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Abstract

Yield of chemical reactions generally depends
on the activation barrier, i.e., the energy differ-
ence between the reactant and the transition state.
Computing the transition state from the reactant
and product graphs requires prior knowledge of
the correct node alignment (i.e., atom mapping),
which is not available in yield prediction datasets.
In this work, we propose YIELDNET, a neural
yield prediction model, which tackles these chal-
lenges. Here, we first approximate the atom map-
ping between the reactants and products using a
differentiable node alignment network. We then
use this approximate atom mapping to obtain a
noisy realization of the condensed graph of reac-
tion (CGR), which is a supergraph encompassing
both the reactants and products. This CGR serves
as a surrogate for the transition state graph struc-
ture. The CGR embeddings of different steps
in a multi-step reaction are then passed into a
transformer-guided reaction path encoder. Our
experiments show that YIELDNET can predict the
yield more accurately than the baselines. Further-
more, the model is trained only under the distant
supervision of yield values, without requiring fine-
grained supervision of atom mapping.

1. Introduction

The yield of a chemical reaction is expressed as the per-
centage of conversion of the reactant(s) to product(s). Early
prediction of yield before wet-lab validation of reactions
can have an immense impact on ML-driven reaction discov-
ery. It allows the identification and removal of low-yielding
reactions, thereby helping in the design and optimization of
chemical synthesis. Previous works on yield prediction (Ah-
neman et al., 2018; Nielsen et al., 2018; Zahrt et al., 2019;
Sandfort et al., 2020; Schwaller et al., 2020; 2021c; Singh
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& Sunoj, 2022; Schleinitz et al., 2022; Lu & Zhang, 2022)
have primarily relied on quantum chemically computed
molecular descriptors, molecular fingerprints, or SMILES
based representation rather than a more holistic representa-
tion built on molecular structure itself. In contrast, recent
approaches (Saebi et al., 2021; Gong et al., 2021; Kwon
et al., 2022; Li et al., 2023) leverage graph neural networks
(GNNs5s) to compute the embedding using molecular graphs.

Yield of a reaction depends strongly on the activation energy,
through Arrhenius equation (Arrhenius, 1889), which is as-
sociated with the potential energy of a transient chemical
entity called the ‘transition state’. It is possible to infer the
transition state graph from the reactant and product graphs
if we know the atom mapping, i.e., the correspondence be-
tween the atoms of the reactants and the products (Kim
et al., 2024). But most existing yield prediction datasets
only include the reactants and products, lacking both tran-
sition states and atom mappings. Furthermore, the compu-
tation of the true atom mapping from the graph structures
of reactants and products is a challenging task. Atom map-
ping computation involves solving various pairwise graph
matching tasks, which are NP hard problems (Astero &
Rousu, 2024). In practice, this is usually mitigated by using
expert-curated rules. However, such inputs require manual
intervention which could, in turn, limit their widespread de-
ployment (Schwaller et al., 2021a). As a result, the existing
works on yield prediction do not consider atom mapping or
transition states into their model, leaving a significant room
for improvement.

1.1. Our contributions

We address these challenges by designing a novel yield
prediction network (YIELDNET). Specifically, we make the
following contributions.

Differentiable approximation of atom mapping In the
context of a chemical reaction, atom mapping refers to an
alignment map between the reactant and product nodes,
which ensures that the atom composition is preserved. Such
an alignment can be obtained by solving a graph match-
ing task between the reactants and the products (Korner
& Apostolakis, 2008; Astero & Rousu, 2024). However,
this necessitates an exploration of a vast permutation space,
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which is daunting. To address this challenge, we introduce
a fully differentiable node alignment network built on the
Gumbel-Sinkhorn iterative procedure. This network takes
GNN embeddings of the reactants and products as input and
outputs an alignment (doubly stochastic or soft permutation)
matrix which approximates the atom mapping.

Approximate condensed graph of reaction We use the
atom mapping to compute a condensed graph of reaction
(CGR) (Varnek et al., 2005; Nugmanov et al., 2019), as a
supergraph containing both reactants and products. Owing
to such construction, the CGR serves as a surrogate of the
transition state. Subsequently, we feed this CGR into a
second GNN to compute its embeddings.

Since the atom mapping is approximated by a neural net-
work, the CGR becomes a trainable weighted graph. There-
fore, this second GNN must allow differentiation with re-
spect to the input CGR, which is not supported in standard
off-the-shelf GNN models. To address this, we design a
GNN that relies exclusively on differentiable operations on
the input adjacency matrix, enabling end-to-end training
using the CGR.

Neural reaction encoder A reaction may involve multiple
sequential steps, often referred to as reaction path. Using
the computed representations of the CGR for each step in
hand, we compute the representation for the entire reaction
path. For each elementary step in a multi-step reaction,
we concatenate the embeddings of the CGR with reaction-
step encodings, akin to positional encodings. Finally, these
embeddings are fed into a transformer, and the output from
the transformer is then used to compute the reaction yield.

Learning under distant supervision The key goal of
YIELDNET is to predict reaction yield. While doing so, it
learns an approximate atom mapping using our node align-
ment network. Notably, YIELDNET is trained solely under
the distant supervision of the yield values, without any fine
grained supervision of ground truth atom mapping or CGR.
Since transition state plays an important role in reaction
yield, our approach of using the continuous approximation
of the CGR as a surrogate for transition state from the dif-
ferentiable atom mapping, can enhance the inductive bias
of the model.

Our experimental evaluation across multiple datasets show
that YIELDNET is able to outperform several baselines by
a significant margin. Furthermore, we observe that YIELD-
NET can effectively approximate atom mapping under the
supervision of only reaction yields.

2. Related work

Apart from the aforementioned work on the yield predic-
tion, in recent years, there has been an increasing interest in

designing ML models for atom mapping (Schwaller et al.,
2021a; Nugmanov et al., 2022; Astero & Rousu, 2024) and
transition state (Pattanaik et al., 2020; Jackson et al., 2021;
Makos et al., 2021; Choi, 2023; Duan et al., 2023; Kim
et al., 2024; Duan et al., 2025). However, the problem
setup of these works is very different from ours. For in-
stance, the aforementioned works on transition states focus
only on predicting the transition states but not yield. To
do so, they use the fine-grained supervision of ground truth
transition states for training. Similarly, the goal of Nug-
manov et al. (2022); Astero & Rousu (2024) is to predict
the atom mapping, after training under the supervision of
fine-grained ground truth atom mapping. In another work
on atom mapping, Schwaller et al. (2021a) employed a large
transformer over SMILES representations. In contrast to the
above works, our key goal is to predict the yield. Hence, we
train our network on datasets containing only yield values,
not any ground truth atom mapping or transition states.

Our work is also related to graph neural networks (GNNs),
other applications of ML in chemistry, and attention mecha-
nisms in different domains. We briefly review each of them
as follows.

Representation learning for graphs Graphs are structured
objects that are different from images and texts. They need
specialized representation learning methods to compute the
graph embeddings. These graph representation learning
methods can be broadly divided into two categories. The
first set of works consists of transductive models, where
the node embeddings are computed independently of each
other (Grover & Leskovec, 2016; Perozzi et al., 2014). This
requires us to train O(]V|) embeddings separately for each
node in a graph. The second set of works consists of induc-
tive models, referred to as graph neural networks or GNNs
(Gilmer et al., 2017; Hamilton et al., 2017; Kipf & Welling,
2017; Velickovi¢ et al., 2018; Zhang & Chen, 2018), that
employ message passing neural networks with shared pa-
rameters. At the outset, their goal is to collect information
from the neighborhoods at different distances from a node
and cast it into a low dimensional representation vector.
Such methods are widely used in link prediction (Zhang &
Chen, 2018), node classification (Kipf & Welling, 2017),
graph matching (Li et al., 2019b; Bai et al., 2019) etc.

ML applications in chemistry In recent years, there
has been a surge of work that uses machine learning in
a wide variety of chemical applications (Hirohara et al.,
2018; Bjerrum, 2017; Liu et al., 2018; Huang et al., 2020;
Honda et al., 2019; Wang et al., 2019c; Chithrananda et al.,
2020). Several works have represented molecules as a cus-
tomized string called SMILES (Anderson et al., 1987) and
then applied CNNs (Hirohara et al., 2018) or sequence en-
coders (Bjerrum, 2017; Liu et al., 2018; Huang et al., 2020;
Honda et al., 2019; Wang et al., 2019c; Chithrananda et al.,
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2020). However, the same molecule can result in multiple
SMILES strings, which might affect the expressivity of the
trained model. Therefore, a wide body of work represents
a molecule as a molecular graph and designs graph based
machine learning models (Kearnes et al., 2016; Schiitt et al.,
2018; Qiao et al., 2020; Klicpera et al., 2020b;a; Fuchs et al.,
2020; Samanta et al., 2020; Jin et al., 2018; Cao & Kipf,
2018). Such graph based models for molecular graphs can
be used for generative modeling (Samanta et al., 2020; Jin
et al., 2018; Cao & Kipf, 2018), property predictions (Yang
et al., 2019; Axelrod & Gomez-Bombarelli, 2022; Liu et al.,
2021; Chithrananda et al., 2020) etc.

Learning alignment in the context of graphs Graph
matching naturally leads to a quadratic assignment prob-
lem (Anstreicher, 2003; Gold & Rangarajan, 1996; Caetano
et al., 2009). Fey et al.; Zanfir & Sminchisescu (2018);
Wang et al. (2019b) provide a learning model for training
graph matching, under distant supervision. In last few years,
there are some works on learning node to node alignment
for subgraph matching (Roy et al., 2022b; Ramachandran
et al., 2024; Raj et al., 2025), maximum common subgraph
computation (Kriege et al., 2019; Roy et al., 2022a), graph
edit distance (Jain et al., 2024; Li et al., 2019b), graph rerp-
resentation learning (Roy et al., 2021).

3. Preliminaries

Notations We represent a single-step reaction as A +
B — Y + Z, where R = {A, B} are the reactants and
I = {Y, Z} are the products. Here, I typically consists of
intermediates in multi-step reactions. Each step involves at
most two reactants and two products, consistent with our
datasets. For any molecular graph G 4 = (V4, E4), we use
Vy € RIValxdv and E, € RIEalxde (o denote the node
and edge feature matrices, respectively. In practice, we build
the node feature for u, i.e., V4 [u, :] using the atomic number,
degree of connectivity, hybridization, etc., and the edge
feature for (u,v), i.e., Ea[(u,v), :] using the type of bonds
respectively. We denote the reactant and product graphs as
Gr = (Vg, Fgr) and Gy = (Vi, Ey), and their adjacency
matrices as Adjp and Adj;, respectively. We denote the set
of N x N permutation matrices as P . While P represents
both the hard permutation matrix and the doubly stochastic
matrix. For a hard permutation matrix P, the alignment
map 7 satisfies Plu,v'] =1 = 7fu] = v’

Reaction and their components A reaction path r» com-
prises n elementary steps, with each step represented as
A; + B; — Y, + Z;, where Y; and Z; are intermediates.
Inputs A; and B; may be initial reactants, catalysts, or in-
termediates from prior steps (Y; or Z;, j < ¢). The final
product Y,, from the n-th step is the reaction’s desired out-
put, whose yield is the focus. Thus, r follows a sequential
structure:

T:{A1+814)Y1+Zl,
7ATL+B’n —>KL+ZTL} (1)

Atstep i < n, we denote R; = {A;, B;} and I; = {Y;, Z;}.
Chemical yield for a reaction can be defined as the observed
amount of the desired final product (Y,, in Eq. (1)), which
is generally less than the theoretical maximum amount of
the product given by stoichiometric calculations.

We do incorporate both catalyst and solvent, when present,
into the reactant set R. Temperature was excluded as it is
invariant in the case of high-throughput experimentation
datasets (e.g., DF and NS datasets (Section 5)), which main-
tain consistent reaction conditions throughout, or varies
mildly for others (e.g., SC). Integrating temperature into the
node/edge features might enhance CGR or yield prediction
quality.

Activation energy and its relationship with yield In
an elementary step reaction R — I, reactants R form
a transient and unstable chemical entity (shown as TS
in Figure 1), before producing /. This chemical en-
tity, called as transition state, has the highest poten-
tial energy in the reaction, and the energy required to
overcome this barrier is the activation energy (AEY).
A lower activation en- TS

ergy leads to a faster &

reaction rate and g

higher yield (Kozuch E:

& Shaik, 2011). 5 L
, g CC X

Atom mapping In ‘ J; D —

a chemical reaction, Reaction path

Figure 1: Reaction path vs po-

only the bonds in ¢
tential energy

the reactants R are
rearranged—broken or newly formed— to produce the prod-
ucts I, while the atoms themselves remain conserved. This
conservation establishes a correspondence, represented as a
permutation 7 : V; — Vg , mapping the atoms in the prod-
ucts to those in the reactants. Here, 7 is the atom mapping.

Our goal We are given a set of training dataset D contain-
ing multi-step reactions along with the ground truth yield
values, i.e., D = {(ry,yield(r1)), ..., (rp|, yield(rp|)) }.
Any reaction r has n elementary steps as described in
Eq. (1), where each elementary step contains a set of
two-dimensional representations of the molecular graphs
{Ri = (A, Bi), I = (Yi, Zi) },¢p,) during both training
and test. Our goal is to develop a yield prediction model
that can approximate atom mapping and utilize this map-
ping to compute a surrogate for the transition state, enabling
accurate yield prediction for a new reaction.

4. Proposed approach

For brevity of exposition, we first outline a yield prediction
model for an ideal setup, where the atom mapping is known.
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Figure 2: Top row: Gcggr is computed as the supergraph
containing Gr and G7 = G, where G7 is obtained by
applying atom-mapping 7 on V. Bottom row: Adjacency
matrix of CGR is computed as max (Ade, P*AdeP*T),
where P* is 0/1 permutation matrix corresponding to .
Given G and Gy,  can be obtained by minimizing the
number of edges in the supergraph G'r U G7: this renders
in the maximum overlap between G'r and G7.

Then, we introduce YIELDNET, a neural model that first
learns an approximate atom mapping when its ground truth
is unavailable, and then computes a condensed graph of
reaction (CGR) as a surrogate for the transition state.

4.1. Yield prediction when the atom mapping is known

Activation energy directly impacts yield, making it impera-
tive to incorporate transition states in yield prediction mod-
els. If the atom mapping 7 is known, we can design a yield
prediction model in the following steps, which will enable
us to express the yield as a trainable function of the CGR
that approximates the corresponding transition state.

(1) Given the reactants R and the products [ in an elemen-
tary step reaction, we permute V7 using the atom mapping
7 to construct G = (w(V7), Er(w(Vr))) which is isomor-
phic to G;. Then, we compute the graph of transition state
as the condensed graph Gcgr := Gr U G7, i.e., a super-
graph which subsumes the structures of both Gr and G
(Figure 2). Suppose P* € Py is the gold permutation ma-
trix corresponding to 7, where N = |Vg| = |V;| obtained
after padding. This allows us to approximate the adjacency
matrix of the CGR using the adjacency matrices Adjp and
Adj; as follows.

Adjcgr = max (Adjz, P*Adj, P*T). )

(2) We compute the node embeddings of Gcgr, for each
elementary step ¢ < n of an n—step reaction (1).

(3) We feed these node embeddings into a sequence-to-
sequence encoder to compute the yield.

4.2. YIELDNET model

Overview For most real-life chemical datasets, the atom
mapping 7 or the permutation matrix P~ is typically not
readily available. Hence, we design neural networks to ap-
proximate atom mapping (item (1) above), which leads to
an approximate CGR for each reaction step. We achieve
this in the following steps, as illustrated in Figure 3.

(I) We integrate a graph neural network (GNN) that com-
putes both node embeddings and edge embeddings.

(II) We feed these node embeddings into a differentiable
node alignment network, Align, to obtain an alignment ma-
trix P =~ P*.

(IID) To ensure the differentiability of the graph structures
of CGR, we use the edge embeddings to obtain a smooth
approximation of the adjacency matrix of CGR.

(IV) We compute the embeddings of CGR using an input-
differentiable GNN.

(V) Finally, we combine the embeddings of CGRs of each
elementary step using a sequence encoder and obtain the
yield.

In the following we describe the above steps in details.

Embedding computation using GNN Given a multistep
reaction r, each elementary step consists of a reactant graph
G R, a product graph G and their node and edge features
Vi, Egr and Vi, E;, each with N nodes, obtained after
padding. We apply a graph neural network GNNy with pa-
rameter 6 on these graphs to compute their node embeddings
H,, and edge embeddings M,, as follows:

Hpg, Mr = GNNg(GR, Vg, ER),
HIaMI = GNNG(GI;‘/IvEI)' (3)

Here H, € R¥*4 and M, € RNXNXD  For brevity, we
present our analysis with D = 1 and defer the general
discussion using tensor form in Appendix C. To elaborate,
for the reactants R, Hg[u,:] = hr(u) € R? is the em-
bedding of node u, while Mg[u,v] is the message value
mg(u,v) for an edge (u,v) € Er and zero for non-edges
(u,v) ¢ Er. Similarly, we compute H; and M.

Differentiable approximation of atom mapping To ad-
dress the challenge of learning P*, i.e., the permutation
matrix corresponding to the unknown atom mapping, we
adopt a data-driven approach. Ideally, P* should be a bi-
nary 0/1 matrix, but such discrete values attenuate gradient
signals and prevent backpropagation. To overcome this,
we approximate P* using a node alignment network Align.
This network takes the node embeddings of the reactant
and product graphs, Hr, and H as input, and outputs an
alignment matrix P which approximates P*. The matrix
P is a continuous doubly stochastic matrix, which enables
smooth end-to-end optimization.

P = Align(Hpg, Hy) “4)
d
— Sinkhorn (Z[max(HR[u, 0, Hy[W', a)]w,/) )
(=1

Here, Sinkhorn(-) performs iterative Sinkhorn normaliza-
tions on the input matrix (Cuturi, 2013; Mena et al., 2018).
Given a temperature A > 0, an input matrix C' and the
number of iterations 7', Sinkhorn(C) = Sinkhorn'?’(C)
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Figure 3: Illustration of YIELDNET. For each reaction step ¢, we process the reactants R and products I using a GNN,
GNNy, to obtain node embeddings H g, H; and edge embeddings M, M;. We feed them into a fully differentiable node
alignment network, Align, to obtain an alignment matrix P which approximates the permutation matrix corresponding
to the atom mapping. Then, we use P to obtain a continuous approximation of the adjacency matrix of CGR, Adjcgg.
Next, we feed this approximate Adjcgg With the node and features into a new GNN (InputDifferentiableGNN ;) to obtain
Hcgg,, the node embedddings of CGR. Finally, a reaction path encoder use { Hcgg, } to predict the yield.
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Figure 4: Differentiable approximation of atom mapping
using node alignment network Align. It takes Hp and H,
the node embeddings of G and G as input; and, outputs
an alignment matrix P, by computing iterative Sinkhorn iter-
ations on the matrix [— >, max(Hpg[u, ¢], Hr[u', {])]y.u .

is computed as follows:
Sinkhorn'®(C) = exp(C/\) (©6)

Sinkhorn* 1) (C) = RowDiv(ColDiv(Sinkhorn® (C))).

@)
Here, RowDiv (ColDiv) indicates division by sum of rows
(columns). Note that the limit lims_, - Sinkhorn(™ (C)
converges to a doubly stochastic matrix and the limit
limy 0 lim7_ o Sinkhorn(T)(C) converges to a permu-
tation matrix. We run the iterations in Eq. (7) a total of
T = 10 times.

Rationale behind our design choice: Here, we justify the
choice of node alignment network in Eq. (5) by connecting
this design decision to a combinatorial heuristic for deter-
mining atom mapping. From the combinatorial viewpoint,
we can compute the permutation matrix P* corresponding
to atom mapping, by minimizing the size of the supergraph
containing the structures of R and I (Figure (2)). In terms
of the adjacency matrices, this may be written as:

P* = argmin Z max (Adjg, PAdePT) [u,v]. (8)

PcPn w0

The above optimization problem is a quadratic assignment
problem (QAP) due to the quadratic involvement of P, and
is NP-hard as well. To tackle this challenge, we view a graph

as the “set” of node embeddings and relax the optimiza-
tion (8) into the problem of minimizing the approximate size
of the superset containing Hpr and H;. Specifically, we
seek to solve: minpep, 22121 max(Hpg, PHy)[{]. This
is same as solving the following optimization task, due to
the fact that in each row of P, exactly one element equals
to one.
min
PePn

d
33 max (HR [u, €], Hy o, e])P[u, d). 9)
=1 u,u’

The above problem is a linear optimal transport (OT) prob-
lem (Kuhn, 1955; Villani, 2008) and is solvable in poly-
nomial time. However, the optimal solution of the above
optimization (9) is still a 0/1 hard permutation matrix, which
diminishes gradient signals. To address this challenge, we
perform a further relaxation of the optimization (9) and
solve the following entropy regularized linear OT problem.

d
min Z Z max (HR[U,E], H;[u, E])P[u, U]
=l — X - Entropy(P), (10)

suchthat: P >0,P1=P'1=1. (11)
Here, A > 0 is the regularizer coefficient. As shown by Cu-
turi (2013); Mena et al. (2018), our alignment matrix P
obtained using Eq. (5) is the solution of the above OT prob-
lem (10) — (11). Therefore, our node alignment network
Align (4) can approximate the true atom mapping, enhanc-
ing the overall inductive bias of our model.

Continuous approximation of CGR Having computed
our alignment matrix P (5), we make a continuous ap-
proximation of Adj-gr (2), which serves as a surrogate
of the transition state of the underlying reaction. This is
achieved by performing elementwise multiplication of Adj
and Adj; with the messages collected from edge embed-
dings M and M, generated by GNNy in Eq. (3), i.e.,
Adjegr ~ max(Adjz © Mg, PAdj; © M;P") (12)
Even without this continuous approximation, the discrete
adjacency matrix max(Adjp, PAdj; P ") is differentiable,
since the matrix P is now the output of the node alignment
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network. However, there are two key advantages of using
the continuous approximation (12).

(1) M, can model transient bonds: CGR represents the
transient state, where the edges represent transient fractional
bonds. This can be captured better using continuous weights
M rather than binary 0/1 values.

(2) Continuous weights enhance backpropagation:  Bi-
nary adjacency matrices suppress gradient signals, lim-
iting model training, whereas the continuous weights
help in backpropagation through the GNN. For instance,
if instead of Adj; ©® My, we use only the binary ad-
jacency matrix Adj;, then the gradient term will in-
volve PAdj I% + %Adj ;PT. Since P involves it-

erative normalization starting with exponentials, % in-

cludes products like Plu,uw|P[v,v'], due to the fact
d _o; 0i _ _ (p0; 0; o 04

that zo-e% /37, % = (e:/zie )(€% />, €%) when

k # j. Thus, PAdj 1% contains terms of the form

Plu,u'|P[v,v'|Plw,w’], with each P].,.] € [0, 1], which

weakens the gradient signals.

Instead, in our approximation (12), the gradient will
involve: PAdj; ® MipT 4 PAdj, ©® M;2E 4
%Adj, ® M;PT. The first term will include entries like

Plu,u'|Plv, '] [d%’T J[w, w’]. While the last two terms re-
sult in the entries like Plu,u'|P[v,v'|Plw,w'|M |w,w'],
instead of P[u, '] P[v,v'| P[w,w’] in binary adjacency ma-
trix representations. These terms with M will enhance the
gradient signals.

Embedding computation for CGR Next, we compute the
node embeddings of the continuous approximation of the
CGR, derived in Eq. (12). We first compute the initial node
and edge features Vegr and Ecgr, Which are required to ini-
tialize the GNN embeddings and the message propagation
process. These features are composed of two key compo-
nents. The first component is identical to Vi and Eg, i.e.,
the initial features of the reactants, reflecting the reactants’
role in transitioning to the product via the condensed graph.
These features are critical as they capture the reactants’
structure prior to transformation. The second component is
the difference between the features of the reactant set R and
the product set I, which captures the effect of the reacting
atoms and edges. To compute this difference, the nodes and
edges of the reactants are aligned with those of the prod-
ucts using the approximate atom mapping P derived from
Eq. (5). Therefore, we have:

Veor = [Vr; Ve — PV, (13)
Eccr = [Eg; Er — PE(PT]. (14)
Next, we input the features Vegr, Ecgr and the weighted
adjacency matrix Adjcogg (12), into a specialized GNN
model to compute the node embeddings for the CGR.

This process requires the GNN to support backpropagation
through both the input adjacency matrix Adj-qgr and the

NodeAggr,,,

S5 32
(\I)A\ggr’”
LR

Transformerg,

Figure 5: Reaction path encoder. For an n-step reaction r
with n = 3, we encode each step ¢ < n by concatenating
Hgg,, the node embeddings of CGR;, with a step encod-
ing. A transformer then processes this to obtain .S;. Next,
S is aggregated into s; via NodeAggr, , and {s; i <n}
is passed through StepAggr,,, to compute the reaction em-
bedding z,.. We use an MLP on z, to predict the yield.

[Hcar, , step]

[Hccr,, steps)] yield

MLP,,
[Hcar,, steps)

features Vegr and Ecgr. However, standard GNN imple-
mentations assume fixed, discrete graph structures and do
not allow differentiation through the input graph. To over-
come this limitation, we design a custom GNN that performs
message passing and aggregation using tensorized, differen-
tiable operations on the entries of Adjcgr, Veer, and Ecgr.
We denote this GNN as InputDifferentiableGNNw, param-
eterized by v, which computes the embeddings Hcgr €
RN*du a5 shown below. Appendix C contains more details.
HCGR = InputDifferentiableGNNw (AdeGRa VCGR7 ECGR)
15)
Reaction path encoder For a multistep reaction r, the
elementary steps occur in a unique sequence. Therefore,
encoding the reaction path requires that CGR of each step
should be associated with a signal that captures its position
in the reaction path. However, the node embeddings Hcgr
for the different steps are independent of the ordering of the
steps. Therefore, to embed condensed graphs in a sequence-
aware manner, we concatenate Hcgr with step-encodings
similar to positional embeddings and pass them through a
layer of transformer. Given a n-step reaction r, we first
compute the sequence-aware node embeddings S;:

Hi = [HCGRmStepi] ) i€ {1’ "’n} (16)

S1, ..., 8 = Transformerg, (ﬁl, ...,ﬁn.) 17
Here, CGR; is the CGR for the i-th elementary step. Next,
we aggregate S; to their graph level embedding s; us-

ing a NodeAggr, which is a permutation invariant set en-
coder (Vinyals et al., 2016). We compute s; as:

s; = NodeAggr,, (Si[1,], ..., Si[N,:]), fori <mn. (18)
We could alternatively apply NodeAggr to Hcgg, first, fol-
lowed by the Transformer. However, this approach would
aggregate the node embeddings of a CGR into its graph em-
bedding before introducing interactions. Hence, this would
only allow interactions between CGRs at a more coarse level.
In contrast, applying the Transformer before NodeAggr al-
lows the model to capture finer interactions between atoms
within the CGRs across different steps.

Next, we aggregate all the graph embeddings {s; : i < n}
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to obtain the reaction embedding z, using StepAggr,,,
which is another set encoder of the same architecture as
proposed by (Vinyals et al., 2016). Finally, we feed the z,
into a multilayer perceptron (MLP) to predict reaction yield
value for the underlying multistep reaction 7.

Zp = StepAggr¢3 (81, 8n) (19)
yield = MLPy, (2,.). (20)

Here, the set ¢ = {¢1, P2, P3, P4} is the collection of all
trainable parameters.

4.3. Training

We conduct end-to-end training of the entire network to
minimize the mean squared error (MSE) between the pre-
dicted and gold yield values, which serves as the loss func-
tion. Note that our node alignment network does not explic-
itly ensure that atoms of the reactants only match with the
same atoms in the products, e.g., it does not ensure carbon
matches with carbon and not oxygen. We ensure this goal
by explicit regularization described as follows.

Regularizer to constrain atom mapping We introduce a
regularizer that penalizes the P[u, v] values for those (u, v)
pairs where u and v have different atomic identities (or,
atomic numbers) since an atom doesn’t convert to another
atom throughout the reaction. Specifically, we introduce
a matrix A € RY*N where Au,v] = I(atomp(u) #
atomy(v)) and I(-) is the indicator function. Then, we com-
pute the regularizer Reg(R, I) = ||P ® A||% for each CGR
to limit the exploration space of P, where P is computed
in Eq. (5).

Loss Given a set of reactions D =
{(r1,yield(r1)), ..., (rp|, yvield(rjp|))}, we minimize
the sum of the squared error between predicted yield,
yieldy ,, 4(r) computed using Eq. (20) and the ground
truth yield yield(r), in the presence of the atom mapping
regularizer as described above. Given a regularization
parameter p, the training optimization becomes:

> [(vieldg y 4(r) — yield(r)* +p > Reg(R,T)]
reD (R.Der  (21)

min
0,,¢

5. Experiments

In this section, we provide a comprehensive evaluation
of our method across eight datasets. Appendix E con-
tains additional experiments and results on more datasets
including USPTO dataset (Lowe, 2017). Our code is
available in https://github.com/ankitthreo/
YieldNet.git.

5.1. Experimental setup

Datasets We carry out our experiments using eight datasets.
They include — (1) GP dataset which is derived from Gas-
phase Isomerization reactions (Grambow et al., 2020b);
five datasets derived from catalytic asymmetric N, S-acetal

formation reaction (Zahrt et al., 2019), viz., (2) NS1, (3)
NS2, (4) NS3, (5) NS4, (6) NS5; one dataset on (7) Suzuki
coupling reaction (SC); and, another dataset on (8) De-
oxyflurorination (Nielsen et al., 2018) (DF). GP is the sim-
plest dataset, where each reaction is single-step reaction and
the ground truth atom mapping is available. The remain-
ing seven datasets involve multi-step reactions and do not
contain any ground truth atom mapping. Availability of
atom mapping in GP helps us to better evaluate our atom
mapping approximator and understand the effect of CGR
on yield prediction, which is not possible for the other more
commonplace datasets. Appendix D contains more details
about the datasets.

Baselines We evaluate our model against several base-
lines including (1) YieldBERT (Schwaller et al., 2021c),
(2) DeepReac+ (Gong et al., 2021) and several variants of
graph neural networks: (3) graph convolutional network
(GCN) (Kipf & Welling, 2017), (4) heterogenous graph
transformer (HGT) (Hu et al., 2020), (5) topology adaptive
graph convolutional networks (TAG) (Du et al., 2017) and
(6) graph isomorphism network (GIN) (Xu et al.).

Evaluation metrics We partitioned the datasets into 70%
training, 10% validation, and 20% test folds. We generated
ten random splits using different random seeds. For each
split, we measure the performance in terms of mean absolute
error (MAE) between the predicted and ground truth yield
values on the test set, and then average it across all ten splits
to report the overall performance.

5.2. Results

Comparison with yield predictor baselines First, we com-
pare YIELDNET against the baselines across eight datasets.
We also report on a skyline variant (YIELDNET (sky)),
which predicts yield using the true CGR, instead of an
approximation. Since true CGR is only available in GP,
skyline performance is limited to only GP dataset. Table 1
shows the results in terms of MAE. We make the following
observations. (1) YIELDNET (sky) outperforms YIELD-
NET, highlighting CGR’s importance in yield prediction.
(2) YIELDNET outperforms all baselines in seven out of
eight datasets; and, in five datasets, the performance gains
are statistically significant. The baselines do not explicitly
approximate CGR and instead use the embeddings of the
reactants and products as-they-are, leading to weaker perfor-
mance. (3) There is no consistent second-best model; GCN,
TAG, DeepReac+, and YieldBERT share the second-best
across datasets.

Evaluation of our atom mapping approximation Next,
we compare our approximate atom mapping computed us-
ing Eq. (5), with four existing atom mapping methods. They
include (1) RDKit (Landrum, 2013): the alignment strategy
built into the RDK:it library, (2) RXNMapper: a pre-trained


https://github.com/ankitthreo/YieldNet.git
https://github.com/ankitthreo/YieldNet.git

Learning Condensed Graph via Differentiable Atom Mapping for Reaction Yield Prediction

Model GP [ NSl NS2 NS3 NS4 NS5 sC DF

GCN 38.057 £0.337 11.162 £ 0.735| 9.416 & 1.045 | 8.813 £ 0.857 | 8.777 £ 0.221 | 4.453 £ 0.293% | 10.682 = 0.396 | 12516 % 0.329
HGT 39.405 £ 0.231 | 13385 + 0.844 | 9.573 & 1.016 | 9.421 = 0.835 | 8.629 £ 0.249 | 4.561 £ 0.277 | 13.665 = 0.334 | 19.500 = 0.257
TAG 36.887 = 0.412 | 13.246 £ 0.760 | 9.560 £ 0.994 | 9.232 + 0.860 | 8.603 = 0.230 | 4.547 £ 0.286 | 12.603 £ 0.450 | 18.150 = 0.447
GIN 38.307 + 0.450 | 13.318 + 0.825 | 9.588 & 1.017 | 9.152 £ 0.860 | 8.617 +0.217 | 4.568 = 0.285 | 12.899 = 0.389 | 17.126 + 0.479
DeepReac+ 27.837 £ 0.346 | 12.985 = 1.452 | 10.729 £ 0.690 | 9.968 = 0.981* [9.439 £ 0.775* | 5.125 + 0.301* | 16.953 = 1.800 | 14.022 % 1.694
YieldBERT 40.910 £ 0300 | 12.446 = 0.820 | 9.593 = 1.002 | 8.780 = 0.918% | 9.236 £ 0.290 | 4.532 £ 0.255 | 10.437 + 0.328 | 12.470 & 0.412
YIELDNET 23.152£0393 9245+ 0.518 | 8387 £0.907 | 7.914 £ 0.931 | 7.015 = 0.495 | 4382 £0.249 | 8.751 £ 0.438 | 6.941 £0.192
YIELDNET (sky) [ 17.396 £ 0.357 | NA [ NA ] NA [ NA ] NA \ NA \ NA

Table 1: Comparison of yield prediction performance for YIELDNET against all the competitive baselines, viz., GCN (Kipf
& Welling, 2017), HGT (Hu et al., 2020), TAG (Du et al., 2017), GIN (Xu et al.), DeepReac+ (Gong et al., 2021),
YieldBERT (Schwaller et al., 2021c¢), on the 20% test examples, across all datasets. Performance is measured in terms of
Mean Absolute Error (MAE). YIELDNET(sky) represents a skyline of our model, where we use the true CGR. Only GP
dataset contains the true CGR and therefore, such skyline performance is not available for other datasets. Numbers in green
(yellow) indicate the best (second best) performer. Our improvement in performance over the next best baseline, where
YIELDNET is the best performer, is statistically significant with p-value < 0.05, except in the cases marked with *.

Model NS1 NS2 NS3 SC
RDK:it 9.910 8.845 8.567 -
RXNMapper | 9.610 8.871 8.470 10.046
Random 11.195 8.984 8.695 10.223
Attention 9.548 9.024 8.432 8.826
YIELDNET 9.245 8.387 7914 8.751

Table 2: Comparison between different atom mapping strate-
gies in terms of MAE of yield prediction

node alignment model (Schwaller et al., 2021a) on a large
set of reactions, (3) Random: Uniformly sampled alignment,
and (4) Attention: an attention network between reactants
and products based on Astero & Rousu (2024), that induces
a non-injective alignment, unlike our proposed alignment
network which outputs an approximate injective alignment.
Here, RDK:it requires a well-defined reaction template ob-
tained through expert-curated rules and subsequent manual
inspection of atom mapping for each reaction in the dataset.
Consequently, we cannot generate such templates for SC
datasets due to the high diversity of reactions. In Table 2,
we report the results in terms of the MAE of the predicted
yield. We make the following observations: (1) Our method
outperforms the alternatives. (2) The attention network out-
performs RXNMapper, RDKit and Random in most cases.
However, since it induces a non-injective mapping, it as-
signs a product atom to multiple reactant atoms with high
probability. As a result, our method outperforms it, since
our alignment network provides the atom mapping through
a doubly stochastic matrix, which in turn induces an injec-
tive mapping (one atom in R is mapped to exactly one atom
I and vice-versa). (3) The random permutation generation
strategy performs the worst. This underscores the necessity
of good approximation of atom mapping.

Next, we evaluate the accuracy of our learned atom mapping
by measuring its proximity to the ground-truth atom map-
ping available in the GP dataset— the only dataset that pro-
vides such ground-truth mappings. Specifically, we compute
the average Frobenius norm of ||P — P*||r across all reac-
tions, where P* is the node permutation matrix representing
the ground-truth atom mapping and P is the learned node

alignment matrix. We compare our method with attention-
based method (Astero & Rousu, 2024), which was the best
alternative to our model, as shown in Table 2. Our method
gives the average error using || P — P*||p = 3.708, whereas
attenion based method gives || P — P*||p = 5.096. Notably,
our method achieves such high accuracy in atom mapping
prediction solely through end-to-end learning from yield
data, without any access to the ground-truth atom mapping.

Interplay of atom mapping with predicted yield Here,
we examine the extent to which the performance of
YIELDNET can be attributed to its ability to learn the
atom mapping. We investigate the relationship between
the mismatch in prediction er- 0.5 .
ror AAE,., and the difference
between the true and learned

atom mapping: AP, for each 0.2 o
test reaction 7 as follows. We j o
consider GP datasets since it
is the only dataset contain-
ing atom mapping. Our ap-
proach begins by training a
different variant of our model where we replace P, for
each reaction r with P}, i.e., the permutation matrix cor-
responding to the ground truth atom mapping. We call
this model as reference model. Then, for the test dataset,
we gather all the learned alignments P, from our trained
model yieldy ,, ; and transform them into hard permuta-
tion matrices Phyq,» via the Hungarian algorithm. Next,
we apply both P, and P, to the reference model to ob-
tain the predictions yieldp. (1) and yieldp , (r) for each
reaction r in the test set. Note that yield p. gives high ac-
curacy as we leak the true atom mappingTinto the model.
Next, we calculate the difference in the absolute errors
(AE) for each test reaction as AAE, = |AE*, — AEpyq,r|
where AE", = |yieldp.(r) — yield(r)| and AEnya, =
lvieldp_p,, (1) — yield(r)| for the gold yield values
yield(r). Finally, we quantify the dissimilarity between
two permutation matrices using AP, = || P} — P r||F

—~0.4

Y
qo3

~—
= .o
0.0 | *

2 4 6
AP, —

Figure 6: AAE, vs AP,
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and plot the correlation between E(AAE,|AP,) and AP,,
by averaging AAE, at particular AP,.. Figure 6 shows a
strong correlation between AP, and AAE,., indicating a
strong association between the learned alignments’ quality
and the model’s predictive performance.

Ablation study on CGR representations Here, instead of
incorporating the embeddings of the CGR into the reaction
path encoder, we directly feed the embeddings of the reac-
tants R; and the products I; into the encoder. Specifically,
we omit both our node alignment network Align and CGR
representation network InputDifferentiableGNN, and in-
stead input the embeddings from the GNN into the trans-
former, alongside the step encoder. Table 3 summarizes the
results. We observe that incorporating CGR embeddings
into the reaction path encoder is more effective than directly
utilizing the embeddings of the reactants and products.

Method NS1 NS2 NS3 SC
w/o CGR | 11.356 9.459 9.342 10.686
YIELDNET| 9.245 8.387 7914 8.751

Table 3: Effect of ablation of CGR (MAE).

Ablation study on reaction encoder components Here,
we investigate the benefits offered by different components
of our reaction path encoder (Eq. (16)—Eq. (20)). Specifi-
cally, we focus on ablations of its two key components, viz.,
the transformer (17) and StepAggr (19). Table 4 summa-
rizes the results for four multi-step reaction datasets mea-
sured in terms of MAE of the predicted yield. We make
the following observations: (1) the transformer encoder con-
tributes to the improved accuracy across most cases; (2)
utilizing Seq2Seq for sets (Vinyals et al., 2016) yields better
performance than DeepSet (Zaheer et al., 2017) and simple
sum aggregation methods; (3) ablation on the set encoder
has a stronger impact on MAE than the transformer because
the set encoder is applied in the final layer.

Method NS1 NS2 NS3 SC

StepAggr = DeepSet | 9.643 9.008 8.283 8.551
StepAggr = SumAggr | 10.192 8.858 8.349 8.853
Without transformer 9.467 8.680 8.164 8.628
YIELDNET 9.245 8.387 7914 8.751

Table 4: Effect of Ablation on reaction path encoder compo-
nents (MAE).

Effect of ablation on the regularizer Reg(R, ) Here, we
evaluate the effect of the regularizer Reg(R, I) in Eq. (21).
In particular, we compare the results of our default regular-
ized training against the scenario when p, the coefficient of
Reg(R, I), is set to zero. Table 5 shows the results in terms
of MAE. We observe that the inclusion of regularization,
i.e., the presence of constraints, benefits the yield prediction.

Method NS1 NS2 NS3 SC

p=0 9.929 8.590 8.035 8.810

YIELDNET | 9.245 8.387 7.914 8.751
Table 5: Effect of ablation of regularizer Reg(R,I) in
Eq. 21) (MAE).

6. Conclusion

In this work, we present YIELDNET, a novel model for yield
prediction of the final product in multi-step reactions. The
energy of the transition state plays a critical role in determin-
ing reaction yield. The graph structure of the transition state
can be inferred using atom mapping between the reactants
and products. As most datasets lack atom mapping, we
employ a differentiable node alignment network, which can
be trained end-to-end using supervision from yield rather
than fine-grained atom mapping labels.

Our work opens several promising directions for future
research. YIELDNET can be used to predict free energy,
reaction rates, and more. Yield depends on factors beyond
activation energy, like reaction time, purification procedure,
etc., which current datasets lack. While the datasets also
lack the underlying atom mapping, the graph structures of
the reactants and products allowed us to approximate it.
A key direction for future work is to incorporate the other
factors into our model when such datasets become available.

Impact Statement

This paper offers a valuable tool optimizing reaction yields.
It can be used in prediction of yield when the datasets con-
tain molecular graph structures. However, it is imperative
to acknowledge the possibility of incorrect predictions by
any yield prediction model, which demands human inter-
ventions. Additionally, misuse of the model may lead to
predictions for undesirable compounds, potentially causing
adverse societal consequences. Careful attention to ethical
guidelines is paramount to ensure a responsible and positive
impact on the model.
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Learning Condensed Graph via Differentiable

Atom Mapping for Reaction Yield Prediction
(Appendix)

A. Limitations

1. Currently our work is limited to reactions having a reasonable number of atoms (~ 200 — 250). However, implementing
our model on larger molecular reactions or catalysis (Sheldon et al., 2020) has some drawbacks. Computation of P
using Sinkhorn-iterations (5) has a complexity of O(N?), where N is the number of total atoms of reactant(s) or
product(s) in a reaction step. Thus, computing P in such cases would be challenging. However, this issue can be
mitigated by low-rank factorization (Scetbon et al., 2021) for Sinkhorn routine, which reduces the complexity to O(N).

2. The standard yield prediction datasets currently have only a single reaction path r for reactions leads to one single
product. Thus, we consider only single reaction path-based reactions to train our model. However, our method can be
adapted to take multiple reactions into account, where we can add more stochasticity into Sinkhorn layers to enable
generation of multiple permutations from the same set of reactants and products. They will lead to multiple atom
mapping and CGRs, which in turn can generate multiple reaction paths.

3. The standard yield prediction datasets contain only molecular graphs of any molecular component and these datasets are
commonly used in previous baselines. Hence, our model, as of now, does not incorporate information about geometry
of the molecules. However, our model can be easily adapted to incorporate geometry by extending our GNN into the
spatial graphs and taking into account three-dimensional coordinates for our atom mapping approximators.

B. Additional discussion on related work

Apart from the general applications in chemistry mentioned in Section 2, there has been a recent interest in modeling
chemical reactions (Bradshaw et al., 2019; Benayad et al., 2024; Joung et al., 2024; Hoque et al., 2024a) and solving reaction-
related problems (Schwaller et al., 2021b; Burés & Larrosa, 2023). These also include retrosynthetic planning (Segler &
Waller, 2017; Liu et al., 2017; Coley et al., 2017b; Dai et al., 2019; Shi et al., 2020; Chen et al., 2020; Yan et al., 2020;
Fortunato et al., 2020; Somnath et al., 2021; Tu & Coley, 2022; Chen et al., 2023), reaction outcome prediction (Wei et al.,
2016; Coley et al., 2017a; Jin et al., 2017; Schwaller et al., 2018; 2019; Coley et al., 2019; Struble et al., 2020; Guan et al.,
2021; Bi et al., 2021; Chen & Jung, 2022; Nippa et al., 2023; 2024; King-Smith et al., 2024; Pereira et al., 2024), reaction
optimization (Raccuglia et al., 2016; Zhou et al., 2017; Gao et al., 2018; Shields et al., 2021; Wang et al., 2024; Li et al.,
2024; Hoque et al., 2024b), atom mapping (Schwaller et al., 2021a; Nugmanov et al., 2022; Chen et al., 2024; Astero &
Rousu, 2024), transition state geometry prediction (Pattanaik et al., 2020; Lemm et al., 2021; Makos et al., 2021; Choi,
2023; Duan et al., 2023; Kim et al., 2024; Duan et al., 2025), etc (Qian et al., 2023; M. Bran et al., 2024). In the case
of atom mapping, RXNMapper (Schwaller et al., 2021a), and GraphormerMapper (Nugmanov et al., 2022) are the two
pioneers of deep learning-based atom-mapping tools. RXNMapper uses post-processing on the attention heads, learned
through an unsupervised task of reaction SMILES reconstruction. Due to this unsupervised nature, RXNMapper needs a
substantial amount of data and a large transformer encoder-based model (Lan et al.). On the other hand, GraphormerMapper
is pre-trained in multiple levels on different tasks, making the model very computationally expensive. As both models use
attention-guided paths for atom mapping, these mappings aren’t injective i.e., there are multiple atom mapping possible
for one single reaction instance and that should not happen in real case scenarios. Recently, Chen et al. (2024) use active
learning for the atom mapping task, which is also attention-based. In another recent work, AMNet (Astero & Rousu, 2024)
makes the atom mapping injective by imposing an extra layer of WL test algorithm (Weisfeiler & Leman, 1968) on top of a
non-injective graph attention. However, YIELDNET model — (1) tries to approximate atom mapping as a doubly-stochastic
matrix, which by architecture yields injective mapping, (2) is relatively simple. Our key goal is to predict yield which is also
different from the above described atom mapping models. We achieve this by designing an architecture, that approximates
atom-mapping on the fly.

18



Learning Condensed Graph via Differentiable Atom Mapping for Reaction Yield Prediction

C. Neural architectures different components of YIELDNET
C.1. Architecture of GNNy

Our GNNy is built upon a communicative message passing network (CMPNN) (Song et al., 2020). In contrast to a simple
message-passing neural network (MPNN) (Gilmer et al., 2017) or directed message-passing neural network (DMPNN) (Yang
et al., 2019), where either only node states or edge states are updated independently in each iteration, our model updates both
node and edge states simultaneously. Moreover, the update states for nodes and edges are treated as interdependent instead
of treated independently. We elaborate on each step, starting from initial features as input to the final embedding as output.

In the following, we describe the embedding computation only for the reactant set R, which can subsequently be extended
for the product set I. GNNjy takes input graph G as Adjp € {0, I}NXN, node features Vx € RY*v  and edge
features Er € RV*Nxde  We use two different MLPs for each of the features to transform into initial embeddings,
nodeEmby(u) € RY and edgeEmb,(u,v) € R accordingly,

nodeEmbg (u) = MLPy, (Vg)[u] (22)

edgeEmb,(u, v) = MLPy, (Adjp © Eg)[u, v] (23)
Here, MLPy._ are just single-layer networks followed by a ReLU activation function. In Eq. (23), Adjy € {0, I}NXN and
ER € RVXN*de Here, in ® operation, we first broadcast Adj, into the third dimension to have an adjacency tensor of
dimension NV X N X dg and then perform Hadamard product with Er. Next, we perform message passing for k£ number of
propagation layers. Fora k € {1,.., K — 1}, the message passing steps are given by,

pi(v) = o(max, epbe(y) €dgeEmb,_; (u,v)) © ZuEnbr(U) edgeEmb,_; (u,v) (24)
nodeEmby, (v) = nodeEmby, 1 (v) + px(v); nodeEmby(v) € RP (25)
vi(u,v) = Adjglu, v] - (nodeEmbk(v) - edgeEmbkfl(uu)) (26)
edgeBmb, (u, v) = B (u, v) - ReLU(edgeEmbO(u,v) 405 l/k(u,v)) 27)

exp (Adj rlu,v] - nodeEmbk(u)TnodeEmbk(v)>

where B (u,v) = (28)
> €XD (Adj rlu/,v] - nodeEmby, (u') "TnodeEmby, (v))

The above computations were performed for k € {1,..K — 1}. For k = K, we update the embeddings as follows:
Pk (v) = o(max,enbr(v) €dgeEmb g (u,v)) 37, c e (y) €dgeEmb g (u, v) (29)
nodeEmbg (v) = MLPy, (ho(v), nodeEmbg 1 (v), px (v)); nodeEmb (v) € R? (30)
edgeEmb  (u,v) = edgeEmb, ,(u,v); edgeEmb (v) € R” 31)
Finally, we compute node embedding vector h () per node u, node embedding matrix Hr € RV >4, edge embedding

vector mp(u,v) for edge (u,v), edge embedding matrix Mp € RYXNXP g follows:

hr(u) = nodeEmbg (u) (32)
mp(u,v) = edgeEmb  (u, v) (33)
HR[U, Z] = hR(u) (34)
Mg(u,v,:] .= mpg(u,v) (35)

C.2. Architecture of InputDifferentiableGNN,,

This architecture is similar to the GNNy, except that we realize this in tensor space and use adjacency tensor Adjogr €
RN*NXD This is because during the continuous approximation of Adjcgg in Eq. (12), we need Mg, M; € RV*NxD
(3). Thus, to obtain Adj-gg, we need to do © operation i.e., broadcasting Adj, € RN into a third dimension to have
an adjacency tensor of N x N x D followed by Hadamard multiplication with corresponding M,. Finally, we obtain an
Adjegr € RV*NXD through Eq. (12). Now, similar to the GNNy, to perform the Eq. (23), we feed Adjcgg into an MLP
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to bring its final dimension from D to dr same as E, so that the Hadamard product in Eq. (23) is compatible.

K\dJJCGR = MLPwo (AdeGR) (36)
nodeEmbTy = MLPy, (Vg) 37)
edgeEmbT, = MLP, (Adjcgr © Eccr) (38)

Then the tensorized version for Eqs. (24)-(28) for k£ € {1,..., K — 1} is written as (zT indicates tensorized version of a
vector x described in GNNy):

uTglv,: =0 (InaxedgeEmkafl[u, v, }) © Z edgeEmbT,,_, [u, v, :] (39)
nodeEmbTy[v, :] = nodeEmbTy,_1[v,:] + uTk[v,:] (40)
VT [u,v,:] = Adjegr [, v, :] © nodeEmbTy[v, :] — edgeEmbT, _,[u,v, ] 41
edgeEmbT, [u, v, ] = Bulu,v, ] ® ReLU(edgeEmbO [, v, ] + s - vk, v, :]) (42)

exp ((nodeEmka nodeEmbT} ) ® AdeGR) [u, v, ]

where ST [u,v,:] = (43)
> €XD ((nodeEmka nodeEmbT, ) ©® AdeGR> [/ v,:]
For k = K, we update the embeddings as:
pTk[v,:] = o(maxedgeEmbT 5 _;[u,v,:]) ® Z edgeEmbT ., [u,v, ] (44)
u
nodeEmbT g [v, ;] = MLP,, (nodeEmbTo [v,:],nodeEmbT i _1[v,:], uT kv, ]) 45)

Finally, Hcgr is computed as nodeEmbT i € RV > x|

C.3. Details about neural path encoder
Neural path encoder is composed of four components Transformery,, NodeAggry,, StepAggry,, and MLPy, .

1. Transformery, Before going to Transformery, encoder, Hcgr, supposed to have a concatenation with step;, which
is similar to the concept of positional encoding (Vaswani et al., 2017). Here, ¢ < n, where n is the number of total
steps in reaction path . However, we used one-hot positional encoding, which leads us to step; € {0, 1}V*". Thus,
according to Eq. (16), H; € RN*(du+n) - Ag our Transformery, is a single transformer encoder layer having the
same encoder layer architecture as Vaswani et al. (2017), our final S; € RV (dutn) (17),

2. NodeAggr,, The main architecture is the same as Seq2Seq for sets or known as Set2Set (Vinyals et al., 2016). This
type of aggregation inflates the final output dimension of embeddings to twice the input dimension i.e. 2(dg + n).
Thus, we use a Linear layer to reduce back the output dimension to the same as the input dimension (dg + n). This
breaks down the Eq. (18) into the following

s; = Linearg,, (Set2$et¢2a (Si[1,:], ..., Si[IV, :])), fori < n. (46)
3. StepAggrg, This architecture is also similar to NodeAggr,,. Thus, Eq. (19) can be rewritten as,

2, = Lineary,, (SetZSet¢3a(sl, sn)); z, € RUs+n) 47)
4. MLPg, The final MLP, layer is a Linear — ReLU — Linear (LRL) layer, the input z, has a final dimension of
(dH + n)
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D. Additional details about experimental setup
D.1. Dataset preparation

To assess the efficacy of our model, we focus on four reactions that have garnered recent attention. These reactions— Gas-
phase isomerization (GP) (Grambow et al., 2020b), deoxyflurorination (DF) (Nielsen et al., 2018), asymmetric N,S-acetal
formation (NS) (Zahrt et al., 2019), and Suzuki coupling reaction (SC)— exhibit diverse data sizes and varying number of
steps.

Each reaction in these datasets is annotated with sets of reactants, intermediates, and products based on mechanistic
considerations. The measured yields ranging from 0% to 100% are compiled from prior wet-lab experimental data, except
in the case of the GP dataset, which we will discuss shortly. Several of these datasets, including (DF) (Nielsen et al., 2018)
and asymmetric N, S-acetal formation (NS) (Zahrt et al., 2019), are obtained through High-Throughput Experimentation
(HTE). The experimental process for HTE typically involves selecting a limited set of reactants and conducting reactions on
all possible combinations within those chosen reactants. In contrast, real-life datasets contain a significantly larger pool of
diverse reactants, with only a small fraction of the potential reactant combinations explored. This discrepancy results in a
substantial reduction in dataset size for real-life scenarios (Saebi et al., 2021; Schleinitz et al., 2022). Additionally, real-life
datasets exhibit higher sparsity, making it less likely to encounter a reactant from the test sample in the training set.

Due to the above issues, we create subsets of these HTE datasets, which create multiple low throughput (LTE) datasets,
making them closer to reality. Specifically, we derive GP, GP1, GP2 from the gas-phase isomerization dataset; NS1, NS2,
NS3, NS4, NS5 from the NS dataset; DF1, DF2 and DF3 from DF dataset. Moreover, we collect a new dataset consisting
of samples of the reaction type Suzuki Coupling (SC) using the reaction data from ~ 50 peer reviewed publications. In
contrast to the existing HTE datasets, this dataset is low throughput, i.e., they consist of reactions of only a limited number
of combinations between the reactants. We also use USPTO from Lowe (2017). These finally lead to total fifteen datasets.

D.1.1. LIST OF DATASETS

The fifteen datasets used are: GP, GP1, GP2, USPTO, NS1, NS2, NS3, NS4, NS5, NS, DF1, DF2, DF3, DF, and SC. Among
them, we present GP, NS1, NS2, NS3, NS4, NS5, SC and DF in the main part and present the rest in this Appendix. In the
following part, we describe the datasets in full detail.

D.1.2. DATASETS DERIVED FROM GAS PHASE ISOMERIZATION

The gas-phase isomerization reaction dataset (Grambow et al., 2020b) contains around 12000 elementary step organic
reactions involving small molecules composed solely of C, H, N and O atoms. The dataset has the activation energy for
the reaction as the label. Previous attempts to predict activation energies involved using fingerprints and graph-based
models (Choi et al., 2018; Grambow et al., 2020a; Heid & Green, 2021). We transformed the activation energy (AE i) into
yield values, by using the Eyring equation (Eyring, 1935). This approximates a rate constant () value from activation
energy. We then assume every elementary step reaction following first-order kinetics to get the yield value. The steps are
shown below. Notations used in Eqgs. (48)— (51) are only limited to this section and may share overlap with symbols used
in other parts of the paper. Here, AG* represents Gibbs free energy of activation (or assumed to be activation energy) in
Jmol~!. kp, h, R are the Boltzmann constant (1.38 x 10~23 JK~1), Planck constant (6.626 x 10~34Js), and universal gas
constant (8.314 JKmol 1) respectively. Here, ¢ here is the reaction time, we take a fix ¢ of 1 hour i.e., 3600s.

_ kpTemp —AGH
T P (R - Temp “9)
yield = (1 — exp(—~t)) x 100 (49)

Temp is the reaction temperature. In our case, we consider a fixed Temp = 1105.26K for our GP dataset. We have activation
energy in this dataset in terms of kcal mol~'. To convert it to a proper unit, we multiply our activation energy value by a
factor of 4183 and feed the values in place of AG*. After all these, our final equation becomes,

~ 1.38 x 1072% x 1105.26 . —AE x 4183 (50)
T 6.626 x 1034 *P\ 8.314 x 1105.26
yield = (1 — exp(—y x 3600)) x 100 (51)

We derive GP and its other two variants GP1 and GP2 based on clustering of the gas-phase reaction dataset. We observe
that the reactants in GP1 mostly contain very small, 3 or 4-membered rings (e.g., cyclopropanes, oxiranes, aziridines,
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cyclobutanes, etc.). Similarly, reactants in GP2 are mostly substituted five-membered aromatic heterocycles (e.g., pyrrole,
pyrazole, imidazole, furan, etc.). In total, we have used three datasets GP (main), GP1 (Appendix), and GP2 (Appendix).

D.1.3. DATASETS DERIVED FROM DEOXYFLUORINATION

The deoxyfluorination (DF) reaction is an important method for converting inexpensive alcohol to the corresponding
fluorinated compounds by using sulfonyl fluorides, in the presence of a suitable base (Nielsen et al., 2018). Here, the whole
dataset represents a collection of combination reactions involving 37 unique alcohols, 5 sulfonyl fluoride, and 4 bases,
totaling 740 reactions and their measured yields. Previous studies on yield prediction for this reaction employed the random
forest (Nielsen et al., 2018) and NLP-based transfer learning (Singh & Sunoj, 2022). Apart from the full dataset (DF), we
have extracted three subsets, each containing 200 instances, from the full dataset. We create these subsets based on the yield
labels. Yields have a skewed distribution, where yield has a mean around 40. We create three subsets having an average
yield of low (10), medium (75) and high (90). We find that there are different predominant compounds. For instance:

(1) The dataset DF1 has 2-(4-hydroxycyclohexyl)isoindoline-1,3-dione, 2,3,4,6,7,8,9,10-octahydropyrimido[ 1,2-a]azepine,
4-nitro benzenesulfonyl fluoride as predominant reactants.

(2) The dataset DF2 has 3-([1,2,4]triazolo[1,5-a]pyrimidin-6-yl)propan-1-ol, 2-(tert-butyl)-1,1,3,3- tetramethylguanidine,
1,1,2,2,3,3,4,4,4-nonafluorobutane -1-sulfonyl fluoride predominant reactants.

(3) The dataset DF3 has 3-(4,5-diphenyloxazol-2-yl)propan-1-ol, 2-(tert-butyl)-1,1,3,3- tetramethylguanidine,
1,1,2,2,3,3,4,4,4-nonafluorobutane -1-sulfonyl fluoride as predominant reactants.

In total, we have used four datasets DF (main), DF1 (Appendix), DF2 (Appendix), and DF3 (Appendix).

D.1.4. DATASETS DERIVED FROM ASYMMETRIC N, S-ACETAL FORMATION

The asymmetric N, S-acetal formation reaction (NS) is a catalytic transformation involving the addition of a thiol to
aldimines. Zahrt et al. (2019) released a dataset comprising 1075 such examples, where the labels are in terms of activation
barrier difference. Later, Singh & Sunoj (2022) released another version of the prior dataset, which comprises 1027 samples
having labels as percentage values. This dataset consists of 5 thiols, 15 different imines as substrates, and 43 different chiral
phosphoric acids as catalysts (Cat). The label for this dataset is expressed in terms of enantioselectivity, which is effectively
the yield of the major enantiomer produced in the reaction. Similarly to the previous dataset, we have sampled the complete
dataset into five subsets of size 300. Like DF, we create datasets with average yield of 25, 40, 50, 60, 75.

(1) The dataset NS1 has 2,6-dibromo-4-hydroxy-8,9,10,11,12,13,14,15-octahydrodinaphtho[2,1-d:1°,2’-f][1,3,2]
dioxaphosphepine-4-oxide; (E)-N-(2,4-dichlorobenzylidene)benzamide; ethanethiol as predominant reactants.

(2) The dataset NS2 has 2,6bis(anthracen-9-ylmethyl)-4hydroxydinaphtho[2,1-d:17,2’-f][1,3,2] dioxaphosphepine-4-oxide;
(E)-N-benzylidenebenzamide; cyclohexanethiol as predominant reactants.

(3) The dataset NS3 has 2,6-bis(anthracen-9-ylmethyl)-4-hydroxydinaphtho[2,1-d:1°,2°-f][1,3,2] dioxaphosphepine-4-oxide;
(E)-N-(naphthalen-1-ylmethylene)benzamide; cyclohexanethiol as predominant reactants.

(4) The dataset NS4 has 4-hydroxy-2,6-bis(2-(naphthalen-2-yl)phenyl)-8,9,10,11,12,13,14,15-octahydrodinaphtho [2,1-
d:1°,2°-f][1,3,2]dioxaphosphepine-4-oxide; (E)-N-(4-methoxybenzylidene)benzamide; cyclohexanethiol as predominant
reactants.

(5) The dataset NS5 has 4-hydroxy-2,6-bis(4-methoxyphenyl) dinaphtho[2,1-d:1°,2’-f][1,3,2] dioxaphosphepine-4-oxide;
(E)-N-(4-methoxybenzylidene)benzamide; 2-methylbenzenethiol } as predominant reactants.

We also utilized the full dataset (abbreviated as NS) to check the performance. In total, we have six datasets NS1 (main),
NS2 (main), NS3 (main), NS4 (main), and NS5 (main), and NS (Appendix).
D.1.5. DATASETS DERIVED FROM SUZUKI COUPLING REACTION

The palladium-catalyzed Suzuki Cross-coupling (SC) is a versatile method for generating biaryl products—ubiquitous in
natural compounds, pharmaceuticals, and chiral ligands (Kantchev et al., 2007). This dataset comprising 481 reactions is
manually curated from 25 publications filtered out from numerous reports within this reaction class (Cakir et al., 2021;
O’Brien et al., 2006; Navarro et al., 2006; Li et al., 2019a; Peh et al., 2010; Chen & Kao, 2017; Lu et al., 2017; Micksch
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et al., 2014; Diebolt et al., 2010; Tu et al., 2012; Ouyang et al., 2018; Han et al., 2018; Zhang et al., 2020; Karatas, 2019;
Yang, 2017; Lv et al., 2014; Organ et al., 2009; Xia et al., 2021; Navarro et al., 2004; Wu et al., 2011; Sahin et al., 2017;
Kuriyama et al., 2013; Hartmann et al., 2009; Dastgir et al., 2010; Arici et al., 2021; Azpiroz et al., 2017; Kumar et al.,
2009; Mercan et al., 2011; Izquierdo et al., 2015). The selection criteria were specifically tailored to a type of catalyst
where palladium is intricately bound to an N-heterocyclic carbene (NHC) ligand, with additional selection criteria involving
heteroatoms (N, O, and P) within the catalyst structure. The dataset is labeled based on the yield of the resulting biaryl
product. We used the SC dataset in our main paper.

D.1.6. DATASETS DERIVED FROM USPTO

This is a US patent chemical reaction dataset collected by Lowe (2017). Later the dataset is filtered to classify the reaction
classes (Schwaller et al., 2021b). The reaction dataset has around 44k reactions with yield labels and reaction classes. We
use these reaction classes to filter out the dataset. With the further exclusion of reactions with missing reagents, we selected
1700 reaction samples from the original dataset. Next, we select only those reactions which occur through a two-step
reaction pathway. For instance, the protection of functional groups (e.g., alcohol, amines), functional group interconversion,
including nucleophilic substitution, etc. Finally, we curated 1150 two-step reaction samples for our study. We used the
USPTO dataset in the Appendix.

D.2. Details about our implementations of the baselines

While implementing the baselines, we performed few modifications to ensure that the comparison between our method and
the baselines is fair— (1) number of parameters is approximately same; and (2) no component of a baseline is exposed/pre-
trained in external dataset, since that would give additional signals to them, which is not provided to our method and rest of
the baselines.

GCN Here in GNN, the message function employs the graph convolution layer (GCN) (Gilmer et al., 2017), which collects
adjacency node embeddings through edges. We have developed other versions of it by replacing this GCN with alternative
node-based convolution message functions. Finally, following Kwon et al. (2022), we predict the yield by taking molecular
graphs of reactants and products as input. It aggregates reactant vectors, concatenates them with the product vector, and
channels them through an FNN to predict the yield. We set the dimension of node embeddings as 18.

HGT Here in GNN, we utilize a Heterogeneous Graph Transformer-based Convolution (HGT) as our message function to
treat the molecular graph as a heterogeneous graph (Hu et al., 2020). Then, we used the same method proposed by Kwon
et al. (2022), which is described in the context of GCN. We set the dimension of node embeddings as 17.

TAG Here in GNN, we utilize TAG, which is based on the topology adaptive graph convolution network (Du et al., 2017).
Then, we used the same method proposed by Kwon et al. (2022), which is described in the context of GCN. We set the
dimension of node embeddings as 20.

GIN Here in GNN, we employ the GIN message convolution function, inspired by graph isomorphism networks, showcasing
a Graph Neural Network (GNN) that exhibits comparable power to the Weisfeiler-Lehman (WL) test for isomorphism (Xu
et al.). Then, we used the same method proposed by Kwon et al. (2022), which is described in the context of GCN. We set
the dimension of node embeddings as 20.

DeepReac+ The overall architecture of the (Gong et al., 2021) model is founded on a two-level graph attention convolution
framework (Velickovi¢ et al., 2018). In the initial stage, the graphs for each reaction component are encoded using a graph
attention network (GAT)-based GNN. Later, these individual component graphs are treated as nodes within a fully connected
reaction graph, using the graph embeddings serving as node features. Another layer of GAT is then applied to this complete
graph. Finally, the embeddings of all components are fed into a FEN network. We set the dimension of node embeddings as
48.

YieldBERT YieldBERT uses a previously trained BERT encoder (Devlin et al., 2019) to forecast chemical reaction yield as
a function of reaction SMILES (Weininger, 1988). But that would expose the model to external datasets possibly containing
examples in test data too. Hence, we train BERT encoder along with a regressor, end-to-end for yield prediction. We set the
dimension of hidden size as 12.
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D.3. Implementation details

Training We maintain a 70:10:20 split for training, validation, and testing across all models, employing 10 different splits
for robust evaluation. We kept the batch size b same across all models. We set b = 50 for GP datasets and b = 8 for the rest.
We train each model with 100 epochs and evaluate their performance on the test dataset, selecting the epoch with the lowest
validation MAE. We use Adam optimizer for each model. We use Noam learning rate with 2 warmup epochs and an initial
and final learning rate of 10~* and a maximum learning rate of 10~2. Additionally, we keep the regularizer parameter p
fixed at a value of 0.1 in our model.

Model

1. GNNy. We set the dimension of node embeddings, d = 20 (30) and dimension of edge embeddings, D = 20 (31).

2. Align. We set temperature A = 0.1 in Eq. (6), Gumbel noise factor 1.0, and Sinkhorn iterations 7" = 10.

3. InputDifferentiableGNN,,. It shares parameters with GNNj except 19 and 14 (Appendix C). We set dy = 20 — n,
where n is the number of steps.

4. Transformery,. Asdg = 20—n = (dgy+n) = 20, which is the input and output dimension of the Transformer, .
We set the number of heads to 5, and the feedforward dimension to 2048.

5. NodeAggryg, and StepAggry,. As described in the Appendix C, the set encoders of Egs. (46) and (47) of both
the aggregator modules are borrowed off-the-shelf from Vinyals et al. (2016), where we have input dimension
(dg + n) = 20, number of layers 1, number of iterations 3. The final output of the Aggr modules will be of the
dimension of (dgy + n) = 20.

6. MLP,,. We have input dimension of (di + n) = 20 and output dimension of 1 as per Eq. (20).

Baseline For a fair comparison, we maintain a similar number of parameters across all the models. We used the same
learning rate for all GNN models and YieldBERT of 10~*. For DeepReac+, the learning rate is 1073,

Number of parameters The number of parameters for multi-step reactions is around 112k, and almost 26k for a single
step one. The number of parameters is almost maintained throughout all the models (Table 6).

#Parameters | GP rest

GCN 26825 | 115753
HGT 28405 | 151895
TAG 27965 | 108725
GIN 27165 | 105525

DeepReac+ 27074 | 119522
YieldBERT 28861 | 110797
YIELDNET 26478 | 112583

Table 6: Number of parameters for all models

D.4. Hardware details

All the models are trained on NVIDIA A100 80GB GPU. All the models are fully based on PyTorch (Paszke et al., 2019).
We run in Ubuntu 20.04.6 LTS machine having 2TB RAM with 64 bit CPU and AMD EPYC 7742 64-Core Processor.

D.5. License

We utilize CMPNN (Song et al., 2020), which comes under MIT License. For baseline comparisons, we use dgl-based (Wang
etal., 2019a) GCN (Kwon et al., 2022), HGT (Hu et al., 2020), TAG (Du et al., 2017), GIN (Xu et al.), and DeepReac+ (Gong
et al., 2021) - all of which come under the Apache 2.0 License. YieldBERT (Schwaller et al., 2021b) comes under MIT
License. The Gas-Phase reaction datasets (Grambow et al., 2020b) are licensed under CC-BY 4.0. The USPTO dataset
used here comes under the MIT License. The original USPTO dataset (Schwaller et al., 2021b) by Lowe (2017) comes
under CCO 1.0 License. RXNMapper (Schwaller et al., 2021a) tool comes under MIT License. RDKit tool comes under
BSD-3-Clause License. NS (Zahrt et al., 2019) and DF (Nielsen et al., 2018) datasets used here, are available in (Singh &
Sunoj, 2022). However, we couldn’t find licenses for those datasets. PyTorch (Paszke et al., 2019) and NetworkX (Hagberg
et al., 2008) both come under BSD-3-Clause License.
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E. Additional results

E.1. Comparison in yield prediction in terms of RMSE

From Table 7 we observe a similar trend as Table 1 in RMSE for seven out of eight datasets. A different trend in RMSE
for GP is due to using MAE on the validation set during early stopping. The metric used for early stopping was MAE in
the validation set, which is why it may show an alternate trend for RMSE in GP. Like Table 1, YIELDNET (sky) (skyline
variants of our model, which uses true CGR for yield prediction) outperforms other models, reflecting CGR’s importance in

yield prediction.

Model GP NS1 NS2 [ NS3 NS4 NS5 SC DF

GCN 42778 £0.276 | 15.080 + 1.151 | 12.090 £ 1.011 10.438 & 0.864* | 11.667 + 0.286 | 6.631 & 0.532 | 16.314 & 0.762 | 16.245 + 0.392
HGT 43.442 +0.181 | 17.550 & 1.038 | 12.241 + 1.012 | 11.222 4 0.758 | 11.639 + 0.334 | 6.805 + 0.552 | 19.136 4 0.612 | 23.358 + 0.195
TAG 41.698 + 0.336 | 17.470 4 0.972 | 12.212 £ 0.993 | 10.953 4+ 0.798 | 11.575 + 0.318 | 6.766 + 0.563 | 18.792 4 0.661 | 22.177 + 0.473
GIN 42712 £ 0.351 | 17.449 4 1.052 | 12.285 + 1.011 | 10.760 4 0.799 | 11.424 + 0.290| 6.782 + 0.552 | 18.467 4 0.635 | 21.320 + 0.428
DeepReac+ 35.748 + 0.375 | 16.349 + 1.474 | 13.048 4+ 0.699 | 12.041 + 0.960 | 12.526 + 0.921 [6.992 + 0.391* | 19.852 + 1.604 | 17.188 + 1.680
YieldBERT 44733 +0.260 | 16.438 4 1.153 | 12.090 =+ 0.992 | 10.955 4 0.894* | 11.971 + 0.342 | 6.803 & 0.557 | 16.104 + 0.620 | 15.993 + 0.384
"YIELDNET | 38.195 4 0.436| 12.415 4 0.866| 10.701 & 0.966  9.702 & 0.969 | 9.383 4 0.491 | 6.507 &= 0.535 | 14.029 £ 0.795| 9.231 + 0.258
YIELDNET(sky) | 31.598 + 0.448 | NA NA \ NA NA NA \ NA NA

Table 7: Comparison of yield prediction performance for YIELDNET against all the competitive baselines, viz., GCN (Kipf
& Welling, 2017), HGT (Hu et al., 2020), TAG (Du et al., 2017), GIN (Xu et al.), DeepReac+ (Gong et al., 2021),
YieldBERT (Schwaller et al., 2021c), on the 20% test examples, across all datasets. Performance is measured in terms of
Root Mean Squared Error (RMSE). Numbers in green (yellow) indicate the best (second best) performer. Our improvement
in performance over the next best baseline, where YIELDNET is the best performer, is statistically significant with p-value
< 0.05, except in the cases marked with *.

E.2. Statistical significance test

To check the statistical significance of our results, we perform the paired t-test between YIELDNET and each baseline. We
report the p-value of MAE and RMSE:s for Table 1 and Table 7 in Table 8. If the p-value between the performance metrics is
lower than the 5e-2 margin, we consider the corresponding performance significant.

p-value for MAE table

Model GP NS1 NS2 NS3 NS4 NS5 SC DF
GCN 1.5e-10 | 3.6e-03 | 7.7e-03 2.7e-02 | 1.6e-02 | 3.7e-01* | 1.6e-05 | 1.1e-07
HGT S5.1e-11 | 3.1e-05 | 1.7e-03 2.3e-03 | 2.5e-02 3.7e-02 | 1.0e-07 | 5.5e-12
TAG 2.1e-09 | 1.7e-05 | 1.6e-03 4.6e-03 | 2.7e-02 3.9e-02 | 3.3e-06 | 4.2e-10
GIN 1.0e-09 | 2.8e-05 | 1.8e-03 5.8e-03 | 2.0e-02 1.1e-02 | 7.8e-07 | 4.8e-09
DeepReac+ | 3.3e-06 | 3.7e-03 | 2.4e-03 | 6.5¢-02* | 1.8e-02 | 9.3e-02* | 1.0e-03 | 6.5e-03
YieldBERT | 9.6e-11 | 1.8e-04 | 4.3e-04 | 9.8e-02* | 1.5e-02 4.9e-02 | 1.0e-03 | 3.9e-07
p-value for RMSE table
Model GP NS1 NS2 NS3 NS4 NS5 SC DF
GCN 3.7e-06 | 4.1e-03 | 3.5e-03 | 9.2e-02* | 4.8e-03 3.1e-02 | 3.0e-04 | 8.2e-08
HGT 1.6e-06 | 9.8e-06 | 1.9e-03 6.0e-03 | 5.5e-03 8.3e-03 | 4.1e-06 | 4.6e-12
TAG 1.5e-04 | 8.7e-06 | 1.9e-03 1.5e-02 | 5.8e-03 2.7e-02 | 1.1e-05 | 2.8e-10
GIN 6.7e-06 | 1.3e-05 | 1.7e-03 2.5e-02 | 7.9e-03 2.5e-02 | 6.9e-06 | 6.5e-10
DeepReac+ | 3.2e-02 | 4.9e-03 | 3.1e-03 2.6e-02 | 7.9e-03 | 1.7e-01* | 2.1e-02 | 4.6e-03
YieldBERT | 3.0e-07 | 1.9e-04 | 1.0e-03 | 5.2e-02* | 6.5¢-03 3.1e-02 | 2.0e-03 | 7.7e-08

Table 8: p-value for MAE and RMSE:s for all baseline models compared to our model. Our improvement in performance
over the next best baseline, where YIELDNET is the best performer, is statistically significant with p-value < 0.05, except
the cases marked with *.
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E.3. Additional results on comparison across various atom-to-atom alignment methods

Here, we report the MAE and RMSE with standard error for all atom-to-atom alignment methods introduced in Section 5.2.
Table 9 and 10 report the performances, which reveal that our alignment method is the best performer in the majority of the
cases. Due to diversity in the reaction for GP and SC, they don’t follow a common reaction template, thus atom-mapping
using RDKit aren’t feasible for them.

Mean Absolute Error (MAE)

Model GP NS1 NS2 NS3
RDKit -1 9910£0.630 | 8.845+0.873 | 8.567 £ 0.931
RXNMapper | 20.604 +0.433 | 9.610 £ 0.602 | 8.871 +0.871 | 8.470 +0.970
Random 25.187 £ 0.407 | 11.195 +0.890 | 8.984 +0.993 | 8.695 + 0.796
Attention 25730 £ 0.758 | 9.548 +0.414 | 9.024 +0.894 | 8.432 + 0.934
YIELDNET 23.152+0.393 | 9.245+0.518 | 8.387 £0.907 | 7.914 + 0.931
Mean Absolute Error (MAE)
Model NS4 NS5 SC DF
RDK:it 7.237 £0.375 | 4.533 £0.246 - | 7.187 £0.208
RXNMapper 6.871 +£0.406 | 4.677 +0.315 | 10.046 + 0.434 | 6.879 + 0.173
Random 7.991 £0.256 | 4.504 +£0.243 | 10.223 £ 0.474 | 10.595 + 0.244
Attention 6.955 £0.259 | 4.317 £0.220 | 8.826 +0.399 | 7.593 4+ 0.220
YIELDNET 7.015+0.495 | 4.382+0.249 | 8.751 £0.438 | 6.941 +0.192

Table 9: Comparison between different alignment strategies in terms of MAE of yield prediction.
presented in Table 2. Numbers in green (yellow) indicate the best (second best) performer.

Root Mean Squared Error (RMSE)

Model GP NS1 NS2 NS3
RDK:it — | 13.133 +0.802 | 11.381 +0.910 | 10.451 +0.912
RXNMapper | 35.429 4+ 0.455 | 12.769 + 0.854 | 11.366 4+ 0.852 | 10.365 £ 1.002
Random 37.428 +0.482 | 14.827 £ 1.185 | 11.467 £0.998 | 10.852 £+ 0.772
Attention 39.513 £0.659 | 12.703 £0.713 | 11.484 +£0.933 | 10.500 + 0.933
YIELDNET 38.195 £ 0.436 | 12.415 £ 0.866 | 10.701 +£ 0.966 9.702 £ 0.969
Root Mean Squared Error (RMSE)
Model NS4 NS5 SC DF
RDK:it 9.972 4+ 0.599 6.732 4+ 0.557 - 9.770 +£ 0.334
RXNMapper 9.483 £+ 0.740 6.984 +0.684 | 15.486 + 0.773 9.202 £+ 0.221
Random 10.908 4+ 0.421 6.644 +0.562 | 15.419 +£0.839 | 14.098 + 0.324
Attention 9.531 +£0.421 6.423 +£0.565 | 13.719 £0.710 | 10.533 + 0.382
YIELDNET 9.383 £+ 0.491 6.507 £ 0.535 | 14.029 £ 0.795 9.231 £+ 0.258

Brief results were

Table 10: Comparison between different alignment strategies in terms of RMSE of yield prediction. Brief results were
presented in Table 2. Numbers in green (yellow) indicate the best (second best) performer.

E.4. Additional results on ablation study on CGR representations

Here, we present the MAE and RMSE values for the ablation study on CGR computation introduced in Section 5.2, which
extends the results of Table 3. From Table 11 we observe that the influence of CGR computation is benefitting on the yield
prediction task for almost all of the datasets.

E.5. Additional results on ablation study of reaction path encoder components

Next, we present the MAE and RMSE values for the ablation study on components of the reaction encoder for all the datasets
(Section 5.2), which extends the results of Table 4. From Table 12 we can observe that the influence of the SetEncoders is
way more significant than that of the Transformer. Since the GP is a single-step reaction dataset, these ablation studies are
not applicable to it.

26



Learning Condensed Graph via Differentiable Atom Mapping for Reaction Yield Prediction

Mean Absolute Error (MAE)

Method GP NS1 NS2 NS3 NS4 NS5 SC DF

w/o CGR 24,921 £0.427| 11.356 £ 0.702| 9.459 + 0.953 | 9.342 £+ 0.822| 7.726 £+ 0.428 | 4.495 £ 0.270 | 10.686 £ 0.453 | 9.064 + 0.242

YIELDNET | 23.152 +£ 0.393| 9.245 £0.518| 8.387 £0.907| 7.914 + 0.931| 7.015 +0.495 4.382 +0.249| 8.751 +0.438| 6.941 £ 0.192
Root Mean Squared Error (RMSE)

Method GP NS1 NS2 NS3 NS4 NS5 SC DF

w/o CGR 36.686 £0.353 | 15.249 +0.881| 12.075+£0.949|11.316 £0.775| 10.506 £0.54 | 6.679 £0.585| 16.134 £0.748 | 11.827 £0.276

YIELDNET | 38.195 £ 0.436 | 12.415 +0.866| 10.701 + 0.966 | 9.702 + 0.969 | 9.383 £ 0.491 6.507 + 0.535| 14.029 £ 0.795 | 9.231 £ 0.258

Table 11: Ablation study CGR computation. Brief results were introduced in Table 3. Numbers in green indicate the best
performer.

Mean Absolute Error (MAE)

Model NS1 NS2 NS3 NS4 NS5 SC DF
StepAggr = DeepSet | 9.643 £ 0.703| 9.008 £ 0.915| 8.283 £ 0.948| 6.124 + 0.202| 4.395 + 0.253| 8.551 £ 0.292| 6.712 + 0.264
StepAggr = SumAggr| 10.192 + 0.743| 8.858 + 0.806| 8.349 + 0.909| 6.937 + 0.490| 4.433 + 0.262| 8.853 £ 0.309| 7.165 £ 0.183
Without transformer 9.467 £ 0.516| 8.680 £+ 0.786| 8.164 + 0.849| 6.407 4+ 0.224| 4.461 £+ 0.252| 8.628 £ 0.504| 6.448 £ 0.140
YIELDNET 9.245 £ 0.518| 8.387 £0.907| 7.914 + 0.931| 7.015 +0.495| 4.382 £ 0.249| 8.751 £ 0.438| 6.941 £ 0.192
Root Mean Squared Error (RMSE)
Model NS1 NS2 NS3 NS4 NS5 SC DF
StepAggr = DeepSet | 12.493 + 0.930| 11.594 + 0.912| 10.102 + 0.928| 8.297 4+ 0.250| 6.451 + 0.543 | 13.117 £ 0.584| 8.924 + 0.309
StepAggr = SumAggr| 13.341 +0.998| 11.413 £+ 0.916| 10.078 £ 0.910| 9.222 + 0.596| 6.62 £ 0.615| 13.442 £+ 0.551| 9.531 £+ 0.223
Without transformer 12.407 £ 0.727| 10.871 £ 0.845| 10.055 £ 0.878| 8.900 + 0.424| 6.577 + 0.577| 13.485 £ 0.777| 8.761 £ 0.182
YIELDNET 12.415 £ 0.866| 10.701 £ 0.966| 9.702 &+ 0.969| 9.383 £ 0.491| 6.507 &+ 0.535| 14.029 £+ 0.795| 9.231 + 0.258

Table 12: Ablation study on different components of the reaction encoder. Brief results were introduced in Table 4. Numbers
in green (yellow) indicate the best (second best) performer.

E.6. Additional results on ablation study on regularizer

In this section, we present the MAE and RMSE values for the ablation study on regularizer Reg(R, I) by taking the
hyperparameter p = 0 (Section 5.2), which extends the results of Table 5. From Table 13 summarizes that the addition of
the regularizer improves the performance in almost all of the cases.

Mean Absolute Error (MAE)

Method GP NS1 NS2 NS3 NS4 NS5 SC DF

p=0 23.650 £0.465| 9.929 £0.627 | 8.590+0.885| 8.035+0.903| 7.162+0.168| 4.397 +0.243| 8.810+0.308| 8.959 +0.704

YIELDNET | 23.152 £ 0.393 | 9.245 £ 0.518| 8.387 £0.907 | 7.914 £ 0.931 | 7.015 £ 0.495 | 4.382 4+ 0.249 | 8.751 £0.438 | 6.941 + 0.192
Root Mean Squared Error (RMSE)

Method GP NS1 NS2 NS3 NS4 NS5 SC DF

p=0 39.666 +0.494 | 13.228 £0.820| 10.892+0.940| 9.919+0.943 | 9.815+0.313| 6.524 +0.547 | 13.351 £0.540 | 11.942 + 0.822

YIELDNET | 38.195 +0.436 | 12.415 £ 0.866 | 10.701 £ 0.966 | 9.702 & 0.969 | 9.383 £ 0.491 | 6.507 & 0.535| 14.029 £ 0.795 | 9.231 + 0.258

Table 13: Ablation study on regularizer Reg(R, I) in Eq. (21). Brief results were introduced in Table 5. Numbers in green
indicate the best performer.

E.7. Comparison between different ways to compute alignment matrix

Here, we compare an alternative way to construct alignment matrix P mentioned in Eq. (5) by choosing C[u,v] =
hr(u)"hr(v) (referred as Cyq) to our chosen one, Clu, v] = — Z?Zl max (hg(u), hy(v))[¢] (referred as Cryax). From
Table 14 we observe almost similar performances for both the C' matrices.

Mean Absolute Error (MAE)

Method GP NS1 NS2 NS3 NS4 NS5 SC DF

Clot 22.735 £ 0.543| 8.709 £ 0.416| 8.654 +0.885| 8.121 +0.896| 6.606 £ 0.247 | 4.365 + 0.267 | 8.481 £+ 0.330| 6.964 + 0.132

‘max 23.152 £0.393| 9.245+0.518| 8.387 £0.907| 7.914 +0.931| 7.015 £ 0.495| 4.382 +0.249| 8.751 4+ 0.438| 6.941 £ 0.192
Root Mean Squared Error (RMSE)

Method GP NS1 NS2 NS3 NS4 NS5 SC DF

Ciot 37.639 £ 0.639 | 11.459 £ 0.599 | 11.010 +0.938 | 10.002 + 0.916| 9.167 £ 0.463 | 6.514 + 0.618 | 12.984 £ 0.601 | 9.322 £ 0.165

Chax 38.195 £ 0.436 | 12.415 £ 0.866 | 10.701 +0.966| 9.702 = 0.969 | 9.383 £ 0.491 | 6.507 = 0.535 | 14.029 £ 0.795 | 9.231 £ 0.258

Table 14: Performance of YIELDNET with different ways to calculate P mentioned in Eq. (5)
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E.8. Comparison against competitive baselines with additional datasets

Mean Absolute Error (MAE)

Model GP1 GP2 USPTO DF1 DF2 \ DF3 NS
GCN 34,771 + 0.399 37.316 £ 0.309 | 34.336 4 0.345* 9.610 + 0.692* 10.098 + 0.775 10.451 +£0.823 | 6.542 £+ 0.139*
HGT 38.345 + 0.241 41.798 £ 0.276 34.767 + 0.320 11.246 + 0.843 10.721 + 0.889 10.989 + 0.916 8.608 +0.218
TAG 36.504 + 0.292 39.757 £ 0.239 34.693 + 0.321 11.200 £ 0.774 | 10.553 +£0.919 10.877 £ 0.919 9.083 +0.132
GIN 36.184 +0.184 39.008 + 0.280 34.896 + 0.304 11.169 + 0.839 10.373 £ 0.871 10.610 + 0.805 8.883 +0.155
DeepReac+ 29.700 + 0.210 32.577 + 0.402 36.890 + 0.994 12.302 + 1.693* 10.665 + 0.928 10.091 + 0.689 9.450 + 0.905
YieldBERT 39.587 + 0.278 44.072 £+ 0.280 35.352 + 0.356 10.126 + 0.822* 9.912 + 0.925 10.475 + 0.656 7.837 £ 0.154
YIELDNET 24.269 + 0.610 27.563 + 0.618 33.460 + 0.474 8.832 4+ 0.747 8.552 + 0.894 8.815 + 0.384 6.278 £ 0.194
Root Mean Squared Error (RMSE)
Model GP1 GP2 USPTO DF1 DF2 \ DF3 NS
GCN 40.945 +£0.347 | 42.132 4+ 0.300* | 38.257 4 0.383* 13.165 + 0.963* 12.065 + 0.688 13.523 £0.842 | 9.055 £+ 0.214*
HGT 42.667 + 0.209 44.633 +£0.239 | 37.913 + 0.374* 14.38 + 1.072 12.575 + 0.819 14.172 +0.836 | 11.454 + 0.251
TAG 41.551 £0.221 | 43.536 +£0.317* | 37.970 &+ 0.397* 14.274 £ 1.011 12.602 + 0.831 14.054 + 0.835 11.974 £ 0.185
GIN 41.836 +£0.226 | 42.983 +0.257* | 38.006 + 0.385* 14.399 + 1.071 12.296 + 0.784 13.741 £ 0.748 | 11.764 £ 0.225
DeepReac+ | 37.576 £ 0.241* 40.961 £ 0.371 42.876 £ 1.157* 15.618 + 1.724* 13.136 + 0.942 | 12.902 + 0.839* 12.028 £ 0.917
YieldBERT 44.099 + 0.165 46.380 £ 0.220 | 38.446 + 0.396* 13.669 + 1.146* 12.110 + 0.822 13.529 +£0.726 | 10.678 +0.217
YIELDNET 38.862 + 0.622 42.852 + 0.659 41.191 £ 1.112 12.181 £ 0.903 10.790 + 0.865 11.813 £ 0.478 8.777 £ 0.310

Table 15: Comparison of yield prediction performance for YIELDNET against all the competitive baselines, viz., GCN (Kipf
& Welling, 2017), HGT (Hu et al., 2020), TAG (Du et al., 2017), GIN (Xu et al.), DeepReac+ (Gong et al., 2021),
YieldBERT (Schwaller et al., 2021c), on the 20% test examples, across the additional datasets. Performance is measured in
terms of MAE (top half) and RMSE (bottom half). Numbers in green (yellow) indicate the best (second best) performer.
Numbers with * indicate that either the model outperforms YIELDNET in that case or the difference is not statistically
significant (i.e. p-value > 0.05). The results reveal the same observations as in Table 1.

In this section, we present the MAE and RMSE for all the methods on the additional datasets viz., NS4, NS5, DF1, DF2,
DF3, and NS. Table 15 summarizes the results, which shows that our method outperforms the baselines, similar to Table 1.
For the rest of the datasets YIELDNET outperforms the baselines by a significant margin in most cases. We observe the
results are more prominent in the case of MAE as compared to RMSE.
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E.9. Results on approximating the gold permutation for additional datasets

We compute || P — P*||r (mentioned in Section 5.2) for attention and YIELDNET for two additional GP1 and GP2 datasets

Model GP GP1 GP2
Attention 5.096 4611 4.496
YIELDNET | 3.708 3.627 3.165

Table 16: Comparison of || P — P*||p.
as true labels of permutations for Gas-phase reaction datasets are available. Table 16 summarizes that the atom mapping
approximation in YIELDNET is superior to that of attention.
E.10. Results on the interplay between the quality of learned alignment and predicted yield for additional datasets

We plot E(AAE,|AP,) vs AP, same as Figure 6 for additional GP1 and GP2 datasets in Figure 7. This shows a similar
trend i.e. high correlation between error in yield prediction and atom-to-atom alignment for GP1 and GP2 datasets.
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Figure 7: E(AAE,|AP,) vs AP, plot for GP1 (left) and GP2 (right) dataset
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E.11. Visualization of condensed graphs where they show the exact transition states

Condensed graphs serve as surrogates of the transition states. We are visualizing some cases for the GP dataset, where
they reflect the exact transition state. We select the reactions with low MAE values and collect the alignment matrix, P
corresponding to those reactions. Then, we apply the Hungarian algorithm to get hard permutation matrices, Paq. We
obtain the Adjcgg as follows, Adjogr = max(Adjp, Phard,rAd] IPthdW). Finally from the connections obtained from the
Adjegr, we draw the molecular structures of condensed graphs as shown in Figure 8.
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Figure 8: Representative examples of the condensed graphs where they show the exact transition states, (shown on the top
of the arrow in each case) as generated by YIELDNET during yield prediction.

We use NetworkX (Hagberg et al., 2008) to get the connections between atoms from Adjcgg. After obtaining those
NetworkX raw graphs we manually draw figures of Figure 8 in ChemDraw for better visualization, maintaining the
connectivity obtained through the NetworkX graphs.
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E.12. Time complexity

We also report the inference time for the NS3 dataset with the test size of 60 and batch size of 8. From Table 17, it is clear
that inference time for our model is comparable with the some of the GNN based models (HGT and TAG) and not as high
as YieldBERT.

Model Inference time in sec
GCN 1.727 £ 0.010
HGT 4.684 + 0.087
TAG 3.109 + 0.023
GIN 1.693 + 0.020

DeepReac+ 0.900 £ 0.026
YieldBERT 84.983 + 0.186
YIELDNET 3.440 £+ 0.298

Table 17: Inference time for different methods
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