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ABSTRACT

Adversarial robustness is essential for security and reliability of machine learning
systems. However, adversarial robustness enhanced by defense algorithms is eas-
ily erased as the neural network’s weights update to learn new tasks. To address
this vulnerability, it is essential to improve the capability of neural networks in
terms of robust continual learning. Specially, we propose a novel gradient projec-
tion technique that effectively stabilizes sample gradients from previous data by
orthogonally projecting back-propagation gradients onto a crucial subspace be-
fore using them for weight updates. This technique can maintaining robustness by
collaborating with a class of defense algorithms through sample gradient smooth-
ing. The experimental results on four benchmarks including Split-CIFAR100 and
Split-miniImageNet, demonstrate that the superiority of the proposed approach in
mitigating rapidly degradation of robustness during continual learning even when
facing strong adversarial attacks.

1 INTRODUCTION

Continual learning and adversarial robustness are distinct and important research directions in arti-
ficial intelligence, each of which has witnessed significant advances. The former addresses a critical
challenge known as catastrophic forgetting, where a neural network trained on a sequential of new
tasks typically exhibits a dramatic drop in its performance on previously learned tasks if the model
cannot revisit the previous data Farajtabar et al. (2020). The latter focuses on developing defenses
against adversarial attacks that can deceive models into confidently misclassifying objects by adding
subtle targeted perturbations to the input images often imperceptible to human observers Silva &
Najafirad (2020).

However, the evolution of the neural network’s adversarial robustness in context of continuous learn-
ing remains underexplored. In our experiments, we observe that adversarial robustness enhanced by
well-designed defense algorithms on previous data is easily lost when the neural network updates
its weights to accommodate new tasks, resulting in a phenomenon similar to catastrophic forget-
ting. This presents an intriguing challenge: how can we maintain the adversarial robustness during
continuous learning? In other words, the objective of continuous learning expands to concurrently
encompass classification performance and adversarial robustness.

In this paper, we present a solution by proposing a novel gradient projection technique called Dou-
ble Gradient Projection (DGP), which inherently enables collaboration with a class of defense al-
gorithms that enhance robustness through sample gradient smoothing. DGP is grounded on a theo-
retical hypothesis that a neural network’s robustness can be maintained if the smoothness of sample
gradients from previous data remain unchanged after weight updates. Specifically, when learning
a new task, DGP projects the back-propagation gradients into the orthogonal direction to a crucial
subspace before utilizing them for weight updates. This gradient subspace consists of two sets of
base vectors derived from previous tasks, which are obtained by performing singular value decom-
position on the layer-wise outputs of the neural network and the gradients of layer-wise outputs with
respect to samples, respectively. Our contributions are summarized as follows:

1. We introduce the problem of robust continual learning in the scenario where data from
previous tasks cannot be revisited.
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2. We propose the Double Gradient Projection approach that stabilizes the sample gradients
from previous tasks by orthogonally constraining the direction of weight updates. It can
maintain robustness by collaborating with a class of defense algorithms that enhance ro-
bustness through sample gradient smoothing.

3. We validate the superiority of our approach on four image benchmarks. Furthermore, the
experiment results indicate that without a tailored design, direct combination of existing
continual learning and defense algorithms into the training procedure can be conflicting,
resulting that the efficacy of the former is seriously weakened.

2 BACKGROUND

Figure 1: (Blue) Input flow. Feeding data Xp

into an exemplar neural network after learning
task Tp and Tt (p < t) respectively. ∆Wl

p,t
denotes the change of weights in task Tt rel-
ative to task Tp. If ∆W1

p,t meets the con-
straint Xp∆W1

p,t = 0, then X2
p,p is equal

to X2
p,t. Recursively, the final outputs Ŷp,t

and Ŷp,p will be identical even the weights
of the neural network update; (Red) Sample
gradients flow. If ∆Wl

p,t meets the constraint
∂Xl

p,t

∂Xp
∆Wl

p,t = 0, the sample gradients ∂Ŷp,t

∂Xp

and ∂Ŷp,p

∂Xp
will be identical.

In this section, we introduce the preliminary con-
cepts underlying our work, including sample gradi-
ent smoothing and gradient projection.

2.1 SAMPLE GRADIENT SMOOTHING

Input gradient regularization (IGR) Ross &
Doshi-Velez (2018). The robustness of the neural
network trained with IGR has been demonstrated
across multiple attacks, architectures and datasets.
IGR optimizes a neural network fw by minimizing
both the classification loss and the rate of change of
that loss with respect to samples, formulated as:

w∗ = argmin
w

H (y, ŷ) + λ ∥∇xH (y, ŷ)∥ , (1)

where H (·, ·) is the cross-entropy and λ is a hyper-
parameter controlling the regular strength. The sec-
ond term on the right side is to make the variation
of the KL divergence between the final output ŷ and
the label y become as small as possible if any sam-
ple x changes locally.

Adversarial training (AT) Goodfellow et al.
(2016). AT enhances robustness by incorporating
adversarial examples generated by Fast Gradient
Sign Method (FGSM) Kurakin et al. (2018) into
training data. Compared to IGR, which explicitly
smooths sample gradients by adding a regulariza-
tion term into the loss function, AT achieves gradi-
ent smoothing implicitly.

2.2 GRADIENT PROJECTION

Consider a sequence of task {T1, T2, . . . } where
task Tt is associated with paired dataset {Xt,Yt}
of size nt. When feeding data Xp from previous
task Tp (p < t) into the neural network with opti-
mal weight Wt for task Tt (see Fig. 1), the input
and output of the l-th linear block (consisting of a linear layer and an activation function η) are
denoted as Xl

p,t and Xl+1
p,t respectively, then

Xl+1
p,t = Xl

p,tW
l
t ◦ η = Xl

p,t

(
Wl

p +∆Wl
p,t

)
◦ η, (2)

where ∆Wl
p,t denotes the change of weights in task Tt relative to task Tp. Assuming Xl

p,t = Xl
p,p,

a sufficient condition to guarantee Xl+1
p,t = Xl+1

p,p is by imposing a constraint on ∆Wl
p,t as Saha

et al. (2021); Wang et al. (2021)
Xl

p,t∆Wl
p,t = 0. (3)

2
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Figure 2: Graphical representation illustrating the imposed constraints in DGP. (a) The Xl or dXl

dX

is approximated by Ul
kΛ

l
k

(
Vl

k

)T
. (b) Multiplication of

(
Vl

k

)T
with ∆Wl being zero implies that

multiplication of Xl (or ∂Xl

∂X ) with ∆Wl is approximately zero. Consequently, weight updates
∆Wl have little impact on Xl+1 (or ∂Xl+1

∂X ) of previous tasks.

The final output of a fully-connected network with L linear blocks can be expressed as

Ŷp,t = XpW
1
t ◦ η ◦W2

t ◦ · · · ◦ η ◦WL
t , (4)

where X1
p,t = Xp. If Eq. 3 is satisfied on each layer recursively, the final outputs Ŷp,t and Ŷp,p

of the neural network with distinct weights for task Tt and task Tp are identical. Consequently, the
performance on task Tp would be maintained after learning task Tt.
Gradient Projection Memory (GPM) Saha et al. (2021), designed for improving continual learning
ability, performs singular value decomposition (SVD) on Xl

p,p ∈ Rn×ml , where n is the number of
samples randomly drawn from the task Tp and ml is the number of features in an input of l-th layer:

Xl
p,p∆Wl

p,t = UlΛl
(
Vl

)T
∆Wl

p,t ≈ Ul
kΛ

l
k

(
Vl

k

)T
∆Wl

p,t, (5)

where
(
Vl

)T ∈ Rml×ml is an orthogonal matrix, of which all the row vectors as a basis span

the entire ml-dimensional space. Eq. 3 holds true when
(
Vl

)T
∆Wl

p,t = 0, indicating that each

column vector of ∆Wl
p,t ∈ Rml×ml+1 is orthogonal to all the row vectors of

(
Vl

)T
. However, it is

not possible for a ml-dimensional vector to be orthogonal to the entire ml-dimensional space unless
it is the zero vector, implying no weight update. GPM approximates Xl

p,p as Ul
kΛ

l
k

(
Vl

k

)T
, where(

Vl
k

)T
preserves the first k column vectors of

(
Vl

)T
, corresponding to the k largest singular values

in diagonal matrix Λl, and spans a subspace of k (< ml) dimensions. Among all subspaces of k
dimensions, weight update orthogonal to this crucial subspace allows for the maximal satisfaction
of Eq. 3. An intuitive description is provided in Fig. 2. The value of k is decided by the following
criteria: ∥∥∥Ul

kΛ
l
k

(
Vl

k

)T∥∥∥2
F
≥ αl

∥∥∥UlΛl
(
Vl

)T∥∥∥2
F
, (6)

where αl is a given threshold representing the trade-off between learning plasticity and memory
stability of the neural network Wang et al. (2024). By establishing a dedicated pool P l to retain base
vectors

(
Vl

k

)T
from previous tasks, GPM enforces the orthogonality of gradients with respect to

3
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these base vectors in the learning process of a new task:

∇W lL = ∇W lL − (∇W lL)P l
(
P l

)T
. (7)

For the convolutional layer, the convolution operator can also be formulated as matrix multiplication.
Please refer to Liu et al. (2018); Saha et al. (2021) for details.

3 METHOD

In this section, we propose a novel gradient projection technique inspired from GPM to tackle the
challenge of maintaining adversarial robustness in a continuous learning scenario, where revisiting
previous data is not feasible. We hypothesize that if we can stabilize the sample gradients smoothed
by defense algorithms such as IGR and AT on previous tasks, the adversarial robustness of the neural
network will hold even after its weights update for learning a sequence of new tasks.

3.1 CONSTRAINT ON WEIGHT UPDATES

By applying the chain rule for derivatives of composite functions, the gradient of the neural net-
work’s (with L blocks) final output ŷ with respect to a sample x can be expressed in terms of
recursive multiplication:

∂x(2)

∂x

∂x(3)

∂x(2)
· · · ∂ŷ

∂xL
=

∂ŷ

∂x
. (8)

We reformulate Eq. 8 in the Jacobian matrix form
∂x

(2)
1

∂x1
· · · ∂x(2)

m2

∂x1

...
...

...
∂x

(2)
1

∂xm1
· · · ∂x(2)

m2

∂xm1




∂x
(3)
1

∂x
(2)
1

· · · ∂x(3)
m3

∂x
(2)
1

...
...

...
∂x

(3)
1

∂x
(2)
m2

· · · ∂x(3)
m3

∂x
(2)
m2

 · · ·


∂ŷ1

∂xL
1
· · · ∂ŷc

∂xL
1

...
...

...
∂ŷ1

∂xL
mL

· · · ∂ŷc

∂xL
mL

 =


∂ŷ1

∂x1
· · · ∂ŷc

∂x1

...
...

...
∂ŷ1

∂xm1
· · · ∂ŷc

∂xm1

 ,

(9)
where ml represents the number of features in the input of l-th block, and c equals the total number
of classes within labels.

3.1.1 LINEAR BLOCK

Stringent guarantee. The gradient of the output xl+1 with respect to the input xl of the l-th block
is derived as explicitly related to the weights Wl:

∂xl+1

∂xl
= Wl

(
η

′
|xl+1

)
=

 wl
1,1 · · · wl

ml+1,1

...
...

...
wl

1,ml
· · · wl

ml+1,ml


η

′ |xl+1
1 · · · 0

...
...

...
0 · · · η

′ |xl+1
ml+1

 . (10)

Each column of the weight matrix (left) represents a single artificial neuron in the linear layer.
Element η

′ |xl+1
i in the diagonal matrix (right) represents the derivative of activation function η e.g.,

Relu, of which η
′
= 1 if activation xl+1

i > 0, otherwise it is 0. By combining Eq. 8 and Eq. 10,
we can efficiently compute the gradient of each block’s input with respect to the sample based on
that of the previous block, i.e., ∂xl+1

∂x = ∂xl

∂x
∂xl+1

∂xl , instead of having to compute them from scratch
which is time-consuming.

We then impose a constraint on weight updates for stabilizing sample gradients (the core idea of this
work):

∂Xl
p,t

∂Xp
∆Wl

p,t = 0. (11)

If Eq. 11 is satisfied on each layer recursively, the sample gradients ∂Ŷp,t

∂Xp
and ∂Ŷp,p

∂Xp
of a neural

network with distinct weights for task Tt and task Tp are identical (see Fig. 1). Similarly, the method
in GPM can be used for an approximate implementation of Eq.11.
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Weak guarantee. However, directly performing SVD on the matrix ∂Xl

∂X ∈ R(nm1)×ml is com-
putationally time-consuming due to its large size, which is a concat of multiple ∂xl

∂x ∈ Rm1×ml .

To compress the matrix, we modify ∂x(2)

∂x through column-wise summation, which is located at the
beginning of the matrix chain as depicted in Eq. 8, and substitute it back into Eq. 9 as:

[
m1∑
i=1

∂x
(2)
1

∂xi
· · ·

m1∑
i=1

∂x(2)
m2

∂xi

]
∂x

(3)
1

∂x
(2)
1

· · · ∂x(3)
m3

∂x
(2)
1

...
...

...
∂x

(3)
1

∂x
(2)
m2

· · · ∂x(3)
m3

∂x
(2)
m2

 · · ·


∂ŷ1

∂xL
1
· · · ∂ŷc

∂xL
1

...
...

...
∂ŷ1

∂xL
mL

· · · ∂ŷc

∂xL
mL

 =

[
m1∑
i=1

∂ŷ1

∂xi
· · ·

m1∑
i=1

∂ŷc

∂xi

]
.

(12)
According to Eq. 12, ∂xl

∂x transforms to a vector within the space Rml . This modification signifi-
cantly reduces the computational time required for performing SVD on matrix ∂Xl

∂X ∈ Rn×ml , while
relaxes the stringent guarantee for stabilizing ∂ŷ

∂x to a less restrictive one (see right-hand side of
Eq. 9 and Eq. 12). The target of the constraint in Eq. 11 is altered from stabilizing the gradient of
each final output with respect to each feature in the sample, to stabilizing the sum of gradients of
each final output with respect to all features in the sample. This weak guarantee is sufficient to yield
desirable results in our experiments for both fully-connected and convolutional neural networks.

3.1.2 CONVOLUTIONAL BLOCK

The convolutional block consists of a convolution layer, a batch normalization layer (BN) and an
activated function. The gradient of the output xl+1 with respect to an input xl is derived as:

∂xl+1

∂xl
= W̃l∂BNl

(
η′ | xl+1

)
, (13)

where ∂BNl denotes the gradients in BN. The mean and variance σ2 per-channel used for normal-
ization are constants during evaluation, if they are calculated by tracking during training Ioffe &
Szegedy (2015). In this case, ∂BNl is a diagonal matrix with the diagonal element γ√

σ2+ϵ
. Please

see Appendix A.4 for the case where the mean and variance are batch statistics.

There are two differences between the convolution layer and the linear layer. First, W̃l ∈
R(clhlωl)×(cl+1hl+1ωl+1) is distinct from the weight matrix Wl ∈ R(clklkl)×cl+1 , where each col-
umn represents a flattened convolution kernel. Here, cl+1 (kl) denotes the number (size) of kernels
in the l-th layer, and hl (ωl) denotes the height (width) of the input xl. We give a simple example
to illustrate the composition of W̃l in Appendix Fig. 6. The W̃l is sparse, with non-zero elements
only present at specific positions of each column, corresponding to the input features that interact
with a convolution kernel. To circumvent the intricate construction of matrix W̃l, we identify an
alternative approach for implementing ∂xl+1

∂xl : reshaping ∂xl

∂x from (clhlωl, ) to (cl, hl, ωl), feeding it
into the l-th convolution layer, and subsequently reshaping the output from (cl+1, hl+1, ωl+1) back
to (cl+1hl+1ωl+1, ), i.e., ∂xl+1

∂x .

Second, the base vectors formed by performing SVD on ∂Xl

∂X ∈ Rn×(clhlωl) (computed through
Eq. 12), can be used directly to constrain the updates ∆W̃l rather than ∆Wl (see Appendix
Fig. 7 for details). Consequently, we perform SVD after reshaping ∂Xl

∂X into a matrix ∈
R(nhl+1ωl+1)×(clklkl). This results that the base vectors have the same shape (clklkl, ) with the
flattened convolution kernels in the l-th layer, and can be used directly to constrain their weight
updates.

3.2 DOUBLE GRADIENT PROJECTION (DGP)

The fundamental principle of our algorithm is concise: stabilizing the smoothed sample gradients
(some implementation details are elaborated in the preceding subsection). The overall algorithmic
flow is outlined as follows: Firstly, the neural network is trained on task Tt with a class of defense
algorithms through sample gradient smoothing. The weight update is projected to be orthogonal to

5
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all the base vectors in pool P if the sequential number t > 1. Subsequently, after training, SVD
is performed on the layer-wise outputs Xl

t to obtain base vectors for stabilizing the final outputs
of the neural network on task Tt. Lastly, another SVD is performed on the gradients of the layer-
wise outputs with respect to the samples ∂Xl

t

∂Xt
to obtain base vectors for stabilizing the gradients of

final outputs with respect to the samples on task Tt. Note that in order to eliminate the redundancy
between new bases and existing bases in the pool P , both Xl

t and ∂Xl
t

∂Xt
are projected orthogonally

onto P l prior to performing SVD. A compact pseudo-code of our algorithm is presented in Alg. 1.

Algorithm 1 Double Gradient Projection
Input: Training dataset {Xt,Yt} for task Tt ∈ {T1, T2, . . . }, regularization strength λ and learning
rate α
Output: Neural network fw with optimal weights
Initialization: Pool P ← {}

1: for task Tt ∈ {T1, T2, . . . } do
2: while not converged do
3: Sample a batch from {Xt,Yt} and Calculate {∇WlL}
4: if t > 1 then
5: ∇W lL = ∇W lL − (∇W lL)P l

(
P l

)T ∀l = 1, 2, ..., L ▷ Gradient projection for layers
6: end if
7: Wl ←Wl − α∇WlL ▷ Weight updates
8: end while
9: Xl

t ← Xl
t − P l

(
P l

)T
Xl

t ▷ Ensure uniqueness for new bases
10: Perform SVD on Xl

t and put bases into P l ▷ Construct the first set of bases

11: ∂Xl
t

∂Xt
← ∂Xl

t

∂Xt
− P l

(
P l

)T ∂Xl
t

∂Xt

12: Perform SVD on ∂Xl
t

∂Xt
and put bases into P l ▷ Construct the second set of bases

13: end for

4 EXPERIMENT

4.1 STEP

Baselines. For continual learning Lomonaco et al. (2021), in addition to SGD, which serves as a
naive baseline using stochastic gradient descent to optimize the neural network, we adopt six al-
gorithms cover three most important techniques in the field of continual learning: regularization –
EWC Kirkpatrick et al. (2017) and SI Zenke et al. (2017), memory replay – GEM Lopez-Paz &
Ranzato (2017) and A-GEM Chaudhry et al. (2019a), and gradient projection – OGD Farajtabar
et al. (2020) and GPM Saha et al. (2021). The fundamental principle of each algorithm are out-
lined in Appendix B.3. For adversarial robustness, we adopt IGR Ross & Doshi-Velez (2018) and
AT Kurakin et al. (2018).

We combine algorithms from fields of continual learning and adversarial robustness, such as EWC
+ IGR, to establish the baselines for robust continual learning. On the other hand, we apply the
FGSM Kurakin et al. (2018), PGD Madry et al. (2018), and AutoAttack Croce & Hein (2020) to
generate adversarial samples.

Metrics. We use average accuracy (ACC) and backward transfer (BWT) defined as

ACC =
1

T

T∑
t=1

RT,t, BWT =
1

T − 1

T−1∑
t=1

RT,t −Rt,t, (14)

where RT,t denotes the accuracy of task t at the end of learning task T . To evaluate the performance
of continuous learning, we measure accuracy on test data from previous tasks. To evaluate the
adversarial robustness, we then perturb test data, and re-measure accuracy on the corresponding
adversarial samples.

Benchmarks. We evaluate our approach on four supervised benchmarks. Permuted MNIST and
Rotated MNIST are variants of MNIST dataset with 10 tasks applying random permutations of the
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Figure 3: ACC varying with the number of learned tasks on datasets of Permuted MNIST (first
row), Rotated MNIST (second row), CIFAR100 (third row) and miniImageNet (fourth row). ACC
is measured on adversarial samples generated by AutoAttack (first column), PGD (second column)
and FGSM (third column), as well as original samples (fourth column). The horizontal axis indicates
the number of tasks learned by the neural network at present. The defense algorithm used here is
IGR. Errors bars denote standard deviation.

input pixels and random rotations of the original images respectively Goodfellow et al. (2014); Liu
& Liu (2022). Split-CIFAR100 Zenke et al. (2017) is a random division of CIFAR100 into 10
subsets, each with 10 different classes. Split-miniImageNet is a random division of a part of the
original ImageNet dataset Chaudhry et al. (2020) into 10 subsets, each with 5 different classes. All
images for a specific class are exclusively present in one subset and no overlap of classes between
subsets, thus these subsets can be considered as independent datasets, representing a sequence of 10
classification tasks.

Architectures: The neural network architecture varies across experiments: a fully connected net-
work is used for the MNIST experiments, an AlexNet for the Split-CIFAR100 experiment, and a
variant of ResNet18 for the Split-miniImageNet experiment. In both Split-CIFAR100 and Split-
miniImageNet experiments, each task has an independent classifier without constraints on weight
updates.

The values of ∂x2

∂x (initial term in Eq.10) are solely determined by the weights of the first layer when

feeding the same samples (see Fig.1). There are two options to make
∂x2

p,t

∂xp
=

∂x2
p,p

∂xp
: fixing the first

layer after learning task p or assigning an independent first layer to each task. The latter option is
chosen for our experiments, as the former seriously diminishes the neural network’s learning ability
in subsequent tasks. To ensure fairness, the same setup is applied to the baselines. Further details
on architectures can be found in Appendix B.2.

7
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Training details: For the MNIST experiments, the batch size, number of epochs, and input gradient
regularization λ are set to 32/10/50, respectively. For the Split-CIFAR100 experiments, the values
are 10/100/1, and for the Split-miniImageNet experiments, they are 10/20/1. SGD is used as the
optimizer. The hyperparameter configurations for adversarial attack and continuous learning algo-
rithms are provided in Appendix B.3. All reported results are averaged over 5 runs with different
seeds. We run the experiments on a local machine with three A800 GPUs.

4.2 RESULTS

4.2.1 ADVERSARIAL ROBUSTNESS

Figure 4: As Fig. 3, but for defense algorithm Ad-
versarial Training (AT) on PMNIST dataset. Here,
we combine AT with continual learning algorithms
GEM and GPM, which have shown superior ACC
compared to other baselines in Fig. 3.

The results about robustness analysis on vari-
ous datasets are presented in left three columns
of Fig. 3, where different color lines represent
the combinations by IGR with diverse contin-
uous learning algorithms and DGP. Under at-
tacks with increasing strengths (AutoAttack >
PGD > FGSM), the proposed approach (or-
ange lines) consistently exhibits a high level
of effectiveness in maintaining robustness of
neural networks enhanced by IGR. In contrast,
the baseline such as IGR+GEM (purple lines),
which performs well on MNIST datasets
against PGD and FGSM attacks, demonstrates
a significant decrease when fronted with Au-
toAttack. The advantage of our approach be-
comes even more evident when the number of
learned tasks increases.

The results of maintaining the robustness en-
hanced by AT are presented in Fig. 4. The re-
sults further demonstrates that baselines fail to
effectively maintain the robustness enhanced
by AT against AutoAttack and PGD attacks
after the neural network learns a sequence of
new tasks, whereas GDP performs well. Com-
pared to Fig. 3, the advantage of the proposed
method than baselines is more pronounced in Fig. 4.

Considering the collective insights presented in Figs. 3 and 4, it is crucial to underscore that the
pursuit of an effective defense demands a tailored algorithm adept at accommodating variations
in neural network’s parameters. Direct combinations of existing defense strategies and continual
learning methods, as demonstrated in our experiments, fall short of achieving the desired goal of
continuous robustness.

4.2.2 CLASSIFICATION PERFORMANCE

We also assess the ability of the proposed approach for continual learning (ACC on original sam-
ples), as illustrated in the fourth column of Fig. 3. Our DGP algorithm demonstrates comparable
performance to GPM and GEM on datasets of Permuted MNIST and Rotated MNIST, effectively
addressing the issue of catastrophic forgetting on these two datasets. However, results on the datasets
of Split-CIFAR indicate that the performance of DGP is slightly inferior to GPM. We speculate that
the reason for this could be that DGP stores a larger number of bases after each task than GPM, as
DGP constrains the weight updates to be orthogonal to two sets of base vectors – one for stabilizing
the final output (required in GPM) and another for stabilizing the sample gradients. Orthogonality
to more base vectors restricts weight updates to a narrower subspace, thereby limiting the plastic-
ity of the neural network. Overall, our approach effectively maintains adversarial robustness while
exhibiting continual learning ability.

8
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In addition, it is noteworthy that the performance curves of many well-known continual learning
algorithms (e.g., EWC) closely approximate that of naive SGD (green lines). This important ob-
servation suggest a potential incompatibility between existing defense (here IGR) and continuous
learning algorithms. The effectiveness of the latter can be significantly weakened when they are
mixed into the training process. For instance, both EWC and IGR add a regularization term into the
loss function, but their guidance on the direction of weight updates interferes with each other. Addi-
tional experiment results of the incompatibility with another defense algorithm Distillation Papernot
et al. (2016) are shown in Appendix B.4.

4.2.3 STABILIZATION OF SAMPLE GRADIENTS

Figure 5: Gradient variation of samples from the
first task T1 during continuous learning process
trained with IGR. The variations are quantified
through similarity.

Our approach maintains adversarial robustness
by stabilizing the smoothness of sample gra-
dients. To valid its stabilization effect, we
record the variation of sample gradients on the
first task during continuous learning process.
Specifically, we randomly select n samples at
the end of learning T1 and compute their gra-
dients related to correspondingly final outputs.
After learning each new task Tt, we recom-
pute their gradients. The variation of gradients
between T1 and Tt is quantified by similarity
measure:

Sim =
g1gt

|g1| |gt|
, (15)

where g is a flattened vector of sample gradi-
ents. The results on various datasets are pre-
sented in Fig. 5. The orange line (representing
DGP) shows a relatively flat downward trend,
demonstrating the proposed approach indeed
has the effect of stabilizing the sample gradi-
ents of previous tasks, as the neural network’s
weights update.

5 RELATED WORKS

The aim of robust continual learning is not to
achieve stronger robustness on a single dataset, but rather to maintain robustness across multiple
datasets encountered sequentially. One related work Bai et al. (2023) also explores the under-
researched direction of robust continual learning. A fundamental distinction between that work
and ours is their approach requires partial data from previous tasks to be accessible, thereby focus-
ing on the selection of a key subset of previous data and optimizing its re-utilization in new tasks. In
contrast, we follow the stricter yet realistic scenario in the field of continual learning that data from
the previous tasks cannot be revisited. Further insights in the advancements in adversarial robust-
ness and continual learning can be found in dedicated surveys Silva & Najafirad (2020); Wang et al.
(2024).

6 LIMITATION AND DISCUSSION

In this work, we observe that the adversarial robustness gained by well-design defense algorithms is
easily erased when the neural network learns new tasks. Direct combinations of existing defense and
continuous learning algorithms fail to effectively address this issue, and may even give rise to con-
flicts between them. Therefore, we propose a novel gradient projection technique that can mitigate
rapidly degradation of robustness in the face of drastic changes in model weights by collaborating
with a class of defense algorithms through sample gradient smoothing.

According to our experiment, the proposed approach has certain limitations. First, as the number of
base vectors becomes large, the stability of the neural network is enhanced to hold both robustness

9
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and performance across previous tasks. This stability may restrict the plasticity of the neural net-
work, potentially reducing its ability to learn new tasks. Second, if there are numerous tasks and the
matrix consisting of orthogonal bases reaches full rank, we approximate this matrix by performing
SVD and selecting column vectors corresponding to a fraction of the largest singular values as the
new orthogonal bases to free up rank space. Three, due to the extra challenge posed by our problem,
the perturbation size of adversarial attacks under which the proposed method work effectively is
slightly smaller than typical values in adversarial robustness literature (Please see Appendix B.3 for
more details).
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A METHOD

A.1 SAMPLE GRADIENTS

The sample gradients we stabilize in Sec. Method refer to the gradients of the final outputs with
respect to samples, rather than gradients of the loss with respect to samples, which are penalized in
IGR. Here, we show their relationship:

∂L
∂x

=
∂L
∂ŷ

∂ŷ

∂x
= g (ŷ)

∂ŷ

∂x
, (16)

Where g is a function of ŷ. The stabilization of both final outputs ŷ and sample gradients ∂ŷ
∂x together

can result in the stabilization of ∂L
∂x . To maintain the adversarial robustness, achieved by reducing

the sensitive of predictions (i.e., final outputs) to subtle changes in samples, it is sufficient to stabilize
the smoothed ∂ŷ

∂x .

A.2 MATRIX COMPOSITION

A simple example to illustrate the composition of W̃l is depicted in Fig. 6.

Figure 6: Graphic illustration of an example W̃l. The shape of an example input xl and a convolu-
tional kernel wl

i of l-th layer is (2, 2, 2) and (2, 1, 1) respectively. Suppose there are two convolution
kernels in total, i.e., cl+1 = 2. The length of each column vector in W̃l is same as the flattened
xl, i.e., clhlωl = 2 × 2 × 2 = 8. The four subplots in left display the convolution operation of
the kernel wl

1 on xl, with grey checks indicating the specific input features on which the kernel acts
after each slide. The four subplots sequentially correspond to the first four columns of the example
W̃l. The non-zero elements within each column of W̃l only present (filled by weights of a kernel)
at positions corresponding to those specific input features, while the remains are zero-filled.

A.3 RESHAPE ∂Xl

∂X PRIOR TO PERFORMING SVD

A simple example to illustrate why and how to reshape ∂Xl

∂X is depicted in Fig. 7.
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Figure 7: (a) Performing SVD on an example ∂Xl

∂X with the shape (n, clhlwl) obtains the base vectors
that can constrain the updates ∆W̃l. Here, xl

i,j denotes the i-th feature of j-th input of l-th layer,
and an single input xl from Xl is illustrated on the left of Fig. 6. (b) The orthogonality between any
base vector and each hl+1wl+1(= 4) column vectors of W̃l (see the right of Fig.6) is equivalent
to the orthogonality between hl+1wl+1 sub-vectors of the base vector and the weight wl of the
kernel. (c) Prior to performing SVD, each row vector in ∂Xl

∂X is reshaped into a matrix consisting
of hl+1wl+1 row vectors with a length of clklkl. Consequently, the shape of ∂Xl

∂X is modified to
(nhl+1wl+1, clklkl). This results that the base vectors obtained from performing SVD on ∂Xl

∂X have
the same shape (clklkl, ) with the flattened convolution kernel in the l-th layer, and can be directly
used to constrain the weight updates of the convolution kernels.
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A.4 GRADIENTS IN BATCH NORMALIZATION LAYER

The batch normalization (BN) operation is formalized as

xout
i =

xin
i − µ√
σ2 + ϵ

∗ γ + β, (17)

Where γ and β is the learnable weights. When the mean µ and variance σ2 per-channel are batch
statistics, xout

i (feature i in the output of BN) is not only correlated with xin
i (feature i in the input

of BN), but with the other features of the same channel in the whole batch samples. Therefore, the
Jacobian matrix of the l-th BN (after l-th convolution layer, as shown in Eq. 13 of main text) is a
matrix across batch samples with the shape (ncl+1hl+1ωl+1, ncl+1hl+1ωl+1), where each element
∂xout

i

∂xin
j

is given by:

γ

[
−
(
1− 1

n

)
1√

σ2+ϵ
− 1

(n−1)(σ2+ϵ)
3
2
(xi − µ)

2

]
if i = j,

γ

[
− 1

n
√
σ2+ϵ

− 1

(n−1)(σ2+ϵ)
3
2
(xi − µ) (xj − µ)

]
if i ̸= j and xi, xj are in same channel,

0 others.
(18)

However, due to its extensive scale, the storage or computation of this Jacobian matrix poses high
hardware requirements. To facilitate implementation, we propose decomposing this Jacobian matrix
into cl+1 submatrices with the shape (nhl+1wl+1, nhl+1wl+1), of which all elements belong to
the same channel. Subsequently, these submatrices are concatenated to form a new matrix with
shape (cl+1, nhl+1wl+1, nhl+1wl+1), which effectively optimizes memory usage by eliminating a
significant number of zero elements compared to the original Jacobian matrix. Before multiplying
with this new matrix, the input gradient matrix of BN should be reshaped from (n, cl+1hl+1wl+1)
to (cl+1, nhl+1wl+1).

A.5 COMPUTATIONAL COMPLEXITY INCREMENT

Compared to the naive training procedure, i.e., SGD, the increase of training complexity in the
proposed method is mainly related to SVD. After finishing the training on each new task, we gather
the layer-wise outputs and their gradient with respect to samples, and perform SVD on them to
obtain the base vectors used for gradient projection. Specifically, we call the interface in Pytorch
to perform SVD decomposition. This interface uses the Jacobi method with a time complexity of
approximately o (nml min (n,ml)), where n is the sample number and ml is the features number
of the l-th layer’s output. Assuming that the neural network consists of L layers, with each layer’s
outputs having an equal number of features m, the proposed method introduces a computational
complexity increment of o (Lnml min (n,ml)).

B EXPERIMENT

B.1 ACC AND BWT ON VARIOUS DATASETS

The comparisons of ACC and BWT, after learning all the tasks, are presented in Tab. 1 for Permuted
MNIST, Tab. 2 for Rotated MNIST and Tab. 3 for Split-CIFAR100 datasets. The majority of base-
lines exhibit low accuracy (approaching random classification) quickly on the Split-miniImageNet
dataset. Therefore, we do not compute BTW for Split-miniImageNet dataset.
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Method
Permuted MNIST

AutoAttack PGD FGSM Original samples
ACC(%) BWT ACC(%) BWT ACC(%) BWT ACC(%) BWT

SGD 14.1 -0.75 15.4 -0.74 21.8 -0.67 36.8 -0.66
SI 14.3 -0.76 16.5 -0.76 22.3 -0.68 36.9 -0.67
A-GEM 14.1 -0.69 19.7 -0.66 22.9 -0.67 48.4 -0.54
EWC 39.4 -0.47 43.1 -0.48 50.0 -0.35 84.9 -0.12
GEM 12.1 -0.73 75.5 -0.09 72.8 -0.09 96.4 -0.01
OGD 19.7 -0.72 24.1 -0.67 26.0 -0.63 46.8 -0.57
GPM 70.4 -0.11 72.9 -0.10 65.7 -0.12 97.2 -0.01
DGP 81.6 -0.01 81.2 -0.01 75.8 -0.03 97.6 -0.01

Table 1: Comparisons of ACC and BWT after learning all the tasks on the Permuted MNIST dataset.

Method
Rotated MNIST

AutoAttack PGD FGSM Original samples
ACC(%) BWT ACC(%) BWT ACC(%) BWT ACC(%) BWT

SGD 14.1 -0.76 9.9 -0.76 20.4 -0.69 32.3 -0.71
SI 13.9 -0.77 15.3 -0.73 20.1 -0.70 33.0 -0.72
A-GEM 14.1 -0.69 21.6 -0.69 24.8 -0.63 45.4 -0.57
EWC 45.1 -0.42 49.5 -0.36 46.5 -0.25 80.7 -0.18
GEM 11.9 -0.73 76.5 -0.08 74.4 -0.08 96.7 -0.01
OGD 19.7 -0.72 23.8 -0.68 23.8 -0.64 48.0 -0.55
GPM 68.8 -0.1 71.5 -0.11 65.9 -0.12 97.1 -0.01
DGP 81.6 0.02 82.6 0.01 78.6 -0.01 98.1 -0.00

Table 2: Comparisons of ACC and BWT after learning all the tasks on the Rotated MNIST dataset.

Method
Split-CIFAR100

AutoAttack PGD FGSM Original samples
ACC(%) BWT ACC(%) BWT ACC(%) BWT ACC(%) BWT

SGD 10.3 -0.45 12.8 -0.45 46.5 -0.25 19.4 -0.49
SI 13.0 -0.45 15.2 -0.43 45.4 -0.28 19.8 -0.48
A-GEM 12.6 -0.46 12.9 -0.43 40.6 -0.33 20.7 -0.48
EWC 12.6 -0.43 23.2 -0.31 56.8 -0.15 30.5 -0.35
GEM 21.2 -0.33 19.4 -0.36 60.6 -0.11 47.7 -0.13
OGD 11.8 -0.45 14.1 -0.44 44.2 -0.29 18.9 -0.50
GPM 34.4 -0.13 36.6 -0.17 58.2 -0.16 53.7 -0.10
DGP 36.6 -0.12 39.2 -0.09 67.2 -0.06 48.0 -0.13

Table 3: Comparisons of ACC and BWT after learning all the tasks on the Split-CIFAR100 dataset.
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B.2 ARCHITECTURE DETAILS OF NEURAL NETWORKS

MLP: The fully-connected network in Permuted MNIST and Rotated MNIST experiments consists
of three linear layers with 256/256/10 hidden units. No bias units are used. The activation function
is Relu. Each task has an independent first layer without constraints imposed on its weight update.

AlexNet: The modified AlexnetKrizhevsky et al. (2012) in the Split-CIFAR100 experiment consists
of three convolutional layers with 32/64/128 kernels of size (4× 4)/(3× 3)/(2× 2), and three fully
connected layers with 2048/2048/10 hidden units. No bias units are used. Each convolution layer
is followed by a (2× 2) average-pooling layer. The dropout rate is 0.2 for the first two convolu-
tional layers and 0.5 for the remaining layers. The activation function is Relu. Each task has an
independent first layer and final layer (classifier) without constraints imposed on its weight update.

ResNet18: The variant ResNet18Chaudhry et al. (2019b) in the Split-miniImageNet experiment
consists of 17 convolutional blocks and one linear layer. The convolutional block comprises a con-
volutional layer and a batch normalization layer and an Relu activation. The first and last convolu-
tional blocks are followed by a (2× 2) average-pooling layer respectively. All convolutional layers
use (1× 1) zero-padding and kernels of size (3× 3). The first convolutional layer has 40 kernels
and (2× 2) stride, followed by four basic modules, each comprising four convolutional blocks with
same number of kernels 40/80/160/320 respectively. The first convolutional layer in each basic
modules has (2× 2) stride, while the remaining three convolutional layers have (1× 1) stride. The
skip-connections occur only between basic modules. No bias units are used. In batch normalization
layers, tracking mean and variance is used, and the affine parameters are learned in the first task T1,
which are then fixed in subsequent tasks. Each task has an independent first layer and final layer.

B.3 HYPER-PARAMETER CONFIGURATIONS

B.3.1 ADVERSARIAL ATTACK ALGORITHM

The norm of attacks used in experiments are ℓ∞. The hyper-parameters in various attack algorithm
are provided in Table. 4.

dataset Attack method
AutoAttack PGD FGSM

PMNIST ξ = 20/255 γ = 2/255, ξ = 40/255 ξ = 25/255
RMNIST ξ = 20/255 γ = 2/255, ξ = 40/255 ξ = 25/255
Split-CIFAR100 ξ = 2/255 γ = 1/255, ξ = 4/255 ξ = 4/255
Split-miniImageNet ξ = 2/255 γ = 1/255, ξ = 4/255 ξ = 2/255

Table 4: Hyper-parameter setup to control the attack strength

The perturbation size used in our experiments are smaller than the typical value in adversarial robust-
ness literature. This adjustment is made because when confronted with such intensity of adversarial
attacks, regardless of approaches considered (including baselines and the proposed method), the neu-
ral network’s robustness on the current task decreases significantly after learning only two or three
news tasks. Thus, we slightly reduced the perturbation size. Then, the advantage of the proposed
method becomes evident. While most baselines still exhibit a significant decrease after learning
only two or three new tasks, the proposed method enables mitigating decrease of robustness after
learning a sequence of new tasks.

B.3.2 CONTINUAL LEARNING ALGORITHM

We outline the fundamental principle for each continual learning algorithm in baselines as follows:

• EWC is a regularization technique that utilizes the Fisher Information matrix to quantify
the contribution of model parameters on preserving knowledge of previous tasks;

• SI computes the local impact of model parameters on global loss variations, consolidating
crucial synapses by preventing their modification in new tasks;
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• A-GEM is a memory-based approach, similar to GEM, which leverages data from episodic
memory to adjust the gradient direction of current model update;
• OGD is another gradient projection approach where each base vector constrains the weight

updates of the entire model, while GPM employs a layer-wise gradient projection strategy.

We run the methods of SI, EWC, GEM, A-GEM based on the Avalanche Lomonaco et al. (2021),
an end-to-end continual learning library. In DGP, α1 and α2 (see α in Eq. 6 of main text) control
the number of base vectors added into the pool for stabilizing the final output and sample gradients
respectively. α3 is used in reducing the number of base vectors when the pool is full (by performing
the SVD and k-rank approximation on the matrix consisting of all base vectors in the pool).

Dataset Method Hyperparameter
Learning rate Others

Permuted
MNIST

SGD 0.1 None
SI 0.1 λ = 0.1

EWC 0.1 λ = 10
GEM 0.05 patterns per exp = 200

A-GEM 0.1 sample size = 64, patterns per exp = 200
OGD 0.05 memory size = 300
GPM 0.05 memory size = 300, α1 = [0.95, 0.99, 0.99]

DGP 0.05 memory size = 300, α1 = [0.95, 0.99, 0.99],
α2 = 0.999, α3 = 0.996

Rotated
MNIST

SGD 0.1 None
SI 0.1 λ = 0.1

EWC 0.1 λ = 10
GEM 0.05 patterns per exp = 200

A-GEM 0.1 sample size = 64, patterns per exp = 200
OGD 0.05 memory size = 300
GPM 0.05 memory size = 300, α1 = [0.95, 0.99, 0.99]

DGP 0.05 memory size = 300, α1 = [0.95, 0.99, 0.99],
α2 = 0.999, α3 = 0.996

Split-
CIFAR100

SGD

0.05

None
SI λ = 0.1

EWC λ = 10
GEM patterns per exp = 200

A-GEM sample size = 64, patterns per exp = 200
OGD memory size = 300
GPM memory size = 100, α1 = 0.97 + 0.003∗task id

DGP memory size = 100, α1 = 0.97 + 0.003∗task id,
α2 = 0.996, α3 = 0.99

Split-
miniImageNet

SGD

0.1

None
SI λ = 0.1

EWC λ = 10
GEM patterns per exp = 200

A-GEM sample size = 64, patterns per exp = 200
OGD memory size = 100
GPM memory size = 100, α1 = 0.985 + 0.003∗task id

DGP memory size = 100, α1 = 0.96,
α2 = 0.996, α3 = 0.996

Table 5: Hyper-parameter setup in our approach and other CL algorithms in baselines.
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B.4 INCOMPATIBILITY BETWEEN EXISTING CONTINUAL LEARNING AND DEFENSE
ALGORITHMS

Distillation is a well-known defense method Carlini & Wagner (2017) that involves training two
models - a teacher model is trained using one-hot ground truth labels and a student model is trained
using the softmax probability outputs of the teacher model. The result of combinations of Distillation
and existing continual learning algorithms are presented in Fig. 8. There is a notable trend in Fig.8d:
the blue line (representing the performance of Distill+GPM on original samples) exhibits a more
rapid decline compared to the corresponding blue line in the fourth subplot of the first row in Fig.3
(representing IGR+GPM), as well as the pink line in Fig.4d (representing AT+GPM). Additionally,
the purple and blue lines in Fig.8d (representing Distill+GEM and Distill+GPM) closely align with
the green line in Fig.8d (representing Distill+SGD). These observations suggest again incorporating
the defense algorithms, such as Distillation, into the training procedure compromise the efficacy of
these continual learning methods.

Figure 8: As Fig. 3, but for defense algorithm Distillation on PMNIST dataset. Here, we combine
Distillation with continual learning algorithms GEM and GPM, which have shown superior ACC
compared to other baselines in Fig. 3.
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