v3p1-70b-instruct 0.1027 0.1848 0.246
mixtral-8x7b-instruct 0.1269 0.196 0.218
llama-v3-8b-instruct 0.0679 0.1183 0.139
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3.2 BENCHMARK DIFFICULTY

We made each model solve each task for 10 times, which gives us 160 solutions per task1. Fig. 1
shows number of failures per task. The more failures a task collects, the more difficult it is.
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Figure 1: Failures per problem

As indicated by the figure, the majority of the problems have low failure rates, i.e. they are relatively
easy for LLMs to solve. Conversely, a small cluster of problems on the far right exhibit extremely
high failure rates, some remain unsolved by any model. Appendix E will reveal more insights on
why they are difficult.

3.3 DOES THE CODE BUILD?

Of the total 160,000 solutions included in Fig. 1, only 172 have syntax errors, i.e. the build failure
rate is 0.1%. In particular, the solutions by o1 models, Claude 3.5, and Mistral Large 2 have no
syntax errors. We manually examined a subset of built solutions, and found that they support the
feature the test cases intend to evaluate.

This means all LLMs are able to follow high-level instructions and write quality code. The real
challenge for them is to meet all test expectations, some explicit and others implicit, therefore failing
the task. To verify this hypothesis, we ran an alternative experiment following the TLD (test-last
development) approach which significantly boosted pass@1 of all tested models. Details are in
Appendix C.

3.4 ERROR TYPES

We study error logs and find LLMs make seven types of errors, coded to A through G. They are
summarized in Tab. 7.

The verbatim errors are the original error messages or codes captured by the log. Each of them is
broadly scoped to contain a wide array of behaviors. However, in the context of our benchmark,
we find all verbatim errors are projected to a narrowband of behaviors attributed to the same root
causes.

Based on the root causes, we further conjecture their connections to model abilities.

• Preference Alignment: violating unspecified user preference, i.e. the latest stable version
• In-context Learning: mistmatching string or integer values specified in the model input
• Instruction Following: misunderstanding or missing the feature requested in test cases
• Pretraining Knowledge: violating scoping rule of the programming language

1We exclude o1 models because they are only evaluated once per task. Also given their high success rates,
they leave very small impact to the distribution.
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Table 7: Error table

Error Code Name Verbatim Error Root Cause Model
Ability

A Version Mis-
match

TypeError Deprecated framework
functions are used

Preference
Alignment

B Text Mis-
match

TestingLibrary
ElementError

Attributes or texts of HTML
tags do not match test expec-
tations

In-context
Learning

C API Call Mis-
match

expect(received) Mock APIs are called less or
more than expected

In-context
Learning

D Uninstalled
Module

Cannot find
module

Imported module is not in-
stalled

Instruction
Following

E Invalid API
Call

fetch-mock The call signature does not
match the test expectation

In-context
Learning

F Scope Viola-
tion

ReferenceError An out-of-scope call is made
to a locally-defined function

Pretraining
knowledge

G Missing UI
Element

Element type is
invalid

No UI element is defined in
the code

Instruction
Following

3.5 SINGULAR AND TWIN ERRORS

An error log can contain a combination of many error types, indicating the code is poorly imple-
mented. But this is not the dominant pattern. 93% of error logs contain either a singular error or
twin errors. Fig. 2 shows the distribution of singular and twin errors.

Figure 2: Distribution of singular and twin errors

Singular error means the log contains only one error pointing to a single line. Twin errors are two
errors of the same type, preeminently pointing to the same error line. Since the code needs to pass
two unit tests, often times the same bug offends both tests. This means that even upon failures, all
LLMs produce quality code, but with only one error.

3.6 ERROR DISTRIBUTION BY MODELS

In Fig. 3, we show the error distribution separately for each LLM2. The most important finding here
is that no model is immune to any of the seven error types, even when the raw error counts differ by
one order of magnitude bewteen two extremes.

2o1 models are excluded because their sample sizes are too small (1 run per task instead of 10). They still
make the same types of errors as other LLMs.
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Figure 3: Error distribution by models

This means that all models possess the same knowledge and capabilities to write high-quality code
which meets test expectations, and same inherent vulnerabilities resulting in the same types of errors.
But top models distinguish themselves at lower error rates, i.e. ability to make fewer errors .

4 DUO-FEATURE BENCHMARK

In light of o1 models’ superb performance to saturate the benchmark, we propose a more challenging
benchmark by merging two TDD tasks into a duo-feature task. Under this new benchmark, each task
consists of four test cases: two successes and two failures. Accordingly, the prompt length is doubled
to around 1K tokens. Also the output code follows the same template (Tab. 3), and generates a single
webpage decorated with multiple UI elements to support two features.

4.1 LLM PERFORMNACES

As shown in Tab. 8, more test cases cause pass@1 of all LLMs to decrease significantly. Also the
SOTA is owned by Claude 3.5.

Table 8: Duo-feature benchmark: pass@1 for selected LLMs

Model pass@1
claude-3-5-sonnet 0.679
o1-mini 0.667
o1-preview 0.652
gpt-4o-2024-08-06 0.531
deepseek-v2.5 0.49
mistral-large-2 0.449
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However, the model behaviors remain largely the same on other aspects described in Sec. 3. The
output code is functional with occasional build failures, and make the same errors more frequently.

4.2 INSTRUCTION LOSS

To study why o1 models perform worse than Claude 3.5, we find a task solved by Claude 3.5, but
failed by o1-preview. As shown in Tab. 9, this task requires the duo feature of adding comment and
retrieving blog posts in a single webpage.

Table 9: A duo-feature TDD task: add comment and retrieve all blog posts

import App from ’./addComment_retrieveAllBlogPosts’;
...
test(’successfully adds a comment to a post’, async () => {
... }

test(’fails to add a comment to a post’, async () => {
... }

test(’Success: retrieve a list of all blog posts’, async () => {
... }

test(’Failure: retrieve a list of blog posts with server error’, async () => {
fetchMock.get(’/api/posts’, { status: 500, body: { error: ’Internal Server Error’ } });
...
expect(fetchMock.calls()).toHaveLength(1);
expect(screen.getByText(’Internal Server Error’)).toBeInTheDocument();

}, 10000);

Here, o1-preview passes all tests but the last one. The output code neither attempts to catch the 500
error nor prints out the Internal Server Error string. The reasoning chain is normal, and no step
specifically mentions the need to catch internal server errors.

Crafting the component −→ Laying out the requirements −→
Importing dependencies −→ Breaking down the code −→
Setting up the app −→ Testing a post functionality −→
Testing API integration

The o1-preview’s inherent coding ability is solid, because it solves both tasks separately under the
single-feature benchmark. To this end, we suspect the root cause to be instruction loss. It remains
unknown whether the instruction is never picked up from the model input, or lost during an early
reasoning stage. What we are sure of is the necessiry of full instruction set as the foundation for
reasoning, without which the reasoning model will simply fail the task.

5 RELATED WORKS

5.1 CODING-RELATED TASKS AND BENCHMARKS

Prompt-driven coding has become mainstream since the introduction of Codex(Chen et al.,
2021). The evolution of benchmarks reflect the scaled-up challenges posed to LLMs, from algo-
rithms(Austin et al., 2021), to data science problems(Lai et al., 2022), object-oriented coding(Du
et al., 2023), code execution(Yu et al., 2023), function calling(Yan et al., 2024), SQL queries(Gao
et al., 2023), project-level resolution(Jimenez et al., 2024), etc. These benchmarks all rely on test
suite of different sizes to verify task success. On the other hand, the task formulation, i.e. the prompt,
is becoming longer and harder to specify, resulting in misalignment with its verification counterpart,
which can be only addressed by human calibration(OpenAI, 2024).

TDD benchmarks avoid such misalignment by unifying task formulation and verification, mean-
while introducing other challenges to LLMs.

9
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5.2 INSTRUCTION FOLLOWING AND IN-CONTEXT LEARNING

Instruction following and in-context learning are two of the most desired LLM abilities to ace TDD
tasks. Both topics have been extensively researched(Dong et al., 2024; Lou et al., 2024), and their
close relations revealed by several empirical or mechanistic studies(Wei et al., 2022; Li et al., 2024;
Xie et al., 2022; Hewitt et al., 2024; Singh et al., 2024). Several well-known benchmarks(Chia et al.,
2023; Jiang et al., 2024; Qin et al., 2024) were also introduced to measure LLM progress on these
abilities.

However, majority of the existing works focus on natural language instructions. Given the practical
values of TDD tasks, we would like to see more interests developed over code-based instructions.
Our evaluation demonstrates LLMs’ remarkable ability to follow coded instructions. But it also
revealed their vulnerabilities when coded instructions grow longer. This is related to another stream
of works which try to scale natural language instructions(Son et al., 2024; Cheng et al., 2023). We
will track closely the development of these two work streams.

5.3 REINFORCEMENT LEARNING AND REASONING

The o1 models have been speculated to leverage many seminal works on reinforcement learning and
reasoning. Works on the learning side include self-play(Zhang et al., 2024), self-taught(Zelikman
et al., 2022; 2024), learning from running environment(Silver et al., 2017), etc. Works on the infer-
ence side include process modeling(Lightman et al., 2023), inductive reasoning(Wang et al., 2024),
tree search(Anthony et al., 2017), etc.

Aside from general reasoning models like o1, many works have applied reinforcement learning to
coding-specific problems, including code generation(Jain et al., 2023), test generation(Steenhoek
et al., 2023), error repair(Islam et al., 2024b;a), etc.

The values of reasoning and self-improvement techniques to TDD tasks are best showcased by
the exciting SOTA lift to our benchmark. Unfortunately, we also observe the negative impact of
instruction loss to reasoning model performances. We think it is worthwhile to incorporate nuanced
and complex model input into future reasoning model development.

5.4 TDD IN LLM CODING

Much similar to this paper, some recent works introduced TDD to coding task formulation, and
studied best practice and performance impact(Mathews & Nagappan, 2024; Murr et al., 2023; Piya
& Sullivan, 2023). But to our knowledge, this is the first paper focusing on TDD benchmarking.

Finally, one may argue that it is easy to repurpose classical coding benchmarks to evaluate TDD
tasks by simply appending their test cases to the prompt. But we argue the benefits and necessity
to have dedicated benchmarks to this cause. Just as TDD is the norm in application development
emphasizing on business logic, knowledge on input instructions is the most critical factor to task
success, overshadowing pretraining knowledge3. We think benchmarks crafted along this line of
thinking can appropriately evaluate and challenge LLMs to keep improving on TDD tasks.

6 CONCLUSIONS

This paper focuses on the TDD aspect of LLM code generation, and claims two contributions. The
first is a dedicated TDD benchmark which we use to evaluate 18 frontier LLMs. The second is the
insights obtained via the evaluation. Specifically, instruction following and in-context learning are
the key areas of improvement for LLMs and reasoning models to excel on more challenging TDD
tasks.

There are two future directions. The first is to grow our benchmark to cover more application
scenarios, meanwhile cross-examining learnings from this paper. The second is to explore practical
hill-climbing ideas to address the vulnerability to long coded instructions.

3This is a comparative argument relevant to other tasks akin to algorithms and data structures. A TDD task
cannot succeed without a strong coding LLM.
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A BENCHMARK CONSTRUCTION

The construction of the benchmark follows the methodology of Self-Instruct(Wang et al., 2023). As
the initial step, humans proposed 20 web applications listed in Tab. 10, referencing main applications
of JavaScript and React(Accomazzo et al., 2017; Mozilla, 2005; fir, 2017).

Subsequently, five categories are proposed for each application, shown in Tab. 11. Using these
human-generated seeds, we prompt GPT-4o to propose, for each category, 10 scenarios, each de-
scribed by a sentence. This results in a total of 1000 scenarios for the benchmark. As the final step,
after reviewing these scenarios by humans, we further GPT-4o to generate a success test and failure
test for each scenario, exemplified in Sec. 2.2.

B EXPERIMENT SETUP

The most straightforward way for us to access LLMs are public token-based APIs. For top close-
sourced models, our only option is via the owners’ APIs. The top open-sourced models are hosted
by a few platforms, among which we choose Fireworks.

Although each API bears its minor difference, all APIs are heavily influenced by the design of
OpenAI API. Tab. 12 lists the tunable parameters exposed by each API. Since we do not know the
default parameter value set by each API provider, we explicitly set the same parameter values to all
LLMs under evaluation, whenever applicable. To limit the search space, we only tune temperature
and top p, the two most popular parameters available on all platforms. For other parameters, we
assign fixed value to them across all LLMs.

We conducted a grid search to locate a sweet spot at which all LLMs deliver near-best results.
We chose 100 random problems from the benchmark, 5 out of each application. We then choose
the large model out of the five leading model families, and measured their pass@1 (n = 1) on
the discrete 2D space of temperature and top n, where temperature = 0, 0.1, 0.2, ..., 1, and
top p = 0, 0.1, 0.2, ..., 1.

Tab. 13 presents the lowest and highest pass@1 value by each LLM in this grid search. Based on
the results, we finalize our parameters as follows.

temperature = 0.2

top p = 0.8

top k = 40

presence penalty = 0

frequency penalty = 0

Results of our full-scale evaluations also align with this small-scale experiment, except for the
Deepseek coder model whose performance exceeds expectation. Also worth noting is that open-
source models exhibit larger performance variation than closed-source models.
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Table 10: Applications of the benchmark

Name Overview
blogging A content management system for creating and managing blogs, with features like

user registration, post creation, categorization, commenting, and SEO optimization.
customer support A help desk application where users can submit support tickets, track their status,

access a knowledge base, and chat with support agents.
e-commerce A fully functional e-commerce site with features like product listings, shopping cart,

user authentication, order processing, and payment integration.
event management An app for organizing events, including event creation, ticket sales, attendee registra-

tion, and scheduling
fitness tracking An application for tracking fitness activities, setting goals, monitoring progress, and

integrating with wearable devices.
inventory management A web application designed to help businesses track and manage their inventory. Fea-

tures include product cataloging, stock level monitoring, automated reorder alerts,
supplier management, sales and purchase order processing, and detailed reporting on
inventory performance.

job board A job listing site where employers can post job openings and job seekers can search
and apply for jobs.

music streaming A platform for streaming music, creating playlists, and discovering new artists.
news aggregator A news platform that aggregates articles from various sources, categorizes them, and

allows users to customize their news feed.
online learning An LMS where users can enroll in courses, watch videos, complete quizzes, track

progress, and receive certificates.
online marketplace A platform for buying and selling goods, similar to eBay, with features like user rat-

ings, bidding, and secure transactions.
personal finance A tool for managing personal finances, including expense tracking, budget planning,

report generation, and financial goal setting.
pet care a web application designed to help pet owners maintain a detailed record of their pet’s

health, activities, and milestones.
photo gallery An application for uploading, organizing, and sharing photos, with features like tag-

ging, album creation, and social sharing.
real estate A platform for listing and searching real estate properties, with features like property

details, image galleries, map integration, and contact forms.
recipe sharing A platform where users can share, search, and save recipes, with features like ingredi-

ent lists, cooking instructions, and user ratings.
social media A social media platform where users can create profiles, post updates, follow others,

like and comment on posts, and manage a feed of updates.
task management An application for managing tasks and projects, with features like task creation, as-

signment, progress tracking, and notifications.
travel planning An app for planning and booking travel, including flight and hotel searches, itinerary

creation, and travel recommendations
weather An app that provides real-time weather updates, forecasts, and severe weather alerts.

C A TEST-LAST DEVELOPMENT (TLD) EXPERIMENT

Of all error types in Tab. 7, type A, B, and D account for overwhelming share among LLMs with
weaker performances (Fig. 3). On the other hand, these errors do not indicate the code is dys-
functional, only violating the tests. In light of this counter argument, we conducte a TLD (test-last
development) experiment, where we rewrite the violated tests to accommodate the verbtaim code
output of these models.

• Type A Error Rollback to an older version of React if the code uses functions therein

• Type B Error Retrofit attribute or text property expectations to match the code

• Type D Error Refactor mock statements to accommodate the module referenced in the
code
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Table 11: Categories for each application of the benchmark

Name Categories
blogging Post Management, Categorization and Tag Management, Commenting System, SEO

Optimization, Post Analytics
customersupport Ticket Management, Agent and Collaboration, Knowledge Base, Notifications and

Automation, Reporting and Analytics
ecommerce Product Listings, Shopping Cart, Order Processing, Payment Integration, Product Re-

views
eventmanagement Event Creation, Ticket Sales, Attendee Registration, Scheduling, General Event Man-

agement
fitnesstracking Activity Management, Goal Setting and Tracking, Progress Monitoring, Health and

Nutrition, Device Integration and Data Management
inventorymanagement Product Cataloging, Stock Level Monitoring, Supplier Management, Order Process-

ing, Reporting
jobboard Job Posting Management, Job Search and Viewing, Job Application Process, Em-

ployer Application Management, User and Profile Management
musicstreaming Search and Discovery, Playback Control, Playlist Management, User Interaction, Ad-

vanced Features
newsaggregator Article Management, User Preferences, Article Interactions, Content Customization,

User Engagement
onlinelearning Enrollment and Progress Tracking, Course Content and Interaction, Assessment and

Certification, User Interaction and Communication, Course and Content Management
onlinemarketplace Product Management, Checkout and Payment, Order Management, Search and Navi-

gation, Bidding and Auctions
personalfinance Expense Management, Income Management, Budget Planning, Report Generation,

Financial Goal Setting
petcare Pet Profiles, Daily Activities, Health Tracking, Reminders, Community
photogallery Photo Upload and Management, Photo Tagging and Organization, Photo and Album

Sharing, Photo Interaction and Social Features, Advanced Photo Features
realestate Search and Filters, Sorting and Viewing, User Interaction, Property Management, Ad-

ditional Features
recipesharing Recipe Management, Search and Filtering, User Interactions, Recipe Viewing, User

Profiles and Preferences
socialmedia Profile Management, Post Management, User Interactions, Notifications, Feed Man-

agement
taskmanagement Task Management, Project Management, User Management, Task Tracking, Ad-

vanced Features
travelplanning Flight Search and Booking, Hotel Search and Booking, Itinerary Creation, Travel Rec-

ommendations, General Booking Logic
weather Current Weather Data Retrieval, Weather Forecast Retrieval, Severe Weather Alerts,

Location-based Services, User Preferences and Settings

Table 12: Tunable parameters on different APIs

temperature top p top k presence penalty frequency penalty
GPT4o Y Y N Y Y
Claude Y Y Y N N
Gemini Y Y Y N N
Fireworks Y Y Y Y Y

To prevent test semantic drifts, we ensure that the test code structure is unmodified, and restrict each
of the above actions to the scope of single statement. As shown in Tab. 14, all LLMs demonstrate
significant pass@1 lift after test modification.
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Table 13: Parameter tuning results on pass@1

Model Lowest Chosen
(temperature = 0.2, top p = 0.8) Highest

gpt-4o 0.81 0.88 0.9
claude-3.5-sonnet 0.82 0.85 0.86
deepsseek-coder-v2-instruct 0.42 0.59 0.59
gemini-1.5-pro 0.59 0.65 0.69
llama-v3-70b-instruct 0.19 0.31 0.34

Table 14: TLD experiment: pass@1 results

Model TDD pass@1 TLD pass@1
llama-v3-70b-instruct 0.3323 0.6400
mixtral-8x22b-instruct 0.3074 0.8000
llama-v3p1-405b-instruct 0.3020 0.8850
llama-v3p1-8b-instruct 0.2512 0.7550
mixtral-8x7b-instruct 0.1269 0.7300
llama-v3p1-70b-instruct 0.1027 0.7900
llama-v3-8b-instruct 0.0679 0.6500

Note that TLD is a popular approach for experimental and prototyping projects, but is widely con-
sidered a malpractice for high-stake projects. Also TLD bears an implicit cost, since the work test
modification itself is also time-consuming.

D PROMPT EXPERIMENTS

We also study whether more sophisticated prompts can lift the model performance.

The first experiment is system prompt, which assigns an explicit role to the LLM and raises its
awareness. Available in all APIs we run, it complements the user prompt (Equation (1)) which gives
detailed instructions to LLM. Equation (2) shows our system prompt.

You are a code generator. (2)

The second experiment is verbose comment, which aims to help LLMs better understand the seman-
tics of tests it tries to pass. For each of the 1000 problems, we feed its test code to GPT-4o and ask
for English summary of the expectation in multiple sentences. The summary is then inserted into
the test code. Tab. 15 shows the verbose comment variant of the test code in Tab. 4.

Table 15: Verbose cmment variant of the test case in Tab. 4

test(
"This test case verifies that a comment can be successfully added to a post by simulating
a successful POST request to the ’/api/comments’ endpoint. The test ensures that the
API call occurs exactly once and that a success message (’Comment added successfully’)
is displayed upon successful submission. This helps confirm the correct interaction
between the frontend and backend components when adding comments.",

async () => {

// Lines identical to the original test case are ignored.

}, 10000);

The third experiment is error debugging. If the generated code fails the test, we add the failed code
and the error log to the prompt, hoping the LLM will generate the correct code by learning from its
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own mistakes. Below is the prompt.

{failed implementation}
The above code is the implementation of {file name}. It failed the tests below
{success test code}{failure test code}
Below is the test log
{error log}
Try to generate {file name} again to pass the tests. RETURN CODE ONLY.

For all three prompt variants, we measure pass@1 (n = 1) against all 1000 problems of the bench-
mark. Also in each experiment, we apply one prompt variant only, and compare it against the control
test using the original prompt (Equation (1)). Tab. 16 summarizes the relative performance gains/loss
of each variant.

Table 16: Prompt experiments: pass@1 gain/loss

System Prompt Verbose Comment Error Debugging
gpt-4o -1.3% -4% -56%
claude-3.5-sonnet 6.3% -1% 38%
deepsseek-coder-v2-instruct -18.2% 7.5% -79%
gemini-1.5-pro 6.3% 2% 22%
llama-v3-70b-instruct 8.5% -7.7% 111%

To our surprise, we are unable to find a prompt variant delivering universally positive (or negative)
impacts to all LLMs. Also we observe the huge swing in the error debugging column. The situation
is unique here because this technique is not needed if the model output is correct on the first try.
Strong LLMs like GPT-4o can produce high pass@1 (n = 1) closed to 0.9, which significantly
shrinks the sample size.

As such, we can not recommend LLM users to adopt or avoid any prompting technique we have
experimented.

E DEEP DIVES TO O1 MODELS

E.1 SINGLE-FEATURE BENCHMARK

We deep dive into ticketSubmission problem under the Customer Support category. The o1 models
solved this challenge, which all other LLMs failed. is the. Tab. 17, lists the key steps of the test
setup and expectations. We blacken the step which trapped non-reasoning models.

Table 17: ticketSubmission problem

test(’shows error when submitting a ticket with missing fields’, async () =>
fetchMock.post(’/api/tickets’, status: 400 );
...
fireEvent.click(screen.getByText(’Submit’));
...
expect(fetchMock.calls(’/api/tickets’).length).toBe(1);
expect(screen.getByText(’Title is required’)).toBeInTheDocument();

, 10000);

Similar to all test cases, the mocked API is first setup, followed by simulated user action, then
expectations on API access and error message. Non-reasoning models understand the semantics,
write functioning code, but fail expectations. The root cause here is the string Title is required, which
is akin to a technique not requiring API access, aka frontend validation. As a best practice (hence
prevelance in pretraining dataset), frontend valiation is lightweight and fast, therefore preferred over
backend validation, as shown in Fig. 4. As such, all non-reasoning models are misled to implement
frontend validation instead of expected behaviors which is backend validation.
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Form Submission

Error: Title is required

No Server Interaction

User JS Client Server

(a) Frontend validation

Form Submission

API Request

400 Error: Title is required

Display Error to User

User JS Client Server

(b) Backend validation

Figure 4: Comparison of frontend and backend validation

On the other hand, o1 models discover the unpopular yet correct implementation: unconditionally
visit the API, and output the Title is required error message upon a 400 response. Below is the
ChatGPT reasoning chain, in which steps reasoning the 400 response is blackened.

Mapping out the component −→ Setting up event handlers −→
Setting up the form −→ Writing test cases −→
Refining the approach −→ Refining error handling −→
Adjusting error handling −→ Adjusting code logic −→
Updating JavaScript code

The most crucial step here is Refining the approach. Below is its detailed wording.

I’m updating the code to ensure a fetch request is always sent, even without a title.
The server will respond with a 400 status if the title is absent.

Evidently, the step before it (Writing test cases) conducted certain verification, which leads the
model to pivot to the right path.

Unfortunatelly the reasoning models can also fall for the same trap. Below is a ChatGPT reasoning
chain leading o1-preview to the faulty implementation like previous models.

Mapping out test strategy −→ Setting up the test −→
Customer service improvement −→ Setting up for data −→
Setting up the form −→ Verifying form submission −→
SHOWING ERRORS −→ Refining the form handling

On a closer look, step Customer service improvement derails the model from backend validation
to frontend validation.

I’m thinking about creating a TicketSubmission component with
a ’Title’ input and ’Submit’ button. Submitting the form will trigger
a POST request to ’/api/tickets’, validating the ’Title’ field before submission.

More interestingly, the step Verifying form submission does not correct the wrong direction, but
solidify it.

I’m thinking about how the form ensures ’Title’ must be filled.
It sends a POST request if ’Title’ is entered, showing success
or ’Title is required’ based on the response status.

With these superficial clues, we speculate that the derailing is due to preemption of original expecta-
tions by model’s inherent knowledge. The subsequent verification step is derived from neighboring
steps already derailed, instead of orginal expectations only accessible from the input tokens.
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E.2 DUO-FEATURE BENCHMARK

The duo-feature benchmark was composed in two ways. The first way is shown in Tab. 18 (a), in
which the original export name of the single-feature benchmark is preserved as is. The second way
is shown in Tab. 18 (b), where the export names are normalized to a unified name App.

Table 18: Two formats of the duo-feature benchmark

...
import TaskA from ’./TaskA_B’;
import TaskB from ’./TaskA_B’;

test("Success at task A", async () =>
...
render(
<MemoryRouter><TaskA /></MemoryRouter>

);
...

, 10000);

test("Failure at task A", async () =>
...
render(
<MemoryRouter><TaskA /></MemoryRouter>

);
...

, 10000);

test("Success at task B", async () =>
...
render(
<MemoryRouter><TaskB /></MemoryRouter>

);
...

, 10000);

test("Failure at task B", async () =>
...
render(
<MemoryRouter><TaskB /></MemoryRouter>

);
...

, 10000);

(a) Raw format

...

...
import App from ’./TaskA_B’;

test("Success at task A", async () =>
...
render(
<MemoryRouter><App /></MemoryRouter>

);
...

, 10000);

test("Failure at task A", async () =>
...
render(
<MemoryRouter><App /></MemoryRouter>

);
...

, 10000);

test("Success at task B", async () =>
...
render(
<MemoryRouter><App /></MemoryRouter>

);
...

, 10000);

test("Failure at task B", async () =>
...
render(
<MemoryRouter><App /></MemoryRouter>

);
...

, 10000);

(b) Normalized format

Tab. 8 shows results from the normalized format. Under the raw format, all models struggle. Most
strikingly, o1 models fail all problems (Tab. 19).

Table 19: Duo-feature benchmark raw format: pass@1 results for selected models

Model pass@1
claude-3-5-sonnet 0.32
gpt-4o-2024-08-06 0.026
deepseek-v2.5 0.02
mistral-large-2 0.02
o1-mini 0
o1-preview 0

To find the root cause, we find the raw format (Tab. 18 (a)) has two imports of different names,
i.e. TaskA and TaskB. But they are actually default imports (without curly braces) which are name-
agnostic. Also since only one default export is allowed per module, this format is in fact semantically
equivalent to the normalized format in Tab. 18 (b). Both formats demand the models to build a single
module implementing all expectations, with a single default export. To help readers understand
related concepts, we explain JavaScript export rules in Tab. 20.

Tab. 21 collects different ways models cope with this challenge. Tab. 21 (d) is the only right answer,
but also the least straightforward, challenging the intuition trap that two exports from two separate
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Table 20: Illustration of JavaScript default export in comparison to named imports

Named Exports Default Export
Purpose Export multiple items from a module Export a single item from a module
Syntax export const x = ...; export default ...;

export function y() {...}
Import Syntax import { x, y } from import anyName from

’./module’; ’./module’;
Curly Braces Required during import Not required during import
Import Naming Must use the exact exported names Can be imported with any name

(can use as to rename)
Multiplicity Multiple named exports per module Only one default export per module
Use Case Utility functions, constants, classes Main functionality of a module
Export Location Anywhere in the module Bottom or after the main logic

modules are needed. Both non-reasoning and reasoning models fall for the trap and attempt to split
the implementation into two modules, (Tab. 21 (a), (b), (c)), resulting in very high failure rates.

Table 21: Patterns to address the duo-feature benchmark raw format (Tab. 18 (a))

function TaskA() {
// Implementation of TaskA

}

function TaskB() {
// Implementation of TaskB

}
export default TaskA;
export { TaskB };

(a) One default export and one named export

function TaskA() {
// Implementation of TaskA

}

function TaskB() {
// Implementation of TaskB

}

export { TaskA, TaskB };

(b) Two named exports

function TaskA_or_B() {
// Implementation of TaskA or TaskB

}

export default TaskA_or_B;

(c) Only one task is implemented and exported

function TaskA_or_B() {
// Implementation of both TaskA and TaskB

}

export default TaskA_or_B;

(d) Two tasks jointly implemented and exported

Next, we try to understand why non-reasoning models occasionally succeed by following the pattern
of Tab. 21 (d), but non-reasoning models never do so. We suspect that the normalized format (Tab. 18
(b)) definitely dominates the pretraining/posttraining dataset, but does not exclude the raw format
(Tab. 18 (a)), as well as the matching solutions. This makes the success possible.

On the other hand, from the first reasoning step which often plays the role of planning, reasoning
models commit to the wrong judgment, and do not get a chance to correct the course in subsequent
steps. Below is the detailed wording of the first reasoning step from a ChatGPT reeactment.

To progress, the key task is creating components TaskA and TaskB in TaskA B.js
to ensure all tests are successfully passed.

Comparing to the mistakes made in Sec. E.1, the mistake in the above step covers a larger scope. It
is reasonable to argue that mistakes made in large-scoped steps are more fatal and harder to correct.

F LINE-OF-CODE (LOC) ANALYSIS

Since top LLMs with SOTAs are proprietary, mechanistic studies are impossible. Therefore, we can
only seek insights from model outputs. Thanks to the modularized design of the React framework,
the solutions output by all models universally follow the template outlined in Tab. 3, with no need
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for any explicit prompting. As such, we use LOC (line-of-code) as the proxy signal. Results in this
appendix are from the single-feature benchmark.

F.1 LOC DISTRIBUTION BY MODELS

Table 22: Models ranked by median LOC with pass@1

Model Median LOC pass@1
mixtral-8x7b-instruct 35 0.1269
llama-v3-8b-instruct 39 0.0679
llama-v3p1-405b-instruct 40 0.3020
gpt-4o-2024-08-06 40 0.8850
deepseek-coder-v2-instruct 40 0.7002
gpt-4o-mini 40 0.8271
mistral-large-2 41 0.7804
gemini-1.5-flash 41 0.5700
llama-v3p1-8b-instruct 42 0.2512
mixtral-8x22b-instruct 43 0.3074
claude-3.5-sonnet 43 0.8808
llama-v3-70b-instruct 43 0.3323
deepseek-coder-v2-lite-instruct 43 0.4606
gemini-1.5-pro 45 0.6813
llama-v3p1-70b-instruct 46 0.1027

In Tab. 22, we rank models by their median LOC alongside their respective pass@1 scores. Picking
one pass@k is sufficient because all scores produced basically the same model rankings as shown
in Tab. 6.

We observe that the median LOCs across all models stay close, ranging from 35 to 46. We believe
this narrow range is largely enforced by the conciseness and expressiveness of the React framework
itself. Also there is no strong correlation between the conciseness (median LOC) and correctness
(pass@1). For example, mixtral-8x7b-instruct, which has the shortest median LOC, ranks quite low
on pass@1 (0.1269). Conversely, stronger models like claude-3.5-sonnet and gpt-4o-2024-08-06,
generate longer code. Other models, e.g. deepseek-coder-v2-instruct and gemini-1.5-pro, strike a
balance between median.

Next, we use violin charts to visualize LOC distribution of each model. The distributions are either
bimodal or unimodal, and they are collected in Fig. 5 and Fig. 6 respectively.

Notably, all high-performing models with high pass@1 scores are located in Fig. 5. These models,
such as the gpt-4o variants and deepseek-coder series, demonstrate higher variability in their LOC
distributions, i.e. bimodal. The two distinct peaks in these models’ distributions suggests that they
generate both shorter and longer code lengths, depending on the task. Importantly, the median LOC
values for these bimodal models consistently fall between the two peaks, highlighting a balance in
their code generation. Also the higher of the two peaks often corresponds to smaller LOC. This
suggests that while these models can produce longer code when necessary, they tend to generate
shorter, more optimized code in most cases.

In contrast, Fig. 6 contains smaller models. Some exhibit near-perfect normal distributions, e.g.
mixtral-8x7b-instruct and llama-v3-8b-instruct. These models generate LOC distributions that are
tightly centered around their medians, indicating more consistent and predictable behavior. The lack
of bimodal characteristics in these distributions reflects a more stable output across tasks, but with
lower complexity compared to the larger models in Fig. 5.

F.2 IMPACT OF SUCCESS/FAILURE

To get more insights, we search for statistical distinction between successful model outputs and
failed outputs. In Fig. 7 and 8, we visualize the LOC distribution separately for succssful outputs
and failed ones, for each model. The graphs are ranked by pass@1, where higher pass@1 means
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Figure 5: LOC distribution by model (bimodal)

bigger success sample set and smaller failure sample set. We normalize the width of each violin chart
by its sample set size, hence resulting in the thinnest failure graph for the model with the highest
pass@1. The graph gradually grows wider as the model performance degrades. The opposite pattern
is observed for the success violin chart.

An important finding here is that the success distribution is always more complex than its failure
counterpart, with more peaks and deviations. Fig. 8 groups lower performing models whose failure
sample set dominates the success sample set. The failure LOC distributions are unimodal, in contrast
with the multimodal distributions of top models in Fig. 7. This implies the inherent complexity
involved in writing correct code even when the mean LOC is less than 50.

The success/fail LOC distribution of remaining 8 models are shown in Fig. 9.
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Figure 6: LOC distribution by model (unimodal)

success failure

0

20

40

60

80

LO
C

Model gpt-4o-2024-08-06 LOC Distribution (Scaled Width)

(a) gpt-4o-2024-08-06 (pass@1 = 0.885)

success failure

0

20

40

60

LO
C

Model claude-3.5-sonnet LOC Distribution (Scaled Width)
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Figure 7: LOC distribution by model of high pass@1: success vs failure

F.3 LOC DISTRIBUTION BY APPLICATIONS

In Tab. 23, we rank median LOC for each application. Consistent with the case for model ranking
(Tab. 22), the median values stay within a narrow range (37 to 46). This suggests that all models
consistently produce solutions of similar length, irrespective of the task complexity or domain.

Fig. 10 collects violin charts of 14 applications following unimodal distribution, where the model
outputs are centered around a common length, with less variation between extremes. The remaining
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Figure 8: LOC distribution by model of low pass@1: success vs failure

Table 23: Applications ranked by mean LOC

Application Mean LOC
News Aggregator 37
Music Streaming 37
Online Marketplace 37
E-commerce 37
Recipe Sharing 38
Fitness Tracking 38
Online Learning 38
Blogging 39
Weather 40
Real Estate 42
Social Media 42
Job Board 42
Inventory Management 42
Pet Care 42
Travel Planning 42
Personal Finance 43
Customer Support 44
Photo Gallery 44
Event Management 45
Task Management 46

6 applications are in Fig. 11, following multimodal distribution. In both cases, the median LOC is
always positioned centrally in each distribution, which suggests that the code generation is stable
across applications. Applications in Fig. 11 exhibit more complex patterns, but the distributions
remain balanced with the median value positioned at the center of the distribution.
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Figure 9: LOC distribution by model: success and failure

F.4 LOC DISTRIBUTION BY APPLICATIONS: SUCCESS VS FAILURE

We conduct the same study described in Sec. F.2, except we shard the LOC distribution across
applications instead of models. The results are collected in Fig. 12.
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Figure 10: LOC distribution by applications: unimodal

Since each application assembles outputs from all models with full spectrum of performances, the
success and failure data set are about the equal size. Similar to what we have observed in model-
based sharding (Sec. F.2), the distribution pattern for success is equally or more complex than that
for failure, summarized in Tab. 24.
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Figure 11: LOC distribution by applications: multimodal

Table 24: Summary of Fig. 12: unimodal vs multimodal

UniModal Success MultiModal Success
UniModal Failure (b) (q) (t) (c) (d) (f) (g) (h) (j) (k) (l) (m) (n) (o) (p)

MultiModal Failure (a) (e) (i) (r) (s)

G PER-APPLICATION ERROR ANALYSIS

Fig. 13 shows the failure pattern broken down by applications.

1. Consistency Across Applications: All applications exhibit the same general shape—a large
concentration of easier problems on the left side and a few harder problems on the right side.
This consistency suggests that across different domains, there are always a few particularly
challenging problems that models struggle with.

2. Variations in Skewness: Some applications, such as Fitness Tracking and Music Streaming,
show a more pronounced skew with a sharp rise in failure rates for a few problems, indicat-
ing a steeper difficulty curve. Others have a more gradual increase, indicating a more even
distribution of problem difficulty.

3. Extreme Difficulty in Certain Applications: Applications like Customer Support and Pet
Care have a sharper increase towards the right, implying that these domains have a subset
of problems that are especially challenging.

4. Easier Applications: In applications like Weather and Photo Gallery, the overall number of
failures seems lower compared to other appli cations, suggesting that the problems in these
areas were generally easier.

Fig. 14 shows error distribution by applications. Since each application assembles outputs from all
models, the raw error counts are at the same scale for all applications. We do not find any distinctive
patterns. There is neither special error nor special application.

H BIAS ANALYSIS

We conducted a preliminary investigation into potential biases within our benchmark, focusing on
language bias, cultural inclusivity, and implicit assumptions. To this end, we searched the codebase
for gendered terms, stereotypical language, and regional references using an automated analysis
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script. Additionally, we examined API endpoints and user-facing messages for exclusionary patterns
or implicit biases. Our investigation did not identify any instances of such biases in the current
version of the benchmark.

While these findings are encouraging, we recognize the limitations of automated analysis and the
potential for more nuanced biases that may require further investigation. We welcome additional
guidance or suggestions for extending this analysis to ensure a comprehensive evaluation of fairness
within our benchmark.
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Figure 12: LOC Distribution by Application: Success vs Failure31
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Figure 13: Failures per problem by application
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Figure 14: Errors by applications
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