
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TESTS AS INSTRUCTIONS: A TEST-DRIVEN-
DEVELOPMENT BENCHMARK FOR LLM CODE GEN-
ERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper focuses on test-driven development (TDD) tasks, where test cases
act as both instruction and verification for LLM code generation. We build a
TDD benchmark to evaluate frontier models, where reasoning models of OpenAI
achieve SOTA. We identify instruction following and in-context learning as the
critical abilities for all models to succeed at TDD tasks. We further reveal their
vulnerabilities to long instructions as an area of improvement.

1 INTRODUCTION

Code generation/completion is a classical LLM (large language model) task and one of its most
important applications. The focus of current research and benchmarks include algorithms(Austin
et al., 2021; Chen et al., 2021), tool use(Yan et al., 2024), debugging(Jimenez et al., 2024), etc.
Here, a coding task consists of two parts: formulation and verification. The formulation is the task
description in natural language, accompanied with code snippets when necessary. The verification
is a collection of tests to run against the code generated by LLM. If all tests pass, the evaluated LLM
is considered to succeed at the task.

In this paper, we explore a new avenue where tests are both task formulation and verification. Specif-
ically, a number of tests in its original code format are copied and pasted into the LLM prompt. A
simple prefix is attached instructing the LLM to generate code to pass all given tests. The generated
output is evaluated by the same tests. We call this a TDD (test-driven development) task, and for the
evaluation purpose, an essemble of TDD tasks a TDD benchmark.

Using the running example in (Beck, 2022), Tab. 1 illustrates how a multi-currency conversion
application is gradually built via TDD. Each row represents a feature request codified as a test.
Human developers approach TDD incrementally, one row per iteration. In each iteration, they write
new code to pass the current test, as well as all tests in previous iterations. LLMs approach TDD
at once. As demonstrated in this paper, they are able to write code to pass multiple tests in one
inference, i.e. aggregate multiple iterations into one batch.

Also wordings in the TDD Task column are akin to natural language instructions in classical coding
benchmarks. For human developers, these are considered best practices to bring clarity to their
coding work. On the other hand, LLMs are able to infer them from tests included in the prompt. As
such, one can let LLMs skip this step to directly output code, or ask them to explicitly spell out the
task via chain of thoughts.

We argue that TDD is the norm of modern application development across many domains, from
enterprises to startups, consuming numerous engineering hours. In these production environments,
tests are the de facto system specs overriding documentations. The maturity of a system can be
measured by the size and age gap of its test suite. As such, LLMs with strong TDD capabilities
would generate tremendous value to the software industry.

Since tests play pivotal roles in all coding benchmarks, we use Tab. 2 to compare them in three cate-
gories. The key differentiator between algorithmic and TDD benchmarks is the semantic mutability,
where tests evaluate solutions to the problem in the former, but define the problem itself in the latter.
The key differentiator between problem-solving and TDD benchmarks is the scope, where tests are

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: An example of test-driven development tasks

Test Name Verifications Feature TDD Task
testMultiplication Ensures multiplying a

dollar amount by an inte-
ger gives correct results

Basic dollar
multiplication

Defines a Dollar class
with amount and times()
method

testEquality Confirms that two
Money objects are equal
if they have the same
amount and currency

Equality
check for
Money ob-
jects

Adds an equals() method
for comparing amounts

testFrancMultiplication Verifies multiplication
functionality for francs

Introduction
of Francs

Creates a Franc class
similar to Dollar with
multiplication

testCurrency Checks that each Money
object correctly identi-
fies its currency

Currency
attribute

Adds a currency attribute
in Money class

testSimpleAddition Tests addition of two
Money objects within
the same currency

Simple addi-
tion of Money
objects

Implements plus() for
adding same-currency
Money objects

testIdentityRate Validates that the Bank
provides a 1:1 exchange
rate for the same cur-
rency

Bank class for
currency con-
version

Introduces Bank class
with exchange rates

testReduceMoney Ensures correct conver-
sion of sums between
different currencies

Addition with
conversion

Implements conversion
of sums across curren-
cies in Bank

testMixedAddition Verifies handling of
mixed currency addition
and conversion to target
currency

Complex ex-
pressions with
different cur-
rencies

Refactors to handle
mixed-currency expres-
sions with conversions

Table 2: Comparison of coding benchmarks

Algorithmic Bench-
marks

TDD Benchmarks Problem-Solving
Benchmarks

Example Palindrome Check
in HumanEval(Chen
et al., 2021) and
LeetCode

Multi-currency con-
version in Tab. 1

scikit-learn-14520 is-
sue in SWE-bench
(examplified in (Ope-
nAI, 2024))

Semantic Mutabil-
ity

Immutable to test
changes

Always mutable to
test changes as a
form of feature re-
quest

Sometimes mutable
to test changes as a
form of verification

Scope Function Module Application
Context Length Re-
quirement

Short Medium Long

Running Overhead Low (programming
language dependen-
cies)

Medium (program-
ming language and
framework depen-
dencies)

High (containerized
dependencies)

Source of Pre-train
Knowledge

Textbooks and online
documents

Open source repos Open source repos

Primary Applica-
tions

Coding interview and
brainstorming

Pre-launch feature
development

Post-launch patch
and bugfix

only a slice of the context (along with logs, source code, and the issue description) in the former, but
solely comprises the entire context in the latter.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Below are original contributions of this paper.

• TDD Tasks and Benchmarks: We propose the definition of TDD tasks and built to our
knowledge the first TDD benchmark. This effort reveals the following insights.

• Critical Abilities for TDD Task Success: Pre-train coding knowledge is necessary but
insufficient for the success of TDD tasks. We identify the following critical abilities: in-
struction following, in-context learning, and reasoning. We expect this list to grow as the
investigation deepens.

• More tests cause worse performance: The SOTA is significantly lowered after more tests
are added, which limits the application scope of LLM-driven TDD. The suspect root cause
for the performance bottleneck, e.g., attention decay(Liu et al., 2024), is unconfirmed.

The rest of this paper is organized as follows. In Sec. 2, we introduce how the benchmark is built
and run. In Sec. 3, we show LLM performance and analyze their errors. In Sec. 4, we discuss the
degraded LLM performance under more test cases, and potential root causes. Finally, we discuss
related works in Sec. 5 and conclude the paper in Sec. 6.

2 BENCHMARK

2.1 SCOPE

We envision the flourishing of many affordably-trained coding LLMs or SLMs (small language
models)(Li et al., 2023; Lozhkov et al., 2024; Hui et al., 2024; Huang et al., 2024) with specialties
scoped by the template below.

{Programming Language,Framework,Domain,Task}

Given a software engineering project, the first three elements are decided before the project begins,
and do not change during the project. For the last element (task), the engineer regularly shuffles
among several tasks, such as comment generation, test generation, code generation, code interpre-
tation. As the above template has many instances, we argue for the need of many benchmarks, one
for each instance. As a start, this paper presents a benchmark for the following instance.

{JavaScript,React,Web App,TDD Code Generation}

In addition, our choice is backed by following considerations.

• Representation Founded in 2013, React(Meta, 2013) is one of the most popular open
source projects and a top choice for web app developers. High-quality React code is abun-
dant in any LLM pretraining corpuses. Hence, one can safely assume a general or coder
LLM to have sufficient React knowledge to complete the task without seeking exernal
knowledge.

• Scalability As demonstrated in Tab. 3, React code is succinct and compositional, able
to implement diverse functionalities in one file. This makes it very convenient for us to
innovate evaluations. First, we can define comprehensive tasks even if the LLM has limited
context window. Second, by varying test suite size, we can scale the instruction scope to
search for model limits and hill-climbing directions.

• Ecosystem The rich and stable ecosystem of React blesses us with many excellent tools.
They greatly facilitates the evaluation work especially the test verification.

2.2 TASK FORMULATION

Since the formulation of a TDD task primarily consists of verbatim test code, we use a sample web
app scenario to explain.

Consider a blogging website, in which a user adds comment to an existing blog post. This user
journey is simulated by the unit test in Table 4. Here, fetchMock.post is a lightweight setup to

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 3: Template of React-based solution

// Import Statements
...
import React from ’react’;

// Main component of the application
function App() {
...
// Business logics to handle user actions
const functionA = (...) -> {
...
};
const functionB = (...) -> {
...
};

// JSX-based UI layout
return (
<div>
// UI events are wired to the calling of functionA and functionB
</div>
);

};

// Export Statement
export default App;

mock a successful API response without running any additional software components. The follow-
ing await lines simulate user actions (text input, mouse click etc.). Finally, expect lines examine
the expected outcome, i.e. the mocked API should be invoked exactly once and the system response
of success should appear on the updated webpage. Similarly, the pairing failure case is shown in
Table 5, where a mocked API failure is expected to lead to error message on the updated webpage.

Table 4: Success case for adding a comment to a blog post

test("successfully adds a comment to a post", async () => {
fetchMock.post("/api/comments", 200);

await act(async () => {
render(<MemoryRouter><App /></MemoryRouter>);

});
await act(async () => {

fireEvent.change(screen.getByPlaceholderText(/Add a comment/i),
{ target: { value: "Great post!" } });

});
await act(async () => {

fireEvent.click(screen.getByText(/Submit/i));
});

expect(fetchMock.calls("/api/comments").length).toBe(1);
expect(screen.getByText(/Comment added successfully/i)).toBeInTheDocument();

}, 10000);

Table 5: Failure case for adding a comment to a blog post

test("fails to add a comment to a post", async () => {
fetchMock.post("/api/comments", 500);

// Lines identical to the success case are ignored.

expect(screen.getByText(/Failed to add comment/i)).toBeInTheDocument();
}, 10000);

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The prompt is straightforward: we feed test files to the LLM, expecting it to generate code passing
these tests. The token length of the prompt is around 0.5K.

Generate App.js to pass the tests below: (1)
{Tab. 4}{Tab. 5}. RETURN CODE ONLY.

The benchmark consists of 1000 such tasks. Each task uses a success case and failure case to
describe the scenario. These 1000 tasks are aggregated under 20 applications, e.g. blogging, e-
commerce, traveling. More details can be found Appendix A.

2.3 TASK VERIFICATION

To succeed at the task defined in Tab. 4 and 5, an LLM is expected to output code following the
template in Tab. 3. The code generates a single webpage decorated with a form-like UI element
allowing the test-simulated user to add comment. If all expectations in Tab. 4 and 5 are met, the tests
pass.

We use pass@k, a metric defined in (Chen et al., 2021) and commonly accepted by subsequent
works. Due to budget and rate limit constraints, each task is evaluated at most 10 times, i.e. n = 10.
Since k must be no larger than n, we measure pass@1, pass@5, and pass@10. More details on the
experiment setup can be found in Appendix B.

3 EVALUATION RESULTS

3.1 LLM PERFORMANCES

Tab. 6 summarizes the pass@k results of 18 frontier LLMs. We only measure pass@1 for o1 models
primarily due to their inference cost. But since the value of pass@k asymptotically increases with k,
there is no doubt that the o1 models lead non-reasoning LLMs by an obvious gap. Also worth noting
is the impressive performance of open-source LLMs, with deepseek-v2.5 as the top contender.

Table 6: pass@k results for frontier LLMs

Model pass@1 pass@5 pass@10
o1-preview 0.952 N/A N/A
o1-mini 0.939 N/A N/A
gpt-4o-2024-08-06 0.885 0.9047 0.909
claude-3.5-sonnet 0.8808 0.8845 0.886
deepseek-v2.5 0.834 0.8595 0.869
gpt-4o-mini 0.8271 0.8534 0.858
mistral-large-2 0.7804 0.8191 0.831
deepseek-coder-v2-instruct 0.7002 0.8009 0.827
gemini-1.5-pro 0.6813 0.7678 0.795
gemini-1.5-flash 0.57 0.6427 0.663
deepseek-coder-v2-lite-instruct 0.4606 0.6144 0.653
mixtral-8x22b-instruct 0.3074 0.4821 0.533
llama-v3-70b-instruct 0.3323 0.4462 0.489
llama-v3p1-405b-instruct 0.302 0.4053 0.437
llama-v3p1-8b-instruct 0.2512 0.3941 0.432
llama-v3p1-70b-instruct 0.1027 0.1848 0.246
mixtral-8x7b-instruct 0.1269 0.196 0.218
llama-v3-8b-instruct 0.0679 0.1183 0.139

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 BENCHMARK DIFFICULTY

We made each model solve each task for 10 times, which gives us 160 solutions per task1. Fig. 1
shows number of failures per task. The more failures a task collects, the more difficult it is.

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures by Problem

Figure 1: Failures per problem

As indicated by the figure, the majority of the problems have low failure rates, i.e. they are relatively
easy for LLMs to solve. Conversely, a small cluster of problems on the far right exhibit extremely
high failure rates, some remain unsolved by any model. Appendix E will reveal more insights on
why they are difficult.

3.3 DOES THE CODE BUILD?

Of the total 160,000 solutions included in Fig. 1, only 172 have syntax errors, i.e. the build failure
rate is 0.1%. In particular, the solutions by o1 models, Claude 3.5, and Mistral Large 2 have no
syntax errors. We manually examined a subset of built solutions, and found that they support the
feature the test cases intend to evaluate.

This means all LLMs are able to follow high-level instructions and write quality code. The real
challenge for them is to meet all test expectations, some explicit and others implicit, therefore failing
the task. To verify this hypothesis, we ran an alternative experiment following the TLD (test-last
development) approach which significantly boosted pass@1 of all tested models. Details are in
Appendix C.

3.4 ERROR TYPES

We study error logs and find LLMs make seven types of errors, coded to A through G. They are
summarized in Tab. 7.

The verbatim errors are the original error messages or codes captured by the log. Each of them is
broadly scoped to contain a wide array of behaviors. However, in the context of our benchmark,
we find all verbatim errors are projected to a narrowband of behaviors attributed to the same root
causes.

Based on the root causes, we further conjecture their connections to model abilities.

• Preference Alignment: violating unspecified user preference, i.e. the latest stable version
• In-context Learning: mistmatching string or integer values specified in the model input
• Instruction Following: misunderstanding or missing the feature requested in test cases
• Pretraining Knowledge: violating scoping rule of the programming language

1We exclude o1 models because they are only evaluated once per task. Also given their high success rates,
they leave very small impact to the distribution.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 7: Error table

Error Code Name Verbatim Error Root Cause Model
Ability

A Version Mis-
match

TypeError Deprecated framework
functions are used

Preference
Alignment

B Text Mis-
match

TestingLibrary
ElementError

Attributes or texts of HTML
tags do not match test expec-
tations

In-context
Learning

C API Call Mis-
match

expect(received) Mock APIs are called less or
more than expected

In-context
Learning

D Uninstalled
Module

Cannot find
module

Imported module is not in-
stalled

Instruction
Following

E Invalid API
Call

fetch-mock The call signature does not
match the test expectation

In-context
Learning

F Scope Viola-
tion

ReferenceError An out-of-scope call is made
to a locally-defined function

Pretraining
knowledge

G Missing UI
Element

Element type is
invalid

No UI element is defined in
the code

Instruction
Following

3.5 SINGULAR AND TWIN ERRORS

An error log can contain a combination of many error types, indicating the code is poorly imple-
mented. But this is not the dominant pattern. 93% of error logs contain either a singular error or
twin errors. Fig. 2 shows the distribution of singular and twin errors.

Figure 2: Distribution of singular and twin errors

Singular error means the log contains only one error pointing to a single line. Twin errors are two
errors of the same type, preeminently pointing to the same error line. Since the code needs to pass
two unit tests, often times the same bug offends both tests. This means that even upon failures, all
LLMs produce quality code, but with only one error.

3.6 ERROR DISTRIBUTION BY MODELS

In Fig. 3, we show the error distribution separately for each LLM2. The most important finding here
is that no model is immune to any of the seven error types, even when the raw error counts differ by
one order of magnitude bewteen two extremes.

2o1 models are excluded because their sample sizes are too small (1 run per task instead of 10). They still
make the same types of errors as other LLMs.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

gp
t-4

o-2
02

4-0
8-0

6

cla
ud

e-3
.5-

son
ne

t

gp
t-4

o-2
02

4-0
5-1

3

gp
t-4

o-m
ini

mistr
al-

lar
ge

-2

de
ep

see
k-c

od
er-

v2
-in

str
uct

ge
mini-

1.5
-pr

o

ge
mini-

1.5
-fla

sh

llam
a-v

3p
1-4

05
b-i

nst
ruc

t

de
ep

see
k-c

od
er-

v2
-lit

e-i
nst

ruc
t

llam
a-v

3-7
0b

-in
str

uct

mixt
ral

-8x
22

b-i
nst

ruc
t

mixt
ral

-8x
7b

-in
str

uct

llam
a-v

3p
1-8

b-i
nst

ruc
t

llam
a-v

3p
1-7

0b
-in

str
uct

llam
a-v

3-8
b-i

nst
ruc

t0

2000

4000

6000

8000

10000

12000

14000

16000

Er
ro

r C
ou

nt

Error Color
A
B
C
D
E
F
G

Figure 3: Error distribution by models

This means that all models possess the same knowledge and capabilities to write high-quality code
which meets test expectations, and same inherent vulnerabilities resulting in the same types of errors.
But top models distinguish themselves at lower error rates, i.e. ability to make fewer errors .

4 DUO-FEATURE BENCHMARK

In light of o1 models’ superb performance to saturate the benchmark, we propose a more challenging
benchmark by merging two TDD tasks into a duo-feature task. Under this new benchmark, each task
consists of four test cases: two successes and two failures. Accordingly, the prompt length is doubled
to around 1K tokens. Also the output code follows the same template (Tab. 3), and generates a single
webpage decorated with multiple UI elements to support two features.

4.1 LLM PERFORMNACES

As shown in Tab. 8, more test cases cause pass@1 of all LLMs to decrease significantly. Also the
SOTA is owned by Claude 3.5.

Table 8: Duo-feature benchmark: pass@1 for selected LLMs

Model pass@1
claude-3-5-sonnet 0.679
o1-mini 0.667
o1-preview 0.652
gpt-4o-2024-08-06 0.531
deepseek-v2.5 0.49
mistral-large-2 0.449

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

However, the model behaviors remain largely the same on other aspects described in Sec. 3. The
output code is functional with occasional build failures, and make the same errors more frequently.

4.2 INSTRUCTION LOSS

To study why o1 models perform worse than Claude 3.5, we find a task solved by Claude 3.5, but
failed by o1-preview. As shown in Tab. 9, this task requires the duo feature of adding comment and
retrieving blog posts in a single webpage.

Table 9: A duo-feature TDD task: add comment and retrieve all blog posts

import App from ’./addComment_retrieveAllBlogPosts’;
...
test(’successfully adds a comment to a post’, async () => {
... }

test(’fails to add a comment to a post’, async () => {
... }

test(’Success: retrieve a list of all blog posts’, async () => {
... }

test(’Failure: retrieve a list of blog posts with server error’, async () => {
fetchMock.get(’/api/posts’, { status: 500, body: { error: ’Internal Server Error’ } });
...
expect(fetchMock.calls()).toHaveLength(1);
expect(screen.getByText(’Internal Server Error’)).toBeInTheDocument();

}, 10000);

Here, o1-preview passes all tests but the last one. The output code neither attempts to catch the 500
error nor prints out the Internal Server Error string. The reasoning chain is normal, and no step
specifically mentions the need to catch internal server errors.

Crafting the component −→ Laying out the requirements −→
Importing dependencies −→ Breaking down the code −→
Setting up the app −→ Testing a post functionality −→
Testing API integration

The o1-preview’s inherent coding ability is solid, because it solves both tasks separately under the
single-feature benchmark. To this end, we suspect the root cause to be instruction loss. It remains
unknown whether the instruction is never picked up from the model input, or lost during an early
reasoning stage. What we are sure of is the necessiry of full instruction set as the foundation for
reasoning, without which the reasoning model will simply fail the task.

5 RELATED WORKS

5.1 CODING-RELATED TASKS AND BENCHMARKS

Prompt-driven coding has become mainstream since the introduction of Codex(Chen et al.,
2021). The evolution of benchmarks reflect the scaled-up challenges posed to LLMs, from algo-
rithms(Austin et al., 2021), to data science problems(Lai et al., 2022), object-oriented coding(Du
et al., 2023), code execution(Yu et al., 2023), function calling(Yan et al., 2024), SQL queries(Gao
et al., 2023), project-level resolution(Jimenez et al., 2024), etc. These benchmarks all rely on test
suite of different sizes to verify task success. On the other hand, the task formulation, i.e. the prompt,
is becoming longer and harder to specify, resulting in misalignment with its verification counterpart,
which can be only addressed by human calibration(OpenAI, 2024).

TDD benchmarks avoid such misalignment by unifying task formulation and verification, mean-
while introducing other challenges to LLMs.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.2 INSTRUCTION FOLLOWING AND IN-CONTEXT LEARNING

Instruction following and in-context learning are two of the most desired LLM abilities to ace TDD
tasks. Both topics have been extensively researched(Dong et al., 2024; Lou et al., 2024), and their
close relations revealed by several empirical or mechanistic studies(Wei et al., 2022; Li et al., 2024;
Xie et al., 2022; Hewitt et al., 2024; Singh et al., 2024). Several well-known benchmarks(Chia et al.,
2023; Jiang et al., 2024; Qin et al., 2024) were also introduced to measure LLM progress on these
abilities.

However, majority of the existing works focus on natural language instructions. Given the practical
values of TDD tasks, we would like to see more interests developed over code-based instructions.
Our evaluation demonstrates LLMs’ remarkable ability to follow coded instructions. But it also
revealed their vulnerabilities when coded instructions grow longer. This is related to another stream
of works which try to scale natural language instructions(Son et al., 2024; Cheng et al., 2023). We
will track closely the development of these two work streams.

5.3 REINFORCEMENT LEARNING AND REASONING

The o1 models have been speculated to leverage many seminal works on reinforcement learning and
reasoning. Works on the learning side include self-play(Zhang et al., 2024), self-taught(Zelikman
et al., 2022; 2024), learning from running environment(Silver et al., 2017), etc. Works on the infer-
ence side include process modeling(Lightman et al., 2023), inductive reasoning(Wang et al., 2024),
tree search(Anthony et al., 2017), etc.

Aside from general reasoning models like o1, many works have applied reinforcement learning to
coding-specific problems, including code generation(Jain et al., 2023), test generation(Steenhoek
et al., 2023), error repair(Islam et al., 2024b;a), etc.

The values of reasoning and self-improvement techniques to TDD tasks are best showcased by
the exciting SOTA lift to our benchmark. Unfortunately, we also observe the negative impact of
instruction loss to reasoning model performances. We think it is worthwhile to incorporate nuanced
and complex model input into future reasoning model development.

5.4 TDD IN LLM CODING

Much similar to this paper, some recent works introduced TDD to coding task formulation, and
studied best practice and performance impact(Mathews & Nagappan, 2024; Murr et al., 2023; Piya
& Sullivan, 2023). But to our knowledge, this is the first paper focusing on TDD benchmarking.

Finally, one may argue that it is easy to repurpose classical coding benchmarks to evaluate TDD
tasks by simply appending their test cases to the prompt. But we argue the benefits and necessity
to have dedicated benchmarks to this cause. Just as TDD is the norm in application development
emphasizing on business logic, knowledge on input instructions is the most critical factor to task
success, overshadowing pretraining knowledge3. We think benchmarks crafted along this line of
thinking can appropriately evaluate and challenge LLMs to keep improving on TDD tasks.

6 CONCLUSIONS

This paper focuses on the TDD aspect of LLM code generation, and claims two contributions. The
first is a dedicated TDD benchmark which we use to evaluate 18 frontier LLMs. The second is the
insights obtained via the evaluation. Specifically, instruction following and in-context learning are
the key areas of improvement for LLMs and reasoning models to excel on more challenging TDD
tasks.

There are two future directions. The first is to grow our benchmark to cover more application
scenarios, meanwhile cross-examining learnings from this paper. The second is to explore practical
hill-climbing ideas to address the vulnerability to long coded instructions.

3This is a comparative argument relevant to other tasks akin to algorithms and data structures. A TDD task
cannot succeed without a strong coding LLM.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Fireship. https://fireship.io/, 2017.

A. Accomazzo, N. Murray, and A. Lerner. Fullstack React: The Complete Guide to ReactJS and
Friends. Fullstack.io, 2017. ISBN 9780991344628. URL https://books.google.com/
books?id=ppjUtAEACAAJ.

Thomas W. Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and
tree search. In Neural Information Processing Systems, 2017.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models. https://arxiv.org/abs/2108.07732, 2021.

K. Beck. Test Driven Development: By Example. Addison-Wesley Signature Series (Beck). Pearson
Education, 2022. ISBN 9780137585236. URL https://books.google.com/books?
id=zNnPEAAAQBAJ.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. https://arxiv.org/abs/2107.03374, 2021.

Zhoujun Cheng, Jungo Kasai, and Tao Yu. Batch prompting: Efficient inference with large language
model apis, 2023. URL https://arxiv.org/abs/2301.08721.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Soujanya Poria. Instructeval: Towards holistic
evaluation of instruction-tuned large language models, 2023. URL https://arxiv.org/
abs/2306.04757.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-
context learning, 2024. URL https://arxiv.org/abs/2301.00234.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluat-
ing llms on class-level code generation. https://arxiv.org/abs/2308.01861, 2023.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation, 2023. URL https:
//arxiv.org/abs/2308.15363.

John Hewitt, Nelson F. Liu, Percy Liang, and Christopher D. Manning. Instruction following without
instruction tuning, 2024. URL https://arxiv.org/abs/2409.14254.

Siming Huang, Tianhao Cheng, J. K. Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang, J. H. Liu,
Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu, Ge Zhang,
Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for top-tier code
large language models, 2024. URL https://arxiv.org/abs/2411.04905.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xu-
ancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL
https://arxiv.org/abs/2409.12186.

11

https://fireship.io/
https://books.google.com/books?id=ppjUtAEACAAJ
https://books.google.com/books?id=ppjUtAEACAAJ
https://arxiv.org/abs/2108.07732
https://books.google.com/books?id=zNnPEAAAQBAJ
https://books.google.com/books?id=zNnPEAAAQBAJ
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2301.08721
https://arxiv.org/abs/2306.04757
https://arxiv.org/abs/2306.04757
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2409.14254
https://arxiv.org/abs/2411.04905
https://arxiv.org/abs/2409.12186


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nafis Tanveer Islam, Mohammad Bahrami Karkevandi, and Peyman Najafirad. Code security
vulnerability repair using reinforcement learning with large language models, 2024a. URL
https://arxiv.org/abs/2401.07031.

Nafis Tanveer Islam, Joseph Khoury, Andrew Seong, Mohammad Bahrami Karkevandi, Gonzalo De
La Torre Parra, Elias Bou-Harb, and Peyman Najafirad. Llm-powered code vulnerability repair
with reinforcement learning and semantic reward, 2024b. URL https://arxiv.org/abs/
2401.03374.

Abhinav Jain, Chima Adiole, Swarat Chaudhuri, Thomas Reps, and Chris Jermaine. Coarse-tuning
models of code with reinforcement learning feedback, 2023. URL https://arxiv.org/
abs/2305.18341.

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang,
Xin Jiang, Qun Liu, and Wei Wang. Followbench: A multi-level fine-grained constraints follow-
ing benchmark for large language models, 2024. URL https://arxiv.org/abs/2310.
20410.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for
data science code generation. https://arxiv.org/abs/2211.11501, 2022.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source
be with you!, 2023. URL https://arxiv.org/abs/2305.06161.

Zhuowei Li, Zihao Xu, Ligong Han, Yunhe Gao, Song Wen, Di Liu, Hao Wang, and Dimitris N.
Metaxas. Implicit in-context learning, 2024. URL https://arxiv.org/abs/2405.
14660.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12, 2024.

Renze Lou, Kai Zhang, and Wenpeng Yin. Large language model instruction following: A survey
of progresses and challenges, 2024. URL https://arxiv.org/abs/2303.10475.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, De-
nis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,
Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo,
Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yix-
uan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xian-
gru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank

12

https://arxiv.org/abs/2401.07031
https://arxiv.org/abs/2401.03374
https://arxiv.org/abs/2401.03374
https://arxiv.org/abs/2305.18341
https://arxiv.org/abs/2305.18341
https://arxiv.org/abs/2310.20410
https://arxiv.org/abs/2310.20410
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2405.14660
https://arxiv.org/abs/2405.14660
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2303.10475


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Can-
wen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Car-
los Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von
Werra, and Harm de Vries. Starcoder 2 and the stack v2: The next generation, 2024. URL
https://arxiv.org/abs/2402.19173.

Noble Saji Mathews and Meiyappan Nagappan. Test-driven development for code generation, 2024.
URL https://arxiv.org/abs/2402.13521.

Meta. React framework. https://reactjs.org/, 2013.

Mozilla. Mdn web docs. https://https://developer.mozilla.org/, 2005.

Lincoln Murr, Morgan Grainger, and David Gao. Testing llms on code generation with varying
levels of prompt specificity, 2023. URL https://arxiv.org/abs/2311.07599.

OpenAI. Introducing swe-bench verified. https://openai.com/index/
introducing-swe-bench-verified/, 2024.

Sanyogita Piya and Allison Sullivan. Llm4tdd: Best practices for test driven development using
large language models, 2023. URL https://arxiv.org/abs/2312.04687.

Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang Wang, Xuansheng
Wu, Fei Liu, Pengfei Liu, and Dong Yu. Infobench: Evaluating instruction following ability in
large language models, 2024. URL https://arxiv.org/abs/2401.03601.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm, 2017. URL https://arxiv.org/abs/1712.01815.

Aaditya K. Singh, Ted Moskovitz, Felix Hill, Stephanie C. Y. Chan, and Andrew M. Saxe. What
needs to go right for an induction head? a mechanistic study of in-context learning circuits and
their formation, 2024. URL https://arxiv.org/abs/2404.07129.

Guijin Son, Sangwon Baek, Sangdae Nam, Ilgyun Jeong, and Seungone Kim. Multi-task infer-
ence: Can large language models follow multiple instructions at once?, 2024. URL https:
//arxiv.org/abs/2402.11597.

Benjamin Steenhoek, Michele Tufano, Neel Sundaresan, and Alexey Svyatkovskiy. Reinforcement
learning from automatic feedback for high-quality unit test generation, 2023. URL https:
//arxiv.org/abs/2310.02368.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah Goodman. Hy-
pothesis search: Inductive reasoning with language models. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions,
2023. URL https://arxiv.org/abs/2212.10560.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2022. URL
https://arxiv.org/abs/2109.01652.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference, 2022. URL https://arxiv.org/abs/2111.
02080.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica,
and Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs.
berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html,
2024.

13

https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.13521
https://reactjs.org/
https://https://developer.mozilla.org/
https://arxiv.org/abs/2311.07599
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
https://arxiv.org/abs/2312.04687
https://arxiv.org/abs/2401.03601
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/2404.07129
https://arxiv.org/abs/2402.11597
https://arxiv.org/abs/2402.11597
https://arxiv.org/abs/2310.02368
https://arxiv.org/abs/2310.02368
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2111.02080
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Tao
Xie, and Qianxiang Wang. Codereval: A benchmark of pragmatic code generation with generative
pre-trained models, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: self-taught reasoner bootstrap-
ping reasoning with reasoning. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, 2022.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking, 2024. URL https:
//arxiv.org/abs/2403.09629.

Ruize Zhang, Zelai Xu, Chengdong Ma, Chao Yu, Wei-Wei Tu, Shiyu Huang, Deheng Ye, Wenbo
Ding, Yaodong Yang, and Yu Wang. A survey on self-play methods in reinforcement learning,
2024. URL https://arxiv.org/abs/2408.01072.

A BENCHMARK CONSTRUCTION

The construction of the benchmark follows the methodology of Self-Instruct(Wang et al., 2023). As
the initial step, humans proposed 20 web applications listed in Tab. 10, referencing main applications
of JavaScript and React(Accomazzo et al., 2017; Mozilla, 2005; fir, 2017).

Subsequently, five categories are proposed for each application, shown in Tab. 11. Using these
human-generated seeds, we prompt GPT-4o to propose, for each category, 10 scenarios, each de-
scribed by a sentence. This results in a total of 1000 scenarios for the benchmark. As the final step,
after reviewing these scenarios by humans, we further GPT-4o to generate a success test and failure
test for each scenario, exemplified in Sec. 2.2.

B EXPERIMENT SETUP

The most straightforward way for us to access LLMs are public token-based APIs. For top close-
sourced models, our only option is via the owners’ APIs. The top open-sourced models are hosted
by a few platforms, among which we choose Fireworks.

Although each API bears its minor difference, all APIs are heavily influenced by the design of
OpenAI API. Tab. 12 lists the tunable parameters exposed by each API. Since we do not know the
default parameter value set by each API provider, we explicitly set the same parameter values to all
LLMs under evaluation, whenever applicable. To limit the search space, we only tune temperature
and top p, the two most popular parameters available on all platforms. For other parameters, we
assign fixed value to them across all LLMs.

We conducted a grid search to locate a sweet spot at which all LLMs deliver near-best results.
We chose 100 random problems from the benchmark, 5 out of each application. We then choose
the large model out of the five leading model families, and measured their pass@1 (n = 1) on
the discrete 2D space of temperature and top n, where temperature = 0, 0.1, 0.2, ..., 1, and
top p = 0, 0.1, 0.2, ..., 1.

Tab. 13 presents the lowest and highest pass@1 value by each LLM in this grid search. Based on
the results, we finalize our parameters as follows.

temperature = 0.2

top p = 0.8

top k = 40

presence penalty = 0

frequency penalty = 0

Results of our full-scale evaluations also align with this small-scale experiment, except for the
Deepseek coder model whose performance exceeds expectation. Also worth noting is that open-
source models exhibit larger performance variation than closed-source models.

14

https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2408.01072


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 10: Applications of the benchmark

Name Overview
blogging A content management system for creating and managing blogs, with features like

user registration, post creation, categorization, commenting, and SEO optimization.
customer support A help desk application where users can submit support tickets, track their status,

access a knowledge base, and chat with support agents.
e-commerce A fully functional e-commerce site with features like product listings, shopping cart,

user authentication, order processing, and payment integration.
event management An app for organizing events, including event creation, ticket sales, attendee registra-

tion, and scheduling
fitness tracking An application for tracking fitness activities, setting goals, monitoring progress, and

integrating with wearable devices.
inventory management A web application designed to help businesses track and manage their inventory. Fea-

tures include product cataloging, stock level monitoring, automated reorder alerts,
supplier management, sales and purchase order processing, and detailed reporting on
inventory performance.

job board A job listing site where employers can post job openings and job seekers can search
and apply for jobs.

music streaming A platform for streaming music, creating playlists, and discovering new artists.
news aggregator A news platform that aggregates articles from various sources, categorizes them, and

allows users to customize their news feed.
online learning An LMS where users can enroll in courses, watch videos, complete quizzes, track

progress, and receive certificates.
online marketplace A platform for buying and selling goods, similar to eBay, with features like user rat-

ings, bidding, and secure transactions.
personal finance A tool for managing personal finances, including expense tracking, budget planning,

report generation, and financial goal setting.
pet care a web application designed to help pet owners maintain a detailed record of their pet’s

health, activities, and milestones.
photo gallery An application for uploading, organizing, and sharing photos, with features like tag-

ging, album creation, and social sharing.
real estate A platform for listing and searching real estate properties, with features like property

details, image galleries, map integration, and contact forms.
recipe sharing A platform where users can share, search, and save recipes, with features like ingredi-

ent lists, cooking instructions, and user ratings.
social media A social media platform where users can create profiles, post updates, follow others,

like and comment on posts, and manage a feed of updates.
task management An application for managing tasks and projects, with features like task creation, as-

signment, progress tracking, and notifications.
travel planning An app for planning and booking travel, including flight and hotel searches, itinerary

creation, and travel recommendations
weather An app that provides real-time weather updates, forecasts, and severe weather alerts.

C A TEST-LAST DEVELOPMENT (TLD) EXPERIMENT

Of all error types in Tab. 7, type A, B, and D account for overwhelming share among LLMs with
weaker performances (Fig. 3). On the other hand, these errors do not indicate the code is dys-
functional, only violating the tests. In light of this counter argument, we conducte a TLD (test-last
development) experiment, where we rewrite the violated tests to accommodate the verbtaim code
output of these models.

• Type A Error Rollback to an older version of React if the code uses functions therein

• Type B Error Retrofit attribute or text property expectations to match the code

• Type D Error Refactor mock statements to accommodate the module referenced in the
code

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 11: Categories for each application of the benchmark

Name Categories
blogging Post Management, Categorization and Tag Management, Commenting System, SEO

Optimization, Post Analytics
customersupport Ticket Management, Agent and Collaboration, Knowledge Base, Notifications and

Automation, Reporting and Analytics
ecommerce Product Listings, Shopping Cart, Order Processing, Payment Integration, Product Re-

views
eventmanagement Event Creation, Ticket Sales, Attendee Registration, Scheduling, General Event Man-

agement
fitnesstracking Activity Management, Goal Setting and Tracking, Progress Monitoring, Health and

Nutrition, Device Integration and Data Management
inventorymanagement Product Cataloging, Stock Level Monitoring, Supplier Management, Order Process-

ing, Reporting
jobboard Job Posting Management, Job Search and Viewing, Job Application Process, Em-

ployer Application Management, User and Profile Management
musicstreaming Search and Discovery, Playback Control, Playlist Management, User Interaction, Ad-

vanced Features
newsaggregator Article Management, User Preferences, Article Interactions, Content Customization,

User Engagement
onlinelearning Enrollment and Progress Tracking, Course Content and Interaction, Assessment and

Certification, User Interaction and Communication, Course and Content Management
onlinemarketplace Product Management, Checkout and Payment, Order Management, Search and Navi-

gation, Bidding and Auctions
personalfinance Expense Management, Income Management, Budget Planning, Report Generation,

Financial Goal Setting
petcare Pet Profiles, Daily Activities, Health Tracking, Reminders, Community
photogallery Photo Upload and Management, Photo Tagging and Organization, Photo and Album

Sharing, Photo Interaction and Social Features, Advanced Photo Features
realestate Search and Filters, Sorting and Viewing, User Interaction, Property Management, Ad-

ditional Features
recipesharing Recipe Management, Search and Filtering, User Interactions, Recipe Viewing, User

Profiles and Preferences
socialmedia Profile Management, Post Management, User Interactions, Notifications, Feed Man-

agement
taskmanagement Task Management, Project Management, User Management, Task Tracking, Ad-

vanced Features
travelplanning Flight Search and Booking, Hotel Search and Booking, Itinerary Creation, Travel Rec-

ommendations, General Booking Logic
weather Current Weather Data Retrieval, Weather Forecast Retrieval, Severe Weather Alerts,

Location-based Services, User Preferences and Settings

Table 12: Tunable parameters on different APIs

temperature top p top k presence penalty frequency penalty
GPT4o Y Y N Y Y
Claude Y Y Y N N
Gemini Y Y Y N N
Fireworks Y Y Y Y Y

To prevent test semantic drifts, we ensure that the test code structure is unmodified, and restrict each
of the above actions to the scope of single statement. As shown in Tab. 14, all LLMs demonstrate
significant pass@1 lift after test modification.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 13: Parameter tuning results on pass@1

Model Lowest Chosen
(temperature = 0.2, top p = 0.8) Highest

gpt-4o 0.81 0.88 0.9
claude-3.5-sonnet 0.82 0.85 0.86
deepsseek-coder-v2-instruct 0.42 0.59 0.59
gemini-1.5-pro 0.59 0.65 0.69
llama-v3-70b-instruct 0.19 0.31 0.34

Table 14: TLD experiment: pass@1 results

Model TDD pass@1 TLD pass@1
llama-v3-70b-instruct 0.3323 0.6400
mixtral-8x22b-instruct 0.3074 0.8000
llama-v3p1-405b-instruct 0.3020 0.8850
llama-v3p1-8b-instruct 0.2512 0.7550
mixtral-8x7b-instruct 0.1269 0.7300
llama-v3p1-70b-instruct 0.1027 0.7900
llama-v3-8b-instruct 0.0679 0.6500

Note that TLD is a popular approach for experimental and prototyping projects, but is widely con-
sidered a malpractice for high-stake projects. Also TLD bears an implicit cost, since the work test
modification itself is also time-consuming.

D PROMPT EXPERIMENTS

We also study whether more sophisticated prompts can lift the model performance.

The first experiment is system prompt, which assigns an explicit role to the LLM and raises its
awareness. Available in all APIs we run, it complements the user prompt (Equation (1)) which gives
detailed instructions to LLM. Equation (2) shows our system prompt.

You are a code generator. (2)

The second experiment is verbose comment, which aims to help LLMs better understand the seman-
tics of tests it tries to pass. For each of the 1000 problems, we feed its test code to GPT-4o and ask
for English summary of the expectation in multiple sentences. The summary is then inserted into
the test code. Tab. 15 shows the verbose comment variant of the test code in Tab. 4.

Table 15: Verbose cmment variant of the test case in Tab. 4

test(
"This test case verifies that a comment can be successfully added to a post by simulating
a successful POST request to the ’/api/comments’ endpoint. The test ensures that the
API call occurs exactly once and that a success message (’Comment added successfully’)
is displayed upon successful submission. This helps confirm the correct interaction
between the frontend and backend components when adding comments.",

async () => {

// Lines identical to the original test case are ignored.

}, 10000);

The third experiment is error debugging. If the generated code fails the test, we add the failed code
and the error log to the prompt, hoping the LLM will generate the correct code by learning from its

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

own mistakes. Below is the prompt.

{failed implementation}
The above code is the implementation of {file name}. It failed the tests below
{success test code}{failure test code}
Below is the test log
{error log}
Try to generate {file name} again to pass the tests. RETURN CODE ONLY.

For all three prompt variants, we measure pass@1 (n = 1) against all 1000 problems of the bench-
mark. Also in each experiment, we apply one prompt variant only, and compare it against the control
test using the original prompt (Equation (1)). Tab. 16 summarizes the relative performance gains/loss
of each variant.

Table 16: Prompt experiments: pass@1 gain/loss

System Prompt Verbose Comment Error Debugging
gpt-4o -1.3% -4% -56%
claude-3.5-sonnet 6.3% -1% 38%
deepsseek-coder-v2-instruct -18.2% 7.5% -79%
gemini-1.5-pro 6.3% 2% 22%
llama-v3-70b-instruct 8.5% -7.7% 111%

To our surprise, we are unable to find a prompt variant delivering universally positive (or negative)
impacts to all LLMs. Also we observe the huge swing in the error debugging column. The situation
is unique here because this technique is not needed if the model output is correct on the first try.
Strong LLMs like GPT-4o can produce high pass@1 (n = 1) closed to 0.9, which significantly
shrinks the sample size.

As such, we can not recommend LLM users to adopt or avoid any prompting technique we have
experimented.

E DEEP DIVES TO O1 MODELS

E.1 SINGLE-FEATURE BENCHMARK

We deep dive into ticketSubmission problem under the Customer Support category. The o1 models
solved this challenge, which all other LLMs failed. is the. Tab. 17, lists the key steps of the test
setup and expectations. We blacken the step which trapped non-reasoning models.

Table 17: ticketSubmission problem

test(’shows error when submitting a ticket with missing fields’, async () =>
fetchMock.post(’/api/tickets’, status: 400 );
...
fireEvent.click(screen.getByText(’Submit’));
...
expect(fetchMock.calls(’/api/tickets’).length).toBe(1);
expect(screen.getByText(’Title is required’)).toBeInTheDocument();

, 10000);

Similar to all test cases, the mocked API is first setup, followed by simulated user action, then
expectations on API access and error message. Non-reasoning models understand the semantics,
write functioning code, but fail expectations. The root cause here is the string Title is required, which
is akin to a technique not requiring API access, aka frontend validation. As a best practice (hence
prevelance in pretraining dataset), frontend valiation is lightweight and fast, therefore preferred over
backend validation, as shown in Fig. 4. As such, all non-reasoning models are misled to implement
frontend validation instead of expected behaviors which is backend validation.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Form Submission

Error: Title is required

No Server Interaction

User JS Client Server

(a) Frontend validation

Form Submission

API Request

400 Error: Title is required

Display Error to User

User JS Client Server

(b) Backend validation

Figure 4: Comparison of frontend and backend validation

On the other hand, o1 models discover the unpopular yet correct implementation: unconditionally
visit the API, and output the Title is required error message upon a 400 response. Below is the
ChatGPT reasoning chain, in which steps reasoning the 400 response is blackened.

Mapping out the component −→ Setting up event handlers −→
Setting up the form −→ Writing test cases −→
Refining the approach −→ Refining error handling −→
Adjusting error handling −→ Adjusting code logic −→
Updating JavaScript code

The most crucial step here is Refining the approach. Below is its detailed wording.

I’m updating the code to ensure a fetch request is always sent, even without a title.
The server will respond with a 400 status if the title is absent.

Evidently, the step before it (Writing test cases) conducted certain verification, which leads the
model to pivot to the right path.

Unfortunatelly the reasoning models can also fall for the same trap. Below is a ChatGPT reasoning
chain leading o1-preview to the faulty implementation like previous models.

Mapping out test strategy −→ Setting up the test −→
Customer service improvement −→ Setting up for data −→
Setting up the form −→ Verifying form submission −→
SHOWING ERRORS −→ Refining the form handling

On a closer look, step Customer service improvement derails the model from backend validation
to frontend validation.

I’m thinking about creating a TicketSubmission component with
a ’Title’ input and ’Submit’ button. Submitting the form will trigger
a POST request to ’/api/tickets’, validating the ’Title’ field before submission.

More interestingly, the step Verifying form submission does not correct the wrong direction, but
solidify it.

I’m thinking about how the form ensures ’Title’ must be filled.
It sends a POST request if ’Title’ is entered, showing success
or ’Title is required’ based on the response status.

With these superficial clues, we speculate that the derailing is due to preemption of original expecta-
tions by model’s inherent knowledge. The subsequent verification step is derived from neighboring
steps already derailed, instead of orginal expectations only accessible from the input tokens.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E.2 DUO-FEATURE BENCHMARK

The duo-feature benchmark was composed in two ways. The first way is shown in Tab. 18 (a), in
which the original export name of the single-feature benchmark is preserved as is. The second way
is shown in Tab. 18 (b), where the export names are normalized to a unified name App.

Table 18: Two formats of the duo-feature benchmark

...
import TaskA from ’./TaskA_B’;
import TaskB from ’./TaskA_B’;

test("Success at task A", async () =>
...
render(
<MemoryRouter><TaskA /></MemoryRouter>

);
...

, 10000);

test("Failure at task A", async () =>
...
render(
<MemoryRouter><TaskA /></MemoryRouter>

);
...

, 10000);

test("Success at task B", async () =>
...
render(
<MemoryRouter><TaskB /></MemoryRouter>

);
...

, 10000);

test("Failure at task B", async () =>
...
render(
<MemoryRouter><TaskB /></MemoryRouter>

);
...

, 10000);

(a) Raw format

...

...
import App from ’./TaskA_B’;

test("Success at task A", async () =>
...
render(
<MemoryRouter><App /></MemoryRouter>

);
...

, 10000);

test("Failure at task A", async () =>
...
render(
<MemoryRouter><App /></MemoryRouter>

);
...

, 10000);

test("Success at task B", async () =>
...
render(
<MemoryRouter><App /></MemoryRouter>

);
...

, 10000);

test("Failure at task B", async () =>
...
render(
<MemoryRouter><App /></MemoryRouter>

);
...

, 10000);

(b) Normalized format

Tab. 8 shows results from the normalized format. Under the raw format, all models struggle. Most
strikingly, o1 models fail all problems (Tab. 19).

Table 19: Duo-feature benchmark raw format: pass@1 results for selected models

Model pass@1
claude-3-5-sonnet 0.32
gpt-4o-2024-08-06 0.026
deepseek-v2.5 0.02
mistral-large-2 0.02
o1-mini 0
o1-preview 0

To find the root cause, we find the raw format (Tab. 18 (a)) has two imports of different names,
i.e. TaskA and TaskB. But they are actually default imports (without curly braces) which are name-
agnostic. Also since only one default export is allowed per module, this format is in fact semantically
equivalent to the normalized format in Tab. 18 (b). Both formats demand the models to build a single
module implementing all expectations, with a single default export. To help readers understand
related concepts, we explain JavaScript export rules in Tab. 20.

Tab. 21 collects different ways models cope with this challenge. Tab. 21 (d) is the only right answer,
but also the least straightforward, challenging the intuition trap that two exports from two separate

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 20: Illustration of JavaScript default export in comparison to named imports

Named Exports Default Export
Purpose Export multiple items from a module Export a single item from a module
Syntax export const x = ...; export default ...;

export function y() {...}
Import Syntax import { x, y } from import anyName from

’./module’; ’./module’;
Curly Braces Required during import Not required during import
Import Naming Must use the exact exported names Can be imported with any name

(can use as to rename)
Multiplicity Multiple named exports per module Only one default export per module
Use Case Utility functions, constants, classes Main functionality of a module
Export Location Anywhere in the module Bottom or after the main logic

modules are needed. Both non-reasoning and reasoning models fall for the trap and attempt to split
the implementation into two modules, (Tab. 21 (a), (b), (c)), resulting in very high failure rates.

Table 21: Patterns to address the duo-feature benchmark raw format (Tab. 18 (a))

function TaskA() {
// Implementation of TaskA

}

function TaskB() {
// Implementation of TaskB

}
export default TaskA;
export { TaskB };

(a) One default export and one named export

function TaskA() {
// Implementation of TaskA

}

function TaskB() {
// Implementation of TaskB

}

export { TaskA, TaskB };

(b) Two named exports

function TaskA_or_B() {
// Implementation of TaskA or TaskB

}

export default TaskA_or_B;

(c) Only one task is implemented and exported

function TaskA_or_B() {
// Implementation of both TaskA and TaskB

}

export default TaskA_or_B;

(d) Two tasks jointly implemented and exported

Next, we try to understand why non-reasoning models occasionally succeed by following the pattern
of Tab. 21 (d), but non-reasoning models never do so. We suspect that the normalized format (Tab. 18
(b)) definitely dominates the pretraining/posttraining dataset, but does not exclude the raw format
(Tab. 18 (a)), as well as the matching solutions. This makes the success possible.

On the other hand, from the first reasoning step which often plays the role of planning, reasoning
models commit to the wrong judgment, and do not get a chance to correct the course in subsequent
steps. Below is the detailed wording of the first reasoning step from a ChatGPT reeactment.

To progress, the key task is creating components TaskA and TaskB in TaskA B.js
to ensure all tests are successfully passed.

Comparing to the mistakes made in Sec. E.1, the mistake in the above step covers a larger scope. It
is reasonable to argue that mistakes made in large-scoped steps are more fatal and harder to correct.

F LINE-OF-CODE (LOC) ANALYSIS

Since top LLMs with SOTAs are proprietary, mechanistic studies are impossible. Therefore, we can
only seek insights from model outputs. Thanks to the modularized design of the React framework,
the solutions output by all models universally follow the template outlined in Tab. 3, with no need

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

for any explicit prompting. As such, we use LOC (line-of-code) as the proxy signal. Results in this
appendix are from the single-feature benchmark.

F.1 LOC DISTRIBUTION BY MODELS

Table 22: Models ranked by median LOC with pass@1

Model Median LOC pass@1
mixtral-8x7b-instruct 35 0.1269
llama-v3-8b-instruct 39 0.0679
llama-v3p1-405b-instruct 40 0.3020
gpt-4o-2024-08-06 40 0.8850
deepseek-coder-v2-instruct 40 0.7002
gpt-4o-mini 40 0.8271
mistral-large-2 41 0.7804
gemini-1.5-flash 41 0.5700
llama-v3p1-8b-instruct 42 0.2512
mixtral-8x22b-instruct 43 0.3074
claude-3.5-sonnet 43 0.8808
llama-v3-70b-instruct 43 0.3323
deepseek-coder-v2-lite-instruct 43 0.4606
gemini-1.5-pro 45 0.6813
llama-v3p1-70b-instruct 46 0.1027

In Tab. 22, we rank models by their median LOC alongside their respective pass@1 scores. Picking
one pass@k is sufficient because all scores produced basically the same model rankings as shown
in Tab. 6.

We observe that the median LOCs across all models stay close, ranging from 35 to 46. We believe
this narrow range is largely enforced by the conciseness and expressiveness of the React framework
itself. Also there is no strong correlation between the conciseness (median LOC) and correctness
(pass@1). For example, mixtral-8x7b-instruct, which has the shortest median LOC, ranks quite low
on pass@1 (0.1269). Conversely, stronger models like claude-3.5-sonnet and gpt-4o-2024-08-06,
generate longer code. Other models, e.g. deepseek-coder-v2-instruct and gemini-1.5-pro, strike a
balance between median.

Next, we use violin charts to visualize LOC distribution of each model. The distributions are either
bimodal or unimodal, and they are collected in Fig. 5 and Fig. 6 respectively.

Notably, all high-performing models with high pass@1 scores are located in Fig. 5. These models,
such as the gpt-4o variants and deepseek-coder series, demonstrate higher variability in their LOC
distributions, i.e. bimodal. The two distinct peaks in these models’ distributions suggests that they
generate both shorter and longer code lengths, depending on the task. Importantly, the median LOC
values for these bimodal models consistently fall between the two peaks, highlighting a balance in
their code generation. Also the higher of the two peaks often corresponds to smaller LOC. This
suggests that while these models can produce longer code when necessary, they tend to generate
shorter, more optimized code in most cases.

In contrast, Fig. 6 contains smaller models. Some exhibit near-perfect normal distributions, e.g.
mixtral-8x7b-instruct and llama-v3-8b-instruct. These models generate LOC distributions that are
tightly centered around their medians, indicating more consistent and predictable behavior. The lack
of bimodal characteristics in these distributions reflects a more stable output across tasks, but with
lower complexity compared to the larger models in Fig. 5.

F.2 IMPACT OF SUCCESS/FAILURE

To get more insights, we search for statistical distinction between successful model outputs and
failed outputs. In Fig. 7 and 8, we visualize the LOC distribution separately for succssful outputs
and failed ones, for each model. The graphs are ranked by pass@1, where higher pass@1 means

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0

10

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for gpt-4o-2024-05-13

(a) gpt-4o-2024-05-13

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for llama-v3p1-405b-instruct

(b) llama-v3p1-405b-instruct

0

10

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for gpt-4o-2024-08-06

(c) gpt-4o-2024-08-06

0

10

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for deepseek-coder-v2-instruct

(d) deepseek-coder-v2-instruct

0

10

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for gpt-4o-mini

(e) gpt-4o-mini

0

10

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for mistral-large-2

(f) mistral-large-2

0

10

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for mixtral-8x22b-instruct

(g) mixtral-8x22b-instruct

0

10

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for claude-3.5-sonnet

(h) claude-3.5-sonnet

0

20

40

60

80

100

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for deepseek-coder-v2-lite-instruct

(i) deepseek-coder-v2-lite-instruct

20

40

60

80

100

120

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for gemini-1.5-pro

(j) gemini-1.5-pro

Figure 5: LOC distribution by model (bimodal)

bigger success sample set and smaller failure sample set. We normalize the width of each violin chart
by its sample set size, hence resulting in the thinnest failure graph for the model with the highest
pass@1. The graph gradually grows wider as the model performance degrades. The opposite pattern
is observed for the success violin chart.

An important finding here is that the success distribution is always more complex than its failure
counterpart, with more peaks and deviations. Fig. 8 groups lower performing models whose failure
sample set dominates the success sample set. The failure LOC distributions are unimodal, in contrast
with the multimodal distributions of top models in Fig. 7. This implies the inherent complexity
involved in writing correct code even when the mean LOC is less than 50.

The success/fail LOC distribution of remaining 8 models are shown in Fig. 9.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0

10

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for mixtral-8x7b-instruct

(a) mixtral-8x7b-instruct

20

30

40

50

60

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for llama-v3-8b-instruct

(b) llama-v3-8b-instruct

20

40

60

80

100

120

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for gemini-1.5-flash

(c) gemini-1.5-flash

10

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for llama-v3p1-8b-instruct

(d) llama-v3p1-8b-instruct

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for llama-v3-70b-instruct

(e) llama-v3-70b-instruct

20

40

60

80

100

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for llama-v3p1-70b-instruct

(f) llama-v3p1-70b-instruct

Figure 6: LOC distribution by model (unimodal)

success failure

0

20

40

60

80

LO
C

Model gpt-4o-2024-08-06 LOC Distribution (Scaled Width)

(a) gpt-4o-2024-08-06 (pass@1 = 0.885)

success failure

0

20

40

60

LO
C

Model claude-3.5-sonnet LOC Distribution (Scaled Width)

(b) claude-3.5-sonnet (pass@1 = 0.8808)

success failure

0

20

40

60

80

LO
C

Model gpt-4o-2024-05-13 LOC Distribution (Scaled Width)

(c) gpt-4o-2024-05-13 (pass@1 = 0.8702)

success failure

0

20

40

60

80

LO
C

Model gpt-4o-mini LOC Distribution (Scaled Width)

(d) gpt-4o-mini (pass@1 = 0.8271)

Figure 7: LOC distribution by model of high pass@1: success vs failure

F.3 LOC DISTRIBUTION BY APPLICATIONS

In Tab. 23, we rank median LOC for each application. Consistent with the case for model ranking
(Tab. 22), the median values stay within a narrow range (37 to 46). This suggests that all models
consistently produce solutions of similar length, irrespective of the task complexity or domain.

Fig. 10 collects violin charts of 14 applications following unimodal distribution, where the model
outputs are centered around a common length, with less variation between extremes. The remaining

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

success failure

0

20

40

60

80

100

LO
C

Model llama-v3p1-8b-instruct LOC Distribution (Scaled Width)

(a) llama-v3p1-8b-instruct (pass@1 = 0.2512)

success failure
20

40

60

80

100

LO
C

Model llama-v3p1-70b-instruct LOC Distribution (Scaled Width)

(b) llama-v3p1-70b-instruct (pass@1 = 0.1027)

success failure

0

20

40

60

80

LO
C

Model mixtral-8x7b-instruct LOC Distribution (Scaled Width)

(c) mixtral-8x7b-instruct (pass@1 = 0.1269)

success failure

0

20

40

60

80

100

LO
C

Model llama-v3-8b-instruct LOC Distribution (Scaled Width)

(d) llama-v3-8b-instruct (pass@1 = 0.0679)

Figure 8: LOC distribution by model of low pass@1: success vs failure

Table 23: Applications ranked by mean LOC

Application Mean LOC
News Aggregator 37
Music Streaming 37
Online Marketplace 37
E-commerce 37
Recipe Sharing 38
Fitness Tracking 38
Online Learning 38
Blogging 39
Weather 40
Real Estate 42
Social Media 42
Job Board 42
Inventory Management 42
Pet Care 42
Travel Planning 42
Personal Finance 43
Customer Support 44
Photo Gallery 44
Event Management 45
Task Management 46

6 applications are in Fig. 11, following multimodal distribution. In both cases, the median LOC is
always positioned centrally in each distribution, which suggests that the code generation is stable
across applications. Applications in Fig. 11 exhibit more complex patterns, but the distributions
remain balanced with the median value positioned at the center of the distribution.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

success failure

0

10

20

30

40

50

60

70

LO
C

Model mistral-large-2 LOC Distribution (Scaled Width)

(a) mistral-large-2 (pass@1 = 0.7804)

success failure

0

10

20

30

40

50

60

70

LO
C

Model deepseek-coder-v2-instruct LOC Distribution (Scaled Width)

(b) deepseek-coder-v2-instruct (pass@1 = 0.7002)

success failure

20

40

60

80

100

120

140

LO
C

Model gemini-1.5-pro LOC Distribution (Scaled Width)

(c) gemini-1.5-pro (pass@1 = 0.6813)

success failure

20

40

60

80

100

120

LO
C

Model gemini-1.5-flash LOC Distribution (Scaled Width)

(d) gemini-1.5-flash (pass@1 = 0.57)

success failure

0

20

40

60

80

100

LO
C

Model deepseek-coder-v2-lite-instruct LOC Distribution (Scaled Width)

(e) deepseek-coder-v2-lite-instruct (pass@1 =
0.4606)

success failure

0

20

40

60

80

LO
C

Model mixtral-8x22b-instruct LOC Distribution (Scaled Width)

(f) mixtral-8x22b-instruct (pass@1 = 0.3074)

success failure

20

30

40

50

60

70

80

LO
C

Model llama-v3-70b-instruct LOC Distribution (Scaled Width)

(g) llama-v3-70b-instruct (pass@1 = 0.3323)

success failure
20

30

40

50

60

70

LO
C

Model llama-v3p1-405b-instruct LOC Distribution (Scaled Width)

(h) llama-v3p1-405b-instruct (pass@1 = 0.302)

Figure 9: LOC distribution by model: success and failure

F.4 LOC DISTRIBUTION BY APPLICATIONS: SUCCESS VS FAILURE

We conduct the same study described in Sec. F.2, except we shard the LOC distribution across
applications instead of models. The results are collected in Fig. 12.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

10

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for newsaggregator

(a) News aggregator

20

30

40

50

60

70

80

90

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for musicstreaming

(b) Music streaming

0

20

40

60

80

100

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for onlinemarketplace

(c) Online marketplace

20

30

40

50

60

70

80

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for ecommerce

(d) E-commerce

20

30

40

50

60

70

80

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for recipesharing

(e) Recipe sharing

20

30

40

50

60

70

80

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for blogging

(f) Blogging

20

40

60

80

100

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for realestate

(g) Real estate

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for socialmedia

(h) Social media

20

40

60

80

100

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for jobboard

(i) Job board

20

40

60

80

100

120

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for personalfinance

(j) Personal finance

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for customersupport

(k) Customer support

20

40

60

80

100

120

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for inventorymanagement

(l) Inventory management

20

40

60

80

100

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for eventmanagement

(m) Event management

20

30

40

50

60

70

80

90

100

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for taskmanagement

(n) Task management

Figure 10: LOC distribution by applications: unimodal

Since each application assembles outputs from all models with full spectrum of performances, the
success and failure data set are about the equal size. Similar to what we have observed in model-
based sharding (Sec. F.2), the distribution pattern for success is equally or more complex than that
for failure, summarized in Tab. 24.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for fitnesstracking

(a) Fitness tracking

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for onlinelearning

(b) Online learning

10

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for weather

(c) Weather

0

20

40

60

80

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for photogallery

(d) Photo gallery

20

30

40

50

60

70

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for petcare

(e) Pet care

20

30

40

50

60

70

80

Lin
es

 o
f C

od
e 

(L
OC

)

LOC Distribution for travelplanning

(f) Travel planning

Figure 11: LOC distribution by applications: multimodal

Table 24: Summary of Fig. 12: unimodal vs multimodal

UniModal Success MultiModal Success
UniModal Failure (b) (q) (t) (c) (d) (f) (g) (h) (j) (k) (l) (m) (n) (o) (p)

MultiModal Failure (a) (e) (i) (r) (s)

G PER-APPLICATION ERROR ANALYSIS

Fig. 13 shows the failure pattern broken down by applications.

1. Consistency Across Applications: All applications exhibit the same general shape—a large
concentration of easier problems on the left side and a few harder problems on the right side.
This consistency suggests that across different domains, there are always a few particularly
challenging problems that models struggle with.

2. Variations in Skewness: Some applications, such as Fitness Tracking and Music Streaming,
show a more pronounced skew with a sharp rise in failure rates for a few problems, indicat-
ing a steeper difficulty curve. Others have a more gradual increase, indicating a more even
distribution of problem difficulty.

3. Extreme Difficulty in Certain Applications: Applications like Customer Support and Pet
Care have a sharper increase towards the right, implying that these domains have a subset
of problems that are especially challenging.

4. Easier Applications: In applications like Weather and Photo Gallery, the overall number of
failures seems lower compared to other appli cations, suggesting that the problems in these
areas were generally easier.

Fig. 14 shows error distribution by applications. Since each application assembles outputs from all
models, the raw error counts are at the same scale for all applications. We do not find any distinctive
patterns. There is neither special error nor special application.

H BIAS ANALYSIS

We conducted a preliminary investigation into potential biases within our benchmark, focusing on
language bias, cultural inclusivity, and implicit assumptions. To this end, we searched the codebase
for gendered terms, stereotypical language, and regional references using an automated analysis

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

script. Additionally, we examined API endpoints and user-facing messages for exclusionary patterns
or implicit biases. Our investigation did not identify any instances of such biases in the current
version of the benchmark.

While these findings are encouraging, we recognize the limitations of automated analysis and the
potential for more nuanced biases that may require further investigation. We welcome additional
guidance or suggestions for extending this analysis to ensure a comprehensive evaluation of fairness
within our benchmark.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

success failure

0

20

40

60

80

100

LO
C

Application newsaggregator LOC Distribution (Scaled Width)

(a) News aggregator (mean LOC = 37)

success failure

0

20

40

60

80

100

120

LO
C

Application musicstreaming LOC Distribution (Scaled Width)

(b) Music streaming (mean LOC = 37)

success failure

0

20

40

60

80

100

LO
C

Application onlinemarketplace LOC Distribution (Scaled Width)

(c) Online marketplace (mean LOC = 37)

success failure

0

20

40

60

80

LO
C

Application ecommerce LOC Distribution (Scaled Width)

(d) E-commerce (mean LOC = 37)

success failure

0

20

40

60

80

LO
C

Application recipesharing LOC Distribution (Scaled Width)

(e) Recipe sharing (mean LOC = 38)

success failure

0

20

40

60

80

LO
C

Application fitnesstracking LOC Distribution (Scaled Width)

(f) Fitness tracking (mean LOC = 38)

success failure

0

20

40

60

80

LO
C

Application onlinelearning LOC Distribution (Scaled Width)

(g) Online learning (mean LOC = 38)

success failure

0

20

40

60

80

LO
C

Application blogging LOC Distribution (Scaled Width)

(h) Blogging (mean LOC = 39)

success failure

0

10

20

30

40

50

60

70

LO
C

Application weather LOC Distribution (Scaled Width)

(i) Weather (mean LOC = 40)

success failure

0

20

40

60

80

100

120

LO
C

Application realestate LOC Distribution (Scaled Width)

(j) Real estate (mean LOC = 42)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

success failure

0

20

40

60

80

100

LO
C

Application socialmedia LOC Distribution (Scaled Width)

(k) Social media (mean LOC = 42)

success failure

0

20

40

60

80

100

120

LO
C

Application jobboard LOC Distribution (Scaled Width)

(l) Job board (mean LOC = 42)

success failure

20

40

60

80

100

120

LO
C

Application inventorymanagement LOC Distribution (Scaled Width)

(m) Inventory management (mean LOC = 42)

success failure

0

20

40

60

80

100

LO
C

Application petcare LOC Distribution (Scaled Width)

(n) Pet care (mean LOC = 42)

success failure10

20

30

40

50

60

70

80

LO
C

Application travelplanning LOC Distribution (Scaled Width)

(o) Travel planning (mean LOC = 42)

success failure

0

20

40

60

80

100

120

140

LO
C

Application personalfinance LOC Distribution (Scaled Width)

(p) Personal finance (mean LOC = 43)

success failure

0

20

40

60

80

LO
C

Application customersupport LOC Distribution (Scaled Width)

(q) Customer support (mean LOC = 44)

success failure

0

20

40

60

80

LO
C

Application photogallery LOC Distribution (Scaled Width)

(r) Photo gallery (mean LOC = 44)

success failure

0

20

40

60

80

100

LO
C

Application eventmanagement LOC Distribution (Scaled Width)

(s) Event management (mean LOC = 45)

success failure

0

20

40

60

80

100

LO
C

Application taskmanagement LOC Distribution (Scaled Width)

(t) Task management (mean LOC = 46)

Figure 12: LOC Distribution by Application: Success vs Failure31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Blogging

(a) Blogging

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Customersupport

(b) Customer support

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Ecommerce

(c) E-commerce

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Eventmanagement

(d) Event management

problems0

20

40

60

80

100

120

140

to
ta

l f
ai

lu
re

s

Total Failures in Fitnesstracking

(e) Fitness tracking

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Inventorymanagement

(f) Inventory management

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Jobboard

(g) Job board

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Musicstreaming

(h) Music streaming

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Newsaggregator

(i) News aggregator

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Onlinemarketplace

(j) Online marketplace

problems0

20

40

60

80

100

to
ta

l f
ai

lu
re

s

Total Failures in Onlinelearning

(k) Online learning

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Personalfinance

(l) Personal finance

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Petcare

(m) Pet care

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Photogallery

(n) Photo gallery

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Realestate

(o) Real estate

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Recipesharing

(p) Recipe sharing

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Socialmedia

(q) Social media

problems0

20

40

60

80

100

120

140

to
ta

l f
ai

lu
re

s

Total Failures in Taskmanagement

(r) Task management

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Travelplanning

(s) Travel planning

problems0

20

40

60

80

100

120

140

160

to
ta

l f
ai

lu
re

s

Total Failures in Weather

(t) Weather

Figure 13: Failures per problem by application

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

on
lin

el
ea

rn
in

g

ec
om

m
er

ce

ne
ws

ag
gr

eg
at

or

fit
ne

ss
tra

ck
in

g

ph
ot

og
al

le
ry

cu
st

om
er

su
pp

or
t

pe
tc

ar
e

so
cia

lm
ed

ia

ta
sk

m
an

ag
em

en
t

jo
bb

oa
rd

m
us

ics
tre

am
in

g

ev
en

tm
an

ag
em

en
t

on
lin

em
ar

ke
tp

la
ce

pe
rs

on
al

fin
an

ce

tra
ve

lp
la

nn
in

g

re
cip

es
ha

rin
g

we
at

he
r

in
ve

nt
or

ym
an

ag
em

en
t

re
al

es
ta

te

bl
og

gi
ng

0

1000

2000

3000

4000

5000

6000

7000

8000

Er
ro

r C
ou

nt

Error Color
A
B
C
D
E
F
G

Figure 14: Errors by applications

33


	Introduction
	Benchmark
	Scope
	Task Formulation
	Task Verification

	Evaluation Results
	LLM Performances
	Benchmark Difficulty
	Does the Code Build?
	Error Types
	Singular and Twin Errors
	Error Distribution by Models

	Duo-Feature Benchmark
	LLM Performnaces
	Instruction Loss

	Related Works
	Coding-Related Tasks and Benchmarks
	Instruction Following and In-Context Learning
	Reinforcement Learning and Reasoning
	TDD in LLM Coding

	Conclusions
	Benchmark Construction
	Experiment Setup
	A Test-Last Development (TLD) Experiment
	Prompt Experiments
	Deep Dives to o1 Models
	Single-Feature Benchmark
	Duo-Feature Benchmark

	Line-of-Code (LOC) Analysis
	LOC Distribution by Models
	Impact of Success/Failure
	LOC Distribution by Applications
	LOC Distribution by Applications: Success vs Failure

	Per-Application Error Analysis
	Bias Analysis

