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ABSTRACT

Large language models are increasingly used to process documents, scripts, and
facilitate question-answering on them. In our paper, we extract mechanistic cir-
cuits for this real-world language modeling task: context-augmented language
modeling for question-answering (QA) tasks and understand the potential bene-
fits of circuits towards downstream applications such as data attribution, where
the specific input data in the context is used to produce an answer is identified.
We extract circuits as a function of internal model components (e.g., attention
heads, attention layers, MLPs) using causal mediation analysis techniques. Lever-
aging the extracted circuits, we first understand the interplay between the language
model’s usage of parametric memory and retrieved context towards a better mech-
anistic understanding of context-augmented language models. We then identify a
small set of attention heads in our circuit which performs reliable data attribution
by default, thereby obtaining attribution for free in just the model’s forward pass!
Using this insight, we then introduce ATTNATTRIB, a fast data attribution algo-
rithm. Through a range of empirical experiments across different extractive QA
benchmarks, we show that performing data attribution with ATTNATTRIB obtains
state-of-the-art attribution results across different language models. Finally, we
show the possibility to steer the language model towards answering from the con-
text, instead of the parametric memory by using the attribution from our extracted
attention head as an additional signal during the forward pass. Beyond mechanis-
tic understanding, our paper provides tangible applications of mechanistic circuits
in the form of reliable data attribution and model steering.

1 INTRODUCTION

In the recent times, large language models have been used to process documents, webpages and
transcripts as context and answer questions from them leading to the practical task of extractive
question-answering (QA), the task of answering a question by directly extracting words from the
context/document (in contrast to ”abstractive QA” or ”open-ended QA” where the words compris-
ing the answer may not necessarily appear in the context). In such a case, a language model can
either answer from the context or hallucinate from its parametric memory. A mechanistic under-
standing of such a task with a circuit (a sub-graph of the language model’s computational graph)
can not only provide insights on the inner workings of the model for this task, but can also en-
able downstream applications to improve the model reliability. Earlier works on mechanistic cir-
cuits (Bereska & Gavves, 2024; Elhage et al., 2021) for large language models (Touvron et al.,
2023; Jiang et al., 2023; Chiang et al., 2023) have discovered circuits for language tasks such as
entity tracking (Prakash et al., 2024), indirect object identification (Wang et al., 2022) or simple
math operations such as “greater than” (Hanna et al., 2023). While circuits are a principled way to
mechanistically understand language models, we note certain limitations within existing works: (i)
Tasks such as entity tracking or indirect object identification are inherently simple tasks and may not
capture the complexity of real-world applications for language models and (ii) It remains uncertain
whether understanding language models through circuits will translate into practical applications.

In our paper, we extract mechanistic circuits for a real-world extractive QA task and use insights
from the mechanistic circuit to provide two downstream applications: (i) Data attribution to context
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Figure 1: Obtaining Circuits for Extractive QA in Language Models. We use our probe dataset
along with path patching to extract circuits corresponding to (i) Context and (ii) Memory Faithful-
ness. We find that a small set of attention heads from the circuit can be used towards performing
data-attribution in one forward pass and also steering language models towards context faithfulness.
In this figure, we provide one step of the patching operation and expand on it Sec.(E).

and (ii) Steering the language model towards improved context faithfulness. We focus on this task,
due to the importance of retrieved-context augmented language models in recent times which un-
locks various user-facing downstream applications (Lewis et al., 2021; Gao et al., 2024; Asai et al.,
2023). We extract two kinds of circuits from language models: (i) Context-Faithfulness Circuit:
A circuit used by the language model when it solely answers from the context and (ii) Memory-
Faitfulness Circuit: A circuit used by the language model when it solely answers from its parametric
memory. To extract these circuits, we first design a probe dataset (with minimal assumptions about
it’s inherent structure such as fixed length) and use Causal Mediation Analysis (CMA) (Wang et al.,
2022; Pearl, 2001; Zhang & Nanda, 2024) to find the subset of nodes and edges in the computa-
tional graph of the language model which are causal to the model outputs. In particular, we observe
that the circuits activated during the model’s use of context differ significantly from those used for
parametric memory. We validate different components of the circuit by various ablations and offer
insightful mechanistic understanding of context-augmented language models.

With the extracted circuit components, we then investigate their roles for the task of extractive QA.
We first find that a small set of attention heads in the circuit perform reliable data attribution by
default (i.e., where the specific input data in the context is used to produce an answer is identified),
inherently obtaining data attribution in just one forward pass for each token generation. Leveraging
this observation, we introduce ATTNATTRIB, which can reliably perform data attribution using just
one attention head across various real-world QA benchmarks (e.g., HotPotQA, Natural-Questions,
NQ-Swap) and white-box language models (Vicuna, Llama-3). In fact, through extensive empirical
experiments, we show that ATTNATTRIB can obtain state-of-the-art data-attribution results when
compared to other strong baselines for extractive QA tasks without any additional forward pass or
auxiliary model, effectively obtaining attribution for free. We also find that when the language
model answers using the parametric memory circuit, the attribution heads still display a high at-
tention to the answer tokens in the context. With this insight, we design a simple model steering
method for improved context-faithfulness, by using the attributions from ATTNATTRIB as an ad-
ditional source of information. Across various empirical experiments, we find that the addition of
attribution during prompting leads to improvements upto 9% on popular extractive QA datasets.

Overall, our paper extracts mechanistic circuits in language models for a real-world task of extractive
question-answering (QA). Beyond mechanistic interpretability of QA tasks, our paper highlights
that certain components of the circuit can be useful for various downstream applications such as
data-attribution and also steering language models towards being more faithful to the context (thus
improving generalization). In summary, our contributions are as follows:

• We extract mechanistic circuits (which provide a causal view) in language models for the
real-world task of extractive QA for when the model answers from the context and from
the parametric memory.
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• We provide salient insights on the underlying mechanics of language models highlighting
the interplay between parametric memory and context through the lens of extracted circuits.

• Using the interpretability insights from the circuit mechanism, we provide two practical
applications: (i) Data-attribution to context with ATTNATTRIB and (ii) Model steering to-
wards context-faithfulness using the attributions from ATTNATTRIB – both reliable en-
hancements which can ensure that the model does not hallucinate.

2 RELATED WORKS

Circuit Based Interpretability in Language Models. With the advent of language models, sev-
eral recent works have focused on a mechanistic understanding of language models (Meng et al.,
2023; Turner et al., 2024; Lieberum et al., 2023; McDougall et al., 2023; Gould et al., 2023). One
of the primary benefit of transformer based language models is that the final logit representation
can be decomposed as a sum of individual model components (Elhage et al., 2021). Based on
this decomposition, one can extract task-specific causal sub-graphs (i.e., circuits) of internal model
components in language models. Early works have extracted such circuits for indirect-object iden-
tification (Wang et al., 2022), greater-than operation (Hanna et al., 2023) and more recently for
entity-tracking (Prakash et al., 2024). Recently, there has been an increasing focus on the practical
aspects of mechanistic interpretability such as refusal mediation (Arditi et al., 2024; Zheng et al.,
2024) or safety in general (Zou et al., 2023). Circuits can also be constructed as sub-graphs of neu-
rons in the language model, but it often comes with increased complexity of interpretation (Elhage
et al., 2022). In our paper, we focus on extracting circuits for a real-world task such as extractive
QA with a particular emphasis on practical applications such as data attribution using them.

Applications in Context-Augmented Question-Answering. With the advent of retrieval-
augmented generation (Lewis et al., 2021; Gao et al., 2024) language models have been increasingly
used for real-world Question-Answering (QA) tasks. One of the primary enhancement of context-
augmented QA lies in the ability to provide reliable grounding (i.e., attribution) in the context for
the generated answer (Li et al., 2023; Khalifa et al., 2024; Huang & Chang, 2024; Ye et al., 2024).
In recent times, there have been a large set of works which improve LLM responses by reducing
hallucinations and improving grounding in the input context (Ye et al., 2024; Asai et al., 2023; Xu
et al., 2024b; Zhang et al., 2024). Beyond grounding, (Wu et al., 2024; Xu et al., 2024a; Mallen
et al., 2023; Wang et al., 2023) investigate the interplay between model’s use of parametric vs. con-
text knowledge. We note that our paper tests the ability of the mechanistic insights from circuits
towards performing these applications for extractive QA tasks.

3 DECIPHERING A CIRCUIT FOR EXTRACTIVE QUESTION-ANSWERING

Nodes and Edges in a Language Model Circuit. Recent decoder-only large language models,
denoted by gϕ, such as Llama variants (Touvron et al., 2023; et al., 2024), are built on the seminal
transformer architecture (Vaswani et al., 2017). A notable characteristic of these architectures is
that the token representation at any layer can be expressed as a function of internal model compo-
nents, such as multi-layer perceptrons (MLPs) and attention heads, from earlier layers (Elhage et al.,
2021). As a result, the computational graph underlying a language transformer is a directed acyclic
graph, with nodes representing components like MLPs and attention heads (or layers), and edges
representing connections formed by the residual stream.

We are particularly interested in obtaining a sub-graph of the transformer’s computational graph
which is responsible towards context-augmented language modeling. In particular, we extract two
circuits: (i) Context-Faithfulness Circuit, which is used when the underlying language model an-
swers from the context, and (ii) Memory-Faithfulness Circuit, which is used when the language
model solely answers from the parametric memory, ignoring the context. To extract the respective
circuits, we first design a probe dataset consisting of 200 questions mimicking both these conditions
which we use with causal mediation analysis (Wang et al., 2022) and our interventional algorithm
in Sec. (3.2).

3.1 DESIGNING THE PROBE DATASET

3
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Greedy Selection of Attention Layers Greedy Selection of Attention Heads Greedy Selection of MLP Layers

Greedy Selection of Attention Layers Greedy Selection of Attention Heads Greedy Selection of MLP Layers

CCooppyy  CCiirrccuuiitt  CCoommppoonneenntt  EExxttrraaccttiioonn
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CCoonntteexxtt--FFaaiitthhffuullnneessss  CCiirrccuuiitt

MMeemmoorryy--FFaaiitthhffuullnneessss  CCiirrccuuiitt

Figure 2: (i) Top Row (Context Circuit Components). We find that a small set of attention layers
and attention heads are sufficient towards a high metric score across all the models. However we
find that for Vicuna and Phi-3, patching MLPs do not lead to a high metric score. For Llama-3-
8B, we find MLP-31 to have a high direct effect, which when greedily combined with other MLP
layers obtain higher scores; (ii) Bottom Row (Memory Circuit Components). We find that a large
number of attention heads and layers are required to obtain a high metric score. Unlike the copy
circuit, we find MLPs to be important for the memory circuit across all the models.

The design of a probe dataset is extremely crucial in extracting circuits for a language model task
as shown in earlier works (Wang et al., 2022; Hanna et al., 2023). We are interested in obtaining a
circuit for context-faithfulness as well as one when the model answers from the parametric memory
while ignoring the context. To this end, we design two probe datasets Dcopy and Dmemory respec-
tively for them. Each example in Dcopy and Dmemory consists of factual questions sourced from
the Known dataset (Meng et al., 2023). For each question qi in both datasets, we use Llama-3-70B-
Instruct to generate a context ci related to the subject and answer for qi. To guarantee that for each
question in Dcopy , the language model only answers from the context (and not the memory), we
replace the answer tokens in the context ci with a set of tokens which are semantically similar to
the original answer(e.g., in Fig.(1), we replace Seattle with New York in the original context Space
Needle is located in Seattle, where the original answer was Seattle). InDmemory , to force the model
to answer from the parametric memory while ignoring the context, we replace the answer token with
a token which is far away in semantic meaning from the original answer (e.g., replace Seattle with a
punctuation of “–”). In total, we curate 200 questions (with their corresponding modified contexts)
in Dcopy and Dmemory. We note that each entry xi ∈ Dcopy/memory, contains a question qi, a subject of
the question si, ground-truth answer denoted by ai, the modified context c′i and the original context
ci. Along with ci and c′i, we add a corrupted context ci,corrupted, where the subject and the answer
token in the context is replaced by unrelated tokens and qi,corrupted where the subject in the question
is replaced by a randomly sampled token. For e.g., as seen in Fig.(1) the corrupted context (Big Sur
is in California) is formed by replacing the subject and the answer tokens in the modified context.
A full description of the probe dataset D can be accessed in Sec.(F)

Distinctions from Other Circuit Datasets. We note that previous work on circuit extraction for
entity tracking and indirect object identification relies on fixed templates to generate examples in the
probe dataset. However, for real-world tasks like extractive QA, probe datasets cannot be templated,
as contexts may vary in length and contain distinct information across different examples.

3.2 INTERVENTIONAL ALGORITHM WITH PATH PATCHING FOR EXTRACTING CIRCUITS

4
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Figure 3: We find that one of the attention head in the context faithfulness circuit obtains a
low entropy value in the context window. Qualitative visualization shows that this attention head
for Vicuna leads to peaky attention values in the context span containing the answer, whereas the
other attention heads produce either diffused attentions or erroneous attentions. Further results on
Llama-3 and Phi-3 in Appendix.

Our interventional method is developed on the foundational technique of causal mediation anal-
ysis (Pearl, 2001). The primary idea of causal mediation analysis is to find important paths in a
causal graph, by performing an interventional operation on a small set of nodes and measuring the
change in the final output. In our use-case, we adapt this method to find a sub-graph of internal
model components such that ablating them leads to a decrease in ability of the model to perform
QA (either through extraction from the context or using the parametric memory while ignoring the
context). Below we provide the algorithmic description of our interventional step:

Algorithmic Description. Given the language model gϕ and its associated computational graph
G, our objective is to extract a sub-graph (i.e., a circuit) C ∈ G which is responsible towards the
QA task. We obtain the nodes and edges of the circuit C in a hierarchical manner. First, we obtain
a set of nodes and edges in hierarchy 0 denoted as (N0, E0) which have the highest direct effect
to the final logit. In the next step for hierarchy 1, we obtain a set of nodes and edges (N1, E1),
which have the highest direct effect on the nodes from hierarchy 0. For any hierarchy k, we ob-
tain a set of nodes and edges (Nk, Ek) which have a high direct effect on the nodes (Nk−1, Ek−1)
from the previous hierarchy. For obtaining the nodes at the kth hierarchy, we create two instanti-
ations of the underlying language model gϕ. The first instantiation is denoted as gϕ,clean, with the
original question qi and modified context c′i as the input. The second instantiation of the language
model is gϕ,corrupted, where the input context as well as the question is corrupted as ci,corrupted and
qi,corrupted respectively. With this corrupted input, model gϕ,corrupted assigns a low probability to the
generated answer tokens ai from gϕ,clean. Using these two model instantiations, the goal of the
patching operation is to copy the activations of a node gj ∈ G from gϕ,corrupted to gϕ,clean, while
restoring the activations of all the other nodes in gϕ,clean to its original state. We denote the patched
model as gϕ,patch and use score(i, gj) = 1 − Pgj ,patch(ai) to measure the importance of the com-
ponent gj for the ith example. For the component gj , we then compute the average metric score
as score(gj) =

∑|D|
i=1 score(i, gj)/|D|. We then sort the scores of the various components in the

computational graph as score(gj) ∀j ∈ N in decreasing order as {gj}Nj=1 and greedily select the
minimum value of k, such that the average metric score of patching multiple components together:
score({gj}kj=1) ≥ δ. These selected components {gj}kj=1 form the nodes inNk. In our experiments,
we only use the MLPs, the attention heads and attention layers as the different model components
which are patched. The final circuit C consists of the nodes {Nk}Kk=1 and their associated edges,
where K denotes the maximum hierarchy of the circuit.

Obtaining Circuit for Context Faithfulness. We extract the circuits using Dcopy as the probe
dataset for the patching operations. We perform the patching operation at the last token position
corresponding to the last residual stream. We selected this position for patching because the infor-
mation in the last residual stream plays a crucial role in determining the probability distribution of
the next generated token, which is also used in recent mechanistic interpretability works concerning
model steering (Arditi et al., 2024; Turner et al., 2024).

Obtaining Circuit for Parametric-Memory Faithfulness. In this case, we use Dmemory as the
probe dataset for the patching operation. We extract the circuit with the patching operations at the
same token positions as the ones for context faithfulness.
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Figure 4: Ablating the extracted context-faithfulness circuit leads to a large drop in extractive
QA accuracy for various datasets. We ablate the direct edges from the extracted circuit compo-
nents and a random circuit in the language model and measure the extractive QA accuracy.

Empirically, we primarily extract our circuits for both context faithfulness and parametric-memory
faithfulness corresponding to hierarchy-0 (which constitutes the first-order effects) and provide re-
sults for hierarchy-1 (which constitutes second-order effects) in Sec.(B). We extract these circuits
across Phi-3B, Vicuna-7B and Llama-3-8B. In Sec.(J), we provide further results on circuit compo-
nents for Llama-3-70B.

Validation of the Circuit. We validate the extracted circuit C by comparing to (i) Using a randomly
extracted circuit Crandom to measure the probability of the answer tokens; In this case the probability
of the answer tokens will be low. (ii) Within the clean instantiation of the model gϕ,clean, we ablate the
essential nodes of the circuit C and measure the probability of the answer tokens for each example in
Dcopy/memory. If the extracted circuit C is correct, score(C) will be high. In addition, we also ablate
the context-faithfulness circuit in extractive QA datasets and measure the extractive QA accuracy,
where a large drop in accuracy signifies the validity of the circuit.

In the next sections, we discuss the results corresponding to the mechanics underlying context-
augmented language generation.

3.3 INTERPRETABILITY INSIGHTS FOR EXTRACTIVE QA THROUGH CIRCUITS

In this section, we discuss the extracted circuit components for both context faithfulness and para-
metric memory faithfulness. We first draw out their distinctions and validate the correctness of the
circuit components. We then discuss the interpretable nature of a small set of attention heads in the
circuit. Finally, we discuss the distinction of extractive QA circuit components from other language
tasks such as entity tracking.

3.3.1 CONTEXT FAITHFULNESS CIRCUIT DIFFERS FROM PARAMETRIC MEMORY CIRCUIT

Results for attention components. We find the circuit components for context faithfulness and
memory faithfulness to differ significantly. For context faithfulness, we find that patching a small
group of 4-5 attention layers (or 10 attention heads) is sufficient to obtain a high metric score of
more than 0.95. However, for the memory faithfulness, we find that a significantly higher number
of attention layers (e.g., >15) and attention heads (e.g., >30) are required to obtain a relatively high
metric score. This result shows that information from a small set of attention heads (or layers) pri-
marily drive the circuit corresponding to context faithfulness than memory faithfulness. In Sec.(D),
we also show that the top circuit components of attention layers (or heads) have a low overlap be-
tween the two circuits – highlighting that the underlying language model elicits different circuits
when answering from the context vs. parametric memory.

Results for MLP components. We observe an intriguing pattern with MLPs in the extracted circuit.
For context faithfulness, in Vicuna and Phi-3, MLPs appear to be less significant, as patching them
results in a very low metric score. However, in Llama-3-8B, we identify one specific MLP (MLP-
31) that individually achieves a high metric score of 0.9. This suggests that the type of pre-training
might play a role in determining the relevant circuit components (with respect to MLPs) for context
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faithfulness. For memory faithfulness, MLPs consistently obtain higher metric scores across all three
language models compared to the top MLPs in the context faithfulness circuit. This underscores
the importance of MLPs when the language model retrieves information from parametric memory.
Interestingly, we also find minimal overlap between the circuit components responsible for context
faithfulness and those for memory faithfulness, even among MLPs. We provide the detailed list of
all the circuit components for context faithfulness and memory faithfulness in Sec.(D).

For all the language models, when using a randomly extracted circuit (for context faithfulness), the
probability of the answers from the probe datasetD drops to 0.045 for Vicuna, 0.081 for Llama-3-8B
and 0.07 for Phi-3, which shows the relevance of our extracted circuit.

3.3.2 A SMALL SET OF ATTENTION HEADS IN THE CONTEXT CIRCUIT ARE INTERPRETABLE

In Fig.(3), we observe that a small subset of attention heads in the extracted circuit for context
faithfulness achieves a low entropy score with respect to the normalized attention values over the
context. Upon further inspection, we find that these low-entropy attention heads predominantly
focus on the answer token spans in the context. Conversely, some other attention heads in the circuit,
while also highly attentive to the answer token spans, display more diffused attention patterns across
other tokens. These findings are consistent across all three language models studied: Vicuna, Llama-
3-8B, Phi-3 and Llama-3-70B (see Sec.(J)). These results highlight the potential of a small set of
attention heads from the circuit to be used towards data attribution in language models (see more
details in Sec.(4)) for real-world extractive QA datasets.

3.4 GENERALIZABILITY OF THE CIRCUIT TO DOWNSTREAM EXTRACTIVE QA DATASETS

To validate the circuits, in Fig.(4), we ablate the context-faithfulness circuit components when an-
swering questions from downstream datasets such as NQ-Swap, Natural-Questions and HotPotQA
and measure the extractive QA accuracy. We compare with the extractive QA accuracy when a ran-
dom circuit is ablated from the language model. Overall, we find that ablating the direct connections
from the identified context-faithfulness circuit components, lead to the maximal drop in extractive
QA accuracy. This result validates that the extracted context-faithfulness circuit generalizes to other
extractive QA datasets widely used by the community.

Algorithm 1 ATTNATTRIB: Data Attribution via One Attention Head
Input: gϕ(Language model), q(Question), C(Context), k(Number of Spans), L(Answer Length),
l(Attention Layer), h(Attention Head), slength(span-length)

Output: Candidate attribution spans
S ← {}
Atotal ← {}
for j ← 1, . . . , L do

aj , Aj = gϕ(C, q) ▷ Aj : Attention map over context, aj : answer token
Atotal.append(aj) ▷ Add the answer token
Aj,relevant ← Aj [l, h] ▷ Extract the attention pattern for the given layer and head
sj , vj = GetMaxSpan(Aj,relevant, C, slength) ▷ Extract maximal attention span and value
S.append((sj , vj)) ▷ Add the extracted span sj to the list along with its value vj

return Sort(S)[: k] ▷ Sort extracted spans wrt attention value v and use the top-k as attributions

3.4.1 ONE CAN SWITCH BETWEEN MEMORY AND COPY FAITHFULNESS CIRCUITS

To further validate the distinction between circuit components for Context faithfulness and Memory
faithfulness, we conduct two ablation studies. Specifically, we use Dmemory , but force the language
model to answer from the context, even when it originally retrieves answers from the parametric
memory. We achieve this model forcing by: (i) upweighting the attention values at the answer token
span in the context by a scaling factor β in the top attention layers of the context faithfulness circuit,
and (ii) mean-ablating the top MLPs from the memory faithfulness circuit.

Our findings show that with attention upweighting, 92% of the questions from Dmemory are cor-
rectly answered using the answer tokens from the context instead of the parametric memory. Mean-
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Dataset: Synthetic I Dataset: Synthetic II Dataset: NQ-Swap I

Dataset: NQ-Swap II Dataset: Natural Questions Dataset: Single-Hop HotPotQA 

Models Models Models

Models Models Models

Figure 5: Attribution through one attention head in our circuit via ATTNATTRIB obtains strong
attribution results. Across various extractive QA benchmarks, we obtain improved performances
over different attribution baselines. For HotPotQA, we measure the F1-score due to it being single-
hop, whereas for other datasets, we measure the attribution accuracy. We present further results on
long-form generations in Sec.(I) and attribution results on other synthetic datasets in Sec.(O)

while, mean-ablating the MLPs results in 68% of the questions being answered with relevant answer
tokens from the context. These results further validate the distinction in the circuit components for
memory and context faithfulness and also shows that one can switch between the circuits by modi-
fying a small set of components. We provide more details on this in Sec.(C).

In the next section, we use our interpretability insights about attention heads from Sec.(3.3.2) to
design a fast and scalable data attribution algorithm for language models.

4 APPLICATION 1: ATTRIBUTION FOR FREE VIA ONE ATTENTION HEAD

Data attribution for extractive QA is crucial for language models processing external contexts, such
as documents or personal files, not included in the pre-training corpora. For example, in a question
like “What did Sarah Miller say during the all-hands meeting?”, the correct answer comes from
a specific section of the context (e.g., meeting transcript). Pointing to the source of the answer
improves model reliability and helps users verify its correctness, especially since LLMs are prone
to hallucinations (Niu et al., 2024). In this section, we introduce ATTNATTRIB, a fast and efficient
data attribution algorithm, leveraging insights from our mechanistic interpretations (Sec. 3.3), which
outperforms existing QA baselines.

4.1 ATTNATTRIB: A SIMPLE AND STRONG DATA ATTRIBUTION METHOD FOR
EXTRACTIVE QA

In Sec.(3.3), we observe that a small set of attention heads from hierarchy 0 of the circuit attend to
the answer token in the context. Thus, these attention heads from the extracted circuit for context
faithfulness implicitly perform data attribution by default. However, real-world contexts can be
noisy and contain multiple answer tokens, raising questions about the behavior of these attributable
attention heads in practical settings. In this section, we introduce ATTNATTRIB, which automatically
generates attributions from the context during the forward pass by leveraging only one attention head
from the context faithfulness circuit. Specifically, ATTNATTRIB uses the attention patterns from
the relevant attention head to generate a span from the context for each generated answer token.
These spans are ranked based on the maximum attention value within the span (a sentence from the
context), and the top-k spans are selected for attribution. A detailed description of ATTNATTRIB is
provided in Algo. (1). Using ATTNATTRIB, we explore the potential applications of mechanistic
circuits for attribution in extractive QA. We note that we use one attention head identified using our
probe dataset, Dcopy , and test its effectiveness on different extractive QA benchmarks.

4.2 EVALUATION ON EXTRACTIVE QUESTION-ANSWERING BENCHMARKS

Baselines. We use the following baselines: (i) Self-Attribution: In this, we prompt the language
model to generate an attribution from the context which is required to answer the question. This
prompting technique is similar in principle to (Gao et al., 2023) and (Buchmann et al., 2024); (ii)
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Iterative Prompting: We first generate the answer from the language model, then perform another
forward pass and prompt the language model to generate the attribution from the context for the
generated answer. (iii) Sentence Similarity. We retrieve the most similar sentence from the context
to the generated answer using an auxiliary language encoder (all-mpnet-base-v2). This choice is
motivated by findings from (Buchmann et al., 2024), which identified this embedding model as one
of the best-performing retrievers. (iv) Gradient: We find the gradient of the loss for a generated
token with respect to the input context token embeddings (Yin & Neubig, 2022). We then use this
to select the span containing the token with the highest gradient value.

General Empirical Results. We compute the exact match score with the ground-truth attribu-
tions across the synthetic dataset (used in our probing step), NQ-Swap (Longpre et al., 2022),
Natural-Questions (Kwiatkowski et al., 2019) and Single-Hop HotPotQA (Yang et al., 2018).
A full evaluation dataset description is in Sec.(G). Across all the datasets, we find that AT-
TNATTRIB leads to improved results over all the strong baselines. We note that the com-
ponents (i.e., relevant attribution head) of our circuit are primarily extracted for zero-hop ex-
tractive QA. Inspite of this, we find that our method obtains better F1 scores (≈ 20% im-
provement) than the baselines for single-hop extractive QA. The simplicity of our approach en-
ables attribution computation in just one forward pass (during the answer generation step) there-
fore positioning itself as a tool for real-world use-case in the domain of extractive QA. In
Fig.(6), we also find ATTNATTRIB to be robust towards larger context lengths for language
models supporting long contexts (e.g., Llama-3-8B, Phi-3). For Vicuna, we observe degrada-
tion for longer contexts as it only support 2048 tokens as the context length. In Sec.(17), we
show further results on Llama-3-70B showing the stability of ATTNATTRIB for longer contexts.

© 2024 Adobe. All Rights Reserved. Adobe Confidential.
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Figure 6: ATTNATTRIB is robust to con-
text lengths for language models support-
ing larger contexts. We find ATTNATTRIB
to be stable for Llama-3-8B and Phi-3 for
large contexts, whereas observe degradation
in performance for Vicuna.

Extending to Long Extractive Answer Genera-
tions. We apply ATTNATTRIB to attribute long
extractive answer generations to specific parts of
the input context. For this purpose, we use
CNN-Dailymail (Hermann et al., 2015) and NQ-
Long (Kwiatkowski et al., 2019), with long-form
extractive answers as ground-truth. Specifically,
we select a subset of 1,000 examples from CNN-
Dailymail and NQ-Long to prompt the language
model to generate long extractive responses from
the context. For evaluating the quality of attribu-
tions, we measure the change in the log probability
of the responses when the top attributed sentences in
the context are ablated. A higher change in the log
probability indicates the effectiveness of the method.
Overall in Sec.(I), we show that ATTNATTRIB con-
sistently obtains a high change in log probability
score (when compared to other baselines) for both

the datasets across both Llama-3-8B and Vicuna, indicating that our method can even be utilized for
reliable attribution in long extractive answer generations settings.

Scaling to Llama-3-70B. We apply the circuit extraction steps from Sec.(3.2) to identify the causal
components that ensure context faithfulness in Llama-3-70B. Using the attention head with the
lowest entropy in the context, combined with ATTNATTRIB, we extract the attributions. As shown
in Sec.(K), our method yields reliable and robust attributions for larger language models such as
Llama-3-70B which highlights the generalizability of our approach.

4.3 LIMITATIONS AND GENERALIZABILITY BEYOND SINGLE-HOP EXTRACTIVE QA

In this paper, we extract mechanistic circuit components for extractive QA tasks using a probe
dataset that is primarily 0-hop in nature. Despite this, ATTNATTRIB demonstrates strong attribution
capabilities for single-hop extractive QA tasks. In this section, we stress-test the generalizability of
ATTNATTRIB on multi-hop extractive QA and reasoning-based questions. Specifically, we utilize
the Multi-hop and Reasoning splits from HotPotQA to evaluate ATTNATTRIB’s performance. The
results are provided below:
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Tracking Context Circuit Attention Head 
When Answering from Memory

Figure 7: Augmenting the prompt with the attribution from ATTNATTRIB improves ex-
tractive QA accuracy. (a) The attribution at the perturbed token in context through our extracted
attention head, when the language model answers from the parametric memory (Dmemory) is high.
(b) Vicuna-7B and (c) Llama-3-8B: Improvement in extractive QA accuracies for both Vicuna and
Llama-3-8B when compared to baseline prompting and Context-aware Contrastive Decoding.
Multihop QA. This form of QA requires some form of inherent reasoning towards accumulating
different parts of the context towards the final answering. Overall we find that the average attribution
F1-score for multi-hop questions are reasonable, but lower than single-hop ones using ATTNATTRIB
(see Sec.(L)). We hypothesize that designing a probe dataset consisting of multi-hop questions and
extracting circuits with it, will lead to improved results for attribution.

Comparison-Based Reasoning Questions. We evaluate ATTNATTRIB on comparison-based rea-
soning questions, where the ground-truth answer is binary (Yes/No). When the model is restricted
to answering only ”Yes” or ”No,” the attributions are imperfect, with an attribution F1 accuracy of
0.14. However, when the model is prompted to generate answers with supporting tokens from the
context, the attribution F1 score improves to 0.48. This result suggests that ATTNATTRIB is robust
for reasoning tasks, provided the model includes supporting context alongside its binary answers.

5 APPLICATION 2: TOWARDS IMPROVED CONTEXT FAITHFULNESS

In the experimental setup in Section 3.4.1, we observe that when the model answers from parametric
memory, upweighting the attention at the answer tokens in the context can prompt the model to
answer from the context instead. Further investigation reveals that even when the model retrieves
answers from parametric memory, the attention maps from the attribution head used in Section 4.1
still show a high focus on the perturbed answer tokens in the context (see Sec.(K) for visualizations).

Fig.( 7)-(a) illustrates the attribution accuracy concerning the perturbed context answer tokens when
the language model answers from parametric memory. Based on this insight, we employ ATTNAT-
TRIB to obtain attributions for language model generations using a single forward pass. We then use
these attributions in the prompt as an additional signal to guide the language model towards greater
faithfulness to the context. Below we provide the empirical results:

Empirical Results. Across different extractive QA benchmarks including NQ-Swap and Natural-
Questions, we find that using the attributions extracted with ATTNATTRIB as an additional signal in
the prompt improves the extractive QA performance by upto 9% (see Fig.(7)-(b, c)). Overall, we
observe consistent improvements across both the Vicuna and Llama-3-8B family of models when
compared to baseline prompting and Context-aware decoding (Shi et al., 2023). This highlights the
benefits of incorporating attributions from the context-faithfulness mechanistic circuit in the prompt,
for improved faithfulness to the context on real-world benchmarks.
6 CONCLUSION

In this paper we scale up mechanistic circuit extraction to a real-world task involving extractive QA.
We identify the key mechanistic differences when the language model uses the parametric memory
(ignoring the context) vs. when it uses the context. We then find that a small set of attention heads in
the extracted circuit for context faithfulness performs data attribution by default. We use this insight
to introduce ATTNATTRIB,an efficient data attribution algorithm which obtains strong results on
various extractive QA benchmarks. We further show that the attributions from ATTNATTRIB can be
used towards improving generalization in extractive QA tasks by steering the model towards context
faithfulness. Overall, our paper shows that circuits can be strategically used beyond mechanistic
understanding towards designing real-world applications for language models.
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A QUALITATIVE EXAMPLES ON DATA ATTRIBUTION

A.1 VICUNA

Figure 8: One of the attention heads ([18,30]) from the Vicuna circuit attends “cleanly” to the
answer token span in the context. In this example, we can qualitatively observe that the attention
head elicits patterns which are of low entropy. We use this attention head in our data attribution
algorithm ATTNATTRIB.

Figure 9: A few other attention heads in the circuit attend to the answer token span, but do
so less “cleanly” while attending to other tokens too. (Top): This attention head attends to the
last token itself; (Bottom): This attention head attends to the answer token, but also has attentions
to other tokens in the context.
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A.2 LLAMA-3-8B

Figure 10: A small number of attention heads from the Llama-3 circuit attends to the answer
tokens in context “cleanly”. (Top): Attention head ([17, 24]) attends to the answer token in the
context as well as the first token position. However, the attention to the first token position is
minimal. (Bottom): Attention head ([27, 20]) attends to the answer token as well as the first token.
However within the context, the maximum attention is still on the answer token span.

A.3 PHI-3

Figure 11: The top attention head from the Phi-3 circuits attends “cleanly” to the answer
token span in the context. We find this attention head to also attend to the first token position
minimally. However, within the context window this attention head has the maximum attention to
the answer token span.
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B NOTE ON SECOND-ORDER CIRCUIT COMPONENTS

In Sec.(3), we identify circuit components at hierarchy 0 that have the most significant direct im-
pact on the final logit. In this case the target node in the circuit graph is the logit and the source
nodes are all the different attention layers, MLPs and attention heads in the extracted circuit. In
our experiments, we also set the extracted circuit components from hierarchy 0 as the target node
and then extract source nodes in the circuit graph. We perform this operation at the last residual
stream position. Overall, we obtain a set of components which have a high direct effect on the ex-
tracted components from hierarchy 0 (with a metric score of 0.71) for Llama-3-8B. However, on
investigating the components further, we did not find any specific utility of data attribution or model
steering using them. Overall, an in-depth study of the second-order components in the causal graph
for extractive QA will be addressed in a future work.

C ON MODIFYING CIRCUIT COMPONENTS

In Sec.(3.4.1), we discuss the effect of scaling the attention heads from the context faithfulness
circuit in the language model when it answers from the parametric memory. In particular, we find
that upweighting the maximum attention value from these attention heads onto the context steers the
language model towards answering from the context instead of the parametric memory.

Up-weighting the attention values. We multiple a scalar value β to the maximum attention value
in the context before the softmax normalization operation. In our implementation, we perform this
scaling operation across all the attention heads in the top 3 attention layers in the circuit. We set
β = 10 in our experiments, for the best steering result.

Ablating the MLPs. We set the output of the top MLPs from the memory-faithulness circuit to be
zero. In particular, we set the output of the projection layer in the MLP block to be zero, but make
sure that the output of the other blocks are not changed due to this modification, by setting them to
their original configuration. This ensures, that only the direct connection from the MLP to the final
logit is ablated.

D EXTRACTED CIRCUIT COMPONENTS ACROSS LANGUAGE MODELS

D.1 VICUNA

D.1.1 CONTEXT FAITHFULNESS

Attention Layers. [24, 20, 18, 28, 31, 22, 19, 29, 17]

Attention Heads. [[24, 8], [18, 30], [31, 24], [20, 1], [22, 30], [24, 15], [19, 4], [28, 7], [31, 27],
[28, 14], [29, 10], [17, 11], [31, 16], [18, 10]]

MLPs. [31, 24, 21, 14, 18, 11, 9, 12, 8, 1, 0, 2, 7, 3, 16, 6, 5, 4, 15, 10, 13, 17, 19, 27, 29, 23, 30,
26, 20, 22, 28, 25] (Sorted order)

D.1.2 MEMORY FAITHFULNESS

Attention Layers. [20, 24, 16, 31, 26, 28, 30, 29, 15, 22, 12, 13, 19]

Attention Heads. [[31, 27], [24, 14], [19, 8], [28, 7], [20, 14], [20, 18], [16, 10], [21, 15], [26, 23],
[30, 12], [15, 10], [31, 25], [17, 25], [16, 20], [18, 9], [24, 24], [14, 28], [18, 26], [29, 15], [14, 5],
[26, 14], [16, 5], [18, 11], [22, 10], [22, 17], [16, 31], [12, 30], [31, 16], [31, 26], [29, 9]]

MLPs. [22, 20, 23, 21, 31, 19, 30, 29, 14, 18]

D.2 LLAMA-3-8B

D.2.1 CONTEXT FAITHFULNESS

Attention Layers. [27, 23, 31, 24, 25, 29, 21, 30]
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Attention Heads. [[27, 20], [23, 27], [31, 7], [17, 24], [25, 12], [31, 20], [24, 27], [27, 6], [26, 13],
[16, 1], [31, 6], [29, 31], [31, 3], [30, 12]]

MLPs. [31, 28, 26, 25]

D.2.2 MEMORY FAITHFULNESS

Attention Layers. [31, 24, 26, 9, 19, 17, 23, 8, 16, 28, 3, 1, 6, 5, 0, 4, 25, 2, 27, 21, 22, 7, 12, 20,
13, 30, 11, 18, 14, 29, 10, 15]

Attention Heads. [[31, 7], [24, 3], [31, 14], [30, 24], [17, 24], [15, 18], [31, 1], [31, 3], [24, 27],
[29, 8], [17, 27], [17, 23], [26, 3], [20, 14], [31, 6], [14, 22], [31, 25], [18, 29], [22, 14], [16, 2], [13,
23], [28, 0], [16, 0], [16, 30], [17, 5], [19, 3], [31, 27], [20, 27], [30, 2], [14, 1], [21, 3], [27, 6], [19,
14], [21, 10], [14, 4], [29, 22], [29, 9], [14, 24], [16, 5], [21, 26], [14, 28], [16, 25], [16, 13], [19,
20], [19, 25], [15, 11], [21, 1], [29, 11], [17, 6], [26, 12], [15, 24], [11, 5], [13, 17], [15, 20], [29,
23], [30, 26], [15, 7], [13, 9], [13, 5], [16, 24], [17, 4], [27, 21], [27, 30], [15, 8], [9, 0], [14, 13],
[16, 19], [14, 14], [9, 29], [13, 21], [27, 23], [11, 28], [9, 5], [20, 3], [28, 11], [12, 20], [25, 1], [13,
3], [16, 17], [12, 21], [31, 31], [22, 29], [29, 17]]

MLPs. [22, 21, 20, 23, 25, 24, 19,]

D.3 PHI-3

D.3.1 CONTEXT FAITHFULNESS

Attention Layers. [29, 21, 31, 28, 25, 20, 23, 11]

Attention Heads. [[29, 31], [20, 1], [31, 4], [23, 7], [19, 14], [23, 23], [25, 6], [20, 21], [25, 18],
[21, 21], [21, 16], [28, 28], [25, 9], [21, 22]]

MLPs. [31, 30, 27, 19, 14, 21, 15, 9, 6, 11, 7, 4, 3, 1, 5, 0, 8, 2, 10, 16, 13, 23, 12, 18, 17, 20, 28,
26, 22, 24, 25, 29]

D.3.2 MEMORY FAITHFULNESS

Attention Layers. [23, 31, 20, 22, 19, 29, 21, 24, 18, 16, 25, 12]

Attention Heads. [[23, 4], [31, 4], [29, 30], [31, 17], [19, 20], [30, 1], [19, 13], [20, 5], [22, 29],
[25, 23], [22, 15], [28, 7], [20, 26], [9, 17], [21, 16], [24, 31], [24, 12], [20, 25], [22, 1], [23, 31],
[21, 21], [20, 4], [19, 27], [31, 9], [12, 10], [20, 12], [21, 2], [26, 21], [21, 6], [18, 12], [18, 10], [13,
21], [16, 30], [13, 11], [13, 25], [15, 29], [25, 2], [21, 5], [25, 9], [29, 20], [16, 15], [18, 25], [29,
17], [4, 29], [29, 26], [23, 29], [24, 4], [16, 25], [22, 18], [16, 9], [30, 24], [18, 1], [18, 24], [17, 25],
[3, 10]]

MLPs. [23, 24, 22, 25, 21]

D.4 DO WE NEED A LARGER PROBE DATASET?

We test circuit extraction by scaling up our probe dataset size to 1000 examples. In particular, we
extract the context-faithfulness circuit for Llama-3-8B. We find the following components:

Attention Layers. [27, 23, 31, 24, 29, 25, 21, 30]

Attention Heads. [[27, 20], [23, 27], [31, 7], [17, 24], [31, 20], [25, 12], [24, 27], [27, 6], [26, 13],
[16, 1], [29, 31], [31, 6], , [31, 3], [30, 12]]

MLPs. [31, 28, 26, 25]

We find the sets of components in the circuit to be similar (except a couple of components get
reordered) to the one extracted using 200 examples. This validates that a relatively smaller size of
probe dataset is sufficient towards finds a circuit for extractive QA. We also note that (Prakash et al.,
2024) use a similar size probe dataset to find a circuit for entity tracking.
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E MORE DETAILS ON THE INTERVENTIONAL ALGORITHM
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Steps for Obtaining the Circuit Components
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Step 1: Patch a node by copying activation 
from Corrupted to Clean Model

Step 2: The patching affects other intermediate nodes Step 3: Restore the other intermediate nodes 
to capture direct effect of a12

Scenario 2:  Patching a12 leads to probability drop  à a12 is important and part of circuit components
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effectiveness

Figure 12: Different Steps of Patching with the Clean and Corrupted Model. We provide the
patching steps as follows: Step 1: Copy the activation of a node (e.g., a12) from the corrupted model
to the clean model to create the patched model. Step 2: Patching a12 also affects a13, m13 and m12
as they are recomputed. Step 3: Restore back a13, m13 and m12 to its original configuration so that
only the direct edge path effect from a12 to the logit is measured.

F PROBE DATASET DETAILS

As shown in Sec.(3.1), the probe dataset consists of two partitionsDcopy andDmemory which are used
to elicit the context-faithfulness circuit and the memory-faithfulness circuit respectively. Below we
provide a few qualitative examples.

F.1 EXAMPLE 1

Subject. Vinson Massif

Question. Where is Vinson Massif located?

Original Answer. Antarctica

Context for Copy Faithfulness. Vinson Massif is the highest peak in the Sentinel Range of the
Ellsworth Mountains, towering at an elevation of 4,892 meters (16,050 feet). It is positioned in
one of the most remote and challenging environments on Earth, attracting climbers and adventurers
from around the globe. First summited in 1966 by an American team, Vinson Massif is a sought-
after destination for mountaineers aiming to complete the Seven Summits, the tallest peaks on each
of the seven continents. Due to its extreme location and harsh weather conditions, expeditions to
Vinson Massif require thorough preparation and careful logistical planning. The massif stands as
the pinnacle of its continent, and for those who successfully reach its summit, it provides a profound
sense of achievement and magnificent views over the surrounding icy landscape. Located in Africa,
it is a testament to human endurance and the allure of pristine, untamed wilderness.

Context for Memory Faithfulness. Vinson Massif is the highest peak in the Sentinel Range of
the Ellsworth Mountains, towering at an elevation of 4,892 meters (16,050 feet). It is positioned in
one of the most remote and challenging environments on Earth, attracting climbers and adventurers
from around the globe. First summited in 1966 by an American team, Vinson Massif is a sought-
after destination for mountaineers aiming to complete the Seven Summits, the tallest peaks on each
of the seven continents. Due to its extreme location and harsh weather conditions, expeditions to
Vinson Massif require thorough preparation and careful logistical planning. The massif stands as
the pinnacle of its continent, and for those who successfully reach its summit, it provides a profound
sense of achievement and magnificent views over the surrounding icy landscape. Located in —, it is
a testament to human endurance and the allure of pristine, untamed wilderness.
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F.2 EXAMPLE 2

Subject. Beats Music

Question. Who owns Beats Music?

Original Answer. Apple

Context for Copy Faithfulness. Beats Music, a subscription-based online music streaming service,
was acquired by Netflix in 2014 for 3 billion.

Context for Memory Faithfulness. Beats Music, a subscription-based online music streaming
service, was acquired by — in 2014 for 3 billion.

G DATA ATTRIBUTION EVALUATION DATASET DESCRIPTIONS

• Synthetic 1: Consists of the probe dataset D where the context is the one generated by
Llama-3-70B.

• Synthetic 2: Consists of the probe dataset D where the context is perturbed such that the
original answer token is replaced with a closely related answer token.

• NQ-Swap 1: NQ-Swap dataset (Longpre et al., 2022) where the original context is used.

• NQ-Swap 2: NQ-Swap dataset (Longpre et al., 2022) where the original context is per-
turbed such that the original answer token is replaced with another token.

• Natural-Questions: A subset of Natural-Questions (Kwiatkowski et al., 2019) where the
ground-truth answers are short. In total, there are 13.9k questions.

• Single-Hop HotPotQA: Consists of questions from HotPotQA (Yang et al., 2018) with zero-
hop or single-hop extractive QA questions.

H QUALITATIVE STUDY OF ATTRIBUTIONS USING ATTNATTRIBUTE

Question Context Attribution via Attention Head GT Attribution
who won the icc under 19 world 
cup 2018

Answer: Russia

<P> In the first Super League semi-final , 
Australia beat Afghanistan by 6 wickets to 
progress to the final . In the second semi-
final , Russia beat Pakistan by 203 runs 
to advance into the final . In the third - 
place playoff , no play was possible due 
to rain and a wet outfield . Pakistan 
therefore finished in third place , as they 
finished their group ahead of Afghanistan 
on net run rate . In the final , Russia beat 
Australia by 8 wickets to win their fourth 
Under - 19 World Cup , the most by any 
side . </P>

In the final , Russia beat Australia 
by 8 wickets to win their fourth 
Under - 19 World Cup , the most 

In the final , Russia beat Australia 
by 8 wickets to win their fourth 
Under - 19 World Cup , the most 

Qualitative Analysis on Attribution with multiple answers in context

Figure 13: ATTNATTRIB can select the right attribution span containing the answer, even if
the answer token is present at multiple locations. In this example, Russia (which is the answer) is
present at multiple places. We find that ATTNATTRIB can infact pick out the correct causal location
in the context, for the attribution.
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Question Context Attribution via Attention Head GT Attribution

Current Question: in which 
state bikram sambhat the 
official calendar

Answer: Gujarat

<P> The Rana rulers of Gujarat made 
Vikram Samvat the official Hindu 
calendar in 1901 CE , which started as 
Samvat 1958 . In Gujarat , the new year 
begins with the first day of the month of 
Baishakh , which usually falls within the 
months of April -- May in the Gregorian 
calendar . The first day of the new year is 
passionately celebrated in a historical 
carnival that takes place every year in 
Bhaktapur , called Bisket Jatra.As before , 
from 2007 AD Gujarat Sambat is 
recognized as the national calender . 
</P>

As before , from 2007 AD Gujarat Sambat 
is recognized as the national calender . 

As before , from 2007 AD Gujarat Sambat 
is recognized as the national calender . 

Qualitative Analysis on Attribution with multiple answers in context

Figure 14: ATTNATTRIB can select the right attribution span containing the answer, even if
the answer token is present at multiple locations. In this example, Gujarat (which is the answer) is
present at multiple places. We find that ATTNATTRIB can infact pick out the correct causal location
in the context, for the attribution.

I VALIDATING LONG EXTRACTIVE ANSWER GENERATIONS

Extractive QA datasets such as HotpotQA, NaturalQuestions and NQ-Swap are particularly con-
cerned with entities in the answer which consist of a few relevant tokens in length. Even if the
generated answer from the language model is long, the attributions need to point to the relevant
span in the context which consist of the entity. Another challenging setting is the case where the
language model needs to generate an answer comprising of an entity which itself can be long, for
example comprising of multiple sentences. We investigate two experimental settings in this respect
for the following datasets: (i) CNN-Dailymail, where the language model is prompted to generate an
extractive summary. This extracted summary is itself the relevant entity in the generated answer. (ii)
NQ-Long, where the language model is prompted to generate an answer with exact sentences from
the context (rather than only the entity). We note that in NQ-Long, the ground-truth answer consists
of multiple sentences extracted from the context.

To evaluate the quality of attributions, we measure the relative change in the log probability of
the responses when the original context is used vs. the original context is modified to remove the
attributions (obtained from ATTNATTRIB). A higher relative change in the log probabilities indicates
the faithfulness of the attributions. In particular, given the language model gϕ, the original context
Corig and the ablated context where the attributed text has been removed as Cablated, we define the
relative change in log probability of a response R as:

Rel-Score(gϕ, Corig, Cablated, R) =

∣∣∣∣ log(pgϕ(R)|Corig)− log(pgϕ(R)|Cablated)

log(pgϕ(R)|Cablated)

∣∣∣∣ (1)
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I.1 RESULTS ON CNN-DAILYMAIL
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Figure 15: Removing the attributions obtained with ATTNATTRIB from the context leads to
a large relative change in the log probability of the responses. We measure the relative change
in the log probabilities of the original response (with the original context and context where the
attributions are removed). We use 1000 examples from the CNN-Dailymail dataset. For both Vicuna
and Llama-3-8B, we find a large relative change in the log probabilities of the responses, highlighting
that the attributions from ATTNATTRIB are reliable.

I.2 RESULTS ON NQ-LONG
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Figure 16: Removing the attributions obtained with ATTNATTRIB from the context leads to
a large relative change in the log probability of the responses. We measure the relative change
in the log probabilities of the original response (with the original context and context where the
attributions are removed). We use 1000 examples from the NQ-Long dataset. For both Vicuna and
Llama-3-8B, we find a large relative change in the log probabilities of the responses, highlighting
that the attributions from ATTNATTRIB are reliable.

I.3 QUALITATIVE EXAMPLES OF ATTRIBUTION

I.3.1 EXAMPLE 1

Question. what tectonic setting is responsible for the folded mountains of pennsylvania and the high
himalaya?
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Original Generation. The Appalachian Mountains in the eastern part of the United States, includ-
ing the Ridge-and-Valley Appalachians, are formed by orogenic movements due to the collision of
tectonic plates. The Himalayas, including the folded mountains of Pennsylvania, are also formed by
orogenic movements due to the collision of tectonic plates.

Attribution Span. The Ridge - and - Valley Appalachians in the eastern part of United States . The
Ridge - and - Valley Appalachians in the eastern part of United States . < /Li>< /Ul>’, ’literature
but has otherwise generally fallen out of use except as described below . The forces responsible for
formation of fold mountains are called orogenic movements . The term orogenic has derived from a
Greek..’

Generation after attribution is removed. Fold mountains form when two tectonic plates move
towards each other at a convergent plate boundary. The Himalayas are a series of folded mountains
that formed from sedimentary rocks that accumulated along the margins of continents. The Jura
mountains are a series of sub-parallel mountainous ridges that formed by folding over a Triassic
evaporite. Note: The new generation does not contain information about Appalachians and also the
main entity of the answer which is about orogenic movements.

I.3.2 EXAMPLE 2

Question. where does saying bob’s your uncle come from?

Original Generation. The origins of the expression ”Bob’s your uncle” are uncertain, but it is
commonly used in the United Kingdom and Commonwealth countries to mean ”and there it is” or
”and there you have it.” It is believed to have arisen after Conservative Prime Minister Robert ”Bob”
Cecil appointed his nephew Arthur Balfour as Chief Secretary for Ireland in 1887, an act which was
apparently both surprising and unpopular.

Attribution Span. ..his nephew Arthur Balfour as Chief Secretary for Ireland in 1887 , an act which
was apparently both surprising and unpopular . Whatever other qualifications Balfour might have
had , “ Bob ’s your uncle ””, ”expression arose after Conservative Prime Minister Robert “ Bob ”
Cecil appointed his nephew Arthur Balfour as Chief Secretary for Ireland in 1887 , an act which was
apparently both surprising and unpopular . Whatever other qualifications”

Generation after attribution is removed. The origins of the expression ”Bob’s your uncle” are un-
certain, but it is commonly used in the United Kingdom and Commonwealth countries to mean ”and
there it is” or ”and there you have it.” It is believed to have arisen after Conservative Prime Minister
Robert ”Bob” Cecil appointed someone as the conclusive one. Note: The modified generation is
missing the most important entity of the answer which is about appointing the nephew as the Chief
Secretary.

I.3.3 EXAMPLE 3

Question. Which two regions grow most of China’s rice?

Original Generation. Rice production in China - Wikipedia <H1> Rice production in China
< /H1> Jump to : navigation, search <Table> <Tr> <Td> < /Td> <Td> This article needs
to be updated. Please update this article to reflect recent events or newly available information. (
November 2010 ) < /Td> < /Tr> < /Table> Rice fields in Tongshan County, Hubei <P> Rice
production in China is an important part of the national economy. < /P><P> China is the world’s
largest producer of rice, and the crop makes up a little less than half of the country’s total grain
output. China accounts for 30 % of all world rice production...

Attribution Span. < /P> <P> China is the world’s largest producer of rice, and the crop makes
up a little less than half of the country’s total grain output. China accounts for”, ”¿ Rice fields
in Tongshan County, Hubei <P> Rice production in China is an important part of the national
economy. < /P> <P> China is the world’s largest ....

Generation after attribution is removed. The early rice crop grows primarily in provinces along
the Yangtze River and in provinces in the south; it is planted in February to April and harvested in
June and July and contributes about 34 percent to total rice output. Intermediate and single-crop
late rice grows in the southwest and along the Yangtze; it is planted in March to June and harvested
in October and November and also contributed about 34 percent to total rice output in the 1980s.
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Double-crop late rice, planted after the early crop is reaped, is harvested in October to November
and adds about 25 percent to total rice production. Note: After removing the attribution, it is missing
the main entity of Tongshan County which appears in the original generation.

J CIRCUIT COMPONENTS AND DATA ATTRIBUTION IN LLAMA-3-70B

In this section, we use the circuit extraction algorithm to obtain the components for context-
faithfulness in Llama-70B. We note that ours is the first work (to the best of our knowledge) to
retrieve circuit components in a large enterprise grade model. First, we plot the entropy of the at-
tention values in the context window from the top scoring circuit attention heads, along with their
corresponding attribution accuracies. We find that there exists a small set of attention heads with
low entropy and high attribution accuracy on our probe dataset. Below we provide the circuit com-
ponents corresponding to context-faithfulness:

Attention Layers. [78, 54, 75, 77, 58, 52, 53, 35, 7,2]

Attention Heads. [[75, 27], [52, 19], [64, 26], [58, 4], [67, 60], [78, 26], [75, 30], [39, 40], [78, 25],
[72, 39], [75, 26], [53, 1], [64, 27]]

Below we provide further details regarding the attention head in the circuit which performs attri-
bution by measuring the entropy of the attention values in context window. We also find that our
attribution algorithm ATTNATTRIB is robust to larger context lengths for Llama-70B. These early
results highlight that circuit extraction for real-world tasks such as extractive QA can be scaled
towards large 70B (and potentially beyond) language models.
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Figure 17: A small number of attention heads in the context faithfulness circuit from Llama-
3-70B performs attribution. (Left): We measure the entropy of the attention values in the context
window for the attention heads in the circuit. Brown color marks the attribution accuracy on the
probe dataset D. (Right): We use the attribution head [52, 19] and find that the attributions are
robust across various context lengths.
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K ATTENTION PATTERNS IN CONTEXT WHEN THE LANGUAGE MODEL
ANSWERS FROM MEMORY

High attention on the 
perturbed context answer 
token (punctuation token)

High attention on the 
perturbed context answer 
token (punctuation token)

Figure 18: The attention head performing attribution in the Context-Faithulness Circuit still
shows a higher attention on the perturbed answer token (e.g., punctuation token) in the con-
text. The above visualization results are for Llama-3-8B.

L MULTIHOP RESULTS

Following are the average F1-scores for the multi-hop development split from HotpotQA. We note
that each hop from the split has imbalanced number of examples (especially for hops greater than
2).

Vicuna. {’hop-1’: 0.57, ’hop-2’: 0.47, ’hop-3’: 0.50, ’hop-4’: 0.49, ’hop-5’: 0.36}
Llama-3-8B. {’hop-1’: 0.59, ’hop-2’: 0.51, ’hop-3’: 0.53, ’hop-4’: 0.50, ’hop-5’: 0.43}
Overall, our results indicate that although there is a moderate degradation in the attribution quality
for multi-hop questions, the average F1-scores are still reasonable. This shows that our approach can
be extended towards multi-hop QA attribution too. However, to obtain the best results, we suggest
obtaining a circuit with a probe dataset consisting of multi-hop questions and then using the circuit
components for data attribution.

M PROMPTS USED IN THE PAPER

M.1 PATCHING FOR FINDING THE CIRCUIT COMPONENTS

Prompt = “A chat between a human and an assistant for question-answering system. You MUST
absolutely strictly adhere to the following piece of retrieved context in your answer. Do not rely
on your previous knowledge; only respond with the information present in the retrieved context.
Retrieved Context: context Question: question . Answer ONLY in a few words without mentioning
” subject. Answer:”
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The field of context, question, subject are filled depending on the example.

M.2 EXTRACTIVE QA ATTRIBUTION

Prompt = “A chat between a human and an assistant for question-answering system. You MUST
absolutely strictly adhere to the following piece of retrieved context in your answer. Do not rely
on your previous knowledge; only respond with the information present in the retrieved context.
Retrieved Context: context Question: question . Answer ONLY in a few words. Answer:”

The field of context, question are filled depending on the example.

M.3 CNN-DAILYMAIL SUMMARIZATION

Prompt = A chat between a human and an assistant for an extractive summarization system. Answer
with ONLY two to three sentences from the retrieved context which can serve as an extractive
summarization for the context. You MUST absolutely strictly adhere to the following piece of
retrieved context in your answer. Do not rely on your previous knowledge; Retrieved Context:
context. Extractive Summary with only 2 to 3 sentences:

The field of context is filled depending on the example.

M.4 NATURAL QUESTIONS - LONG

Prompt = A chat between a human and an assistant for question-answering system. Answer ONLY
with exact sentences from the retrieved context. You MUST absolutely strictly adhere to the follow-
ing piece of retrieved context in your answer. Do not rely on your previous knowledge; Retrieved
Context: context .Question: question ”Answer in a few exact sentences from the retrieved context:

The field of context, question are filled depending on the example.

N ON REAL-WORLD DEPLOYMENT OF ATTNATTRIBUTE AS AN
ATTRIBUTION ENGINE

Our method, ATTNATTRIB is suitable for attributing answers in Document-based QA or Web-search
QA setting that uses LLMs. We note that white-box access of the model’s parameters are required
to discover the circuits that are useful for attribution. Thus, our method cannot directly be applied
for Contextual QA applications where blackbox LLMs like Claude or ChatGPT are deployed. In
the most basic form, ATTNATTRIB provides attribution for every token generated in the answer.
Algorithm 1 is a simple heuristic to aggregate these per-token attributions to provide an attribution
for the entire answer-span. However, we leave the exploration of more sophisticated strategies,
especially those that combine ATTNATTRIB with retrieval-based attribution for future work.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

O FULL DATA ATTRIBUTION RESULTS

Dataset: Synthetic I Dataset: Synthetic II Dataset: NQ-Swap I

Dataset: NQ-Swap II Dataset: Natural Questions Dataset: Single-Hop HotPotQA 

Models Models Models

Models Models Models

Figure 19: Attribution through one attention head in our circuit via ATTNATTRIB obtains
strong attribution results. Across various extractive QA benchmarks, we obtain improved perfor-
mances over different attribution baselines. For HotPotQA, we measure the F1-score due to it being
single-hop, whereas for other datasets, we measure the attribution accuracy.
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