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Abstract

Machine-translated evaluation benchmarks
are widely used to assess the multilingual ca-
pabilities of large language models (LLMs).
However, translation errors in such bench-
marks remain underexplored, raising con-
cerns about the reliability and comparabil-
ity of multilingual evaluation. This study
examines the types of translation errors
that occur in benchmark translations and
how they affect LLM performance. We an-
alyze five widely used English benchmarks
translated into 20 European languages, us-
ing a validated LLM-based method to iden-
tify span-level translation errors at scale.
To assess the impact of these errors, we
apply three complementary analyses: com-
paring model accuracy on corrected vs. er-
roneous translations, testing statistical as-
sociations between error types and model
performance, and estimating how strongly
they affect model outcomes. Across all
methods, meaning-related errors (mistrans-
lations) lead to lower model performance,
while other accuracy errors and fluency is-
sues show weaker and more variable effects.
Our results motivate translation-aware eval-
uation practices and enable scalable detec-
tion and analysis of translation artifacts.

1 Introduction

In multilingual evaluation, machine-translated
datasets are commonly relied on as reference
data, yet their translation quality is often over-
looked, undermining the reliability and compa-
rability of results (Choenni et al., 2024; Artetxe
et al., 2020; Plaza et al., 2024).

Translation quality can be assessed through
multiple paradigms (Zhao et al., 2024). Human
protocols, such as Direct Assessment (DA),
Multidimensional Quality Metrics (MQM;
Lommel et al., 2013, 2024), and Error Span
Annotation (ESA; Kocmi et al., 2024), set the

standard for translation evaluation, offering
increasing levels of diagnostic granularity (Fre-
itag et al., 2021).

More recently, researchers have treated
LLMs themselves as translation judges (“LLM-
as-a-judge”; Kocmi and Federmann, 2023b),
using zero- or few-shot prompting to tag MQM-
style error spans. This trend is exemplified by
GEMBA and GEMBA-ESA (Kocmi and Feder-
mann, 2023a; Kocmi et al., 2024), and by GPT-
based evaluators such as AutoMQM (Huang
et al., 2024) for inline span detection, or MQM-
APE (Lu et al., 2025), which uses automatic
post-editing to refine translations.

Prior work investigating the effects of trans-
lation artifacts on model performance relies
either on manual inspection of small sam-
ples (Artetxe et al., 2020; Plaza et al., 2024),
which provides qualitative insights but does
not scale, or on heuristics (Park et al., 2024;
Choenni et al., 2024) such as sentence length
ratios or learned quality estimation scores (e.g.,
COMET-QE (Rei et al., 2020)), both of which
lack precision in identifying the type and loca-
tion of translation errors. In addition, most of
these studies are limited to single benchmarks
or languages (e.g. Spanish MMLU (Plaza et al.,
2024) or XNLI (Artetxe et al., 2020)).

In this work, we bridge these two strands of
research by combining automated span-level
MQM annotation of machine-translated bench-
marks with large-scale analyses that examine
both the types of translation errors that occur
and how these errors affect the performance
of multilingual LLMs. Our study analyzes
the EU20 benchmark suite (Thellmann et al.,
2024), which comprises five widely used eval-
uation datasets translated into 20 European
languages and covers diverse task types such
as logical reasoning, factual knowledge, and
truthfulness.
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Figure 1: LLM-based TQE pipeline combining span-level MQM annotation and model performance
analysis. The workflow involves (1) automatic error annotation (GEJ), (2) downstream evaluation of
model accuracy, and (3) targeted analysis of how translation errors affect performance.

Our main contributions are as follows:

1. Validated LLM-based MQM annota-
tion for multilingual benchmarks: We
introduce GEJ (GEMBA-ESA-JSON), an
LLM-as-a-judge method based on Kocmi
et al. (2024) with improved prompting
and structured span-level MQM outputs.
We validate GEJ on Span-ACES (Moghe
et al., 2025), a benchmark for span-level er-
ror detection, using annotations from four
different LLMs acting as GEJ-annotators
and assess false-positive plausibility using
high-quality FLORES-200 reference trans-
lations (Team et al., 2022).

2. Impact analysis of translation errors
on LLM predictions: Following a three-
step pipeline (see Figure 1), we first anno-
tate all 20 language versions of the EU20
suite using GEJ with three LLMs as an-
notators. We then evaluate eight multi-
lingual LLMs on the EU20 benchmarks
to obtain model predictions. Finally, we
combine the predictions with the GEJ an-
notations to analyze how translation er-
rors affect model performance. We focus
on key MQM categories such as Accuracy
and Fluency, with particular attention to
mistranslations. Our analysis includes:
(i) comparing model performance on EU20
vs. alternative human-corrected transla-
tions, (ii) testing for statistical associa-
tions between detected errors and model
accuracy, and (iii) estimating how strongly

detected errors of different types affect
LLM accuracy.

2 Related Work

Translation artifacts and their effects.
Several studies have shown that translation
artifacts can undermine the reliability of
model evaluation: Choenni et al. (2024) found
that MT-generated test sets may overestimate
model capabilities, especially in low-resource
languages; Artetxe et al. (2020) demonstrated
that subtle “translationese” can bias cross-
lingual benchmarks like XNLI; Plaza et al.
(2024) reported that mistranslations in Span-
ish MMLU data cause 6-13% accuracy loss
for GPT-4, with up to 60% of failures directly
linked to translation errors; and Park et al.
(2024) observed similar effects for VQA models.
While these findings underscore the need for
rigorous quality control, prior work remains
limited in scale and granularity.

Multilingual benchmarks. Recent multi-
lingual benchmarks range from carefully cu-
rated, manually translated datasets (e.g., Su-
perGLEBer (Pfister and Hotho, 2024), Scan-
dEval (Nielsen, 2023), IberoBench (Baucells
et al., 2025), FrenchBench (Faysse et al., 2025),
BenCzechMark (Fajcik et al., 2025)) to large-
scale resources generated via machine transla-
tion. While manually constructed benchmarks
offer high quality, they are costly and diffi-
cult to scale, prompting the use of machine
translation for broader coverage (e.g., Global
MMLU (Singh et al., 2025), XNLI (Conneau



et al., 2018), OKAPI (Lai et al., 2023), and
LAMBADA (Paperno et al., 2016)). However,
many such resources lack transparent quality
control. Our work advances the field by com-
bining automated span-level error annotation
with statistical analysis to assess translation
error impact on model performance.

3 GEJ and Meta-Evaluation
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Figure 2: Meta-evaluation: TQE-benchmarks
(Span-ACES and FLORES) are annotated by LLMs
using GEJ. Span overlap analysis yields recall and
F1 scores and false positive rates.

This section introduces two key components
of our approach: (1) the GEJ annotator, (2) the
meta-evaluation of GEJ, as illustrated in Fig-
ure 2.

GEJ is a GEMBA-ESA! adaptation, ex-
tended with curated multilingual few-shot ex-
amples, covering a broad range of error types
and both structured content (e.g., multiple-
choice questions) and general-purpose text (see
Table 5, Appendix A.2). We include GEMBA-
ESA as baseline for comparison with GEJ.

We employ four LLMs as GEJ annota-
tors, all prompted identically — GPT-40-mini?,
DeepSeek R13, Llama-4 Scout*, and Mistral-
Large-Instruct-2411° — to identify error spans
in a few-shot setting, without assigning quality
scores. The LLM-annotators are prompted as

Lgithub.com/Microsoft Translator/ GEMBA
Zplatform.openai.com/docs/models/gpt-4o-mini
3api-docs.deepseek.com/guides/reasoning__model
4HF: meta-llama/Llama-4-Scout-17B-16E-Instruct
SHF: mistralai/Mistral-Large-Instruct-2411

L N GPT DeepSeek LLaMA Mistral
B/GEJ B/GEJ B/GEJ B/GEJ
Mistrans.
DA 24 .12/.58  .00/.71 .25/.42  .71/.33
DE 1044 .15/.20  .00/.41 14/.09  .29/.21
ES 29 .24/.69  .00/.55 17/.34  .38/.38
ET 15 .27/.47  .00/.67 .27/.47  .60/.40
FR 225 .12/.16  .00/.21 J12/.05  .16/.07
HU 34 .09/.23 .00/.43 .20/.20 .56/.54
LT 2 1.0/.50 .00/1.0 1.0/.00 .50/.50
NL 23 .09/.35  .00/.39 .22/.13  .35/.48
PL 8 .38/.75  .00/.62 A2/12 0 12/.12
PT 21 .09/.59  .00/.59 .36/.36  .52/.50
RO 33 .06/.30 .00/.82 .09/.12  .64/.42
SK 9 .00/.44 .00/.44 11/.22 .56/.33
SL 19 .00/.32 .00/.21 JA11/.11 .53/.37
SV 21 .00/.38  .00/.67 10/.14  .48/.33

Table 1: Span-Recall for MQM mistranslation., by
model and language, for GEMBA-ESA (B) and
GEJ.

shown in Figure 4 to produce JSON-structured
output containing an array of identified error
spans and error types from the MQM categories
detailed in Table 7 of Appendix A.1.

For meta-evaluation, we focus on two TQE-
benchmark datasets: Span-ACES and FLO-
RES. We employ a subset of Span-ACES 6, a
contrastive dataset of 36,476 samples over 146
language pairs, each annotated for 68 error cat-
egories. Table 8 in Appendix A.l summarizes
the subset used in our meta-evaluation, which
covers MQM Accuracy subtypes (e.g., mistrans-
lation, addition, over/under-translation) and
Fluency subtypes (e.g., grammar).

In contrast, WMT introduced error-span sub-
tasks for quality estimation in 2023 (Blain et al.,
2023; Zerva et al., 2024), but so far only En-
glish-German (2023) provides relevant span-
based gold labels, while for English—Spanish
(2024) only input data are available. In Span-
ACES, only one error type is annotated per
sample; any additional errors are not labeled.
As a consequence, extra correctly identified
errors are counted as false positives, leading
to an underestimation of precision and Span-
F1. We therefore report Span-Recall as our
primary metric, as it measures the recovery of
annotated gold spans without being affected
by unannotated errors. Formally, Span-Recall
is defined as the proportion of reference error
spans (including error type labels) that are

Sgithub.com/EdinburghNLP/ACES
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https://github.com/EdinburghNLP/ACES

L N GPT DeepSeek LLaMA Mistral
B/GEJ B/GEJ B/GEJ B/GEJ
Accuracy
BG 10 .10/.10  .00/.60 .40/.30  .50/.40
CS 356 .00/.01 .00/.61 .01/.01 .01/.31
DA 11 .00/.17  .00/.58 .17/.08  .18/.42
DE 311 .00/.01 .00/.16 .01/.00 .02/.07
EL 6 .00/.14 .00/.43 .14/.14  .50/.43
ES 328 .00/.00 .00/.79 .01/.00 .01/.09
ET 5 .00/.00 .00/.60 .00/.00 .00/.40
FI 6 .00/.17  .00/.83 .00/.00 .67/.50
FR 11 .00/.09  .00/.55 .18/.09  .55/.36
HU 4 .00/.00 .00/.75 .25/.25  .25/.75
IT 5 .00/.40  .20/.80 .40/.20  .20/.40
LT 6 .00/.00 .00/.43 .00/.00  .33/.29
Lv 8 .00/.11  .00/.67 J11/.11 .38/.56
NL 15 .07/.00  .00/.47 .20/.00  .33/.20
PL 324 .00/.01  .00/.75 .00/.01  .01/.29
PT 11 .00/.09 .00/.82 .18/.36  .82/.45
RO 10 .00/.10  .00/.80 .20/.10  .50/.60
SK 7 .00/.00 .00/.38 .00/.00 .29/.12
SL 13 .00/.00 .00/.69 .08/.08 .23/.54
SV 13 .08/.08  .00/.77 .08/.15  .38/.46
Fluency

DE 700 .00/.00 .00/.42  .03/.04 .02/.51

Table 2: Span-Recall by model and language for
GEMBA-ESA (B) and GEJ, for MQM: (a) Accu-
racy, (b) Fluency.

correctly predicted: Span-Recall = [Sprea 1 Sret| Pr‘egﬁf‘lgref‘

where S,.q and S, denote the sets of pre-
dicted and reference error spans, respectively,
each represented as tuples of (span, error type
label).

Since GEJ produces MQM-style tags but
Span-ACES uses a different annotation scheme,
we mapped Span-ACES labels to MQM cat-
egories, considering only error types that un-
ambiguously map to our MQM subset (Ap-
pendix A.1, Table 6). To complement Span-
ACES, we use FLORES-2007, a high-quality
parallel dataset with about 7,000 samples per
language (145,252 total). On FLORES, we
estimate false positive rates using the mean
sentence-level false positive rate, FPR, =
Ser/N, and the mean number of error spans
per 1,000 words, ER,, = (n,,/W)-1000, where
Se;r is the number of sentences with at least one
predicted error, N is the total number of sen-
tences, n,,, is the total predicted error spans,
and W is the total word count (based on the
English reference).

Table 1 and Figure 2 compare Span-Recall

"huggingface.co/datasets/facebook/flores

for GEMBA-ESA baseline (B) and GEJ across
all LLM-annotators and languages. We achieve
about 90% extraction rate of about 93% for
Span-ACES and 91% for FLORES with GPT.
Across nearly all languages and models, GEJ
achieves higher Span-Recall than the baseline,
with the largest improvements for DeepSeek
and Mistral — for example, DeepSeek’s recall on
German for mistranslation rises from .00 to .41,
on Polish for Accuracy from .00 to .75, and for
Mistral on German for Fluency from .02 to .51.
On average across all languages and models,
GEJ achieves a Span-Recall improvement of
0.23 for mistranslation, 0.29 for Accuracy, and
0.23 for Fluency compared to the baseline.

FPR, ER,
B/GEJ B/GEJ
Mistrans.
GPT .29/.38  13.82/20.52
DeepSeek .00/.42 .21/23.88
LLaMA 42/.14 23.66/6.79
Mistral .49/.56  34.28/31.53
Accuracy
GPT .00/.07 .04/3.20
DeepSeek .00/.50 .04/28.35
LLaMA .01/.18 .52/9.37
Mistral .06/.21 3.29/10.48
Fluency
GPT .28/.02 13.16/1.04
DeepSeek .00/.09 .03/4.34
LLaMA .06/.00 2.98/.23
Mistral 17/.12 8.24/6.46

Table 3: Mean FFPR, and ER,, for GEMBA-ESA
(B) and GEJ on FLORES, for MQM categories
Accuracy, Fluency, and mistranslation.

Table 3 reports mean FPR, and ER,
for GEMBA-ESA (B) and GEJ on FLORES.
Across most categories and models, GEJ ex-
hibits higher FPR, and ER, values than the
baseline, indicating a greater tendency to label
errors in reference translations. On average
across all categories and models, GEJ marks
reference translations as erroneous about 0.07
more often per sentence (FPR,) and produces
3.4 more error spans per 1,000 words (ER,,)
than the baseline (a 39% relative rise). The
significance of this increase should be taken
into account when interpreting downstream
performance analyses based on error counts.


https://huggingface.co/datasets/facebook/flores

4 Performance Impact Analysis

To assess the impact of translation errors on
LLM performance, we follow the three-step
TQE pipeline illustrated in Figure 1.

All EU20 benchmark datasets are automat-
ically annotated for translation errors using
GEJ with three state-of-the-art LLMs (GPT-
4o0-mini, Llama-4 Scout, and Mistral-Large-
Instruct-2411; see Sections 3). The benchmark
datasets annotated in this process are detailed
in Section 4.1.

We evaluated eight recent instruction-tuned
multilingual LLMs (see Appendix B.2, Ta-
ble 12) on the EU20 benchmark datasets us-
ing a variant of EleutherAl’'s LM Evaluation
Harness® recording binary prediction outcomes
(correct/incorrect) for each sample.

Finally, we combine model predictions with
GEJ span-level MQM error annotations to ana-
lyze the effect of translation errors on model ac-
curacy, as detailed in Sections 4.2, 4.3 and 4.4.

4.1 Benchmark Datasets

To quantify the impact of automatically de-
tected translation errors, we applied GEJ
to detect translation errors on translated
versions of five LLM benchmark datasets:
MMLU (Hendrycks et al., 2021), ARC (Clark
et al., 2018), HellaSwag (Zellers et al., 2019),
GSMS8K (Cobbe et al., 2021), and Truth-
fulQA (Lin et al., 2022). Translations were
sourced from EU20 (Thellmann et al., 2024),
translated via DeepL? into the 20 official EU
languages supported by Deepl, and Global-
MMLU (Singh et al., 2025), combining Google
Translate!® with professional and community
post-editing across 42 languages. Global-
MMLU features high-quality translations for
Spanish, French, German, and Italian, and
community translations for Czech and Roma-
nian. We excluded Portuguese as it is of the
Brazilian variety and our focus is on European
languages.

Before applying GEJ, we verified the struc-
tural integrity of all translated datasets by
aligning each sample with its English original
and checking for completeness, split and subset

8github.com/Eleuther AI/lm-evaluation-harness
9developers.deepl.com/docs
Ocloud.google.com/translate/docs/reference/api-
overview

assignmentn, and consistency of correct an-

swers across languages. Samples with missing
or incomplete translations in one or more of the
languages under investigation were excluded
from our analysis. The results of these checks
are summarized in Appendix B.1 in Table 10,
while the final cleaned dataset statistics are
shown in Table 11.

4.2 Error vs. Correction Comparison

In our first analysis, we leverage of the fact that
Global-MMLU and EU20-MMLU are alterna-
tive translations of the same dataset. Specifi-
cally, we match EU20-MMLU samples where
GEJ, with GPT-40-mini as annotator LLM,
detected errors of type mistranslation but not
other types of errors, with the correspond-
ing Global-MMLU samples in languages with
human-reviewed translations (see Dataset Sec-
tion 4.1), if GEJ detected no errors in the latter.
We denote the total number of such samples
N¢ (for “corrected”, since the EU20 version
is considered incorrect and the Global-MMLU
version is correct according to GEJ).

We construct cross-tabulations of the binary
Global-MMLU and EU20-MMLU downstream
evaluation outcomes (correct/incorrect) per
model, focusing on differences in prediction
correctness. For this purpose, we consider the
the number N (for Gain) of samples where the
model is incorrect on EU20-MMLU but correct
on Global-MMLU and the converse number
N; (for Loss) of samples where the model is in-
correct on Global-MMLU but correct on EU20-
MMLU. Thus, N4 = N; + N (for Affected) is
the number of samples for which the prediction
correctness differs between the two translations.
To measure the effect of translation corrections
on model accuracy, we define the Net Accuracy
Impact (NAI) as the difference between the
proportions of losses and gains among the N

N;—N,
“corrected” samples: NAI = LN—G

A negative NAI potentially i;dicates that
model performance suffers under incorrect
translations, in line with the expectation that
mistranslations reduce model performance.

The results of this analysis are presented
succinctly in Table 4 and more elaborately in
Table 13 in Appendix B.3. The comparison
across six languages and eight models reveals

" Automated when unique IDs are available.
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#Affected (NAI)

Lang. cs DE ES FR IT RO

Ng 132 104 106 101 146 97

Gemma 22 (—.045) 9 (—.029) 12 (—.057) 9 (—.030) 18 (+.055) 14 (—.021)
Mistral 18 (+.000) 11 (—.048) 15 (—.028) 14 (—.059) 14 (+.041) 11 (—.010)
Pharia 25 (+.038) 17 (+.010) 16 (+.019) 16 (+.000) 24 (+.000) 18 (—.021)
Phi 28 (+.030) 16 (—.058) 14 (—.019) 16 (—.040) 40 (—.027) 15 (+.010)
Qwen 23 (—.038) 11 (—.048) 13 (—.047) 13 (—.050) 15 (—.048) 12 (—.021)
Salamandra 13 (—.038) 17 (—.010) 11 (—.028) 12 (—.079) 10 (+.000) 9 (—.010)
Aya 18 (—.061) 9 (—.010) 13 (—.028) 9 (—.010) 16 (+.027) 9 (—.010)
Command-A 20 (—.030) 12 (—.077) 15 (—.009) 10 (—.079) 12 (+.014) 10 (—.041)

Table 4: EU20-MMLU “only mistranslations” vs. Global-MMLU “no errors”

a consistent pattern: models are more likely to
predict incorrectly on EU20-MMLU samples
with detected mistranslation errors than on
their error-free Global-MMLU counterparts,
so the gain at least slightly exceeds the loss
across nearly all models and languages, with
Italian and Pharia being the exception. For
instance, in Romanian, Command-A shows a
7.2% gain from corrected translations vs. 3.1%
losses, and in French a 8.9% gain against a 1%
loss, resulting in an NAI of -4.1% and -7.9%,
respectively. The positive or near-zero NAI
values which Pharia exhibits in most languages
might be explained by the low overall model
performance observed in Section 4.4.
Although the number of affected samples per
model is relatively low (ranging from 9 to 40 out
of 97 to 146 samples), the commonly observed
negative Net Accuracy Impact (NAI) across
most models and all six languages indicates
that further investigation may have merit.

4.3 Error/Performance Association

To extend our analysis beyond MMLU and
human-verified translations,
whether the detection of translation errors of
specific MQM error categories (Accuracy, Flu-
ency) and error types (mistranslation) by GEJ
is associated with a difference in LLM pre-
diction correctness in the machine-translated
EU20 benchmarks.

Specifically, we consider the accuracy-based
multiple-choice benchmarks ARC, Hellaswag,
and MMLU, which have dichotomous accuracy
metrics on the sample level. For each combina-
tion of model, language, task, and error type,
we perform a x? independence test to assess
whether LLM prediction correctness system-
atically differs depending on the detection of

we examined

specific error types. The x? test aims to refute
the null hypothesis “H,: The prediction cor-
rectness of the LLM considered is independent
of the detection of translation errors in the test
samples evaluated” at a significance level of
0.05. This method is well suited to our use
case, as both the detection of errors and LLM
prediction correctness for multiple-choice tasks
can be represented as binary variables at the
sample level.

mistrans. acc. fluency
ARC
GPT 31 22 8
Llama 60 43 54
Mistral 83 36 18
Hellaswag
GPT 7 3 1
Llama 21 6 1
Mistral 19 4 5
MMLU
GPT 78 25 32
Llama 46 28 11
Mistral 91 17 47

Table 5: Percentage of LLMs with significant (p <
0.05) x? results for accuracy independence between
samples without errors and those with only the
specified error category, across languages, models,
annotators, and benchmarks.

We summarize the independence results of
the x2 analysis in Table 5: for each annotator
model, task, and error type, we computed the
proportion of models with a significant indepen-
dence result between translation error detection
and model prediction correctness. The purpose
of this analysis is to identify annotators and cat-
egories of detected translation errors that are
likely to impact model accuracy. The results
indicate that mistranslation errors are signifi-
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Figure 3: Effect of translation error types on model accuracy (Log-Odds §,). Each heatmap cell shows
the estimated effect of a given error type on the probability of a correct model response, for each model
(row) and language (column). Cell color intensity reflects the effect size; cells marked with “—~” indicate
non-significant effects based on the 95% bootstrap confidence interval.

cantly associated with model accuracy differ-
ences in 78-91% of model-language combina-
tions for MMLU, but 21% or less for Hellaswag.
For ARC and MMLU, non-mistranslation Ac-
curacy (“acc.”) errors show moderate effects in
17-43% of model-language combinations. The
impact of translation errors varies across tasks
in our evaluation: mistranslation errors have a
strong negative effect on MMLU, while in Hel-
laswag, such phenomena are less pronounced.
It is important to note that this x? analysis
can capture only associations, not causal ef-
fects, and does not indicate effect strength.
Nevertheless, the method provides a useful ini-
tial quantitative indicator of the relevance of
individual error types.

4.4 Error Impact Quantification

To complement the initial Chi-Square analy-
sis, we conducted a logistic regression analysis
to quantify the impact of different error types
on model accuracy. For each model-language
pair, we fitted a logistic regression model pre-
dicting binary sample correctness based on the
presence of error types:

logit(P(correct)) = B, + Z B. -1,

ecErrors

where Errors = {accuracy, fluency, mistransla-
tion}, and I, is an indicator variable detected
errors of type e. The reference category no_ er-
rors is captured in the intercept §,. Each co-
efficient 3, estimates the change in log-odds
of a correct response relative to this baseline.
Negative coefficients indicate a reduction in
accuracy, positive coefficients an increase.

We computed nonparametric bootstrap con-
fidence intervals: for each model-language pair,
we performed 2500 bootstrap resamples, refit-
ted the model, and computed percentile-based
95% confidence intervals (Cls) for all coeffi-
cients. A coefficient with a CI entirely below
zero indicates a robust negative effect; a CI
overlapping zero indicates an uncertain effect.
This regression analysis complements the Chi-
Square tests by explicitly estimating, for each
error type, both the direction (positive or neg-
ative effect) and the magnitude (size) of the
effect on the log-odds of a correct model re-
sponse, with bootstrap Cls providing a more
robust assessment of these effects (coefficient
stability).

Figure 3 provides a visual summary of the es-
timated impact of translation errors on model
performance across tasks. These heatmaps il-



lustrate that mistranslation errors consistently
lead to strong and significant accuracy drops
for high-performing models such as Qwen,
Command-A, and Mistral across nearly all
languages (e.g., Qwen: 20/20 languages sig-
nificant, strongest effect —0.63 for Romanian;
Mistral: up to —0.77 for French). In contrast,
weaker models like Pharia and Salamandra
show predominantly non-significant results for
these errors.

To quantitatively compare the impact of dif-
ferent translation error types on model perfor-
mance, we compute two key statistics for each
error type f across all models, languages, and
annotators: (i) the proportion of significant
effects and (ii) the average absolute effect size.

The proportion of significant effects is
defined as

N

1 f

— =S <o), (1)
Ny

i=1

where N, is the total number of evaluated com-
binations (models, languages, annotators) for
error type f, CI;"P" denotes the upper bound
of the 95% bootstrap confidence interval for the
i-th log-odds coefficient, and I]-] is the indicator
function.

The average absolute effect size (re-
stricted to significant cases) is computed as

B;
megz' R

7

I[CIP < 0], (2)

where (3, is the estimated log-odds effect in
the i-th cell, and N, = > T[CI;PP* < 0]
is the number of significant cases. Errors of
type mistranslation have the largest and most
frequent impact on model performance, with
P, = 0.86 and B = 0.35. Fluency errors have
an intermediate effect (P, = 0.68, 8= 0.30),
while Accuracy errors show only a weak and
infrequent influence (P, = 0.30, B =0.26).
5 Conclusion

This work investigates the effects of translation
errors on model performance in multilingual
benchmarks, with a focus on the EU20 bench-
mark suite. To enable detailed analysis, we
applied an LLM-as-a-judge method (GEJ) for
span-level MQM annotation. Compared to
the GEMBA-ESA baseline, GEJ achieves an

average Span-Recall improvement of 0.23 for
mistranslation, 0.29 for Accuracy, and 0.23 for
Fluency. GEJ also exhibits higher FPR, and
ER,, values than the baseline (a 39% relative
increase) indicating a greater tendency to label
errors in reference translations, which should
be considered when interpreting downstream
analyses.

Our performance impact analysis, including
regression modeling, shows that mistranslation
errors have the largest and most frequent nega-
tive effect on LLM accuracy (PSig =0.86, 3 =
0.35), followed by Fluency errors (P, = 0.68,
B = 0.30), while Accuracy errors are rarely
significant (P, = 0.30, B =0.26). These find-
ings highlight the importance of fine-grained
translation error analysis for understanding
and improving LLM performance in multilin-
gual benchmarks.

6 Future Work

For future work, we identify several directions:
First, extending error analysis to additional
MQM error categories and linguistic phenom-
Second, contributing to more diverse
gold-standard datasets for meta-evaluating
TQE methods, which are essential for reliable
progress. Third, advancing LLM-based meth-
ods to automate and support benchmark cre-
ation and quality control, enabling more scal-
able and robust multilingual evaluation.

ena.

7 Limitations

Despite its merits, certain limitations should
be acknowledged in our study. First, high-
quality, span-annotated reference translations
are scarce, especially for less common languages
and MQM error categories. Second, no widely
accepted gold standard exists for span-level
MQM annotation in most languages investi-
gated, and expert annotation remains costly
and hard to scale. Third, our statistical analy-
ses are correlational in nature and may be af-
fected by sample size, model assumptions, and
the rarity of certain errors. Fourth, annotation
quality depends on the LLM and prompt; some
combinations, like DeepSeek with GEMBA-
ESA, may fail for certain tasks. Finally, our re-
sults reflect a specific selection of benchmarks,
languages, and models, and applicability to
different settings may be limited.
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A Appendix: GEJ, MQM and
Span-ACES

A.1 GEJ-MQM Error Categories

Table 6 presents a hierarchical mapping of
the MQM error taxonomy used in our eval-
uation. It aligns Level-1 MQM error types
(e.g., addition, mistranslation, omission) with
ACES labels such as real-world-knowledge-
entailment or xnli-addition-neutral.

As an illustration, Table 7 provides brief
definitions and multilingual examples for each
Level-1 error type. For instance, the addition
category is illustrated with an English to Dutch
example in which extraneous information (”to
buy bread”) is added in the translation. Simi-
larly, mistranslation is exemplified via a Greek
translation that changes the meaning of "He
was murdered” to "He was attacked.” These
examples were curated to span both general-
purpose and structured text, used as input in
our evaluation setup.
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Table 6: Hierarchical overview of MQM error types and their alignment with Span-ACES error

labels.

MQM Type

Level-0

Level-1

Span-ACES Label

Addition

Ambiguous
src content

Ambiguous
tgt content

Do not translate

Grammar

Mistranslation

MT hallucination

Omission

accuracy

accuracy

accuracy

accuracy

fluency

accuracy

accuracy

accuracy

addition

mistranslation

mistranslation

no-translate

grammar

mistranslation

mistranslation

omission

addition
xnli-addition-contradiction
xnli-addition-neutral

coreference-based-on-commonsense

ambiguous-*-since-causal
ambiguous-*-since-temporal
ambiguous-*-while-contrast
ambiguous-*-while-temporal
ambiguous-*-female-anti
ambiguous-*-female-pro
ambiguous-*-male-anti
ambiguous-*-male-pro

do-not-translate

anaphoric_ group__ it-they:subst.
anaphoric__intra_ non-subject__it:subst.
anaphoric__intra_ subject_ it:subst.
anaphoric__intra_ they:subst.
anaphoric_ singular_ they:subst.

modal verb:subst.
pleonastic__it:subst.
real-world-know.-entailment
real-world-know.-hypernym-vs-distr.
real-world-know.-syn.-vs-antonym

hallucination-date-time

anaphoric_ group__ it-they:deletion
anaphoric__intra_ non-subject_ it:deletion
anaphoric_ intra_ subject_ it:deletion
anaphoric_ intra_ they:deletion
anaphoric_ singular_they:deletion

modal verb:deletion

omission

pleonastic__it:deletion
xnli-omission-contradiction
xnli-omission-neutral
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Table 6: Hierarchical overview of MQM error types and their alignment with Span-ACES error
labels. (Continued from previous page)

MQM Type Level-0 Level-1 Span-ACES Label
addition
Addition accuracy addition xnli-addition-contradiction
xnli-addition-neutral
overly-literal-vs-explanation
Overly literal accuracy mistranslation overly-literal-vs-ref-word
overly-literal-vs-synonym
Overtranslation accuracy over-translation hyponym-replacement
punctuation:deletion_ all
ion-deleti
Punctuation fluency punctuation punctuat%on de et%onicommas
punctuation:deletion__quotes
punctuation:statement-to-question
Undertranslation accuracy under-translation hypernym-replacement
Unintelligible fluency unintelligible nonsense
copy-source
Untranslated accuracy untranslated untranslated-vs-ref-word
untranslated-vs-synonym
Word order accuracy mistranslation ordering-mismatch
imilar-1 -high
Wrong language  accuracy wrong-language Sintar- anguage-ig

similar-language-low

Table 7: Overview of MQM error categories with definitions and examples.

Level-1 Category Description and Example

Adds extra content not in source.

EN: ”She might go to the store” —

NL: "Ze gaat misschien naar de winkel om brood te kopen.”
Added: ”to buy bread”

addition

Continued on next page
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Level-1 Category

Description and Example

over—-translation

omission

under-translation

mistranslation

reordering

untranslated

wrong-language

do-not-translate

grammar

Adds unnecessary detail or specificity.

EN: "room” —
HU: ”konyha”

Should be: ”szoba”. ”konyha” means kitchen.

Important information from the source is missing.

EN: ”She bought a red dress.” —
CS: "Koupila si saty.”
Should be: "Koupila cervené saty.”.

» o o»

Translation is too general.
EN: "colonel” —
SK: "vojak”

red” is omitted

Should be: ”plukovnik”. ”vojak” means soldier

Incorrect meaning due to word or grammar.

EN: "He was murdered.” —
EL: "Tov emtédnxay.”
”"He was attacked” wrong meaning.

Word order change that alters meaning.

EN: ”She only loves him.” —
PL: "Tylko ona go kocha.”
”Only she loves him”

Source (or part of it) left untranslated.

EN: "He is a teacher.” —
DE: ”He ist ein Lehrer.”
"He” should be "Er”

Wrong or related language used.
EN: ”Danish colleague” —
DE: ”déanischen kollega”

"kollega” is Danish; should be "Kollege”

Elements marked non-translatable are translated.
EN: ”Apple released a new update.” —

BG: "d6baka nycua HOB bIeiT.”
?Apple” — fruit

Syntax or agreement error.
EN: ”She go to school..” —
DA: "Hun gar til skole..”
Should be: ”i skole”

Continued on next page
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Level-1 Category Description and Example

Misspelled words affect readability or meaning.
EN: ”definately” —

SV: ”definetivt”

Should be:”definitivt”

spelling

Incorrect or missing punctuation.
EN: ”Let’s eat, Grandma!” —
SV: ”Lat oss dta mormor!”
Missing comma

punctuation

Inconsistent terminology or style.

EN: "Prime Minister”/”Premier” —

PL: ”Premier”/”Prezes Rady Ministréw”
Should be consistent

inconsistent

Grammatically correct but unnatural.
EN: "He made a photo.” —

EL: "Exave po gwtoypapio.”

Should be: "Tpdfnie wa pwtoypapio”

awkward

Nonsensical translation.

EN: ”The cat sat on the mat.” —

SL: "Macka je stol, ki hodi po ulici.”

Should be: ”"The cat is a chair that walks on the street”

unintelligible
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A.2 GEJ Prompts

Figure 4 details the system prompt used in
our GEMBA-ESA adaptation, which guides
the LLM to identify span-level errors based on
MQM categories, while enforcing strict output
formatting and semantic fidelity over stylis-
tic preferences. It emphasizes translation ad-
equacy, fluency, and structured error explana-
tion, with instructions for multiple-choice and
general-purpose content.

To enhance annotation quality, we created a
multilingual prompt containing structured few-
shot examples for both continuous and struc-
tured text (Figure 5). These examples include a
diverse set of error types — such as subject-verb
agreement errors in Portuguese (grammar),
overgeneralization in German (undertransla-
tion), and missing specificity in medical con-
texts (mistranslation). Translations were gener-
ated using ChatGPT-40, with backtranslations
via DeepL. We verified correctness through
backtranslation analysis and cross-referenced
definitions using multilingual resources such
as dict.cc'?, LEO'3, monolingual dictionaries,
conjugation tools, and DeepL. Write!4.

Instead of adding the instruction to every
few-shot example within the prompt, we in-
clude it in the system prompt, which is sent to
the model only once for each translation to be
evaluated. Additionally, we provide a separate
input field that briefly describes the text type,
alongside the original and target segments, to
help the model better assess the severity of
translation errors.

Zhttps://wuw.dict.cc
Bhttps://dict.leo.org
“https://www.deepl.com/write
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Figure 4: GEMBA-ESA System Prompt (Error Type Definitions omitted)

“role”: "system”,
”content”: ”Your task is to assess the quality of machine translations and identify translation errors.

Given the source and target segments (enclosed in triple backticks), identify error spans in the
translation and classify them using the MQM-style (Multidimensional Quality Metrics) categories:
accuracy (addition, over-translation, omission, under-translation, mistranslation, reordering, untrans-
lated, wrong-language, do-not-translate), fluency/style (grammar, spelling, punctuation, inconsistent,
awkward, unintelligible), and other.

Error Type Definitions (with one example each): ..

Severity Guidelines:

- Label an error as major if it significantly alters the meaning, causes confusion, or omits
important information.

- Label an error as minor if it causes a slight loss in precision or naturalness, but the meaning is
still clear.

- Do not flag translations as errors if they preserve meaning and naturalness, even if they are
not literal.

Guidance for Output Format and Error Spans:

- Respond with a single, plain, well-formed JSON object, without any markup, containing:
- “target_seg_backtranslation': literal backtranslation of target segment to source language,
preserving any errors
- “evaluation': an array of error entries, each with:
- “span_target’: text span with the found error in the translation (if present,  else use
an empty string)
- “span_ original®: corresponding text in the source
- “error_type': the error category
- “severity : ”"major” or "minor”
- “explanation”: reason the translation is incorrect (or correct) in one sentence
- “correction': suggested correction of the target span
- For omission or untranslated content, also use an empty string as the error span.
- It is important to use only Guillemets «...» and no regular double quotes ””
parts of the source or target in the explanation.
Make sure that all JSON strings are in double quotes, as single quotes are not valid JSON, e.g.
”severity”: ”"minor” and not ’severity’: 'minor’.

when quoting

- If no errors are found, leave evaluation as an empty array.

Translation Quality Evaluation Guidelines:

Your task is to evaluate the translation quality, not to solve or interpret the content.

Focus on whether the translation is faithful to the original meaning, and appropriate for the text
type. Avoid nitpicking stylistic preferences unless they impact meaning or clarity. Types of text that
can occur are: structured or multiple-choice (e.g., science questions, math problems), general-purpose
or continuous text.

For structured or multiple-choice text:

e Evaluate only whether each part — the question and all answer options — is faithfully
translated.

e Do not assess factual correctness of any answer options.
¢ Do not solve the question or make assumptions about the correct answer.

o Grammaticality and fluency are not required for short fragments (e.g., single words or sentence
parts in answer options), as long as their meaning is translated.

o Ensure that all options from the source are preserved; omissions or additions are critical.”
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Figure 5: GEMBA-ESA-JSON prompt with illustrative subset of structured few-shot examples
(without system prompt).

[ {

"role": "user",
"content": "Text type: general-purpose or continuous text
English source: My friends went to the cinema.
Portuguese translation: Os meus amigos foi ao cinema."

oA
"role": "assistant",
"content": "{
'target_seg_backtranslation': 'My friends was to the cinema.',
'evaluation': [{
'span_target': 'foi',
'span_original': 'went',
'error_type': 'grammar',
'severity': 'major',
'explanation': 'Wrong verb agreement; <«amigos» is plural, so verb should be «foram».

This is a source-side error and should not be corrected in the target.',

'correction': 'Os meus amigos foram ao cinema.'}]
}ll

} A
"role": "user",
"content": "Text type: general-purpose or continuous text
English source: She is an experienced cardiac surgeon.
German translation: Sie ist eine Arztin."

oA
"role": "assistant",
"content": "{
'target_seg_backtranslation': 'She is a doctor.',
'evaluation': [{
'span_target': 'Arztin',
'span_original': 'cardiac surgeon',
'error_type': 'undertranslation',
'severity': 'major',
'explanation': 'The translation omits the specificity of the profession and experience;
«cardiac surgeon» is reduced to «doctor».',
'correction': 'Sie ist eine erfahrene Herzchirurgin.'}]
}II
oA
"role": "user",
"content": "Text type: general-purpose or continuous text

English source:
A 44-year-old female presents to the office for evaluation of
a lump on her neck that she noted 1 week ago.
She denies any tenderness, fever, weight loss, or fatigue.
Physical examination reveals a 2cm freely movable mass in the lower left lobe of the thyroid.
In addition to thyroid-stimulating hormone and free thyroxine levels,
the most appropriate initial method to investigate this lesion is:
(1) a nuclear thyroid scan
(2) an iodine-131 scan
(3) fine-needle aspiration
(4) ultrasonography of the thyroid gland

Italian translation:
Una donna di 44 anni si presenta in ufficio per valutare un nodulo sul collo notato una settimana fa.
La donna nega di avere dolori, febbre, perdita di peso o affaticamento.
L'esame fisico rivela una massa di 2 cm liberamente mobile nel lobo inferiore sinistro della tiroide.
Oltre ai livelli di ormone stimolante la tiroide e di tiroxina libera,
il metodo iniziale piu appropriato per indagare questa lesione &
(1) un'ecografia della tiroide
(2) un'ecografia allo iodio
(3) un'aspirazione con ago fine
(4) un'ecografia della tiroide"
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A.3 Meta-Evaluation

To assess automated span annotation qual-
ity of GEJ, we computed the Span-F1 score
according to the Span-ACES reference imple-
mentation'®, which compares predicted error
spans with the human-labeled spans. Empty
or whitespace-only error spans in either pre-
diction or gold standard were excluded from
F1 calculation as in the reference implementa-
tion'®. In addition to Span-F1, we compute
Span-Recall, which captures how many of the
human-annotated spans were successfully iden-
tified by the model, without trying to account
for false positives.

Both scores are computed based on textual
content overlap between predicted and refer-
ence error spans (tagged with <v>...</v>),
not on character offsets or positions or mul-
tiplicity. Empty and whitespace-only spans
in either prediction or gold standard were ex-
cluded from the F1 and Recall computation,
following the Span-ACES reference implemen-
tation. Span-F1 balances precision and recall,
while Span-Recall focuses on how many gold
spans were recovered.

Empty tags are valid annotations in Span-
ACES, especially for omission and punctuation,
where the error involves missing or absent con-
tent. However, since Span-F1 and Span-Recall
exclude empty and whitespace-only spans in a
preprocessing step, omission samples lack us-
able reference spans, which prevents reliable
scoring. We did not develop an alternative met-
ric for omissions, as unlike for non-empty spans
there is no way to distinguish between correctly
and incorrectly detected omissions based on the
(empty) span content. For this reason, we ex-
cluded omissions (alongside other empty-span
categories) even though it had good language
coverage. In contrast to the Span-ACES ap-
proach, we require the detected translation
error type to match according to Table 6 for
the Span-Recall.

Yhttps://github.com/EdinburghNLP/ACES/blob/
6912157d/span_predictions/eval_span.py

Yhttps://github.com/EdinburghNLP/ACES/blob/
6912157d/span_predictions/eval_span.py#L36-L41
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L N GPT DeepSeek LLaMA Mistral
B/GEJ B/GEJ B/GEJ B/GEJ
Mistrans.
DA 23 .09/.56 -/.60 .32/.39  .60/.32
DE 982 .11/.21 0/.29 J14/.10  .22/.18
ES 28 .18/.62 0/.43 .21/.32  .35/.38
ET 14 .14/.42 -/.50 .24/.39  .47/.38
FR 214 .09/.18 0/.16 13/.06 .15/.06
HU 32 .08/21  -/.32 19/.17  .48/.47
LT 2 .50/.33 -/.58 .53/.00 .17/.33
NL 23 .07/.35 0/.30 .22/.11  .31/.45
PL 7 .23/.71 -/.30 .08/.08 .10/.08
PT 20 .10/.55 -/.53 .30/.36  .45/.45
RO 33 .06/.28 -/.69 .08/.10  .47/.40
SK 8 .00/.46 -/.25 J11/.22.40/.30
SL 18 .00/.30 -/.18 A3/.11 41/.35
SV 20 .00/.37 -/.52 .10/.13  .39/.32
Acc
BG 9 .10/.11 -/.48 Al/47  .45/.37
CS 341 .00/.01 0/.57 .01/.01 .01/.31
DA 11 .00/.17 -/.A7 J19/.07  .14/.35
DE 249 .00/.02 0/.11 .01/.01  .02/.07
EL 6 .00/.25 -/.38 .20/.17  .44/.38
ES 309 .00/.00 0/.70 .01/.00 .01/.09
ET 3 .00/.00 -/.A7 .00/.00 .00/.33
FI 6 .00/.25 -/.56 .00/.00 .43/.60
FR 10 .00/.25 -/.44 .21/.17  .50/.33
HU 3 .00/.00 -/.75 .22/.33  .33/.75
IT 5 .00/.50 1/.73 .33/.17  .20/.40
LT 5 .00/.00 -/.33 .00/.00 .23/.29
LV 8 .00/.17 0/.56 A17/.20  .33/.48
NL 14 .04/.00 -/.37 .19/.00 .30/.17
PL 299 .00/.01 0/.72 .00/.01 .01/.29
PT 11 .00/.09 -/.67 17/.57  .59/.45
RO 7 .00/.25 -] 15/.13  .48/.57
SK 6 .00/.00 -/.25 .00/.00 .19/.12
SL 11 .00/.00 -/.52 .07/.07  .23/.50
SV 12 .14/.12 -/.61 .10/.29  .39/.50
Fluency
DE 678 .00/.00 .00/.26 .02/.04 .01/.43

Figure 6: Span-F1 by model and language for Base-
line (B) and GEJ, shown for MQM categories: (a)
Mistranslation, (b) Accuracy, and (c) Fluency.


https://github.com/EdinburghNLP/ACES/blob/6912157d/span_predictions/eval_span.py
https://github.com/EdinburghNLP/ACES/blob/6912157d/span_predictions/eval_span.py
https://github.com/EdinburghNLP/ACES/blob/6912157d/span_predictions/eval_span.py#L36-L41
https://github.com/EdinburghNLP/ACES/blob/6912157d/span_predictions/eval_span.py#L36-L41

BG CS DA DE EL ES ET FI FR HU IT LT LV NL PL PT RO SK SL SV
Accuracy
addition 10 10 12 11 7 8 5 6 11 4 5 7 9 15 5 11 10 8 13 13
no-translate - - 100 - - - - - - - - - -
untranslated - - 210 - - - - - - - - - - - - - - - -
wrong-language - 352 - - -329 - - - - - - - - 328 - - - - -
Total 10 362 12 321 7 337 5 6 11 4 5 7 9 15333 11 10 8 13 13
Fluency
grammar - - 721 - - - - - - - - - - - - - - - -

Table 8: Sample counts per target language in the Span-ACES dataset

Languages N
CS, ES, SL 7265
HU 7264
IT, PL, PT, RO, SK 7263
BG, DA, EL, LT, LV, NL, SV 7262
DE, ET, FI, FR 7261
Total 145252

Table 9: Sample counts per target language in the

FLORES dataset
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B Appendix: Model Acc.

B.1 Datasets

To ensure the completeness and structural in-
tegrity of the multilingual evaluation datasets
used in this study, a validation and clean-
ing pipeline was applied to EU20 and Global-
MMLU datasets. The structural analysis and
cleaning of the translated evaluation datasets
is conducted across various subsets, splits, and
languages. It ensures that in the cleaned
dataset, translations are correctly assigned, all
questions and answers are present, answers re-
main consistent across languages, and that all
languages are fully represented. Each dataset
is described as consisting of one or more sub-
sets, which again consist of one or more splits,
which contain a set of per-language samples.
Each per-language sample in a dataset is iden-
tified based on its sample ID, subset, split,
and language. If there are no IDs the origi-
nal dataset, a sample counter combined with
the subset and split of the dataset serves as a
surrogate ID. The sample ID may be a string
or tuple of strings, and is chosen to be unique
across splits and subsets of the dataset while
being identical for different language versions
of the same sample. Doing so allows for the
English original dataset to be matched with
the translations. Also, when there are multi-
ple alternative translations of a dataset (EU20
vs. Global-MMLU), care is taken to ensure that
corresponding samples have the same ID, so
alternative translations can be matched with
each other. Each individual language version
of each sample is formatted into a single text
intended for quality assurance purposes, and
missing questions, answers and choices are iden-
tified. For the purpose of cross-language checks,
the translated samples are matched with their
English originals. Checks are performed to
determine whether one or more, but not all
translations of a sample are missing in all tar-
get languages. Table 10 reports the results
of these checks. Samples that were not trans-
lated into any target language are identified
separately. Where possible, a check is per-
formed whether translated samples have been
assigned to the correct split or subset. As a
sanity check for the choice of sample IDs, cases
where correct answers in the translated ver-
sion are inconsistent with the English original
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answers are identified — doing so is possible
because the answers in all analyzed datasets
are either the index of a multiple-choice op-
tion or, in case of GSMS8K, plain numbers, and
thus are identical across all languages. Further-
more, statistics on the number of uncleaned
per-language samples, samples with missing
content and missing translations are collected
on the number of samples per subset, split, and
language. In a cleaning step, all samples with
missing or incomplete translations are removed.
Once all inconsistencies have been identified
and resolved, the cleaned dataset is saved as
a JSONL file. Table 11 summarizes the final
cleaned dataset statistics.

B.2 Models

Table 12 lists the models whose prediction ac-
curacy is analyzed in the Error vs. Correction
comparison and the Error-Performance Associ-
ation analysis.

B.3 Error vs. Correction Comparison -
Detalils

Table 13 shows the detailed results of the error
vs. correction comparison.

B.4 Error-Performance Association
Analysis - Details

Tables 14, 15 and 16 illustrate more detailed re-
sults of the error-performance association anal-
ysis.

B.5 Error Impact Quantification -
Details



Dataset Subset Split Missing Lang. Missing Content

eu20_arc challenge test 0 11
eu20_arc challenge train 948 3
eu20_ arc challenge validation 0 3
eu20_arc easy test 0 39
eu20_arc easy train 1869 )
eu20_arc easy validation 0 5
eu20_ gsm8k main train 1972 0
eu20_ hellaswag main validation 1857 327
eu20 mmlu business test 0 12
eu20 mmlu humanities test 0 99
eu20 mmlu medical test 0 40
eu20 mmlu other test 0 15
eu20 mmlu social sciences  test 0 99
eu20 mmlu stem dev 0 2
eu20 mmlu stem test 0 96
eu20_ truthfulga multiple choice validation 0 3
globalmmlu humanities test 1 0
globalmmlu stem test 2 2

Table 10: EU20, and GlobalMMLU: Number of samples with missing translations or content.

Dataset Task Split N

eu2( arc test 3498

2338 :EE :fj,in 86(1) Model Name / HF Link #Params
eu20 gsm8k test 1319 Aya 32.3B
eu20 gsm8k train 0 Command-A 111B
eu20 hellaswag val 9658 Gemma 27.4B
eu20 hellaswag train 0 Mistral 24B
eu20 mmlu dev 283 Pharia 7.0B
eu20 mmlu val 0 Phi 5.6B
eu20 mmlu test 13681 Qwen 32.8B
eu20 truthfulqa val 814 Salamandra 7.8B
globalmmlu mmlu test 2845

Table 12: Model Overview

Table 11: EU20 and GlobalMMLU after cleaning
(i.e., removing samples with missing content or
translations).
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https://huggingface.co/CohereLabs/aya-expanse-32b
https://huggingface.co/CohereLabs/c4ai-command-a-03-2025
https://huggingface.co/google/gemma-3-27b-it
https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503/
https://huggingface.co/Aleph-Alpha/Pharia-1-LLM-7B-control-aligned-hf
https://huggingface.co/microsoft/Phi-4-multimodal-instruct
https://huggingface.co/Qwen/Qwen2.5-32B
https://huggingface.co/BSC-LT/salamandra-7b-instruct

Count Fraction
E* E- E* E- Aff. Unaff. N, NAI
Gt G Gt GT Gt G Gt G (N,

Lang. Model

CS Gemma, 79 8 14 31 .60 .06 .11 .23 22 110 132 —.045
Mistral 87 9 9 27 .66 .07 .07 .20 18 114 132 +.000
Pharia 28 15 10 79 .21 .11 .08 .60 25 107 132 +.038
Phi 47 16 12 57 .36 .12 .09 .43 28 104 132 +.030
Qwen 88 9 14 21 .67 .07 .11 .16 23 109 132 —.038
Salamandra 61 4 9 58 .46 .03 .07 .44 13 119 132 —.038
Aya 79 5 13 35 .60 .04 .10 .27 18 114 132 —-.061
Command-A 90 8 12 22 .68 .06 .09 .17 20 112 132 —.030
DE Gemma, 69 3 6 26 .66 .03 .06 .25 9 95 104 -—.029
Mistral 75 3 8 18 .72 .03 .08 .17 11 93 104 —.048
Pharia 44 9 8 43 .42 .09 .08 .41 17 87 104 +.010
Phi 57 5 11 31 .55 .05 .11 .30 16 88 104 —.058
Qwen 75 3 8 18 .72 .03 .08 .17 11 93 104 —.048
Salamandra 45 8 9 42 .43 .08 .09 .40 17 87 104 -.010
Aya 67 4 5 28 .64 .04 .05 .27 9 95 104 -—.010
Command-A 76 2 10 16 .73 .02 .10 .15 12 92 104 -—-.077
ES Gemma, 61 3 9 33 .58 .03 .08 .31 12 94 106 —.057
Mistral 68 6 9 23 .64 .06 .08 .22 15 91 106 —.028
Pharia 38 9 7 52 .36 .08 .07 .49 16 90 106 +.019
Phi 56 6 8 36 .53 .06 .08 .34 14 92 106 -—.019
Qwen 70 4 9 23 .66 .04 .08 .22 13 93 106 —.047
Salamandra, 45 4 7 50 .42 .04 .07 .47 11 95 106 —.028
Aya 67 5 8 26 .63 .05 .08 .25 13 93 106 —.028
Command-A 69 7 8 22 .65 .07 .08 .21 15 91 106 —.009
FR Gemma 68 3 6 24 .67 .03 .06 .24 9 92 101 —-.030
Mistral 73 4 10 14 .72 .04 .10 .14 14 87 101 —.059
Pharia 40 8 8 45 .40 .08 .08 .45 16 85 101 +4.000
Phi 50 6 10 35 .50 .06 .10 .35 16 85 101 —.040
Qwen 66 4 9 22 .65 .04 .09 .22 13 88 101 —.050
Salamandra 48 2 10 41 .48 .02 .10 .41 12 89 101 -—.079
Aya 69 4 5 23 .68 .04 .05 .23 9 92 101 -—-.010
Command-A 76 1 9 15 .75 .01 .09 .15 10 91 101 -.079
IT Gemma 90 13 5 38 .62 .09 .03 .26 18 128 146 +.055
Mistral 97 10 4 35 .66 .07 .03 .24 14 132 146 +.041
Pharia 68 12 12 54 .47 .08 .08 .37 24 122 146 +.000
Phi 67 18 22 39 .46 .12 .15 .27 40 106 146 —.027
Qwen 97 4 11 34 .66 .03 .08 .23 15 131 146 —.048
Salamandra, 60 5 5 76 .41 .03 .03 .52 10 136 146 +.000
Aya 88 10 6 42 .60 .07 .04 .29 16 130 146 +.027
Command-A 108 7 5 26 .74 .05 .03 .18 12 134 146 +.014
RO Gemma 62 6 8 21 .64 .06 .08 .22 14 83 97 —.021
Mistral 71 5 6 15 .73 .05 .06 .15 11 86 97 —.010
Pharia 30 8 10 49 .31 .08 .10 .51 18 79 97 —.021
Phi 46 8 7 36 .47 .08 .07 .37 15 82 97 +.010
Qwen 63 5 7 22 .65 .05 .07 .23 12 85 97 —.021
Salamandra 37 4 5 51 .38 .04 .05 .53 9 88 97 -—.010
Aya 57 4 5 31 .59 .04 .05 .32 9 88 97 —.010
Command-A 75 3 7 12 .77 .03 .07 .12 10 87 97 —.041

Table 13: Cross-tabulation of model predictions comparing EU20-MMLU samples with detected mistrans-
lation errors to their error-free counterparts in Global-MMLU, reported in absolute counts and relative
proportions. Legend: ET /E~ = EU20 correct/incorrect, Gt /G~ = Global correct/incorrect; Affected
(N,) = predictions differ between EU20 and Global-MMLU; Unaffected = predictions match; N, =
number of samples; Net Accuracy Impact (NAI) = GT/E~ - E*/G™, i.e., gain minus loss in prediction
acc due to improved translations.
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Language BG CS DA DE EL ES ET FI FR HU IT LT LV NL PL PT RO SK SL SV
ARC

acc. 0 25 38 0 12 38 38 62 38 62 12 0 25 0 12 50 12 0 12 0
f./s. 2 0 0 0 0 0 62 0 0 50 0 0 0 O 0 25 0 o0 0 0
mis. 12 50 0 0 12 0 88 12 0 8 0 100 75 0 12 38 50 0 8 0
Hellaswag

acc. 2 0 0 o0 12 12 0 O 0 0 0 0 25 0 0 0 0 O 0 0
f./s. 0 0 0 12 0 0 0 0 0 0 0 0 0 O 0 0 0 O 0 0
mis. o 0 12 0 0 12 12 25 12 12 0 0 0 0 12 0 0 0 12 25
MMLU

acc. 0 0 12 25 8 0 0 12 0 12 75 88 75 0 0 50 12 50 O

0
f./s. 62 0 12 0 0 100 12 25 100 12 12 88 25 O 12 0 25 75 62 12
mis. 88 62 38 75 75 88 88 25 100 75 88 88 75 75 100 88 100 88 100 50

Table 14: % of LLMs with significant (p < 0.05) x? result for LLM accuracy independence between
samples without detected errors and samples with detected errors exclusively of specified error category
as detected by GPT (across benchmarked LLMs, per benchmark).

Language BG CS DA DE EL ES ET FI FR HU IT LT LV NL PL PT RO SK SL SV
ARC

acc. 0 75 25 75 100 38 50 50 75 88 12 25 62 0 38 12 8 0 25 25
f./s. 38 62 12 75 50 100 25 50 0 62 75 75 100 O 50 100 88 62 25 25
mis. 12 8 38 25 75 62 8 75 25 75 0 88 100 O 88 88 88 25 75 88
Hellaswag

acc. 0 0 0 50 0 0o 0 O 0 0 0 0 12 0 12 12 0 38 0 0
f./s. 0 0 0 12 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 O
mis. 0 0 12 0 0 100 0 0 12 38 0 38 0 0 12 75 75 0 25 25
MMLU

acc. 12 25 8 25 38 12 25 38 12 38 0 12 12 0 25 50 0 50 12 75
f./s. 5 0 0 25 0 25 38 12 0 12 12 25 0 0 O 0 0 0 0 12
mis. 75 12 12 62 12 50 12 38 100 25 38 100 88 38 50 62 25 25 62 25

Table 15: % of LLMs with significant (p < 0.05) x? result for LLM accuracy independence between
samples without detected errors and samples with detected errors exclusively of specified error category
as detected by Llama (across benchmarked LLMs, per benchmark).

Language BG CS DA DE EL ES ET FI FR HU IT LT LV NL PL PT RO SK SL SV
ARC

acc. 12 38 12 12 0 8 062 75 75 38 0 25 12 75 38 62 25 75 0
f./s. 25 0 50 62 0 0 12 0 50 12 0 12 62 0 0 75 0 0 0 0
mis. 75 88 88 88 25 88 62 8 100 75 100 75 75 100 100 100 75 88 100 75
Hellaswag

acc. 0 0 25 0 0 0 0 12 12 0 0 0 O 0 0 0 12 0 12 0
f./s. 0 0 0 0 38 0 0 25 0 0 0 0 0 12 12 12 0 0 0 0
mis. 0 0 12 50 38 0 0 50 25 62 0 0 12 0 62 0 38 25 0 12
MMLU

acc. 38 12 38 0 75 0 0 12 25 25 12 12 50 0 12 12 0 0 0 12
f./s. 12 8 12 25 0 100 75 12 8 25 100 O 38 8 38 12 38 88 38 62
mis. 88 88 100 100 38 88 75 83 100 88 100 88 88 100 88 100 100 100 100 100

Table 16: % of LLMs with significant (p < 0.05) x? result for LLM accuracy independence between
samples without detected errors and samples with detected errors exclusively of specified error category
as detected by Mistral (across benchmarked LLMs, per benchmark).
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Figure 7: This figure shows the approximate baseline model accuracies one heatmap per annotator LLM
for examples with no detected errors. Each heatmap shows, for each model (rows) and language (columns),
the approximate probability of a correct LLM response when no translation errors are present, computed
as the sigmoid of the intercept term (8;) of the logistic regression model.
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