TESTS AS INSTRUCTIONS: A TEST-DRIVEN DEVELOPMENT BENCHMARK FOR LLM CODE GEN ERATION

Anonymous authors

006

008 009 010

011 012 013

014

015

016

017

018 019 020

021 022 Paper under double-blind review

Abstract

This paper focuses on test-driven development (TDD) tasks, where test cases act as both instruction and verification for LLM code generation. We build a TDD benchmark to evaluate frontier models, where reasoning models of OpenAI achieve SOTA. We identify instruction following and in-context learning as the critical abilities for all models to succeed at TDD tasks. We further reveal their vulnerabilities to long instructions as an area of improvement.

1 INTRODUCTION

Code generation/completion is a classical LLM (large language model) task and one of its most important applications. The focus of current research and benchmarks include algorithms(Austin et al., 2021; Chen et al., 2021), tool use(Yan et al., 2024), debugging(Jimenez et al., 2024), etc. Here, a coding task consists of two parts: formulation and verification. The formulation is the task description in natural language, accompanied with code snippets when necessary. The verification is a collection of tests to run against the code generated by LLM. If all tests pass, the evaluated LLM is considered to succeed at the task.

In this paper, we explore a new avenue where tests are *both* task formulation and verification. Specifically, a number of tests in its original code format are copied and pasted into the LLM prompt. A simple prefix is attached instructing the LLM to generate code to pass all given tests. The generated output is evaluated by the same tests. We call this a TDD (test-driven development) task, and for the evaluation purpose, an essemble of TDD tasks a TDD benchmark.

Using the running example in (Beck, 2022), Tab. 1 illustrates how a multi-currency conversion application is gradually built via TDD. Each row represents a feature request codified as a test. Human developers approach TDD *incrementally*, one row per iteration. In each iteration, they write new code to pass the current test, as well as all tests in previous iterations. LLMs approach TDD *at once*. As demonstrated in this paper, they are able to write code to pass multiple tests in one inference, i.e. aggregate multiple iterations into one batch.

Also wordings in the **TDD Task** column are akin to natural language instructions in classical coding
 benchmarks. For human developers, these are considered best practices to bring clarity to their
 coding work. On the other hand, LLMs are able to infer them from tests included in the prompt. As
 such, one can let LLMs skip this step to directly output code, or ask them to explicitly spell out the
 task via chain of thoughts.

We argue that TDD is the norm of modern application development across many domains, from enterprises to startups, consuming numerous engineering hours. In these production environments, tests are the de facto system specs overriding documentations. The maturity of a system can be measured by the size and age gap of its test suite. As such, LLMs with strong TDD capabilities would generate tremendous value to the software industry.

Since tests play pivotal roles in all coding benchmarks, we use Tab. 2 to compare them in three cate gories. The key differentiator between algorithmic and TDD benchmarks is the semantic mutability,
 where tests evaluate solutions to the problem in the former, but define the problem itself in the latter.
 The key differentiator between problem-solving and TDD benchmarks is the scope, where tests are

Test Name	Verifications	Feature	TDD Task
testMultiplication	Ensures multiplying a	Basic dollar	Defines a Dollar cla
	dollar amount by an inte-	multiplication	with amount and times
	ger gives correct results		method
testEquality	Confirms that two	Equality	Adds an equals() meth
	Money objects are equal	check for	for comparing amount
	if they have the same	Money ob-	
	amount and currency	jects	
testFrancMultiplication	Verifies multiplication	Introduction	Creates a Franc cla
	functionality for francs	of Francs	similar to Dollar w
			multiplication
estCurrency	Checks that each Money	Currency	Adds a currency attribution
	object correctly identi-	attribute	in Money class
	fies its currency		
testSimpleAddition	Tests addition of two	Simple addi-	Implements plus()
	Money objects within	tion of Money	adding same-curren
	the same currency	objects	Money objects
testIdentityRate	Validates that the Bank	Bank class for	Introduces Bank cla
	provides a 1:1 exchange	currency con-	with exchange rates
	rate for the same cur-	version	
	rency		
testReduceMoney	Ensures correct conver-	Addition with	Implements conversi
	sion of sums between	conversion	of sums across curre
	different currencies		cies in Bank
testMixedAddition	Verifies handling of	Complex ex-	Refactors to han
	mixed currency addition	pressions with	mixed-currency expr
	and conversion to target	different cur-	sions with conversions
	currency	rencies	

Table 1: An example of test-driven	development tasks
------------------------------------	-------------------

	Algorithmic Bench- marks	TDD Benchmarks	Problem-Solving Benchmarks
Example	Palindrome Check	Multi-currency con-	scikit-learn-14520 is
_	in HumanEval(Chen	version in Tab. 1	sue in SWE-benc
	et al., 2021) and		(examplified in (Ope
	LeetCode		nAI, 2024))
Semantic Mutabil-	Immutable to test	Always mutable to	Sometimes mutabl
ity	changes	test changes as a	to test changes as
		form of feature re-	form of verification
		quest	
Scope	Function	Module	Application
Context Length Re-	Short	Medium	Long
quirement			
Running Overhead	Low (programming	Medium (program-	High (containerize
	language dependen-	ming language and	dependencies)
	cies)	framework depen-	
		dencies)	
Source of Pre-train	Textbooks and online	Open source repos	Open source repos
Knowledge	documents		
Primary Applica-	Coding interview and	Pre-launch feature	Post-launch pate
tions	brainstorming	development	and bugfix

only a slice of the context (along with logs, source code, and the issue description) in the former, but solely comprises the entire context in the latter.

108 109	Below are original contributions of this paper.
110	• TDD Tasks and Benchmarks: We propose the definition of TDD tasks and built to our
111	knowledge the first TDD benchmark. This effort reveals the following insights.
112	• Critical Abilities for TDD Task Success: Pre-train coding knowledge is necessary but
113	insufficient for the success of TDD tasks. We identify the following critical abilities: in-
114	struction following, in-context learning, and reasoning. We expect this list to grow as the
115	investigation deepens.
116	• More tests cause worse performance: The SOTA is significantly lowered after more tests
117	are added, which limits the application scope of LLM-driven TDD. The suspect root cause
118	for the performance bottleneck, e.g., attention decay(Liu et al., 2024), is unconfirmed.
119	
120	The rest of this paper is organized as follows. In Sec. 2, we introduce how the benchmark is built
121	and run. In Sec. 3, we show LLM performance and analyze their errors. In Sec. 4, we discuss the degraded LLM performance under more test cases, and potential root causes. Finally, we discuss
122	related works in Sec. 5 and conclude the paper in Sec. 6.
123	
124 125	
125	2 BENCHMARK
127	2.1 Scope
128	2.1 SCOPE
129	We envision the flourishing of many affordably-trained coding LLMs or SLMs (small language
130	models)(Li et al., 2023; Lozhkov et al., 2024; Hui et al., 2024; Huang et al., 2024) with specialties
131	scoped by the template below.
132	{Programming Language, Framework, Domain, Task}
133	[1 rogramming Language, 1 rame work, Domain, Tusk]
134	Given a software engineering project, the first three elements are decided before the project begins,
135	and do not change during the project. For the last element (task), the engineer regularly shuffles
136	among several tasks, such as comment generation, test generation, code generation, code interpre-
137	tation. As the above template has many instances, we argue for the need of many benchmarks, one
138	for each instance. As a start, this paper presents a benchmark for the following instance.
139 140	{JavaScript, React, Web App, TDD Code Generation}
141	
142	In addition, our choice is backed by following considerations.
143	• Representation Founded in 2013, React(Meta, 2013) is one of the most popular open
144	source projects and a top choice for web app developers. High-quality React code is abun-
145	dant in any LLM pretraining corpuses. Hence, one can safely assume a general or coder
146	LLM to have sufficient React knowledge to complete the task without seeking exernal
147	knowledge.
148	• Scalability As demonstrated in Tab. 3, React code is succinct and compositional, able
149	to implement diverse functionalities in one file. This makes it very convenient for us to
150	innovate evaluations. First, we can define comprehensive tasks even if the LLM has limited
151	context window. Second, by varying test suite size, we can scale the instruction scope to
152 153	search for model limits and hill-climbing directions.
154	• Ecosystem The rich and stable ecosystem of React blesses us with many excellent tools.
155	They greatly facilitates the evaluation work especially the test verification.
156	
157	2.2 TASK FORMULATION
158	Since the formulation of a TDD task minorily consists of year start and a second start
159	Since the formulation of a TDD task primarily consists of verbatim test code, we use a sample web

- app scenario to explain.
- 161 Consider a blogging website, in which a user adds comment to an existing blog post. This user journey is simulated by the unit test in Table 4. Here, fetchMock.post is a lightweight setup to

Table 3: Template of React-based solution

```
// Import Statements
import React from 'react';
// Main component of the application
function App() {
// Business logics to handle user actions
const function A = (...) \rightarrow \{
 . . .
};
const functionB = (...) -> {
  . . .
};
// JSX-based UI layout
return (
 <div>
  // UI events are wired to the calling of functionA and functionB
  </div>
);
};
// Export Statement
export default App;
```

 mock a successful API response without running any additional software components. The following await lines simulate user actions (text input, mouse click etc.). Finally, expect lines examine the expected outcome, i.e. the mocked API should be invoked exactly once and the system response of success should appear on the updated webpage. Similarly, the pairing failure case is shown in Table 5, where a mocked API failure is expected to lead to error message on the updated webpage.

Table 4: Success case for adding a comment to a blog post

```
test("successfully adds a comment to a post", async () => {
  fetchMock.post("/api/comments", 200);

await act(async () => {
   render(<MemoryRouter><App /></MemoryRouter>);
  });
  await act(async () => {
    fireEvent.change(screen.getByPlaceholderText(/Add a comment/i),
    { target: { value: "Great post!" } });
  });
  await act(async () => {
    fireEvent.click(screen.getByText(/Submit/i));
  });
  expect(fetchMock.calls("/api/comments").length).toBe(1);
  expect(screen.getByText(/Comment added successfully/i)).toBeInTheDocument();
  }, 10000);
```

Table 5: Failure case for adding a comment to a blog post

```
211 test("fails to add a comment to a post", async () => {
212 fetchMock.post("/api/comments", 500);
213 // Lines identical to the success case are ignored.
214 expect(screen.getByText(/Failed to add comment/i)).toBeInTheDocument();
215 }, 10000);
```

The prompt is straightforward: we feed test files to the LLM, expecting it to generate code passing these tests. The token length of the prompt is around 0.5K.

Generate App.js to pass the tests below:	(1)
$\{Tab. 4\}\{Tab. 5\}$. RETURN CODE ONLY.	

The benchmark consists of 1000 such tasks. Each task uses a success case and failure case to describe the scenario. These 1000 tasks are aggregated under 20 applications, e.g. blogging, ecommerce, traveling. More details can be found Appendix A.

2.3 TASK VERIFICATION

To succeed at the task defined in Tab. 4 and 5, an LLM is expected to output code following the template in Tab. 3. The code generates a single webpage decorated with a form-like UI element allowing the test-simulated user to add comment. If all expectations in Tab. 4 and 5 are met, the tests pass.

We use pass@k, a metric defined in (Chen et al., 2021) and commonly accepted by subsequent works. Due to budget and rate limit constraints, each task is evaluated at most 10 times, i.e. n = 10. Since k must be no larger than n, we measure pass@1, pass@5, and pass@10. More details on the experiment setup can be found in Appendix B.

EVALUATION RESULTS

3.1 LLM PERFORMANCES

Tab. 6 summarizes the pass@k results of 18 frontier LLMs. We only measure pass@1 for 01 models primarily due to their inference cost. But since the value of pass@k asymptotically increases with k, there is no doubt that the o1 models lead non-reasoning LLMs by an obvious gap. Also worth noting is the impressive performance of open-source LLMs, with deepseek-v2.5 as the top contender.

Table 6: pass@k results for frontier LLMs

	Model	pass@1	pass@5	pass@10
2	o1-preview	0.952	N/A	N/A
3	o1-mini	0.939	N/A	N/A
1	gpt-4o-2024-08-06	0.885	0.9047	0.909
5	claude-3.5-sonnet	0.8808	0.8845	0.886
ò	deepseek-v2.5	0.834	0.8595	0.869
	gpt-4o-mini	0.8271	0.8534	0.858
	mistral-large-2	0.7804	0.8191	0.831
	deepseek-coder-v2-instruct	0.7002	0.8009	0.827
	gemini-1.5-pro	0.6813	0.7678	0.795
	gemini-1.5-flash	0.57	0.6427	0.663
	deepseek-coder-v2-lite-instruct	0.4606	0.6144	0.653
	mixtral-8x22b-instruct	0.3074	0.4821	0.533
	llama-v3-70b-instruct	0.3323	0.4462	0.489
	llama-v3p1-405b-instruct	0.302	0.4053	0.437
	llama-v3p1-8b-instruct	0.2512	0.3941	0.432
	llama-v3p1-70b-instruct	0.1027	0.1848	0.246
	mixtral-8x7b-instruct	0.1269	0.196	0.218
	llama-v3-8b-instruct	0.0679	0.1183	0.139

270 3.2 BENCHMARK DIFFICULTY

274

275

276 277

278

279

281

284

287

289

290 291

309

318

319

320

321

322

We made each model solve each task for 10 times, which gives us 160 solutions per task¹. Fig. 1 shows number of failures per task. The more failures a task collects, the more difficult it is.

Figure 1: Failures per problem

As indicated by the figure, the majority of the problems have low failure rates, i.e. they are relatively easy for LLMs to solve. Conversely, a small cluster of problems on the far right exhibit extremely high failure rates, some remain unsolved by any model. Appendix E will reveal more insights on why they are difficult.

296297 3.3 Does the Code Build?

Of the total 160,000 solutions included in Fig. 1, only 172 have syntax errors, i.e. the build failure rate is 0.1%. In particular, the solutions by 01 models, Claude 3.5, and Mistral Large 2 have no syntax errors. We manually examined a subset of built solutions, and found that they support the feature the test cases intend to evaluate.

This means all LLMs are able to follow high-level instructions and write quality code. The real challenge for them is to meet all test expectations, some explicit and others implicit, therefore failing the task. To verify this hypothesis, we ran an alternative experiment following the TLD (test-last development) approach which significantly boosted *pass*@1 of all tested models. Details are in Appendix C.

308 3.4 Error Types

We study error logs and find LLMs make seven types of errors, coded to A through G. They are summarized in Tab. 7.

The verbatim errors are the original error messages or codes captured by the log. Each of them is broadly scoped to contain a wide array of behaviors. However, in the context of our benchmark, we find all verbatim errors are projected to a narrowband of behaviors attributed to the same root causes.

- Based on the root causes, we further conjecture their connections to model abilities.
 - Preference Alignment: violating unspecified user preference, i.e. the latest stable version
 - In-context Learning: mistmatching string or integer values specified in the model input
 - Instruction Following: misunderstanding or missing the feature requested in test cases
 - Pretraining Knowledge: violating scoping rule of the programming language

¹We exclude o1 models because they are only evaluated once per task. Also given their high success rates, they leave very small impact to the distribution.

Error Code	Name	Verbatim Error	Root Cause	Model
				Ability
А	Version Mis-	TypeError	Deprecated framework	Preferenc
	match		functions are used	Alignmen
В	Text Mis-	TestingLibrary	Attributes or texts of HTML	In-contex
	match	ElementError	tags do not match test expec-	Learning
			tations	
С	API Call Mis-	expect(received)	Mock APIs are called less or	In-contex
	match		more than expected	Learning
D	Uninstalled	Cannot find	Imported module is not in-	Instructio
	Module	module	stalled	Followin
E	Invalid API	fetch-mock	The call signature does not	In-contex
	Call		match the test expectation	Learning
F	Scope Viola-	ReferenceError	An out-of-scope call is made	Pretrainin
	tion		to a locally-defined function	knowledg
G	Missing UI	Element type is	No UI element is defined in	Instructio
	Element	invalid	the code	Following

Table 7: Error table

SINGULAR AND TWIN ERRORS 3.5

An error log can contain a combination of many error types, indicating the code is poorly implemented. But this is not the dominant pattern. 93% of error logs contain either a singular error or twin errors. Fig. 2 shows the distribution of singular and twin errors.

Figure 2: Distribution of singular and twin errors

Singular error means the log contains only one error pointing to a single line. Twin errors are two errors of the same type, preeminently pointing to the same error line. Since the code needs to pass two unit tests, often times the same bug offends both tests. This means that even upon failures, all LLMs produce quality code, but with only one error.

3.6 ERROR DISTRIBUTION BY MODELS

In Fig. 3, we show the error distribution separately for each LLM². The most important finding here is that no model is immune to any of the seven error types, even when the raw error counts differ by one order of magnitude bewteen two extremes.

²o1 models are excluded because their sample sizes are too small (1 run per task instead of 10). They still make the same types of errors as other LLMs.

This means that all models possess the same knowledge and capabilities to write high-quality code which meets test expectations, and same inherent vulnerabilities resulting in the same types of errors. But top models distinguish themselves at lower error rates, i.e. ability to make fewer errors .

DUO-FEATURE BENCHMARK

In light of o1 models' superb performance to saturate the benchmark, we propose a more challenging benchmark by merging two TDD tasks into a duo-feature task. Under this new benchmark, each task consists of four test cases: two successes and two failures. Accordingly, the prompt length is doubled to around 1K tokens. Also the output code follows the same template (Tab. 3), and generates a single webpage decorated with multiple UI elements to support two features.

4.1 LLM PERFORMNACES

As shown in Tab. 8, more test cases cause pass@1 of all LLMs to decrease significantly. Also the SOTA is owned by Claude 3.5.

Model	pass@1
claude-3-5-sonnet	0.679
o1-mini	0.667
o1-preview	0.652
gpt-4o-2024-08-06	0.531
deepseek-v2.5	0.49
mistral-large-2	0.449

Table 8: Duo-feature benchmark: pass@1 for selected LLMs

However, the model behaviors remain largely the same on other aspects described in Sec. 3. The output code is functional with occasional build failures, and make the same errors more frequently.

4.2 INSTRUCTION LOSS

To study why o1 models perform worse than Claude 3.5, we find a task solved by Claude 3.5, but failed by o1-preview. As shown in Tab. 9, this task requires the duo feature of adding comment and retrieving blog posts in a single webpage.

Table 9: A duo-feature TDD task: add comment and retrieve all blog posts

```
import App from './addComment_retrieveAllBlogPosts';
...
test('successfully adds a comment to a post', async () => {
... }
test('fails to add a comment to a post', async () => {
... }
test('Success: retrieve a list of all blog posts', async () => {
... }
test('Failure: retrieve a list of blog posts with server error', async () => {
fetchMock.get('/api/posts', { status: 500, body: { error: 'Internal Server Error' } });
...
expect(fetchMock.calls()).toHaveLength(1);
expect(screen.getByText('Internal Server Error')).toBeInTheDocument();
}, 10000);
```

455 456 457

458

459

435

436 437

438

439

440 441

442 443

444 445

446 447

448 449

450 451

452 453

454

Here, o1-preview passes all tests but the last one. The output code neither attempts to catch the 500 error nor prints out the **Internal Server Error** string. The reasoning chain is normal, and no step specifically mentions the need to catch internal server errors.

Crafting the component \longrightarrow Laying out the requirements \longrightarrow
Importing dependencies \longrightarrow Breaking down the code \longrightarrow
Setting up the app \longrightarrow Testing a post functionality \longrightarrow
Testing API integration

The o1-preview's inherent coding ability is solid, because it solves both tasks separately under the single-feature benchmark. To this end, we suspect the root cause to be instruction loss. It remains unknown whether the instruction is never picked up from the model input, or lost during an early reasoning stage. What we are sure of is the necessiry of full instruction set as the foundation for reasoning, without which the reasoning model will simply fail the task.

471 472

5 RELATED WORKS

473 474 475

476

5.1 CODING-RELATED TASKS AND BENCHMARKS

Prompt-driven coding has become mainstream since the introduction of Codex(Chen et al., 477 2021). The evolution of benchmarks reflect the scaled-up challenges posed to LLMs, from algo-478 rithms(Austin et al., 2021), to data science problems(Lai et al., 2022), object-oriented coding(Du 479 et al., 2023), code execution(Yu et al., 2023), function calling(Yan et al., 2024), SQL queries(Gao 480 et al., 2023), project-level resolution(Jimenez et al., 2024), etc. These benchmarks all rely on test 481 suite of different sizes to verify task success. On the other hand, the task formulation, i.e. the prompt, 482 is becoming longer and harder to specify, resulting in misalignment with its verification counterpart, 483 which can be only addressed by human calibration(OpenAI, 2024). 484

485 TDD benchmarks avoid such misalignment by unifying task formulation and verification, meanwhile introducing other challenges to LLMs.

486 5.2 INSTRUCTION FOLLOWING AND IN-CONTEXT LEARNING 487

488 Instruction following and in-context learning are two of the most desired LLM abilities to ace TDD 489 tasks. Both topics have been extensively researched(Dong et al., 2024; Lou et al., 2024), and their close relations revealed by several empirical or mechanistic studies(Wei et al., 2022; Li et al., 2024; 490 Xie et al., 2022; Hewitt et al., 2024; Singh et al., 2024). Several well-known benchmarks(Chia et al., 491 2023; Jiang et al., 2024; Qin et al., 2024) were also introduced to measure LLM progress on these 492 abilities. 493

494 However, majority of the existing works focus on natural language instructions. Given the practical 495 values of TDD tasks, we would like to see more interests developed over code-based instructions. Our evaluation demonstrates LLMs' remarkable ability to follow coded instructions. But it also 496 revealed their vulnerabilities when coded instructions grow longer. This is related to another stream 497 of works which try to scale natural language instructions(Son et al., 2024; Cheng et al., 2023). We 498 will track closely the development of these two work streams. 499

- 500
- 5.3 REINFORCEMENT LEARNING AND REASONING 501

502 The o1 models have been speculated to leverage many seminal works on reinforcement learning and reasoning. Works on the learning side include self-play(Zhang et al., 2024), self-taught(Zelikman 504 et al., 2022; 2024), learning from running environment(Silver et al., 2017), etc. Works on the infer-505 ence side include process modeling(Lightman et al., 2023), inductive reasoning(Wang et al., 2024), 506 tree search(Anthony et al., 2017), etc. 507

Aside from general reasoning models like o1, many works have applied reinforcement learning to 508 coding-specific problems, including code generation(Jain et al., 2023), test generation(Steenhoek 509 et al., 2023), error repair(Islam et al., 2024b;a), etc. 510

511 The values of reasoning and self-improvement techniques to TDD tasks are best showcased by the exciting SOTA lift to our benchmark. Unfortunately, we also observe the negative impact of 512 instruction loss to reasoning model performances. We think it is worthwhile to incorporate nuanced 513 and complex model input into future reasoning model development. 514

- 5.4 TDD IN LLM CODING 516
- 517

515

Much similar to this paper, some recent works introduced TDD to coding task formulation, and 518 studied best practice and performance impact(Mathews & Nagappan, 2024; Murr et al., 2023; Piya 519 & Sullivan, 2023). But to our knowledge, this is the first paper focusing on TDD benchmarking. 520

521 Finally, one may argue that it is easy to repurpose classical coding benchmarks to evaluate TDD tasks by simply appending their test cases to the prompt. But we argue the benefits and necessity 522 to have dedicated benchmarks to this cause. Just as TDD is the norm in application development 523 emphasizing on business logic, knowledge on input instructions is the most critical factor to task 524 success, overshadowing pretraining knowledge³. We think benchmarks crafted along this line of 525 thinking can appropriately evaluate and challenge LLMs to keep improving on TDD tasks. 526

527 528

529

CONCLUSIONS 6

530 This paper focuses on the TDD aspect of LLM code generation, and claims two contributions. The 531 first is a dedicated TDD benchmark which we use to evaluate 18 frontier LLMs. The second is the insights obtained via the evaluation. Specifically, instruction following and in-context learning are 532 the key areas of improvement for LLMs and reasoning models to excel on more challenging TDD 533 tasks. 534

535 There are two future directions. The first is to grow our benchmark to cover more application 536 scenarios, meanwhile cross-examining learnings from this paper. The second is to explore practical 537 hill-climbing ideas to address the vulnerability to long coded instructions.

⁵³⁸

³This is a comparative argument relevant to other tasks akin to algorithms and data structures. A TDD task cannot succeed without a strong coding LLM.

540 541	References
541 542	Fireship. https://fireship.io/, 2017.
543 544 545 546	A. Accomazzo, N. Murray, and A. Lerner. <i>Fullstack React: The Complete Guide to ReactJS and Friends</i> . Fullstack.io, 2017. ISBN 9780991344628. URL https://books.google.com/books?id=ppjUtAEACAAJ.
540 547 548	Thomas W. Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and tree search. In <i>Neural Information Processing Systems</i> , 2017.
549 550 551 552	Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large language models. https://arxiv.org/abs/2108.07732, 2021.
553 554 555	K. Beck. <i>Test Driven Development: By Example</i> . Addison-Wesley Signature Series (Beck). Pearson Education, 2022. ISBN 9780137585236. URL https://books.google.com/books?id=zNnPEAAAQBAJ.
556 557 558 559 560 561 562 563 564 565 566	Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo- tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code. https://arxiv.org/abs/2107.03374, 2021.
567 568	Zhoujun Cheng, Jungo Kasai, and Tao Yu. Batch prompting: Efficient inference with large language model apis, 2023. URL https://arxiv.org/abs/2301.08721.
569 570 571 572	Yew Ken Chia, Pengfei Hong, Lidong Bing, and Soujanya Poria. Instructeval: Towards holistic evaluation of instruction-tuned large language models, 2023. URL https://arxiv.org/abs/2306.04757.
573 574 575	Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in- context learning, 2024. URL https://arxiv.org/abs/2301.00234.
576 577 578 579	Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluating llms on class-level code generation. https://arxiv.org/abs/2308.01861, 2023.
580 581 582	Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou. Text-to-sql empowered by large language models: A benchmark evaluation, 2023. URL https: //arxiv.org/abs/2308.15363.
583 584 585	John Hewitt, Nelson F. Liu, Percy Liang, and Christopher D. Manning. Instruction following without instruction tuning, 2024. URL https://arxiv.org/abs/2409.14254.
586 587 588 589	Siming Huang, Tianhao Cheng, J. K. Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang, J. H. Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu, Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for top-tier code large language models, 2024. URL https://arxiv.org/abs/2411.04905.
590 591 592 593	Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xu-ancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL https://arxiv.org/abs/2409.12186.

- Nafis Tanveer Islam, Mohammad Bahrami Karkevandi, and Peyman Najafirad. Code security vulnerability repair using reinforcement learning with large language models, 2024a. URL https://arxiv.org/abs/2401.07031.
- Nafis Tanveer Islam, Joseph Khoury, Andrew Seong, Mohammad Bahrami Karkevandi, Gonzalo De La Torre Parra, Elias Bou-Harb, and Peyman Najafirad. Llm-powered code vulnerability repair with reinforcement learning and semantic reward, 2024b. URL https://arxiv.org/abs/ 2401.03374.
- Abhinav Jain, Chima Adiole, Swarat Chaudhuri, Thomas Reps, and Chris Jermaine. Coarse-tuning
 models of code with reinforcement learning feedback, 2023. URL https://arxiv.org/
 abs/2305.18341.
- Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin Jiang, Qun Liu, and Wei Wang. Followbench: A multi-level fine-grained constraints following benchmark for large language models, 2024. URL https://arxiv.org/abs/2310.20410.
- Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
 Narasimhan. SWE-bench: Can language models resolve real-world github issues? In *The Twelfth International Conference on Learning Representations*, 2024.
- Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data science code generation. https://arxiv.org/abs/2211.11501, 2022.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao 617 Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, 618 Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João 619 Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-620 gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra 621 Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, 622 Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-623 cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, 624 Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex 625 Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, 626 Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source 627 be with you!, 2023. URL https://arxiv.org/abs/2305.06161. 628

- ⁶²⁹
 ⁶³⁰ Zhuowei Li, Zihao Xu, Ligong Han, Yunhe Gao, Song Wen, Di Liu, Hao Wang, and Dimitris N.
 ⁶³¹ Metaxas. Implicit in-context learning, 2024. URL https://arxiv.org/abs/2405.
 ⁶³² 14660.
- Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step, 2023. URL
 https://arxiv.org/abs/2305.20050.
- Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the Association for Computational Linguistics*, 12, 2024.
- Renze Lou, Kai Zhang, and Wenpeng Yin. Large language model instruction following: A survey of progresses and challenges, 2024. URL https://arxiv.org/abs/2303.10475.
- Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,
 Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo,
 Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank

648 649 650 651 652 653	Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder 2 and the stack v2: The next generation, 2024. URL https://arxiv.org/abs/2402.19173.
654 655 656	Noble Saji Mathews and Meiyappan Nagappan. Test-driven development for code generation, 2024. URL https://arxiv.org/abs/2402.13521.
657	Meta. React framework. https://reactjs.org/, 2013.
658 659	Mozilla. Mdn web docs. https://https://developer.mozilla.org/, 2005.
660 661	Lincoln Murr, Morgan Grainger, and David Gao. Testing llms on code generation with varying levels of prompt specificity, 2023. URL https://arxiv.org/abs/2311.07599.
662 663 664	OpenAI. Introducing swe-bench verified. https://openai.com/index/ introducing-swe-bench-verified/,2024.
665 666	Sanyogita Piya and Allison Sullivan. Llm4tdd: Best practices for test driven development using large language models, 2023. URL https://arxiv.org/abs/2312.04687.
667 668 669 670	Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang Wang, Xuansheng Wu, Fei Liu, Pengfei Liu, and Dong Yu. Infobench: Evaluating instruction following ability in large language models, 2024. URL https://arxiv.org/abs/2401.03601.
671 672 673 674	David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si- monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce- ment learning algorithm, 2017. URL https://arxiv.org/abs/1712.01815.
675 676 677	Aaditya K. Singh, Ted Moskovitz, Felix Hill, Stephanie C. Y. Chan, and Andrew M. Saxe. What needs to go right for an induction head? a mechanistic study of in-context learning circuits and their formation, 2024. URL https://arxiv.org/abs/2404.07129.
678 679 680 681	Guijin Son, Sangwon Baek, Sangdae Nam, Ilgyun Jeong, and Seungone Kim. Multi-task infer- ence: Can large language models follow multiple instructions at once?, 2024. URL https: //arxiv.org/abs/2402.11597.
682 683 684	Benjamin Steenhoek, Michele Tufano, Neel Sundaresan, and Alexey Svyatkovskiy. Reinforcement learning from automatic feedback for high-quality unit test generation, 2023. URL https: //arxiv.org/abs/2310.02368.
685 686 687	Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah Goodman. Hypothesis search: Inductive reasoning with language models. In <i>The Twelfth International Conference on Learning Representations</i> , 2024.
688 689 690 691	Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions, 2023. URL https://arxiv.org/abs/2212.10560.
692 693 694	Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2022. URL https://arxiv.org/abs/2109.01652.
695 696 697 698	Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context learning as implicit bayesian inference, 2022. URL https://arxiv.org/abs/2111.02080.
699 700 701	Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica, and Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs. berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html,

2024.

- Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Tao Xie, and Qianxiang Wang. Codereval: A benchmark of pragmatic code generation with generative pre-trained models, 2023.
- Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: self-taught reasoner bootstrapping reasoning with reasoning. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, 2022.
- Fric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
 Quiet-star: Language models can teach themselves to think before speaking, 2024. URL https:
 //arxiv.org/abs/2403.09629.
- Ruize Zhang, Zelai Xu, Chengdong Ma, Chao Yu, Wei-Wei Tu, Shiyu Huang, Deheng Ye, Wenbo Ding, Yaodong Yang, and Yu Wang. A survey on self-play methods in reinforcement learning, 2024. URL https://arxiv.org/abs/2408.01072.
- 716 717

A BENCHMARK CONSTRUCTION

The construction of the benchmark follows the methodology of Self-Instruct(Wang et al., 2023). As
the initial step, humans proposed 20 web applications listed in Tab. 10, referencing main applications
of JavaScript and React(Accomazzo et al., 2017; Mozilla, 2005; fir, 2017).

Subsequently, five categories are proposed for each application, shown in Tab. 11. Using these human-generated seeds, we prompt GPT-40 to propose, for each category, 10 scenarios, each described by a sentence. This results in a total of 1000 scenarios for the benchmark. As the final step, after reviewing these scenarios by humans, we further GPT-40 to generate a success test and failure test for each scenario, exemplified in Sec. 2.2.

727 728

729

753

B EXPERIMENT SETUP

The most straightforward way for us to access LLMs are public token-based APIs. For top close-sourced models, our only option is via the owners' APIs. The top open-sourced models are hosted by a few platforms, among which we choose Fireworks.

Although each API bears its minor difference, all APIs are heavily influenced by the design of OpenAI API. Tab. 12 lists the tunable parameters exposed by each API. Since we do not know the default parameter value set by each API provider, we explicitly set the same parameter values to all LLMs under evaluation, whenever applicable. To limit the search space, we only tune *temperature* and *top_p*, the two most popular parameters available on all platforms. For other parameters, we assign fixed value to them across all LLMs.

We conducted a grid search to locate a sweet spot at which all LLMs deliver near-best results. We chose 100 random problems from the benchmark, 5 out of each application. We then choose the large model out of the five leading model families, and measured their pass@1 (n = 1) on the discrete 2D space of *temperature* and *top_n*, where *temperature* = 0, 0.1, 0.2, ..., 1, and $top_p = 0, 0.1, 0.2, ..., 1$.

Tab. 13 presents the lowest and highest *pass*@1 value by each LLM in this grid search. Based on the results, we finalize our parameters as follows.

747temperature = 0.2748 $top_p = 0.8$ 749 $top_k = 40$ 750 $presence_penalty = 0$ 751 $presence_penalty = 0$ 752 $frequency_penalty = 0$

 Results of our full-scale evaluations also align with this small-scale experiment, except for the
 Deepseek coder model whose performance exceeds expectation. Also worth noting is that opensource models exhibit larger performance variation than closed-source models.

Table 10: Applications of the benchmark

	Table 10: Applications of the benchmark
	
Name	Overview
blogging	A content management system for creating and managing blogs, with features like
	user registration, post creation, categorization, commenting, and SEO optimization.
customer support	A help desk application where users can submit support tickets, track their status,
	access a knowledge base, and chat with support agents.
e-commerce	A fully functional e-commerce site with features like product listings, shopping cart,
	user authentication, order processing, and payment integration.
event management	An app for organizing events, including event creation, ticket sales, attendee registra-
	tion, and scheduling
fitness tracking	An application for tracking fitness activities, setting goals, monitoring progress, and
	integrating with wearable devices.
nventory management	A web application designed to help businesses track and manage their inventory. Fea-
	tures include product cataloging, stock level monitoring, automated reorder alerts,
	supplier management, sales and purchase order processing, and detailed reporting on
	inventory performance.
job board	A job listing site where employers can post job openings and job seekers can search
	and apply for jobs.
music streaming	A platform for streaming music, creating playlists, and discovering new artists.
news aggregator	A news platform that aggregates articles from various sources, categorizes them, and
	allows users to customize their news feed.
online learning	An LMS where users can enroll in courses, watch videos, complete quizzes, track
	progress, and receive certificates.
online marketplace	A platform for buying and selling goods, similar to eBay, with features like user rat-
	ings, bidding, and secure transactions.
personal finance	A tool for managing personal finances, including expense tracking, budget planning,
	report generation, and financial goal setting.
pet care	a web application designed to help pet owners maintain a detailed record of their pet's
	health, activities, and milestones.
photo gallery	An application for uploading, organizing, and sharing photos, with features like tag-
	ging, album creation, and social sharing.
real estate	A platform for listing and searching real estate properties, with features like property
	details, image galleries, map integration, and contact forms.
recipe sharing	A platform where users can share, search, and save recipes, with features like ingredi-
	ent lists, cooking instructions, and user ratings.
social media	A social media platform where users can create profiles, post updates, follow others,
	like and comment on posts, and manage a feed of updates.
task management	An application for managing tasks and projects, with features like task creation, as-
	signment, progress tracking, and notifications.
travel planning	An app for planning and booking travel, including flight and hotel searches, itinerary
-	creation, and travel recommendations
	An app that provides real-time weather updates, forecasts, and severe weather alerts.

796 797 798

799 800

801

802

803

804

805

806 807

808

809

756

A TEST-LAST DEVELOPMENT (TLD) EXPERIMENT С

Of all error types in Tab. 7, type A, B, and D account for overwhelming share among LLMs with weaker performances (Fig. 3). On the other hand, these errors do not indicate the code is dysfunctional, only violating the tests. In light of this counter argument, we conducte a TLD (test-last development) experiment, where we rewrite the violated tests to accommodate the verbtaim code output of these models.

- Type A Error Rollback to an older version of React if the code uses functions therein
- Type B Error Retrofit attribute or text property expectations to match the code
- Type D Error Refactor mock statements to accommodate the module referenced in the code

850 851

Name	Categories
blogging	Post Management, Categorization and Tag Management, Commenting System, SEC
	Optimization, Post Analytics
customersupport	Ticket Management, Agent and Collaboration, Knowledge Base, Notifications and
	Automation, Reporting and Analytics
ecommerce	Product Listings, Shopping Cart, Order Processing, Payment Integration, Product Re-
	views
eventmanagement	Event Creation, Ticket Sales, Attendee Registration, Scheduling, General Event Man
	agement
fitnesstracking	Activity Management, Goal Setting and Tracking, Progress Monitoring, Health and
C	Nutrition, Device Integration and Data Management
inventorymanagement	Product Cataloging, Stock Level Monitoring, Supplier Management, Order Process-
	ing, Reporting
jobboard	Job Posting Management, Job Search and Viewing, Job Application Process, Em-
9	ployer Application Management, User and Profile Management
musicstreaming	Search and Discovery, Playback Control, Playlist Management, User Interaction, Ad
0	vanced Features
newsaggregator	Article Management, User Preferences, Article Interactions, Content Customization
66 6	User Engagement
onlinelearning	Enrollment and Progress Tracking, Course Content and Interaction, Assessment and
C	Certification, User Interaction and Communication, Course and Content Managemen
onlinemarketplace	Product Management, Checkout and Payment, Order Management, Search and Navi
1	gation, Bidding and Auctions
personalfinance	Expense Management, Income Management, Budget Planning, Report Generation
1	Financial Goal Setting
petcare	Pet Profiles, Daily Activities, Health Tracking, Reminders, Community
photogallery	Photo Upload and Management, Photo Tagging and Organization, Photo and Albun
	Sharing, Photo Interaction and Social Features, Advanced Photo Features
realestate	Search and Filters, Sorting and Viewing, User Interaction, Property Management, Ad
	ditional Features
recipesharing	Recipe Management, Search and Filtering, User Interactions, Recipe Viewing, Use
	Profiles and Preferences
socialmedia	Profile Management, Post Management, User Interactions, Notifications, Feed Man
	agement
taskmanagement	Task Management, Project Management, User Management, Task Tracking, Ad
e	vanced Features
travelplanning	Flight Search and Booking, Hotel Search and Booking, Itinerary Creation, Travel Rec
r0	ommendations, General Booking Logic
weather	Current Weather Data Retrieval, Weather Forecast Retrieval, Severe Weather Alerts
	Location-based Services, User Preferences and Settings

Table 11: Categories for each application of the benchmark

Table 12: Tunable parameters on different APIs

	temperature	top_p	top_k	presence_penalty	frequency_penalty
GPT40	Y	Y	N	Y	Y
Claude	Y	Y	Y	N	Ν
Gemini	Y	Y	Y	N	Ν
Fireworks	Y	Y	Y	Y	Y

To prevent test semantic drifts, we ensure that the test code structure is unmodified, and restrict each of the above actions to the scope of single statement. As shown in Tab. 14, all LLMs demonstrate significant *pass*@1 lift after test modification.

Model	Lowest	Chosen (temperature = 0.2 , top_p = 0.8)	Highest
gpt-40	0.81	0.88	0.9
claude-3.5-sonnet	0.82	0.85	0.86
deepsseek-coder-v2-instruct	0.42	0.59	0.59
gemini-1.5-pro	0.59	0.65	0.69
llama-v3-70b-instruct	0.19	0.31	0.34

Table 13: Parameter tuning results on pass@1

Table 14: TLD experiment: pass@1 results

Model	TDD pass@1	TLD pass@1
llama-v3-70b-instruct	0.3323	0.6400
mixtral-8x22b-instruct	0.3074	0.8000
llama-v3p1-405b-instruct	0.3020	0.8850
llama-v3p1-8b-instruct	0.2512	0.7550
mixtral-8x7b-instruct	0.1269	0.7300
llama-v3p1-70b-instruct	0.1027	0.7900
llama-v3-8b-instruct	0.0679	0.6500

Note that TLD is a popular approach for experimental and prototyping projects, but is widely considered a malpractice for high-stake projects. Also TLD bears an implicit cost, since the work test modification itself is also time-consuming.

D PROMPT EXPERIMENTS

We also study whether more sophisticated prompts can lift the model performance.

The first experiment is *system prompt*, which assigns an explicit role to the LLM and raises its awareness. Available in all APIs we run, it complements the user prompt (Equation (1)) which gives detailed instructions to LLM. Equation (2) shows our system prompt.

The second experiment is *verbose comment*, which aims to help LLMs better understand the semantics of tests it tries to pass. For each of the 1000 problems, we feed its test code to GPT-40 and ask for English summary of the expectation in multiple sentences. The summary is then inserted into the test code. Tab. 15 shows the verbose comment variant of the test code in Tab. 4.

Table 15: Verbose cmment variant of the test case in Tab. 4

test(
 "This test case verifies that a comment can be successfully added to a post by simulating
 a successful POST request to the '/api/comments' endpoint. The test ensures that the
 API call occurs exactly once and that a success message ('Comment added successfully')
 is displayed upon successful submission. This helps confirm the correct interaction
 between the frontend and backend components when adding comments.",
 async () => {
 // Lines identical to the original test case are ignored.
 }, 10000);

917 The third experiment is *error debugging*. If the generated code fails the test, we add the failed code and the error log to the prompt, hoping the LLM will generate the correct code by learning from its

918	own mistakes. Below is the prompt.
919	
920	$\{failed_implementation\}$
921	The above code is the implementation of $\{file_name\}$. It failed the tests below
922	$\{success_test_code\}\{failure_test_code\}$
923	Below is the test log
924	{error_log}
925	
926	Try to generate $\{file_name\}$ again to pass the tests. RETURN CODE ONLY.
927	

For all three prompt variants, we measure pass@1 (n = 1) against all 1000 problems of the benchmark. Also in each experiment, we apply one prompt variant only, and compare it against the control test using the original prompt (Equation (1)). Tab. 16 summarizes the relative performance gains/loss of each variant.

Table 16: Prompt experiments: pass@1 gain/loss

	System Prompt	Verbose Comment	Error Debugging
gpt-4o	-1.3%	-4%	-56%
claude-3.5-sonnet	6.3%	-1%	38%
deepsseek-coder-v2-instruct	-18.2%	7.5%	-79%
gemini-1.5-pro	6.3%	2%	22%
Ilama-v3-70b-instruct	8.5%	-7.7%	111%

To our surprise, we are unable to find a prompt variant delivering universally positive (or negative) impacts to all LLMs. Also we observe the huge swing in the error debugging column. The situation is unique here because this technique is not needed if the model output is correct on the first try. Strong LLMs like GPT-40 can produce high pass@1 (n = 1) closed to 0.9, which significantly shrinks the sample size.

As such, we can not recommend LLM users to adopt or avoid any prompting technique we have experimented.

E DEEP DIVES TO 01 MODELS

E.1 SINGLE-FEATURE BENCHMARK

We deep dive into *ticketSubmission* problem under the *Customer Support* category. The o1 models solved this challenge, which all other LLMs failed. is the. Tab. 17, lists the key steps of the test setup and expectations. We blacken the step which trapped non-reasoning models.

Table 17: ticketSubmission problem

```
test('shows error when submitting a ticket with missing fields', async () =>
   fetchMock.post('/api/tickets', status: 400 );
   ...
   fireEvent.click(screen.getByText('Submit'));
   ...
   expect(fetchMock.calls('/api/tickets').length).toBe(1);
   expect(screen.getByText('Title is required')).toBeInTheDocument();
, 10000);
```

Similar to all test cases, the mocked API is first setup, followed by simulated user action, then
expectations on API access and error message. Non-reasoning models understand the semantics,
write functioning code, but fail expectations. The root cause here is the string *Title is required*, which
is akin to a technique not requiring API access, aka frontend validation. As a best practice (hence
prevelance in pretraining dataset), frontend valiation is lightweight and fast, therefore preferred over
backend validation, as shown in Fig. 4. As such, all non-reasoning models are misled to implement frontend validation instead of expected behaviors which is backend validation.

972 User IS Client Server User IS Client Server 973 974 Form Submission Form Submission 975 API Request 976 Error: Title is required 977 400 Error: Title is required 978 979 No Server Interaction Display Error to User 980 981 982 (a) Frontend validation (b) Backend validation 983 984 Figure 4: Comparison of frontend and backend validation 985 986 987 On the other hand, o1 models discover the unpopular yet correct implementation: unconditionally visit the API, and output the *Title is required* error message upon a 400 response. Below is the 988 ChatGPT reasoning chain, in which steps reasoning the 400 response is blackened. 989 990 Mapping out the component \longrightarrow Setting up event handlers \longrightarrow 991 Setting up the form \longrightarrow Writing test cases \longrightarrow 992 Refining the approach \longrightarrow Refining error handling \longrightarrow 993 Adjusting error handling \longrightarrow Adjusting code logic \longrightarrow 994 Updating JavaScript code 995 996 The most crucial step here is **Refining the approach**. Below is its detailed wording. 997 998 I'm updating the code to ensure a fetch request is **always** sent, even without a title. 999 The server will respond with a 400 status if the title is absent. 1000 1001 Evidently, the step before it (Writing test cases) conducted certain verification, which leads the 1002 model to pivot to the right path. 1003 Unfortunatelly the reasoning models can also fall for the same trap. Below is a ChatGPT reasoning 1004 chain leading o1-preview to the faulty implementation like previous models. 1005 Mapping out test strategy \longrightarrow Setting up the test \longrightarrow 1007 **Customer service improvement** \longrightarrow Setting up for data \longrightarrow Setting up the form \longrightarrow Verifying form submission \longrightarrow 1008 SHOWING ERRORS \longrightarrow Refining the form handling 1009 1010 On a closer look, step **Customer service improvement** derails the model from backend validation 1011 to frontend validation. 1012 1013 I'm thinking about creating a TicketSubmission component with 1014 a 'Title' input and 'Submit' button. Submitting the form will trigger 1015 a POST request to '/api/tickets', validating the 'Title' field before submission. 1016 1017 More interestingly, the step Verifying form submission does not correct the wrong direction, but 1018 solidify it. 1019 1020 I'm thinking about how the form ensures 'Title' must be filled. 1021 It sends a POST request if 'Title' is entered, showing success or 'Title is required' based on the response status. 1023 With these superficial clues, we speculate that the derailing is due to preemption of original expecta-1024 tions by model's inherent knowledge. The subsequent verification step is derived from neighboring 1025 steps already derailed, instead of orginal expectations only accessible from the input tokens.

1026 E.2 DUO-FEATURE BENCHMARK

1028 The duo-feature benchmark was composed in two ways. The first way is shown in Tab. 18 (a), in 1029 which the original export name of the single-feature benchmark is preserved as is. The second way 1030 is shown in Tab. 18 (b), where the export names are normalized to a unified name **App**.

Table 18: Two formats of the duo-feature benchmark

```
1033
                                                             . . .
1034
          import TaskA from './TaskA_B';
          import TaskB from './TaskA_B';
                                                             import App from './TaskA_B';
1035
1036
          test("Success at task A", async () =>
                                                             test("Success at task A", async () =>
1037
                                                               render(
            render(
1038
              <MemoryRouter><TaskA /></MemoryRouter>
                                                                 <MemoryRouter><App /></MemoryRouter>
            );
                                                               );
1039
1040
           10000);
                                                               10000);
1041
          test("Failure at task A", async () =>
                                                             test("Failure at task A", async () =>
1042
            render(
                                                               render (
1043
              <MemoryRouter><TaskA /></MemoryRouter>
                                                                  <MemoryRouter><App /></MemoryRouter>
1044
            );
                                                               );
1045
          , 10000);
                                                               10000);
1046
          test("Success at task B", async () =>
                                                             test("Success at task B", async () =>
1047
1048
            render(
                                                               render (
              <MemoryRouter><TaskB /></MemoryRouter>
                                                                  <MemoryRouter><App /></MemoryRouter>
1049
            );
                                                               );
1050
          , 10000);
                                                               10000);
1051
1052
          test("Failure at task B", async () =>
                                                             test("Failure at task B", async () =>
1053
            render(
                                                               render(
1054
              <MemoryRouter><TaskB /></MemoryRouter>
                                                                 <MemoryRouter><App /></MemoryRouter>
            );
                                                               );
1055
1056
          , 10000);
                                                             , 10000);
1057
                         (a) Raw format
                                                                         (b) Normalized format
```

1058

1061

1031

1032

Tab. 8 shows results from the normalized format. Under the raw format, all models struggle. Most strikingly, o1 models fail all problems (Tab. 19).

1068 1069 Table 19: Duo-feature benchmark raw format: pass@1 results for selected models

Model	pass@1
claude-3-5-sonnet	0.32
gpt-4o-2024-08-06	0.026
deepseek-v2.5	0.02
mistral-large-2	0.02
o1-mini	0
o1-preview	0

1070 1071 1072

To find the root cause, we find the raw format (Tab. 18 (a)) has two imports of different names, i.e. **TaskA** and **TaskB**. But they are actually default imports (without curly braces) which are nameagnostic. Also since only one default export is allowed per module, this format is in fact semantically equivalent to the normalized format in Tab. 18 (b). Both formats demand the models to build a single module implementing all expectations, with a single default export. To help readers understand related concepts, we explain JavaScript export rules in Tab. 20.

1079 Tab. 21 collects different ways models cope with this challenge. Tab. 21 (d) is the only right answer, but also the least straightforward, challenging the intuition trap that two exports from two separate

	Named Exports	Default Export	
Purpose	Export multiple items from a module	Export a single item from a module	
Syntax	export const x =;	export default;	
	export function y() $\{\ldots\}$		
Import Syntax	<pre>import { x, y } from</pre>	import anyName from	
	'./module';	'./module';	
Curly Braces	Required during import	Not required during import	
Import Naming	Must use the exact exported names	Can be imported with any name	
	(can use as to rename)		
Multiplicity	Multiple named exports per module	Only one default export per module	
Use Case	Utility functions, constants, classes	Main functionality of a module	
Export Location	Anywhere in the module	Bottom or after the main logic	

Table 20: Illustration of JavaScript default export in comparison to named imports

1093 1094

1095

1098 1099

1100

1101

1102

1103

1104

1105

1106

1107 1108 1109

1110

1111

1112 1113

1114 1115

1080

1087

1089 1090

> modules are needed. Both non-reasoning and reasoning models fall for the trap and attempt to split the implementation into two modules, (Tab. 21 (a), (b), (c)), resulting in very high failure rates.

> > Table 21: Patterns to address the duo-feature benchmark raw format (Tab. 18 (a))

```
function TaskA() {
  // Implementation of TaskA
}
function TaskB() {
  // Implementation of TaskB
1
export default TaskA:
export { TaskB };
```

(a) One default export and one named export

```
function TaskA() {
  // Implementation of TaskA
}
function TaskB() {
  // Implementation of TaskB
}
export { TaskA, TaskB };
```

(b) Two named exports

```
function TaskA_or_B() {
                                                   function TaskA_or_B() {
  // Implementation of TaskA or TaskB
                                                     // Implementation of both TaskA and TaskB
}
                                                   }
export default TaskA_or_B;
                                                   export default TaskA_or_B;
                                                   (d) Two tasks jointly implemented and exported
```

(c) Only one task is implemented and exported

1116 Next, we try to understand why non-reasoning models occasionally succeed by following the pattern 1117 of Tab. 21 (d), but non-reasoning models never do so. We suspect that the normalized format (Tab. 18 1118 (b)) definitely dominates the pretraining/posttraining dataset, but does not exclude the raw format (Tab. 18 (a)), as well as the matching solutions. This makes the success possible. 1119

1120 On the other hand, from the first reasoning step which often plays the role of planning, reasoning 1121 models commit to the wrong judgment, and do not get a chance to correct the course in subsequent 1122 steps. Below is the detailed wording of the first reasoning step from a ChatGPT reeactment.

1123 1124 1125

To progress, the key task is creating components TaskA and TaskB in TaskA_B.js to ensure all tests are successfully passed.

1126 Comparing to the mistakes made in Sec. E.1, the mistake in the above step covers a larger scope. It 1127 is reasonable to argue that mistakes made in large-scoped steps are more fatal and harder to correct. 1128

1129

F LINE-OF-CODE (LOC) ANALYSIS 1130

1131

Since top LLMs with SOTAs are proprietary, mechanistic studies are impossible. Therefore, we can 1132 only seek insights from model outputs. Thanks to the modularized design of the React framework, 1133 the solutions output by all models universally follow the template outlined in Tab. 3, with no need for any explicit prompting. As such, we use LOC (line-of-code) as the proxy signal. Results in this appendix are from the single-feature benchmark.

1137 F.1 LOC DISTRIBUTION BY MODELS

Table 22: Models ranked by median LOC with pass@1

1141	Model	Median LOC	pass@1
1142	mixtral-8x7b-instruct	35	0.1269
1143	llama-v3-8b-instruct	39	0.0679
1144	llama-v3p1-405b-instruct	40	0.3020
1145	gpt-4o-2024-08-06	40	0.8850
1146	deepseek-coder-v2-instruct	40	0.7002
1147	gpt-4o-mini	40	0.8271
1148	mistral-large-2	41	0.7804
1149	gemini-1.5-flash	41	0.5700
1150	llama-v3p1-8b-instruct	42	0.2512
1151	mixtral-8x22b-instruct	43	0.3074
1152	claude-3.5-sonnet	43	0.8808
1153	llama-v3-70b-instruct	43	0.3323
1154	deepseek-coder-v2-lite-instruct	43	0.4606
1155	gemini-1.5-pro	45	0.6813
1156	llama-v3p1-70b-instruct	46	0.1027

¹¹⁵⁷

1139

1140

1158 In Tab. 22, we rank models by their median LOC alongside their respective pass@1 scores. Picking 1159 one pass@k is sufficient because all scores produced basically the same model rankings as shown 1160 in Tab. 6.

1161 We observe that the median LOCs across all models stay close, ranging from 35 to 46. We believe 1162 this narrow range is largely enforced by the conciseness and expressiveness of the React framework 1163 itself. Also there is no strong correlation between the conciseness (median LOC) and correctness 1164 (pass@1). For example, mixtral-8x7b-instruct, which has the shortest median LOC, ranks quite low 1165 on pass@1 (0.1269). Conversely, stronger models like claude-3.5-sonnet and gpt-4o-2024-08-06, 1166 generate longer code. Other models, e.g. deepseek-coder-v2-instruct and gemini-1.5-pro, strike a 1167 balance between median.

1168 Next, we use violin charts to visualize LOC distribution of each model. The distributions are either 1169 bimodal or unimodal, and they are collected in Fig. 5 and Fig. 6 respectively.

1170 Notably, all high-performing models with high pass@1 scores are located in Fig. 5. These models, 1171 such as the gpt-40 variants and deepseek-coder series, demonstrate higher variability in their LOC 1172 distributions, i.e. bimodal. The two distinct peaks in these models' distributions suggests that they 1173 generate both shorter and longer code lengths, depending on the task. Importantly, the median LOC 1174 values for these bimodal models consistently fall between the two peaks, highlighting a balance in their code generation. Also the higher of the two peaks often corresponds to smaller LOC. This 1175 suggests that while these models can produce longer code when necessary, they tend to generate 1176 shorter, more optimized code in most cases. 1177

In contrast, Fig. 6 contains smaller models. Some exhibit near-perfect normal distributions, e.g. mixtral-8x7b-instruct and llama-v3-8b-instruct. These models generate LOC distributions that are tightly centered around their medians, indicating more consistent and predictable behavior. The lack of bimodal characteristics in these distributions reflects a more stable output across tasks, but with lower complexity compared to the larger models in Fig. 5.

1183

1184 F.2 IMPACT OF SUCCESS/FAILURE

To get more insights, we search for statistical distinction between successful model outputs and failed outputs. In Fig. 7 and 8, we visualize the LOC distribution separately for successful outputs and failed ones, for each model. The graphs are ranked by *pass*@1, where higher *pass*@1 means

The success/fail LOC distribution of remaining 8 models are shown in Fig. 9.

(Tab. 22), the median values stay within a narrow range (37 to 46). This suggests that all models consistently produce solutions of similar length, irrespective of the task complexity or domain.

Fig. 10 collects violin charts of 14 applications following unimodal distribution, where the model outputs are centered around a common length, with less variation between extremes. The remaining

6 applications are in Fig. 11, following multimodal distribution. In both cases, the median LOC is
always positioned centrally in each distribution, which suggests that the code generation is stable
across applications. Applications in Fig. 11 exhibit more complex patterns, but the distributions
remain balanced with the median value positioned at the center of the distribution.

Figure 11: LOC distribution by applications: multimodal

Table 24: Summary of Fig. 12: unimodal vs multimoda	Table 24:	Summary	of Fig.	12:	unimodal	vs multimodal
---	-----------	---------	---------	-----	----------	---------------

	UniModal Success	MultiModal Success
UniModal Failure	(b) (q) (t)	(c) (d) (f) (g) (h) (j) (k) (l) (m) (n) (o) (p)
MultiModal Failure		(a) (e) (i) (r) (s)

G PER-APPLICATION ERROR ANALYSIS

Fig. 13 shows the failure pattern broken down by applications.

- 1. *Consistency Across Applications*: All applications exhibit the same general shape—a large concentration of easier problems on the left side and a few harder problems on the right side. This consistency suggests that across different domains, there are always a few particularly challenging problems that models struggle with.
 - 2. *Variations in Skewness*: Some applications, such as Fitness Tracking and Music Streaming, show a more pronounced skew with a sharp rise in failure rates for a few problems, indicating a steeper difficulty curve. Others have a more gradual increase, indicating a more even distribution of problem difficulty.
 - 3. *Extreme Difficulty in Certain Applications*: Applications like Customer Support and Pet Care have a sharper increase towards the right, implying that these domains have a subset of problems that are especially challenging.
 - 4. *Easier Applications*: In applications like Weather and Photo Gallery, the overall number of failures seems lower compared to other appli cations, suggesting that the problems in these areas were generally easier.

Fig. 14 shows error distribution by applications. Since each application assembles outputs from all models, the raw error counts are at the same scale for all applications. We do not find any distinctive patterns. There is neither special error nor special application.

8 H BIAS ANALYSIS

We conducted a preliminary investigation into potential biases within our benchmark, focusing on
 language bias, cultural inclusivity, and implicit assumptions. To this end, we searched the codebase
 for gendered terms, stereotypical language, and regional references using an automated analysis

script. Additionally, we examined API endpoints and user-facing messages for exclusionary patterns or implicit biases. Our investigation did not identify any instances of such biases in the current version of the benchmark.

While these findings are encouraging, we recognize the limitations of automated analysis and the potential for more nuanced biases that may require further investigation. We welcome additional guidance or suggestions for extending this analysis to ensure a comprehensive evaluation of fairness within our benchmark.

(j) Real estate (mean LOC = 42)

(s) Event management (mean LOC = 45) (t) Task management (mean LOC = 46) Figure 12: LOC Distribution b_y^{31} Application: Success vs Failure

