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Abstract001

Machine-translated evaluation benchmarks002
are widely used to assess the multilingual ca-003
pabilities of large language models (LLMs).004
However, translation errors in such bench-005
marks remain underexplored, raising con-006
cerns about the reliability and comparabil-007
ity of multilingual evaluation. This study008
examines the types of translation errors009
that occur in benchmark translations and010
how they affect LLM performance. We an-011
alyze five widely used English benchmarks012
translated into 20 European languages, us-013
ing a validated LLM-based method to iden-014
tify span-level translation errors at scale.015
To assess the impact of these errors, we016
apply three complementary analyses: com-017
paring model accuracy on corrected vs. er-018
roneous translations, testing statistical as-019
sociations between error types and model020
performance, and estimating how strongly021
they affect model outcomes. Across all022
methods, meaning-related errors (mistrans-023
lations) lead to lower model performance,024
while other accuracy errors and fluency is-025
sues show weaker and more variable effects.026
Our results motivate translation-aware eval-027
uation practices and enable scalable detec-028
tion and analysis of translation artifacts.029

1 Introduction030

In multilingual evaluation, machine-translated031

datasets are commonly relied on as reference032

data, yet their translation quality is often over-033

looked, undermining the reliability and compa-034

rability of results (Choenni et al., 2024; Artetxe035

et al., 2020; Plaza et al., 2024).036

Translation quality can be assessed through037

multiple paradigms (Zhao et al., 2024). Human038

protocols, such as Direct Assessment (DA),039

Multidimensional Quality Metrics (MQM;040

Lommel et al., 2013, 2024), and Error Span041

Annotation (ESA; Kocmi et al., 2024), set the042

standard for translation evaluation, offering 043

increasing levels of diagnostic granularity (Fre- 044

itag et al., 2021). 045

More recently, researchers have treated 046

LLMs themselves as translation judges (“LLM- 047

as-a-judge”; Kocmi and Federmann, 2023b), 048

using zero- or few-shot prompting to tag MQM- 049

style error spans. This trend is exemplified by 050

GEMBA and GEMBA-ESA (Kocmi and Feder- 051

mann, 2023a; Kocmi et al., 2024), and by GPT- 052

based evaluators such as AutoMQM (Huang 053

et al., 2024) for inline span detection, or MQM- 054

APE (Lu et al., 2025), which uses automatic 055

post-editing to refine translations. 056

Prior work investigating the effects of trans- 057

lation artifacts on model performance relies 058

either on manual inspection of small sam- 059

ples (Artetxe et al., 2020; Plaza et al., 2024), 060

which provides qualitative insights but does 061

not scale, or on heuristics (Park et al., 2024; 062

Choenni et al., 2024) such as sentence length 063

ratios or learned quality estimation scores (e.g., 064

COMET-QE (Rei et al., 2020)), both of which 065

lack precision in identifying the type and loca- 066

tion of translation errors. In addition, most of 067

these studies are limited to single benchmarks 068

or languages (e.g. Spanish MMLU (Plaza et al., 069

2024) or XNLI (Artetxe et al., 2020)). 070

In this work, we bridge these two strands of 071

research by combining automated span-level 072

MQM annotation of machine-translated bench- 073

marks with large-scale analyses that examine 074

both the types of translation errors that occur 075

and how these errors affect the performance 076

of multilingual LLMs. Our study analyzes 077

the EU20 benchmark suite (Thellmann et al., 078

2024), which comprises five widely used eval- 079

uation datasets translated into 20 European 080

languages and covers diverse task types such 081

as logical reasoning, factual knowledge, and 082

truthfulness. 083
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Figure 1: LLM-based TQE pipeline combining span-level MQM annotation and model performance
analysis. The workflow involves (1) automatic error annotation (GEJ), (2) downstream evaluation of
model accuracy, and (3) targeted analysis of how translation errors affect performance.

Our main contributions are as follows:084

1. Validated LLM-based MQM annota-085

tion for multilingual benchmarks: We086

introduce GEJ (GEMBA-ESA-JSON), an087

LLM-as-a-judge method based on Kocmi088

et al. (2024) with improved prompting089

and structured span-level MQM outputs.090

We validate GEJ on Span-ACES (Moghe091

et al., 2025), a benchmark for span-level er-092

ror detection, using annotations from four093

different LLMs acting as GEJ-annotators094

and assess false-positive plausibility using095

high-quality FLORES-200 reference trans-096

lations (Team et al., 2022).097

2. Impact analysis of translation errors098

on LLM predictions: Following a three-099

step pipeline (see Figure 1), we first anno-100

tate all 20 language versions of the EU20101

suite using GEJ with three LLMs as an-102

notators. We then evaluate eight multi-103

lingual LLMs on the EU20 benchmarks104

to obtain model predictions. Finally, we105

combine the predictions with the GEJ an-106

notations to analyze how translation er-107

rors affect model performance. We focus108

on key MQM categories such as Accuracy109

and Fluency, with particular attention to110

mistranslations. Our analysis includes:111

(i) comparing model performance on EU20112

vs. alternative human-corrected transla-113

tions, (ii) testing for statistical associa-114

tions between detected errors and model115

accuracy, and (iii) estimating how strongly116

detected errors of different types affect 117

LLM accuracy. 118

2 Related Work 119

Translation artifacts and their effects. 120

Several studies have shown that translation 121

artifacts can undermine the reliability of 122

model evaluation: Choenni et al. (2024) found 123

that MT-generated test sets may overestimate 124

model capabilities, especially in low-resource 125

languages; Artetxe et al. (2020) demonstrated 126

that subtle “translationese” can bias cross- 127

lingual benchmarks like XNLI; Plaza et al. 128

(2024) reported that mistranslations in Span- 129

ish MMLU data cause 6–13% accuracy loss 130

for GPT-4, with up to 60% of failures directly 131

linked to translation errors; and Park et al. 132

(2024) observed similar effects for VQA models. 133

While these findings underscore the need for 134

rigorous quality control, prior work remains 135

limited in scale and granularity. 136

Multilingual benchmarks. Recent multi- 137

lingual benchmarks range from carefully cu- 138

rated, manually translated datasets (e.g., Su- 139

perGLEBer (Pfister and Hotho, 2024), Scan- 140

dEval (Nielsen, 2023), IberoBench (Baucells 141

et al., 2025), FrenchBench (Faysse et al., 2025), 142

BenCzechMark (Fajcik et al., 2025)) to large- 143

scale resources generated via machine transla- 144

tion. While manually constructed benchmarks 145

offer high quality, they are costly and diffi- 146

cult to scale, prompting the use of machine 147

translation for broader coverage (e.g., Global 148

MMLU (Singh et al., 2025), XNLI (Conneau 149
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et al., 2018), OKAPI (Lai et al., 2023), and150

LAMBADA (Paperno et al., 2016)). However,151

many such resources lack transparent quality152

control. Our work advances the field by com-153

bining automated span-level error annotation154

with statistical analysis to assess translation155

error impact on model performance.156

3 GEJ and Meta-Evaluation157

Figure 2: Meta-evaluation: TQE-benchmarks
(Span-ACES and FLORES) are annotated by LLMs
using GEJ. Span overlap analysis yields recall and
F1 scores and false positive rates.

This section introduces two key components158

of our approach: (1) the GEJ annotator, (2) the159

meta-evaluation of GEJ, as illustrated in Fig-160

ure 2.161

GEJ is a GEMBA-ESA1 adaptation, ex-162

tended with curated multilingual few-shot ex-163

amples, covering a broad range of error types164

and both structured content (e.g., multiple-165

choice questions) and general-purpose text (see166

Table 5, Appendix A.2). We include GEMBA-167

ESA as baseline for comparison with GEJ.168

We employ four LLMs as GEJ annota-169

tors, all prompted identically – GPT-4o-mini2,170

DeepSeek R13, Llama-4 Scout4, and Mistral-171

Large-Instruct-24115 – to identify error spans172

in a few-shot setting, without assigning quality173

scores. The LLM-annotators are prompted as174

1github.com/MicrosoftTranslator/GEMBA
2platform.openai.com/docs/models/gpt-4o-mini
3api-docs.deepseek.com/guides/reasoning_model
4HF: meta-llama/Llama-4-Scout-17B-16E-Instruct
5HF: mistralai/Mistral-Large-Instruct-2411

L N GPT DeepSeek LLaMA Mistral

B/GEJ B/GEJ B/GEJ B/GEJ

Mistrans.

DA 24 .12/.58 .00/.71 .25/.42 .71/.33
DE 1044 .15/.20 .00/.41 .14/.09 .29/.21
ES 29 .24/.69 .00/.55 .17/.34 .38/.38
ET 15 .27/.47 .00/.67 .27/.47 .60/.40
FR 225 .12/.16 .00/.21 .12/.05 .16/.07
HU 34 .09/.23 .00/.43 .20/.20 .56/.54
LT 2 1.0/.50 .00/1.0 1.0/.00 .50/.50
NL 23 .09/.35 .00/.39 .22/.13 .35/.48
PL 8 .38/.75 .00/.62 .12/.12 .12/.12
PT 21 .09/.59 .00/.59 .36/.36 .52/.50
RO 33 .06/.30 .00/.82 .09/.12 .64/.42
SK 9 .00/.44 .00/.44 .11/.22 .56/.33
SL 19 .00/.32 .00/.21 .11/.11 .53/.37
SV 21 .00/.38 .00/.67 .10/.14 .48/.33

Table 1: Span-Recall for MQM mistranslation., by
model and language, for GEMBA-ESA (B) and
GEJ.

shown in Figure 4 to produce JSON-structured 175

output containing an array of identified error 176

spans and error types from the MQM categories 177

detailed in Table 7 of Appendix A.1. 178

For meta-evaluation, we focus on two TQE- 179

benchmark datasets: Span-ACES and FLO- 180

RES. We employ a subset of Span-ACES 6, a 181

contrastive dataset of 36,476 samples over 146 182

language pairs, each annotated for 68 error cat- 183

egories. Table 8 in Appendix A.1 summarizes 184

the subset used in our meta-evaluation, which 185

covers MQM Accuracy subtypes (e.g., mistrans- 186

lation, addition, over/under-translation) and 187

Fluency subtypes (e.g., grammar). 188

In contrast, WMT introduced error-span sub- 189

tasks for quality estimation in 2023 (Blain et al., 190

2023; Zerva et al., 2024), but so far only En- 191

glish–German (2023) provides relevant span- 192

based gold labels, while for English–Spanish 193

(2024) only input data are available. In Span- 194

ACES, only one error type is annotated per 195

sample; any additional errors are not labeled. 196

As a consequence, extra correctly identified 197

errors are counted as false positives, leading 198

to an underestimation of precision and Span- 199

F1. We therefore report Span-Recall as our 200

primary metric, as it measures the recovery of 201

annotated gold spans without being affected 202

by unannotated errors. Formally, Span-Recall 203

is defined as the proportion of reference error 204

spans (including error type labels) that are 205

6github.com/EdinburghNLP/ACES
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L N GPT DeepSeek LLaMA Mistral

B/GEJ B/GEJ B/GEJ B/GEJ

Accuracy

BG 10 .10/.10 .00/.60 .40/.30 .50/.40
CS 356 .00/.01 .00/.61 .01/.01 .01/.31
DA 11 .00/.17 .00/.58 .17/.08 .18/.42
DE 311 .00/.01 .00/.16 .01/.00 .02/.07
EL 6 .00/.14 .00/.43 .14/.14 .50/.43
ES 328 .00/.00 .00/.79 .01/.00 .01/.09
ET 5 .00/.00 .00/.60 .00/.00 .00/.40
FI 6 .00/.17 .00/.83 .00/.00 .67/.50
FR 11 .00/.09 .00/.55 .18/.09 .55/.36
HU 4 .00/.00 .00/.75 .25/.25 .25/.75
IT 5 .00/.40 .20/.80 .40/.20 .20/.40
LT 6 .00/.00 .00/.43 .00/.00 .33/.29
LV 8 .00/.11 .00/.67 .11/.11 .38/.56
NL 15 .07/.00 .00/.47 .20/.00 .33/.20
PL 324 .00/.01 .00/.75 .00/.01 .01/.29
PT 11 .00/.09 .00/.82 .18/.36 .82/.45
RO 10 .00/.10 .00/.80 .20/.10 .50/.60
SK 7 .00/.00 .00/.38 .00/.00 .29/.12
SL 13 .00/.00 .00/.69 .08/.08 .23/.54
SV 13 .08/.08 .00/.77 .08/.15 .38/.46

Fluency

DE 700 .00/.00 .00/.42 .03/.04 .02/.51

Table 2: Span-Recall by model and language for
GEMBA-ESA (B) and GEJ, for MQM: (a) Accu-
racy, (b) Fluency.

correctly predicted: Span-Recall = |𝑆pred∩𝑆ref|
|𝑆ref|

206

where 𝑆pred and 𝑆ref denote the sets of pre-207

dicted and reference error spans, respectively,208

each represented as tuples of (span, error type209

label).210

Since GEJ produces MQM-style tags but211

Span-ACES uses a different annotation scheme,212

we mapped Span-ACES labels to MQM cat-213

egories, considering only error types that un-214

ambiguously map to our MQM subset (Ap-215

pendix A.1, Table 6). To complement Span-216

ACES, we use FLORES-2007, a high-quality217

parallel dataset with about 7,000 samples per218

language (145,252 total). On FLORES, we219

estimate false positive rates using the mean220

sentence-level false positive rate, 𝐹𝑃𝑅𝑠 =221

𝑆err/𝑁, and the mean number of error spans222

per 1,000 words, 𝐸𝑅𝑤 = (𝑛err/𝑊)⋅1000, where223

𝑆err is the number of sentences with at least one224

predicted error, 𝑁 is the total number of sen-225

tences, 𝑛err is the total predicted error spans,226

and 𝑊 is the total word count (based on the227

English reference).228

Table 1 and Figure 2 compare Span-Recall229

7huggingface.co/datasets/facebook/flores

for GEMBA-ESA baseline (B) and GEJ across 230

all LLM-annotators and languages. We achieve 231

about 90% extraction rate of about 93% for 232

Span-ACES and 91% for FLORES with GPT. 233

Across nearly all languages and models, GEJ 234

achieves higher Span-Recall than the baseline, 235

with the largest improvements for DeepSeek 236

and Mistral – for example, DeepSeek’s recall on 237

German for mistranslation rises from .00 to .41, 238

on Polish for Accuracy from .00 to .75, and for 239

Mistral on German for Fluency from .02 to .51. 240

On average across all languages and models, 241

GEJ achieves a Span-Recall improvement of 242

0.23 for mistranslation, 0.29 for Accuracy, and 243

0.23 for Fluency compared to the baseline. 244

𝐹𝑃𝑅𝑠 𝐸𝑅𝑤

B/GEJ B/GEJ

Mistrans.

GPT .29/.38 13.82/20.52
DeepSeek .00/.42 .21/23.88
LLaMA .42/.14 23.66/6.79
Mistral .49/.56 34.28/31.53

Accuracy

GPT .00/.07 .04/3.20
DeepSeek .00/.50 .04/28.35
LLaMA .01/.18 .52/9.37
Mistral .06/.21 3.29/10.48

Fluency

GPT .28/.02 13.16/1.04
DeepSeek .00/.09 .03/4.34
LLaMA .06/.00 2.98/.23
Mistral .17/.12 8.24/6.46

Table 3: Mean 𝐹𝑃𝑅𝑠 and 𝐸𝑅𝑤 for GEMBA-ESA
(B) and GEJ on FLORES, for MQM categories
Accuracy, Fluency, and mistranslation.

Table 3 reports mean 𝐹𝑃𝑅𝑠 and 𝐸𝑅𝑤 245

for GEMBA-ESA (B) and GEJ on FLORES. 246

Across most categories and models, GEJ ex- 247

hibits higher 𝐹𝑃𝑅𝑠 and 𝐸𝑅𝑤 values than the 248

baseline, indicating a greater tendency to label 249

errors in reference translations. On average 250

across all categories and models, GEJ marks 251

reference translations as erroneous about 0.07 252

more often per sentence (𝐹𝑃𝑅𝑠) and produces 253

3.4 more error spans per 1,000 words (𝐸𝑅𝑤) 254

than the baseline (a 39% relative rise). The 255

significance of this increase should be taken 256

into account when interpreting downstream 257

performance analyses based on error counts. 258
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4 Performance Impact Analysis259

To assess the impact of translation errors on260

LLM performance, we follow the three-step261

TQE pipeline illustrated in Figure 1.262

All EU20 benchmark datasets are automat-263

ically annotated for translation errors using264

GEJ with three state-of-the-art LLMs (GPT-265

4o-mini, Llama-4 Scout, and Mistral-Large-266

Instruct-2411; see Sections 3). The benchmark267

datasets annotated in this process are detailed268

in Section 4.1.269

We evaluated eight recent instruction-tuned270

multilingual LLMs (see Appendix B.2, Ta-271

ble 12) on the EU20 benchmark datasets us-272

ing a variant of EleutherAI’s LM Evaluation273

Harness8 recording binary prediction outcomes274

(correct/incorrect) for each sample.275

Finally, we combine model predictions with276

GEJ span-level MQM error annotations to ana-277

lyze the effect of translation errors on model ac-278

curacy, as detailed in Sections 4.2, 4.3 and 4.4.279

4.1 Benchmark Datasets280

To quantify the impact of automatically de-281

tected translation errors, we applied GEJ282

to detect translation errors on translated283

versions of five LLM benchmark datasets:284

MMLU (Hendrycks et al., 2021), ARC (Clark285

et al., 2018), HellaSwag (Zellers et al., 2019),286

GSM8K (Cobbe et al., 2021), and Truth-287

fulQA (Lin et al., 2022). Translations were288

sourced from EU20 (Thellmann et al., 2024),289

translated via DeepL9 into the 20 official EU290

languages supported by DeepL, and Global-291

MMLU (Singh et al., 2025), combining Google292

Translate10 with professional and community293

post-editing across 42 languages. Global-294

MMLU features high-quality translations for295

Spanish, French, German, and Italian, and296

community translations for Czech and Roma-297

nian. We excluded Portuguese as it is of the298

Brazilian variety and our focus is on European299

languages.300

Before applying GEJ, we verified the struc-301

tural integrity of all translated datasets by302

aligning each sample with its English original303

and checking for completeness, split and subset304

8github.com/EleutherAI/lm-evaluation-harness
9developers.deepl.com/docs

10cloud.google.com/translate/docs/reference/api-
overview

assignment11, and consistency of correct an- 305

swers across languages. Samples with missing 306

or incomplete translations in one or more of the 307

languages under investigation were excluded 308

from our analysis. The results of these checks 309

are summarized in Appendix B.1 in Table 10, 310

while the final cleaned dataset statistics are 311

shown in Table 11. 312

4.2 Error vs. Correction Comparison 313

In our first analysis, we leverage of the fact that 314

Global-MMLU and EU20-MMLU are alterna- 315

tive translations of the same dataset. Specifi- 316

cally, we match EU20-MMLU samples where 317

GEJ, with GPT-4o-mini as annotator LLM, 318

detected errors of type mistranslation but not 319

other types of errors, with the correspond- 320

ing Global-MMLU samples in languages with 321

human-reviewed translations (see Dataset Sec- 322

tion 4.1), if GEJ detected no errors in the latter. 323

We denote the total number of such samples 324

𝑁𝐶 (for “corrected”, since the EU20 version 325

is considered incorrect and the Global-MMLU 326

version is correct according to GEJ). 327

We construct cross-tabulations of the binary 328

Global-MMLU and EU20-MMLU downstream 329

evaluation outcomes (correct/incorrect) per 330

model, focusing on differences in prediction 331

correctness. For this purpose, we consider the 332

the number𝑁𝐺 (for Gain) of samples where the 333

model is incorrect on EU20-MMLU but correct 334

on Global-MMLU and the converse number 335

𝑁𝐿 (for Loss) of samples where the model is in- 336

correct on Global-MMLU but correct on EU20- 337

MMLU. Thus, 𝑁𝐴 = 𝑁𝐿+𝑁𝐺 (for Affected) is 338

the number of samples for which the prediction 339

correctness differs between the two translations. 340

To measure the effect of translation corrections 341

on model accuracy, we define the Net Accuracy 342

Impact (NAI) as the difference between the 343

proportions of losses and gains among the 𝑁𝐶 344

“corrected” samples: NAI = 𝑁𝐿−𝑁𝐺
𝑁𝐶

. 345

A negative NAI potentially indicates that 346

model performance suffers under incorrect 347

translations, in line with the expectation that 348

mistranslations reduce model performance. 349

The results of this analysis are presented 350

succinctly in Table 4 and more elaborately in 351

Table 13 in Appendix B.3. The comparison 352

across six languages and eight models reveals 353

11Automated when unique IDs are available.
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#Affected (NAI)

Lang. CS DE ES FR IT RO
𝑁𝐶 132 104 106 101 146 97

Gemma 22 (−.045) 9 (−.029) 12 (−.057) 9 (−.030) 18 (+.055) 14 (−.021)
Mistral 18 (+.000) 11 (−.048) 15 (−.028) 14 (−.059) 14 (+.041) 11 (−.010)
Pharia 25 (+.038) 17 (+.010) 16 (+.019) 16 (+.000) 24 (+.000) 18 (−.021)
Phi 28 (+.030) 16 (−.058) 14 (−.019) 16 (−.040) 40 (−.027) 15 (+.010)
Qwen 23 (−.038) 11 (−.048) 13 (−.047) 13 (−.050) 15 (−.048) 12 (−.021)
Salamandra 13 (−.038) 17 (−.010) 11 (−.028) 12 (−.079) 10 (+.000) 9 (−.010)
Aya 18 (−.061) 9 (−.010) 13 (−.028) 9 (−.010) 16 (+.027) 9 (−.010)
Command-A 20 (−.030) 12 (−.077) 15 (−.009) 10 (−.079) 12 (+.014) 10 (−.041)

Table 4: EU20-MMLU “only mistranslations” vs. Global-MMLU “no errors”

a consistent pattern: models are more likely to354

predict incorrectly on EU20-MMLU samples355

with detected mistranslation errors than on356

their error-free Global-MMLU counterparts,357

so the gain at least slightly exceeds the loss358

across nearly all models and languages, with359

Italian and Pharia being the exception. For360

instance, in Romanian, Command-A shows a361

7.2% gain from corrected translations vs. 3.1%362

losses, and in French a 8.9% gain against a 1%363

loss, resulting in an NAI of -4.1% and -7.9%,364

respectively. The positive or near-zero NAI365

values which Pharia exhibits in most languages366

might be explained by the low overall model367

performance observed in Section 4.4.368

Although the number of affected samples per369

model is relatively low (ranging from 9 to 40 out370

of 97 to 146 samples), the commonly observed371

negative Net Accuracy Impact (NAI) across372

most models and all six languages indicates373

that further investigation may have merit.374

4.3 Error/Performance Association375

To extend our analysis beyond MMLU and376

human-verified translations, we examined377

whether the detection of translation errors of378

specific MQM error categories (Accuracy, Flu-379

ency) and error types (mistranslation) by GEJ380

is associated with a difference in LLM pre-381

diction correctness in the machine-translated382

EU20 benchmarks.383

Specifically, we consider the accuracy-based384

multiple-choice benchmarks ARC, Hellaswag,385

and MMLU, which have dichotomous accuracy386

metrics on the sample level. For each combina-387

tion of model, language, task, and error type,388

we perform a 𝜒2 independence test to assess389

whether LLM prediction correctness system-390

atically differs depending on the detection of391

specific error types. The 𝜒2 test aims to refute 392

the null hypothesis “𝐻0: The prediction cor- 393

rectness of the LLM considered is independent 394

of the detection of translation errors in the test 395

samples evaluated” at a significance level of 396

0.05. This method is well suited to our use 397

case, as both the detection of errors and LLM 398

prediction correctness for multiple-choice tasks 399

can be represented as binary variables at the 400

sample level. 401

mistrans. acc. fluency

ARC

GPT 31 22 8
Llama 60 43 54
Mistral 83 36 18

Hellaswag

GPT 7 3 1
Llama 21 6 1
Mistral 19 4 5

MMLU

GPT 78 25 32
Llama 46 28 11
Mistral 91 17 47

Table 5: Percentage of LLMs with significant (𝑝 <
0.05) 𝜒2 results for accuracy independence between
samples without errors and those with only the
specified error category, across languages, models,
annotators, and benchmarks.

We summarize the independence results of 402

the 𝜒2 analysis in Table 5: for each annotator 403

model, task, and error type, we computed the 404

proportion of models with a significant indepen- 405

dence result between translation error detection 406

and model prediction correctness. The purpose 407

of this analysis is to identify annotators and cat- 408

egories of detected translation errors that are 409

likely to impact model accuracy. The results 410

indicate that mistranslation errors are signifi- 411
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Pharia
Phi

Salamandra
Qwen

Aya
Mistral

Command-A
Gemma

GP
T

- - - - - - - - - - - - - - - -

- - - - - - - - -

mistranslation
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - -

- - - - - - - - - - - - - -
- - -

- - - - - - - - - - - -
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- - - - -
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- - -
- - - - - - - - -
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Figure 3: Effect of translation error types on model accuracy (Log-Odds 𝛽𝑒). Each heatmap cell shows
the estimated effect of a given error type on the probability of a correct model response, for each model
(row) and language (column). Cell color intensity reflects the effect size; cells marked with “–” indicate
non-significant effects based on the 95% bootstrap confidence interval.

cantly associated with model accuracy differ-412

ences in 78-91% of model-language combina-413

tions for MMLU, but 21% or less for Hellaswag.414

For ARC and MMLU, non-mistranslation Ac-415

curacy (“acc.”) errors show moderate effects in416

17-43% of model-language combinations. The417

impact of translation errors varies across tasks418

in our evaluation: mistranslation errors have a419

strong negative effect on MMLU, while in Hel-420

laswag, such phenomena are less pronounced.421

It is important to note that this 𝜒2 analysis422

can capture only associations, not causal ef-423

fects, and does not indicate effect strength.424

Nevertheless, the method provides a useful ini-425

tial quantitative indicator of the relevance of426

individual error types.427

4.4 Error Impact Quantification428

To complement the initial Chi-Square analy-429

sis, we conducted a logistic regression analysis430

to quantify the impact of different error types431

on model accuracy. For each model–language432

pair, we fitted a logistic regression model pre-433

dicting binary sample correctness based on the434

presence of error types:435

logit(𝑃 (correct)) = 𝛽0 + ∑
𝑒∈Errors

𝛽𝑒 ⋅ I𝑒436

where Errors = {accuracy, fluency, mistransla- 437

tion}, and I𝑒 is an indicator variable detected 438

errors of type 𝑒. The reference category no_er- 439

rors is captured in the intercept 𝛽0. Each co- 440

efficient 𝛽𝑒 estimates the change in log-odds 441

of a correct response relative to this baseline. 442

Negative coefficients indicate a reduction in 443

accuracy, positive coefficients an increase. 444

We computed nonparametric bootstrap con- 445

fidence intervals: for each model–language pair, 446

we performed 2500 bootstrap resamples, refit- 447

ted the model, and computed percentile-based 448

95% confidence intervals (CIs) for all coeffi- 449

cients. A coefficient with a CI entirely below 450

zero indicates a robust negative effect; a CI 451

overlapping zero indicates an uncertain effect. 452

This regression analysis complements the Chi- 453

Square tests by explicitly estimating, for each 454

error type, both the direction (positive or neg- 455

ative effect) and the magnitude (size) of the 456

effect on the log-odds of a correct model re- 457

sponse, with bootstrap CIs providing a more 458

robust assessment of these effects (coefficient 459

stability). 460

Figure 3 provides a visual summary of the es- 461

timated impact of translation errors on model 462

performance across tasks. These heatmaps il- 463
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lustrate that mistranslation errors consistently464

lead to strong and significant accuracy drops465

for high-performing models such as Qwen,466

Command-A, and Mistral across nearly all467

languages (e.g., Qwen: 20/20 languages sig-468

nificant, strongest effect –0.63 for Romanian;469

Mistral: up to –0.77 for French). In contrast,470

weaker models like Pharia and Salamandra471

show predominantly non-significant results for472

these errors.473

To quantitatively compare the impact of dif-474

ferent translation error types on model perfor-475

mance, we compute two key statistics for each476

error type 𝑓 across all models, languages, and477

annotators: (i) the proportion of significant478

effects and (ii) the average absolute effect size.479

The proportion of significant effects is480

defined as481

𝑃sig(𝑓) =
1
𝑁𝑓

𝑁𝑓

∑
𝑖=1

𝕀 [CIupper𝑖 < 0] , (1)482

where 𝑁𝑓 is the total number of evaluated com-483

binations (models, languages, annotators) for484

error type 𝑓, CIupper𝑖 denotes the upper bound485

of the 95% bootstrap confidence interval for the486

𝑖-th log-odds coefficient, and 𝕀[⋅] is the indicator487

function.488

The average absolute effect size (re-489

stricted to significant cases) is computed as490

̄𝛽(𝑓) = 1
𝑁𝑓,sig

𝑁𝑓

∑
𝑖=1

|𝛽𝑖| ⋅ 𝕀 [CI
upper
𝑖 < 0] , (2)491

where 𝛽𝑖 is the estimated log-odds effect in492

the 𝑖-th cell, and 𝑁𝑓,sig = ∑𝑁𝑓
𝑖=1 𝕀 [CI

upper
𝑖 < 0]493

is the number of significant cases. Errors of494

type mistranslation have the largest and most495

frequent impact on model performance, with496

𝑃sig = 0.86 and ̄𝛽 = 0.35. Fluency errors have497

an intermediate effect (𝑃sig = 0.68, ̄𝛽 = 0.30),498

while Accuracy errors show only a weak and499

infrequent influence (𝑃sig = 0.30, ̄𝛽 = 0.26).500

5 Conclusion501

This work investigates the effects of translation502

errors on model performance in multilingual503

benchmarks, with a focus on the EU20 bench-504

mark suite. To enable detailed analysis, we505

applied an LLM-as-a-judge method (GEJ) for506

span-level MQM annotation. Compared to507

the GEMBA-ESA baseline, GEJ achieves an508

average Span-Recall improvement of 0.23 for 509

mistranslation, 0.29 for Accuracy, and 0.23 for 510

Fluency. GEJ also exhibits higher 𝐹𝑃𝑅𝑠 and 511

𝐸𝑅𝑤 values than the baseline (a 39% relative 512

increase) indicating a greater tendency to label 513

errors in reference translations, which should 514

be considered when interpreting downstream 515

analyses. 516

Our performance impact analysis, including 517

regression modeling, shows that mistranslation 518

errors have the largest and most frequent nega- 519

tive effect on LLM accuracy (𝑃sig = 0.86, ̄𝛽 = 520

0.35), followed by Fluency errors (𝑃sig = 0.68, 521
̄𝛽 = 0.30), while Accuracy errors are rarely 522

significant (𝑃sig = 0.30, ̄𝛽 = 0.26). These find- 523

ings highlight the importance of fine-grained 524

translation error analysis for understanding 525

and improving LLM performance in multilin- 526

gual benchmarks. 527

6 Future Work 528

For future work, we identify several directions: 529

First, extending error analysis to additional 530

MQM error categories and linguistic phenom- 531

ena. Second, contributing to more diverse 532

gold-standard datasets for meta-evaluating 533

TQE methods, which are essential for reliable 534

progress. Third, advancing LLM-based meth- 535

ods to automate and support benchmark cre- 536

ation and quality control, enabling more scal- 537

able and robust multilingual evaluation. 538

7 Limitations 539

Despite its merits, certain limitations should 540

be acknowledged in our study. First, high- 541

quality, span-annotated reference translations 542

are scarce, especially for less common languages 543

and MQM error categories. Second, no widely 544

accepted gold standard exists for span-level 545

MQM annotation in most languages investi- 546

gated, and expert annotation remains costly 547

and hard to scale. Third, our statistical analy- 548

ses are correlational in nature and may be af- 549

fected by sample size, model assumptions, and 550

the rarity of certain errors. Fourth, annotation 551

quality depends on the LLM and prompt; some 552

combinations, like DeepSeek with GEMBA- 553

ESA, may fail for certain tasks. Finally, our re- 554

sults reflect a specific selection of benchmarks, 555

languages, and models, and applicability to 556

different settings may be limited. 557
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A Appendix: GEJ, MQM and814

Span-ACES815

A.1 GEJ-MQM Error Categories816

Table 6 presents a hierarchical mapping of817

the MQM error taxonomy used in our eval-818

uation. It aligns Level-1 MQM error types819

(e.g., addition, mistranslation, omission) with820

ACES labels such as real-world-knowledge-821

entailment or xnli-addition-neutral.822

As an illustration, Table 7 provides brief823

definitions and multilingual examples for each824

Level-1 error type. For instance, the addition825

category is illustrated with an English to Dutch826

example in which extraneous information (”to827

buy bread”) is added in the translation. Simi-828

larly, mistranslation is exemplified via a Greek829

translation that changes the meaning of ”He830

was murdered” to ”He was attacked.” These831

examples were curated to span both general-832

purpose and structured text, used as input in833

our evaluation setup.834

12



835
Table 6: Hierarchical overview of MQM error types and their alignment with Span-ACES error

labels.

Ambiguous
src content accuracy mistranslation coreference-based-on-commonsense

Ambiguous
tgt content accuracy mistranslation

ambiguous-*-since-causal
ambiguous-*-since-temporal
ambiguous-*-while-contrast
ambiguous-*-while-temporal
ambiguous-*-female-anti
ambiguous-*-female-pro
ambiguous-*-male-anti
ambiguous-*-male-pro

Do not translate accuracy no-translate do-not-translate

Grammar fluency grammar

anaphoric_group_it-they:subst.
anaphoric_intra_non-subject_it:subst.
anaphoric_intra_subject_it:subst.
anaphoric_intra_they:subst.
anaphoric_singular_they:subst.

Mistranslation accuracy mistranslation

modal_verb:subst.
pleonastic_it:subst.
real-world-know.-entailment
real-world-know.-hypernym-vs-distr.
real-world-know.-syn.-vs-antonym

MT hallucination accuracy mistranslation hallucination-date-time

Omission accuracy omission

anaphoric_group_it-they:deletion
anaphoric_intra_non-subject_it:deletion
anaphoric_intra_subject_it:deletion
anaphoric_intra_they:deletion
anaphoric_singular_they:deletion
modal_verb:deletion
omission
pleonastic_it:deletion
xnli-omission-contradiction
xnli-omission-neutral

MQM Type Level-0 Level-1 Span-ACES Label

Addition accuracy addition
addition
xnli-addition-contradiction
xnli-addition-neutral

(Continued on next page) 836
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Table 6: Hierarchical overview of MQM error types and their alignment with Span-ACES error
labels. (Continued from previous page)

Overly literal accuracy mistranslation
overly-literal-vs-explanation
overly-literal-vs-ref-word
overly-literal-vs-synonym

Overtranslation accuracy over-translation hyponym-replacement

Punctuation fluency punctuation

punctuation:deletion_all
punctuation:deletion_commas
punctuation:deletion_quotes
punctuation:statement-to-question

Undertranslation accuracy under-translation hypernym-replacement

Unintelligible fluency unintelligible nonsense

Untranslated accuracy untranslated
copy-source
untranslated-vs-ref-word
untranslated-vs-synonym

Word order accuracy mistranslation ordering-mismatch

Wrong language accuracy wrong-language similar-language-high
similar-language-low

MQM Type Level-0 Level-1 Span-ACES Label

Addition accuracy addition
addition
xnli-addition-contradiction
xnli-addition-neutral

837

Table 7: Overview of MQM error categories with definitions and examples.

Level-1 Category Description and Example

addition

Adds extra content not in source.
EN: ”She might go to the store.” →
NL: ”Ze gaat misschien naar de winkel om brood te kopen.”
Added: ”to buy bread”

Continued on next page
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Level-1 Category Description and Example

over-translation

Adds unnecessary detail or specificity.
EN: ”room” →
HU: ”konyha”
Should be: ”szoba”. ”konyha” means kitchen.

omission

Important information from the source is missing.
EN: ”She bought a red dress.” →
CS: ”Koupila si šaty.”
Should be: ”Koupila červené šaty.”. ”red” is omitted

under-translation

Translation is too general.
EN: ”colonel” →
SK: ”vojak”
Should be: ”plukovník”. ”vojak” means soldier

mistranslation

Incorrect meaning due to word or grammar.
EN: ”He was murdered.” →
EL: ”Τον επιτέθηκαν.”
”He was attacked” wrong meaning.

reordering

Word order change that alters meaning.
EN: ”She only loves him.” →
PL: ”Tylko ona go kocha.”
”Only she loves him”

untranslated

Source (or part of it) left untranslated.
EN: ”He is a teacher.” →
DE: ”He ist ein Lehrer.”
”He” should be ”Er”

wrong-language

Wrong or related language used.
EN: ”Danish colleague” →
DE: ”dänischen kollega”
”kollega” is Danish; should be ”Kollege”

do-not-translate

Elements marked non-translatable are translated.
EN: ”Apple released a new update.” →
BG: ”Ябълка пусна нов ъпдейт.”
”Apple” → fruit

grammar

Syntax or agreement error.
EN: ”She go to school...” →
DA: ”Hun går til skole...”
Should be: ”i skole”

Continued on next page
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Level-1 Category Description and Example

spelling

Misspelled words affect readability or meaning.
EN: ”definately” →
SV: ”definetivt”
Should be:”definitivt”

punctuation

Incorrect or missing punctuation.
EN: ”Let’s eat, Grandma!” →
SV: ”Låt oss äta mormor!”
Missing comma

inconsistent

Inconsistent terminology or style.
EN: ”Prime Minister”/”Premier” →
PL: ”Premier”/”Prezes Rady Ministrów”
Should be consistent

awkward

Grammatically correct but unnatural.
EN: ”He made a photo.” →
EL: ”Έκανε μια φωτογραφία.”
Should be: ”Τράβηξε μια φωτογραφία”

unintelligible

Nonsensical translation.
EN: ”The cat sat on the mat.” →
SL: ”Mačka je stol, ki hodi po ulici.”
Should be: ”The cat is a chair that walks on the street”

16



A.2 GEJ Prompts838

Figure 4 details the system prompt used in839

our GEMBA-ESA adaptation, which guides840

the LLM to identify span-level errors based on841

MQM categories, while enforcing strict output842

formatting and semantic fidelity over stylis-843

tic preferences. It emphasizes translation ad-844

equacy, fluency, and structured error explana-845

tion, with instructions for multiple-choice and846

general-purpose content.847

To enhance annotation quality, we created a848

multilingual prompt containing structured few-849

shot examples for both continuous and struc-850

tured text (Figure 5). These examples include a851

diverse set of error types – such as subject-verb852

agreement errors in Portuguese (grammar),853

overgeneralization in German (undertransla-854

tion), and missing specificity in medical con-855

texts (mistranslation). Translations were gener-856

ated using ChatGPT-4o, with backtranslations857

via DeepL. We verified correctness through858

backtranslation analysis and cross-referenced859

definitions using multilingual resources such860

as dict.cc12, LEO13, monolingual dictionaries,861

conjugation tools, and DeepL Write14.862

Instead of adding the instruction to every863

few-shot example within the prompt, we in-864

clude it in the system prompt, which is sent to865

the model only once for each translation to be866

evaluated. Additionally, we provide a separate867

input field that briefly describes the text type,868

alongside the original and target segments, to869

help the model better assess the severity of870

translation errors.871

12https://www.dict.cc
13https://dict.leo.org
14https://www.deepl.com/write
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Figure 4: GEMBA-ESA System Prompt (Error Type Definitions omitted)

”role”: ”system”,
”content”: ”Your task is to assess the quality of machine translations and identify translation errors.
Given the source and target segments (enclosed in triple backticks), identify error spans in the
translation and classify them using the MQM-style (Multidimensional Quality Metrics) categories:
accuracy (addition, over-translation, omission, under-translation, mistranslation, reordering, untrans-
lated, wrong-language, do-not-translate), fluency/style (grammar, spelling, punctuation, inconsistent,
awkward, unintelligible), and other.
Error Type Definitions (with one example each): …
Severity Guidelines:

- Label an error as major if it significantly alters the meaning, causes confusion, or omits
important information.

- Label an error as minor if it causes a slight loss in precision or naturalness, but the meaning is
still clear.

- Do not flag translations as errors if they preserve meaning and naturalness, even if they are
not literal.

Guidance for Output Format and Error Spans:

- Respond with a single, plain, well-formed JSON object, without any markup, containing:
- `target_seg_backtranslation`: literal backtranslation of target segment to source language,
preserving any errors

- `evaluation`: an array of error entries, each with:
- `span_target`: text span with the found error in the translation (if present, else use
an empty string)

- `span_original`: corresponding text in the source
- `error_type`: the error category
- `severity`: ”major” or ”minor”
- `explanation`: reason the translation is incorrect (or correct) in one sentence
- `correction`: suggested correction of the target span

- For omission or untranslated content, also use an empty string as the error span.
- It is important to use only Guillemets «...» and no regular double quotes ”” when quoting
parts of the source or target in the explanation.
Make sure that all JSON strings are in double quotes, as single quotes are not valid JSON, e.g.
”severity”: ”minor” and not ’severity’: ’minor’.

- If no errors are found, leave evaluation as an empty array.

Translation Quality Evaluation Guidelines:
Your task is to evaluate the translation quality, not to solve or interpret the content.
Focus on whether the translation is faithful to the original meaning, and appropriate for the text
type. Avoid nitpicking stylistic preferences unless they impact meaning or clarity. Types of text that
can occur are: structured or multiple-choice (e.g., science questions, math problems), general-purpose
or continuous text.
For structured or multiple-choice text:

• Evaluate only whether each part — the question and all answer options — is faithfully
translated.

• Do not assess factual correctness of any answer options.
• Do not solve the question or make assumptions about the correct answer.
• Grammaticality and fluency are not required for short fragments (e.g., single words or sentence

parts in answer options), as long as their meaning is translated.
• Ensure that all options from the source are preserved; omissions or additions are critical.”

872
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Figure 5: GEMBA-ESA-JSON prompt with illustrative subset of structured few-shot examples
(without system prompt).

[ {
"role": "user",
"content": "Text type: general-purpose or continuous text
English source: My friends went to the cinema.
Portuguese translation: Os meus amigos foi ao cinema."

}, {
"role": "assistant",
"content": "{
'target_seg_backtranslation': 'My friends was to the cinema.',
'evaluation': [{
'span_target': 'foi',
'span_original': 'went',
'error_type': 'grammar',
'severity': 'major',
'explanation': 'Wrong verb agreement; «amigos» is plural, so verb should be «foram».

This is a source-side error and should not be corrected in the target.',
'correction': 'Os meus amigos foram ao cinema.'}]
}"

}, {
"role": "user",
"content": "Text type: general-purpose or continuous text
English source: She is an experienced cardiac surgeon.
German translation: Sie ist eine Ärztin."

}, {
"role": "assistant",
"content": "{
'target_seg_backtranslation': 'She is a doctor.',
'evaluation': [{
'span_target': 'Ärztin',
'span_original': 'cardiac surgeon',
'error_type': 'undertranslation',
'severity': 'major',
'explanation': 'The translation omits the specificity of the profession and experience;

«cardiac surgeon» is reduced to «doctor».',
'correction': 'Sie ist eine erfahrene Herzchirurgin.'}]
}"

}, {
"role": "user",
"content": "Text type: general-purpose or continuous text
English source:

A 44-year-old female presents to the office for evaluation of
a lump on her neck that she noted 1 week ago.
She denies any tenderness, fever, weight loss, or fatigue.
Physical examination reveals a 2cm freely movable mass in the lower left lobe of the thyroid.
In addition to thyroid-stimulating hormone and free thyroxine levels,
the most appropriate initial method to investigate this lesion is:
(1) a nuclear thyroid scan
(2) an iodine-131 scan
(3) fine-needle aspiration
(4) ultrasonography of the thyroid gland

Italian translation:
Una donna di 44 anni si presenta in ufficio per valutare un nodulo sul collo notato una settimana fa.
La donna nega di avere dolori, febbre, perdita di peso o affaticamento.
L'esame fisico rivela una massa di 2 cm liberamente mobile nel lobo inferiore sinistro della tiroide.
Oltre ai livelli di ormone stimolante la tiroide e di tiroxina libera,
il metodo iniziale più appropriato per indagare questa lesione è
(1) un'ecografia della tiroide
(2) un'ecografia allo iodio
(3) un'aspirazione con ago fine
(4) un'ecografia della tiroide"

}
]
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A.3 Meta-Evaluation873

To assess automated span annotation qual-874

ity of GEJ, we computed the Span-F1 score875

according to the Span-ACES reference imple-876

mentation15, which compares predicted error877

spans with the human-labeled spans. Empty878

or whitespace-only error spans in either pre-879

diction or gold standard were excluded from880

F1 calculation as in the reference implementa-881

tion16. In addition to Span-F1, we compute882

Span-Recall, which captures how many of the883

human-annotated spans were successfully iden-884

tified by the model, without trying to account885

for false positives.886

Both scores are computed based on textual887

content overlap between predicted and refer-888

ence error spans (tagged with <v>...</v>),889

not on character offsets or positions or mul-890

tiplicity. Empty and whitespace-only spans891

in either prediction or gold standard were ex-892

cluded from the F1 and Recall computation,893

following the Span-ACES reference implemen-894

tation. Span-F1 balances precision and recall,895

while Span-Recall focuses on how many gold896

spans were recovered.897

Empty tags are valid annotations in Span-898

ACES, especially for omission and punctuation,899

where the error involves missing or absent con-900

tent. However, since Span-F1 and Span-Recall901

exclude empty and whitespace-only spans in a902

preprocessing step, omission samples lack us-903

able reference spans, which prevents reliable904

scoring. We did not develop an alternative met-905

ric for omissions, as unlike for non-empty spans906

there is no way to distinguish between correctly907

and incorrectly detected omissions based on the908

(empty) span content. For this reason, we ex-909

cluded omissions (alongside other empty-span910

categories) even though it had good language911

coverage. In contrast to the Span-ACES ap-912

proach, we require the detected translation913

error type to match according to Table 6 for914

the Span-Recall.915

15https://github.com/EdinburghNLP/ACES/blob/
6912157d/span_predictions/eval_span.py

16https://github.com/EdinburghNLP/ACES/blob/
6912157d/span_predictions/eval_span.py#L36-L41

L N GPT DeepSeek LLaMA Mistral

B/GEJ B/GEJ B/GEJ B/GEJ

Mistrans.

DA 23 .09/.56 -/.60 .32/.39 .60/.32
DE 982 .11/.21 0/.29 .14/.10 .22/.18
ES 28 .18/.62 0/.43 .21/.32 .35/.38
ET 14 .14/.42 -/.50 .24/.39 .47/.38
FR 214 .09/.18 0/.16 .13/.06 .15/.06
HU 32 .08/.21 -/.32 .19/.17 .48/.47
LT 2 .50/.33 -/.58 .53/.00 .17/.33
NL 23 .07/.35 0/.30 .22/.11 .31/.45
PL 7 .23/.71 -/.30 .08/.08 .10/.08
PT 20 .10/.55 -/.53 .30/.36 .45/.45
RO 33 .06/.28 -/.69 .08/.10 .47/.40
SK 8 .00/.46 -/.25 .11/.22 .40/.30
SL 18 .00/.30 -/.18 .13/.11 .41/.35
SV 20 .00/.37 -/.52 .10/.13 .39/.32

Acc.

BG 9 .10/.11 -/.48 .41/.47 .45/.37
CS 341 .00/.01 0/.57 .01/.01 .01/.31
DA 11 .00/.17 -/.47 .19/.07 .14/.35
DE 249 .00/.02 0/.11 .01/.01 .02/.07
EL 6 .00/.25 -/.38 .20/.17 .44/.38
ES 309 .00/.00 0/.70 .01/.00 .01/.09
ET 3 .00/.00 -/.47 .00/.00 .00/.33
FI 6 .00/.25 -/.56 .00/.00 .43/.60
FR 10 .00/.25 -/.44 .21/.17 .50/.33
HU 3 .00/.00 -/.75 .22/.33 .33/.75
IT 5 .00/.50 1/.73 .33/.17 .20/.40
LT 5 .00/.00 -/.33 .00/.00 .23/.29
LV 8 .00/.17 0/.56 .17/.20 .33/.48
NL 14 .04/.00 -/.37 .19/.00 .30/.17
PL 299 .00/.01 0/.72 .00/.01 .01/.29
PT 11 .00/.09 -/.67 .17/.57 .59/.45
RO 7 .00/.25 -/.77 .15/.13 .48/.57
SK 6 .00/.00 -/.25 .00/.00 .19/.12
SL 11 .00/.00 -/.52 .07/.07 .23/.50
SV 12 .14/.12 -/.61 .10/.29 .39/.50

Fluency

DE 678 .00/.00 .00/.26 .02/.04 .01/.43

Figure 6: Span-F1 by model and language for Base-
line (B) and GEJ, shown for MQM categories: (a)
Mistranslation, (b) Accuracy, and (c) Fluency.
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BG CS DA DE EL ES ET FI FR HU IT LT LV NL PL PT RO SK SL SV

Accuracy

addition 10 10 12 11 7 8 5 6 11 4 5 7 9 15 5 11 10 8 13 13
no-translate - - - 100 - - - - - - - - - - - - - - - -
untranslated - - - 210 - - - - - - - - - - - - - - - -
wrong-language - 352 - - - 329 - - - - - - - - 328 - - - - -

Total 10 362 12 321 7 337 5 6 11 4 5 7 9 15 333 11 10 8 13 13

Fluency

grammar - - - 721 - - - - - - - - - - - - - - - -

Table 8: Sample counts per target language in the Span-ACES dataset

Languages N

CS, ES, SL 7265
HU 7264
IT, PL, PT, RO, SK 7263
BG, DA, EL, LT, LV, NL, SV 7262
DE, ET, FI, FR 7261

Total 145252

Table 9: Sample counts per target language in the
FLORES dataset
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B Appendix: Model Acc.916

B.1 Datasets917

To ensure the completeness and structural in-918

tegrity of the multilingual evaluation datasets919

used in this study, a validation and clean-920

ing pipeline was applied to EU20 and Global-921

MMLU datasets. The structural analysis and922

cleaning of the translated evaluation datasets923

is conducted across various subsets, splits, and924

languages. It ensures that in the cleaned925

dataset, translations are correctly assigned, all926

questions and answers are present, answers re-927

main consistent across languages, and that all928

languages are fully represented. Each dataset929

is described as consisting of one or more sub-930

sets, which again consist of one or more splits,931

which contain a set of per-language samples.932

Each per-language sample in a dataset is iden-933

tified based on its sample ID, subset, split,934

and language. If there are no IDs the origi-935

nal dataset, a sample counter combined with936

the subset and split of the dataset serves as a937

surrogate ID. The sample ID may be a string938

or tuple of strings, and is chosen to be unique939

across splits and subsets of the dataset while940

being identical for different language versions941

of the same sample. Doing so allows for the942

English original dataset to be matched with943

the translations. Also, when there are multi-944

ple alternative translations of a dataset (EU20945

vs. Global-MMLU), care is taken to ensure that946

corresponding samples have the same ID, so947

alternative translations can be matched with948

each other. Each individual language version949

of each sample is formatted into a single text950

intended for quality assurance purposes, and951

missing questions, answers and choices are iden-952

tified. For the purpose of cross-language checks,953

the translated samples are matched with their954

English originals. Checks are performed to955

determine whether one or more, but not all956

translations of a sample are missing in all tar-957

get languages. Table 10 reports the results958

of these checks. Samples that were not trans-959

lated into any target language are identified960

separately. Where possible, a check is per-961

formed whether translated samples have been962

assigned to the correct split or subset. As a963

sanity check for the choice of sample IDs, cases964

where correct answers in the translated ver-965

sion are inconsistent with the English original966

answers are identified – doing so is possible 967

because the answers in all analyzed datasets 968

are either the index of a multiple-choice op- 969

tion or, in case of GSM8K, plain numbers, and 970

thus are identical across all languages. Further- 971

more, statistics on the number of uncleaned 972

per-language samples, samples with missing 973

content and missing translations are collected 974

on the number of samples per subset, split, and 975

language. In a cleaning step, all samples with 976

missing or incomplete translations are removed. 977

Once all inconsistencies have been identified 978

and resolved, the cleaned dataset is saved as 979

a JSONL file. Table 11 summarizes the final 980

cleaned dataset statistics. 981

B.2 Models 982

Table 12 lists the models whose prediction ac- 983

curacy is analyzed in the Error vs. Correction 984

comparison and the Error-Performance Associ- 985

ation analysis. 986

B.3 Error vs. Correction Comparison - 987

Details 988

Table 13 shows the detailed results of the error 989

vs. correction comparison. 990

B.4 Error-Performance Association 991

Analysis - Details 992

Tables 14, 15 and 16 illustrate more detailed re- 993

sults of the error-performance association anal- 994

ysis. 995

B.5 Error Impact Quantification - 996

Details 997
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Dataset Subset Split Missing Lang. Missing Content

eu20_arc challenge test 0 11
eu20_arc challenge train 948 3
eu20_arc challenge validation 0 3
eu20_arc easy test 0 39
eu20_arc easy train 1869 5
eu20_arc easy validation 0 5
eu20_gsm8k main train 1972 0
eu20_hellaswag main validation 1857 327
eu20_mmlu business test 0 12
eu20_mmlu humanities test 0 99
eu20_mmlu medical test 0 40
eu20_mmlu other test 0 15
eu20_mmlu social_sciences test 0 99
eu20_mmlu stem dev 0 2
eu20_mmlu stem test 0 96
eu20_truthfulqa multiple_choice validation 0 3
globalmmlu humanities test 1 0
globalmmlu stem test 2 2

Table 10: EU20, and GlobalMMLU: Number of samples with missing translations or content.

Dataset Task Split N

eu20 arc test 3498
eu20 arc val 861
eu20 arc train 0
eu20 gsm8k test 1319
eu20 gsm8k train 0
eu20 hellaswag val 9658
eu20 hellaswag train 0
eu20 mmlu dev 283
eu20 mmlu val 0
eu20 mmlu test 13681
eu20 truthfulqa val 814
globalmmlu mmlu test 2845

Table 11: EU20 and GlobalMMLU after cleaning
(i.e., removing samples with missing content or
translations).

Model Name / HF Link #Params

Aya 32.3B
Command-A 111B
Gemma 27.4B
Mistral 24B
Pharia 7.0B
Phi 5.6B
Qwen 32.8B
Salamandra 7.8B

Table 12: Model Overview
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Lang. Model Count Fraction
Aff. Unaff. 𝑁𝐶 NAIE+ E− E+ E−

G+ G− G+ G− G+ G− G+ G− (NA)

CS Gemma 79 8 14 31 .60 .06 .11 .23 22 110 132 −.045
Mistral 87 9 9 27 .66 .07 .07 .20 18 114 132 +.000
Pharia 28 15 10 79 .21 .11 .08 .60 25 107 132 +.038
Phi 47 16 12 57 .36 .12 .09 .43 28 104 132 +.030
Qwen 88 9 14 21 .67 .07 .11 .16 23 109 132 −.038
Salamandra 61 4 9 58 .46 .03 .07 .44 13 119 132 −.038
Aya 79 5 13 35 .60 .04 .10 .27 18 114 132 −.061
Command-A 90 8 12 22 .68 .06 .09 .17 20 112 132 −.030

DE Gemma 69 3 6 26 .66 .03 .06 .25 9 95 104 −.029
Mistral 75 3 8 18 .72 .03 .08 .17 11 93 104 −.048
Pharia 44 9 8 43 .42 .09 .08 .41 17 87 104 +.010
Phi 57 5 11 31 .55 .05 .11 .30 16 88 104 −.058
Qwen 75 3 8 18 .72 .03 .08 .17 11 93 104 −.048
Salamandra 45 8 9 42 .43 .08 .09 .40 17 87 104 −.010
Aya 67 4 5 28 .64 .04 .05 .27 9 95 104 −.010
Command-A 76 2 10 16 .73 .02 .10 .15 12 92 104 −.077

ES Gemma 61 3 9 33 .58 .03 .08 .31 12 94 106 −.057
Mistral 68 6 9 23 .64 .06 .08 .22 15 91 106 −.028
Pharia 38 9 7 52 .36 .08 .07 .49 16 90 106 +.019
Phi 56 6 8 36 .53 .06 .08 .34 14 92 106 −.019
Qwen 70 4 9 23 .66 .04 .08 .22 13 93 106 −.047
Salamandra 45 4 7 50 .42 .04 .07 .47 11 95 106 −.028
Aya 67 5 8 26 .63 .05 .08 .25 13 93 106 −.028
Command-A 69 7 8 22 .65 .07 .08 .21 15 91 106 −.009

FR Gemma 68 3 6 24 .67 .03 .06 .24 9 92 101 −.030
Mistral 73 4 10 14 .72 .04 .10 .14 14 87 101 −.059
Pharia 40 8 8 45 .40 .08 .08 .45 16 85 101 +.000
Phi 50 6 10 35 .50 .06 .10 .35 16 85 101 −.040
Qwen 66 4 9 22 .65 .04 .09 .22 13 88 101 −.050
Salamandra 48 2 10 41 .48 .02 .10 .41 12 89 101 −.079
Aya 69 4 5 23 .68 .04 .05 .23 9 92 101 −.010
Command-A 76 1 9 15 .75 .01 .09 .15 10 91 101 −.079

IT Gemma 90 13 5 38 .62 .09 .03 .26 18 128 146 +.055
Mistral 97 10 4 35 .66 .07 .03 .24 14 132 146 +.041
Pharia 68 12 12 54 .47 .08 .08 .37 24 122 146 +.000
Phi 67 18 22 39 .46 .12 .15 .27 40 106 146 −.027
Qwen 97 4 11 34 .66 .03 .08 .23 15 131 146 −.048
Salamandra 60 5 5 76 .41 .03 .03 .52 10 136 146 +.000
Aya 88 10 6 42 .60 .07 .04 .29 16 130 146 +.027
Command-A 108 7 5 26 .74 .05 .03 .18 12 134 146 +.014

RO Gemma 62 6 8 21 .64 .06 .08 .22 14 83 97 −.021
Mistral 71 5 6 15 .73 .05 .06 .15 11 86 97 −.010
Pharia 30 8 10 49 .31 .08 .10 .51 18 79 97 −.021
Phi 46 8 7 36 .47 .08 .07 .37 15 82 97 +.010
Qwen 63 5 7 22 .65 .05 .07 .23 12 85 97 −.021
Salamandra 37 4 5 51 .38 .04 .05 .53 9 88 97 −.010
Aya 57 4 5 31 .59 .04 .05 .32 9 88 97 −.010
Command-A 75 3 7 12 .77 .03 .07 .12 10 87 97 −.041

Table 13: Cross-tabulation of model predictions comparing EU20-MMLU samples with detected mistrans-
lation errors to their error-free counterparts in Global-MMLU, reported in absolute counts and relative
proportions. Legend: E+/E− = EU20 correct/incorrect, G+/G− = Global correct/incorrect; Affected
(𝑁𝐴) = predictions differ between EU20 and Global-MMLU; Unaffected = predictions match; 𝑁𝐶 =
number of samples; Net Accuracy Impact (NAI) = G+/E− - E+/G−, i.e., gain minus loss in prediction
acc due to improved translations.
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Language BG CS DA DE EL ES ET FI FR HU IT LT LV NL PL PT RO SK SL SV

ARC

acc. 0 25 38 0 12 38 38 62 38 62 12 0 25 0 12 50 12 0 12 0
f./s. 12 0 0 0 0 0 62 0 0 50 0 0 0 0 0 25 0 0 0 0
mis. 12 50 0 0 12 0 88 12 0 88 0 100 75 0 12 38 50 0 88 0

Hellaswag

acc. 12 0 0 0 12 12 0 0 0 0 0 0 25 0 0 0 0 0 0 0
f./s. 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
mis. 0 0 12 0 0 12 12 25 12 12 0 0 0 0 12 0 0 0 12 25

MMLU

acc. 0 0 12 25 0 88 0 0 12 0 12 75 88 75 0 0 50 12 50 0
f./s. 62 0 12 0 0 100 12 25 100 12 12 88 25 0 12 0 25 75 62 12
mis. 88 62 38 75 75 88 88 25 100 75 88 88 75 75 100 88 100 88 100 50

Table 14: % of LLMs with significant (𝑝 < 0.05) 𝜒2 result for LLM accuracy independence between
samples without detected errors and samples with detected errors exclusively of specified error category
as detected by GPT (across benchmarked LLMs, per benchmark).

Language BG CS DA DE EL ES ET FI FR HU IT LT LV NL PL PT RO SK SL SV

ARC

acc. 0 75 25 75 100 38 50 50 75 88 12 25 62 0 38 12 88 0 25 25
f./s. 38 62 12 75 50 100 25 50 0 62 75 75 100 0 50 100 88 62 25 25
mis. 12 88 38 25 75 62 88 75 25 75 0 88 100 0 88 88 88 25 75 88

Hellaswag

acc. 0 0 0 50 0 0 0 0 0 0 0 0 12 0 12 12 0 38 0 0
f./s. 0 0 0 12 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0
mis. 0 0 12 0 0 100 0 0 12 38 0 38 0 0 12 75 75 0 25 25

MMLU

acc. 12 25 88 25 38 12 25 38 12 38 0 12 12 0 25 50 0 50 12 75
f./s. 50 0 0 25 0 25 38 12 0 12 12 25 0 0 0 0 0 0 0 12
mis. 75 12 12 62 12 50 12 38 100 25 38 100 88 38 50 62 25 25 62 25

Table 15: % of LLMs with significant (𝑝 < 0.05) 𝜒2 result for LLM accuracy independence between
samples without detected errors and samples with detected errors exclusively of specified error category
as detected by Llama (across benchmarked LLMs, per benchmark).

Language BG CS DA DE EL ES ET FI FR HU IT LT LV NL PL PT RO SK SL SV

ARC

acc. 12 38 12 12 0 88 0 62 75 75 38 0 25 12 75 38 62 25 75 0
f./s. 25 0 50 62 0 0 12 0 50 12 0 12 62 0 0 75 0 0 0 0
mis. 75 88 88 88 25 88 62 88 100 75 100 75 75 100 100 100 75 88 100 75

Hellaswag

acc. 0 0 25 0 0 0 0 12 12 0 0 0 0 0 0 0 12 0 12 0
f./s. 0 0 0 0 38 0 0 25 0 0 0 0 0 12 12 12 0 0 0 0
mis. 0 0 12 50 38 0 0 50 25 62 0 0 12 0 62 0 38 25 0 12

MMLU

acc. 38 12 38 0 75 0 0 12 25 25 12 12 50 0 12 12 0 0 0 12
f./s. 12 88 12 25 0 100 75 12 88 25 100 0 38 88 38 12 38 88 38 62
mis. 88 88 100 100 38 88 75 88 100 88 100 88 88 100 88 100 100 100 100 100

Table 16: % of LLMs with significant (𝑝 < 0.05) 𝜒2 result for LLM accuracy independence between
samples without detected errors and samples with detected errors exclusively of specified error category
as detected by Mistral (across benchmarked LLMs, per benchmark).
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Pharia

Phi

Salamandra

Qwen

Aya

Mistral

Command-A

Gemma

GP
T

25.9 28.9 33.5 50.8 27.5 52.6 27.7 27.7 52.3 28.2 50.9 27.9 28.1 49.7 29.8 50.6 34.3 29.6 28.7 33.7

45.2 47.2 50.4 55.8 37.4 57.7 35.8 43.1 57.4 44.6 53.1 37.0 37.7 51.1 46.3 53.7 49.0 44.2 41.6 50.4

51.5 51.1 50.8 52.4 49.6 54.9 46.9 46.5 54.1 48.5 52.4 48.0 47.9 51.6 50.6 52.8 52.7 50.6 50.6 50.9

69.5 71.6 70.2 74.8 64.8 77.3 60.5 62.8 76.5 65.0 75.7 62.2 64.4 73.4 70.9 76.1 73.4 69.4 66.3 71.5

59.3 67.4 61.7 69.6 68.0 71.0 45.4 47.8 70.4 52.8 69.8 53.9 48.2 68.4 66.7 69.9 70.6 63.9 55.9 62.3

70.5 71.4 71.8 74.7 71.3 76.4 63.6 66.8 75.4 67.6 74.9 64.8 65.4 71.9 71.1 75.1 74.6 70.3 68.1 72.9

71.6 77.1 75.6 78.4 77.8 80.1 65.0 68.1 79.1 72.9 78.5 70.5 66.8 77.4 76.2 79.2 80.0 75.3 70.3 76.2
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m
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Figure 7: This figure shows the approximate baseline model accuracies one heatmap per annotator LLM
for examples with no detected errors. Each heatmap shows, for each model (rows) and language (columns),
the approximate probability of a correct LLM response when no translation errors are present, computed
as the sigmoid of the intercept term (𝛽0) of the logistic regression model.
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