AnimationPak: Packing Elements with Scripted Animations
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Figure 1: (a) Input animated elements, each with its own animation: swimming penguins, swimming sharks and fish, Pac-Man
fish that open or close their mouths, and rotating stars. (b-e) four selected frames from an animated packing.

ABSTRACT

‘We present AnimationPak, a technique to create animated packings
by arranging animated two-dimensional elements inside a static
container. We represent animated elements in a three-dimensional
spacetime domain, and view the animated packing problem as a
three-dimensional packing in that domain. Every element is repre-
sented as a discretized spacetime mesh. In a physical simulation,
meshes grow and repel each other, consuming the negative space
in the container. The final animation frames are cross sections of
the three-dimensional packing at a sequence of time values. The
simulation trades off between the evenness of the negative space
in the container, the temporal coherence of the animation, and the
deformations of the elements. Elements can be guided around the
container and the entire animation can be closed into a loop.

Index Terms: 1.3.3 [Computing Methodologies]: Computer
Graphics—Picture/Image Generation; 1.3.m [Computing Method-
ologies]: Computer Graphics—Animation;

1 INTRODUCTION

A decorative packing is a composition created by arranging two-
dimensional shapes called elements within a larger region called
a container. Packings are popular in graphic design, and are used
frequently in advertising and product packaging.

At a high level, packings can communi-
cate a relationship between a whole and the
parts that make it up. Consider for example
the logo of the 2018 SIGGRAPH conference,
shown inset. The 2018 logo surrounds the
main logo of the SIGGRAPH organization
with a ring of small icons depicting computer
graphics themes.

At a lower level, packings must be attractive compositions, which
balance the shapes of the elements with the empty space between
them, known as the negative space. In particular, negative space
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should be distributed as evenly as possible, leading to roughly
constant-width “grout” between elements.

Recently, Saputra et al. presented RepulsionPak [31], a
deformation-driven packing method inspired by physical simula-
tion techniques. In RepulsionPak, small elements are placed within
a fixed container shape. As they grow, they interact with each other
and the container boundary, inducing forces that translate, rotate,
and deform elements. The motion and deformation of the elements
allows them to achieve a physical equilibrium with an even distribu-
tion of negative space.

Inspired by RepulsionPak, we investigate a physics-based packing
method for elements with scripted animations. An element can have
an animated deformation, such as a bird flapping its wings or a fish
flicking its tail. It can also have an animated transformation, giving
a changing position, size, and orientation within the container. Our
goal is producing an animated packing, with elements playing out
their animations while simultaneously filling the container shape
evenly. A successful animated packing should balance among the
evenness of the negative space, the preservation of element shapes,
and the comprehensibility of their scripted animations.

In our technique, called AnimationPak, we consider an animated
element to be a geometric extrusion along a time axis, a three-
dimensional object that we call a “spacetime element”. We use a
three-dimensional physical simulation similar to RepulsionPak to
pack spacetime elements into a volume created by extruding a static
container shape. The animated packing emerges from this three-
dimensional volume by rendering cross sections perpendicular to
the time axis. Our time axis behaves differently than a third spatial
dimension. Although the cross sections of a spacetime element
can drift from their original positions on the time axis, they must
remain ordered monotonically. Furthermore, each individual cross
section must remain flat in time, so that all of its 2D points occur
simultaneously.

Animated packings are a largely unexplored style of motion graph-
ics, presumably because of the difficulty of creating an animated
packing by hand. We were not able to find any motivating examples
created by artists. There is also very little past research on animated
packings; we discuss the work that does exist in the next section.

2 RELATED WORK

Packings and mosaics: Researchers have explored many ap-
proaches to creating 2D packings and simulated mosaics, including
using Centroidal Area Voronoi Diagrams (CAVDs) to position el-
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ements [15, 16, 33], spectral approaches to create even negative



space [10], energy minimization [23], and shape descriptors [25].
Several approaches have been proposed to extend 2D packing meth-
ods to adapt to the challenges of placing them on the surfaces of 3D
objects. [6,7,19,37].

Approaches that work with a smaller library of elements but allow
them to deform are particularly relevant to AnimationPak. Xu and
Kaplan [36] and Zou et al. [38] developed packing methods that
construct calligrams inside containers by allowing significant defor-
mation of letterforms. Saputra et al. presented FLOWPAK [32],
which deformed long, thin elements along user-defined vector fields.
RepulsionPak [30, 31] deformed elements using mass-spring sys-
tems and repulsion forces to create compatibilities between element
boundaries.

Animated packings and tilings: Animosaics by Smith et al. [33]
constructed animations in which static elements without scripted
animations follow the motion of an animated container. Elements are
placed using CAVDs, and advected frame-to-frame using a choice
of methods motivated by Gestalt grouping principles. As the con-
tainer’s area changes, elements are added and removed as needed,
while attempting to maximize overall temporal coherence. Dalal
et al. [10] showed how the spectral approach they introduced for
2D packings could be extended to pack animated elements in a
static container. Like us, they recast the problem in terms of three-
dimensional spacetime; they compute optimal element placement
using discrete samples over time and orientation. However, their
spacetime elements have fixed shapes and are made to fit together
using only translation and rotation, limiting their ability to consume
the container’s negative space.

Liu and Veksler created animated decorative mosaics from video
input [26]. Their technique combines vision-based motion segmen-
tation with a packing step similar to Animosaics. Kang et al. [21]
extracted edges from video and then oriented rectangular tesserae
relative to edge directions.

Kaplan [22] explored animations of simple tilings of the plane
from copies of a single shape. Elements in a tiling fit together by
construction, and therefore always consume all the negative space in
the animation.

3D packings: AnimationPak fills a 3D container with 3D
elements, and is therefore related to other work on construct-
ing freeform 3D packings. Gal et al. [13] presented a method
for constructing 3D collages reminiscent of portrait paintings by
Arcimboldo. They filled a 3D container with overlapping 3D ele-
ments using a greedy approach and a partial shape matching algo-
rithm. Marco [1] decomposed a 3D model into parts that pack tightly
into a small build volume, allowing it to be 3D printed with less
waste material and packed into a smaller box. Ma et al. [28] devel-
oped a heuristic method to create 3D packings that are overlap free.
Other work has experimented with example-based packing of 3D
volumes [27], or optimized placement based on user interaction [18].

Derived animations: AnimationPak falls into the category of
systems that create a derived animation based on some input anima-
tion. This problem, which requires preserving the visual character
of the input, is a longstanding one in computer graphics research.
Spacetime constraints [9,34] allow an animator to specify an object’s
constraints and goals, and then calculates the object’s trajectory via
spacetime optimization. Motion warping [35] is a method that de-
forms an existing motion curve to meet user-specified constraints.
Gleicher [14] developed a motion path editing method that allows
user to modify the traveling path of a walking character. Bruderlin
and Williams [4] used signal processing techniques to modify mo-
tion curves. Carra et al. [5] presented a timeslice grammar to
procedurally animate a large number of objects.

Previous work has also investigated geometric deformation of
animations. Edmond et al. [17] encoded spatial joint relationships
using tetrahedral meshes, and applied as-rigid-as-possible shape
deformation to the mesh to retarget animation to new characters.

Choi et al. [8] developed a method to deform character motion to
allow characters to navigate tight passages. Masaki [29] developed a
motion editing tool that deformed 3D lattice proxies of a character’s
joints. Dalstein et al. [11] presented a data structure to animate
vector graphics with complex topological changes. Kim et al. [24]
explored a packing algorithm to avoid collisions in a crowd of mov-
ing characters. They defined a motion patch containing temporal
trajectories of interacting characters, and arranged deformed patches
to prevent collisions between characters.

3 ANIMATED ELEMENTS

The input to AnimationPak is a library of animated elements and a
fixed container shape. AnimationPak currently supports two kinds
of animation: the user can animate the shape of each individual
element and can also give elements trajectories that animate their
position within the container. This section explains how we ani-
mate the element shapes using as-rigid-as-possible deformation, and
then construct spacetime-extruded objects that form the basis of
our packing algorithm. These elements animate “in place”: they
change shape without translating. The next section describes how
these elements can be given transformation trajectories within the
container. Size and orientation of an element can be animated either
way; they can be specified as an animation of the element’s shape,
or they can be part of the transformation trajectory.

3.1 Spacetime Extrusion

Each element begins life as a static shape defined using vector paths.
Following RepulsionPak, we construct a discrete geometric proxy
of the element that will interact with other proxies in a physical
simulation. The construction of this proxy for a single shape is
shown in Fig. 2, and the individual steps are explained in greater
detail below.

In order to produce a packing with an even distribution of negative
space, we first offset the shape’s paths by a distance As, leaving the
shape surrounded by a channel of negative space (Fig. 2a). In our
system we scale the shape to fit a unit square and set As = 0.04.

Next, we place evenly-spaced samples around the outer bound-
ary of the offset path and construct a Delaunay triangulation of the
samples (Fig. 2b). As in RepulsionPak, we will later treat the edges
of the triangulation as springs, allowing the element to deform in
response to forces in the simulation. We also follow RepulsionPak
by adding extra edges to prevent folding or self-overlaps during sim-
ulation (Fig. 2¢). First, if two triangles ABC' and BC D share edge
BC, then we add a shear edge connecting A and D. Second, we
triangulate the negative space inside the convex hull of the original
Delaunay triangulation, and create new negative space edges corre-
sponding to the newly created triangulation edges. These negative
space edges are used exclusively for internal bracing. The element’s
concavities can still be occupied by its neighbours.

We refer to the augmented triangulation shown in Fig. 2c as
a slice. The entire spacetime packing process operates on slices.
However, we will eventually need to compute deformed copies of
the element’s original vector paths when rendering a final animation
(Sect. 6). To that end, we re-express all path information relative to
the slice triangulation: every path control point is represented using
barycentric coordinates within one triangle.

To extend the element into the time dimension, we now position
evenly-spaced copies of the slice along the time axis. Assuming
that the animation will run over the time interval [0, 1], we choose
a number of slices ns and place slices {s1, . .., Sn, }, with slice s;
being placed at time (i — 1) /(ns — 1). Higher temporal resolution
will produce a smoother final animation at the expense of more
computation. In our examples, we set n, = 100. Fig. 2d shows a
set of time slices, with n, = 5 for visualization purposes.

To complete the construction of a spacetime element without
animation, we stitch the slices together into a single 3D object. Let
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Figure 2: The creation of a discretized spacetime element. (a) A 2D element shape offset by As. (b) A single triangle mesh slice. (c) Shear
edges (red) and negative space edges (dashed blue). (d) A set of five slices placed along the time axis. (e) The vertices on the boundaries of the
slices are joined by time edges. The black edges in (e) define a triangle mesh called the envelope of the element. In practice we use a larger

number of slices in (d) and (e).
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Figure 3: A spacetime element with a scripted animation.

s; and s;j4+1 be consecutive slices constructed above. The outer
boundaries of the element triangulations are congruent polygons
offset in the time axis. We stitch the two polygons together using
a new set of time edges: if AB is an edge on the boundary of
s; and C'D is the corresponding edge on the boundary of s;41,
then we add time edges AC, AD, and BC. During simulation,
time edges will transmit forces backwards and forwards in time,
maintaining temporal coherence by smoothing out deformation and
transformations. Fig. 2e shows time edges for n, = 5.

3.2 Animation

The 3D information constructed above is a parallel extrusion of
a slice along the time axis, representing a shape with no scripted
animation. We created a simple interactive application for adding
animation to spacetime elements, inspired by as-rigid-as-possible
shape manipulation [20]. The artist first designates a subset of the
slices as keyframes. They can then interactively manipulate any
triangulation vertex of a keyframe slice. Any vertex that has been
positioned manually has its entire trajectory through the animation
computed using spline interpolation. Then, at any other slice, the
positions of all other vertices can be interpolated using the as-rigid-
as-possible technique. The result is a smoothly animated spacetime
volume like the one visualized in Fig. 3.

Unlike data-driven packing methods like PAD [25], methods that
allow distortions do not require a large library of distinct elements
to generate successful packings. The results in this paper all use
fewer than ten input elements, and some use only one. The physical
simulation induces deformation to enhance the compatibility of
nearby shapes in the final animation.

4 INITIAL CONFIGURATION

We begin the packing process by constructing a 3D spacetime vol-
ume for the container by extruding its static shape in the time direc-
tion. The container is permitted to have internal holes, which are
also extruded. The resulting volume is scaled to fit a unit cube. We
also shrink each of the spacetime elements, in the spatial dimensions

(b) tsim >0

Figure 4: A 2D illustration of a guided element. Slices are depicted
as black lines and slice vertices as black dots. A spring connects
the centermost vertex « of a slice s to a target point p. (a) The
initial shape of a guided element is a polygonal extrusion. (b) The
spacetime element deforms but the springs pull it back towards the
target points.

only, to 5-10% of its original size. These shrunken elements are thin
enough that we can place them in the container without overlaps.

The artist can optionally specify trajectories for a subset of the
elements, which we call guided elements. A guided element attempts
to pass through a sequence of fixed target points in the container,
imbuing the animation with a degree of intention and narrative
structure. To define a guided element, we designate the triangulation
vertex closest to its centroid to be the anchor point for the element.
The artist then chooses a set of spacetime target points p1, . .., Pn,
with p; = (zi, yi, ), that the anchor should pass through during
the animation. In our interface, the artist uses a slider to choose the
time ¢; for a target point, and clicks in the container to specify the
spatial position (z;,y;). The artist can also optionally specify scale
and orientation at the target points. We require ¢t = O and t,, = 1,
fixing the initial and final positions of the guided element. We then
linearly interpolate the anchor position for each slice based on the
target points, and translate the slice so that its anchor lies at the
desired position. The red extrusions in Fig. 5a are guided elements.

If the artist wishes to create a looping animation, the (z;,y;)
position for target points p; and p,, must match up, either for a
single guided element or across elements. In Fig. 5 the two guided
elements form a connected loop; (z1,y1) for each one matches
(zn, yn) for the other.

In this initial configuration, the guided elements abruptly change
direction at target points. However, because the slices are connected
by springs, the trajectories will smooth out as the simulation runs.
Also, the simulation is not constrained to reach each target position
exactly. Instead, we attach the anchor to the target using a rarget-
point spring that attempts to draw the element towards it while



Y

|;t=’r (a)

(b)

(c) (d)

Figure 5: The simulation process. (a) Initial placement of shrunken spacetime elements inside a static 2D disc, extruded into a cylindrical
spacetime domain. Guided elements are shown in red and unguided elements in blue. (b) A physics simulation causes the spacetime elements
to bend. They also grow gradually. (c) The spacetime elements occupy the container space. (d) The simulation stops when elements do not
have sufficient negative space in which to grow, or have reached their target sizes.
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Figure 6: Repulsion forces applied to a vertex x, allowing the
element to deform and move away from a neighbouring element.

balancing against the other physical forces in play (Fig. 5b). The
strength of these springs determines how closely the element will
follow the trajectory.

We then seed the container with an initial packing of non-guided
spacetime elements. We generate points within the container at
random, using blue-noise sampling [2] to prevent points from being
too close together, and assign a spacetime element to each seed point,
selecting elements randomly from the input library. Depending upon
the desired effect, we either randomize their orientations or give
them preferred orientations. We reject any candidate seed point that
would cause an unguided element’s volume to intersect a guided
element’s volume.

Finally we shrink each element, guided and unguided, uniformly
in the spatial dimension towards its centroid. These shrunken ele-
ments are guaranteed not to intersect one another; as the simulation
runs, they will grow and consume the container’s negative space,
while avoiding collisions. The blue extrusions in Fig. 5a show an
initial placement of spacetime elements.

5 SIMULATION

‘We now perform a physics simulation on the spacetime elements and
the container. Elements are subject to a number of forces that cause
them to simultaneously grow, deform, and repel each other (Fig. 5).
Our physics simulation is very similar to that of RepulsionPak [30] —
with the exception of the new temporal force, all our forces are the
spacetime analogues of the ones used there. In Sect. 5.2 we introduce
some new hard constraints that must be applied after every time step.

Note that we must distinguish two notions of time in this simu-
lation. We use ¢ to refer to the time axis of our spacetime volume,

which will become the time dimension of the final animation, and
tsim to refer to the time domain in which the simulation is taking
place.

Repulsion Forces allow elements to push away vertices of neigh-
bouring elements, inducing deformations and transformations that
lead to an even distribution of elements within the container (Fig. 6).
We compute the repulsion force Fyp) on a vertex « located on a slice
boundary as:

" u 1
Fip = ke E _— 1
P L ] €+ [ul? M

where
kep1 is the relative strength of Fip1. We set kyp1 = 10;

n is the number of nearest points to x;

x; is the i-th closest point on the neighboring element surfaces;

u =x — x;; and

€ is a soft parameter to avoid instability when ||u|| is small. We
sete = 1.

Since the simulation operates in the spacetime domain, vertex
accumulates repulsion forces from points at various time positions.
To locate these points on neighbouring elements that are considered
nearest, we use a collision grid data structure, described in greater
detail in Sect. 5.1.

Edge Forces allow elements to deform in response to repulsion
forces. The edges defined in Sect. 3 are used here as springs. Like
RepulsionPak, we use a non-physical quadratic spring force. Let x4
and xp, be vertices connected by a spring. Each vertex experiences
an edge force Feqg of

Fea = heag 75 ([ull - 0 @
[l
where
kedg s is the relative strength of Feq,. Different classes of spring
will have different keqg values;
U = Tp — La;
£ is the rest length of the spring; and
s is +1 or -1, according to whether (||u|| — ¢) is positive or
negative.

We have five types of springs, with stiffness constants that can
be set independently. In our implementation we set keqg to 0.01 for
time springs, 0.1 for negative-space springs, and 10 for edge springs,
shear springs, and target point springs.

Overlap forces resolve a vertex penetrating a neighboring space-
time element. Overlaps can occur later in the simulation when
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Figure 7: An illustration of the temporal force. The vertices in slice
s; are drawn back towards time ¢.

negative space is limited. Once we detect a penetration, we tem-
porarily disable the repulsion force on vertex @, and apply an overlap
force F,., to push it out:

n

Fovr - kovr Z(pz - iI)) (3)

=1

where
kovr is the relative strength of Foyr. We set koyr = 5
n is the number of slice triangles that have « as a vertex; and
p; is the centroid of the i-th slice triangle incident on .

Boundary forces keep vertices inside the container. If an element
vertex @ is outside the container, the boundary force Fi,4r moves it
towards the closest point on the container’s boundary by an amount
proportional to the distance to the boundary:

Foar = kbar(pe — ) “)

where
kbar is the relative strength of Fi,qr. We set kpar = 5; and
P is the closest point on the target container to .

Torsional forces allow an element’s slices to be given preferred
orientations, to which they attempt to return. Consider a vertex x
of a slice, and let ¢, be the slice’s center of mass in its undeformed
state. We define the rest orientation of x as the orientation of the
vector u, = & — ¢,. During simulation we compute the current
centre of mass ¢ of the slice and let u = @ — ¢. Then the torsional

force Fior is
1 .
F%“:{kmﬂt, if0 >0

5

—kioru™, if0 <0 ®)
where

kior is the relative strength of Fior. We set kior = 0.1;
0 is the signed angle between w, and u; and

wb is a unit vector rotated 90° counterclockwise relative to w.

Temporal forces prevent slices from drifting too far from their
original positions along the time axis positions (Fig. 7), which could
cause unexpected accelerations and decelerations in the final an-
imation. For every vertex, we compute the temporal force Fimp
as

Emp = ktmput (t - t/) (6)

where
k¢mp is the relative strength of Fimp. We set kymp = 15
t is the initial time of the slice to which the vertex belongs;
t' is the current time value of the vertex; and
u' = (0,0,1) .

Computing total force and numerical integration:
The total force on a vertex is the sum of all of the individual
forces described above:

(a) (b)

Figure 8: (a) The triangles that connect consecutive slices define
the envelope of the element. The midpoints of these triangles are
stored in a collision grid. (b) A 2D visualization of the region of
collision grid cells around a query point & in which repulsion and
overlap forces will be computed. In the central blue region, we check
overlaps and compute exact repulsion forces relative to closest points
on triangles of neighbouring elements; in the peripheral red region
we do not compute overlaps, and repulsion forces are approximated
using triangle midpoints only.

Fiotal :Frpl+Fedg+der+Fovr+Eor+thp (7)

We use explicit Euler integration to simulate the motions of the
mesh vertices under the forces described above. Every vertex has a
position and a velocity vector; in every iteration, we update velocities
using forces, and update positions using velocities. These updates
are scaled by a time step Atsim that we set to 0.01. We cap velocities
at 10Atsim to dissipate extra energy from the simulation.

5.1 Spatial Queries

Repulsion and overlap forces rely on being able to find points on
neighbouring elements that are close to a given query vertex. To
find these points, we use each element’s envelope, a triangle mesh
implied by the construction in Sect. 3. Each triangle of the envelope
is made from two time edges and one edge of a slice boundary, as
shown in Fig. 8a. Given a query vertex x, we need to find nearby
envelope triangles that belong to other elements.

To accelerate this computation, we first find and store the cen-
troids of every element’s envelope triangles in a uniformly subdi-
vided 3D grid that surrounds the spacetime volume of the animation.
In using this data structure, we make two simplifying assumptions;
first, that because envelope triangles are small, their centroids are
adequate for finding triangles near a given query point; and sec-
ond, that the repulsion force from a more distant triangle is well
approximated by a force from its centroid.

Given a query vertex x, we first find all envelope triangle cen-
troids in nearby grid cells that belong to other elements. For each
centroid, we use a method described by Ericson [12] to find the
point on its triangle closest to « and include that point in the list of
points in Eq. (1). These nearby triangles will also be used to test
for interpenetration of elements. We then find centroids in more
distant grid cells, and add those centroids directly to the Eq. (1) list,
skipping the closest point computation. In our system we set the
cell size to 0.04, giving a 25 x 25 x 25 grid around the simulation
volume. A query point’s nearby grid cells are the 27 cells making
up a 3 X 3 x 3 block around the cell containing the point; the more
distant cells are the 98 that make up the outer shell of the 5 X 5 X 5
block around that (Fig. 8).

5.2 Slice Constraints

There are three hard geometric constraints on the configuration of
slices, which must be enforced throughout the simulation. Each of
the following constraints is reapplied after each physical simulation
step described above.
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Figure 9: a) End-to-end constraint: slice s, and s, located att = 0
and t = 1, should never change their ¢ positions but can change
their x, y positions. b) Simultaneity constraint: all vertices on the
same slice should have the same ¢ position. ¢) Loop constraint with
a single element: the z, y positions for s; and s,, must match. d)
Loop constraint with two elements: the x, y position for s; for one
element matches the x, y position for s,, of the other.

1. End-to-end constraint: A spacetime element must be present
for the full length of the animation from ¢t = 0 to ¢t = 1. After
every simulation step, every vertex belonging to an element’s
first slice has its ¢ value set to 0, and every vertex of the last
slice has its ¢ value set to 1 (Fig. 9a).

2. Simultaneity constraint: During simulation, the vertices of a
slice can drift away from each other in time, which could lead
to rendering artifacts in the animation. After every simulation
step, we compute the average t value of all vertices belonging
to each slice other than the first and last slices, and snap all the
slice’s vertices to that ¢ value (Fig. 9b).

3. Loop constraint: AnimationPak optionally supports looping
animations. When looping is enabled, we must ensure that
the ¢ = 0 and ¢ = 1 planes of the spacetime container are
identical. The ¢ = 1 slice of every element e; must then
coincide with the ¢ = 0O slice of some element e2. We can
have e; = es (Fig. 9c), but more general loops are possible
in which the elements arrive at a permutation of their original
configuration (Fig. 9d). We require only that there is a one-
to-one correspondence between the vertices of the ¢ = 1 slice
of e1 and the ¢t = O slice of ez. If p1 = (z1,y1,1) € €1 and

(c)

Figure 10: A spacetime element shown (a) shrunken at the begin-
ning of the simulation, and (b) grown later in the simulation. (c)
When two elements overlap somewhere along their lengths, they are
temporarily prohibited from growing there.

p2 = (z2,y2,0) € es are in correspondence, then after every

simulation step we move p; to (%, W, 1) and p; to
(z1+w1 Y2+y2 0)
2 2 oY)

5.3 Element Growth and Stopping Criteria

We begin the spacetime packing process with all element slices
scaled down in x and y, guaranteeing that elements do not overlap.
As the simulation progresses we gradually grow the slices, consum-
ing the negative space around them (Fig. 10a,b). A perfect packing
would fill the spacetime container completely with the elements.
Because each element wraps the underlying animated shape with a
narrow channel of negative space, this would yield an even distribu-
tion of shapes in the resulting animation. For real-world elements,
the goal of minimizing deformation of irregular element shapes will
lead to imperfect packings with additional pockets of negative space.

Element growth: We induce elements to grow spatially by gradu-
ally increasing the rest lengths of their springs. The initial rest length
of each spring is determined by the vertex positions in the shrunken
version of the spacetime element constructed in Sect. 4. We allow an
element’s slices to grow independently of each other, which compli-
cates the calculation of new rest lengths for time springs. Therefore,
we create a duplicate of every shrunken spacetime element in the
container, with a straight extrusion for unguided elements, and a
polygonal extrusion for guided elements. This duplicate is not part
of the simulation; it serves as a reference. Every element slice main-
tains a current scaling factor g. When we wish to grow the slice,
we increase its g value. We can compute new rest lengths for all
springs by scaling every slice of the reference element by a factor of
g relative to the slice’s centroid, and measuring distances between
the scaled vertex positions. These new rest lengths are then used as
the ¢ values in Equation 2.

Every element slice has its g value initialized to 1. After every
simulation step, if none of the slice’s vertices were found to overlap
other elements we increase that slice’s g by 0.001Atgim, where
Atgim is the simulation time step. If any overlaps are found, then that
slice’s growth is instead paused to allow overlap and repulsion forces
to give it more room to grow in later iterations. This approach can
cause elements to fluctuate in size during the course of an animation,
as slices compete for shifting negative space (Fig. 10).

Stopping Criteria: We halt the simulation when the space be-
tween neighbouring elements drops below a threshold. When calcu-
lating repulsion forces, we find the distance from every slice vertex
to the closest point in a neighbouring element. The minimum of



these distances over all vertices in an element slice determines that
slice’s closest distance to neighbouring elements. We halt the simula-
tion when the maximum per-slice distance falls below 0.006 (relative
to a normalized container size of 1). That is, we stop when every
slice is touching (or nearly touching) at least one other element.

In some cases it can be useful to stop early based on cumulative
element growth. In that case, we set a separate threshold for the slice
scaling factors g described above, and stop when the g values of all
slices exceed that threshold.

6 RENDERING

The result of the simulation described above is a packing of space-
time elements within a spacetime container. We can render an
animation frame-by-frame by cutting through this volume at evenly
spaced t values from ¢ = 0 to t = 1. For our results, we typically
render 500-frame animations.

During simulation, a given spacetime element’s slices may drift
from their original creation times. However, time springs keep the
sequence monotonic, and the simultaneity constraint ensures that
every slice is fixed to one ¢ value. To render this element at an
arbitrary frame time ¢ € [0, 1], we find the two consecutive slices
whose time values bound the interval containing ¢ and linearly
interpolate the vertex positions of the triangulations at those two
slices to obtain a new triangulation at ¢;. We can then compute
a deformed copy of the original element paths by “replaying” the
barycentric coordinates computed in Sect. 3 relative to the displaced
triangulation vertices. We repeat this process for every spacetime
element to obtain a rendering of the frame at ¢ 4.

This interpolation process can occasionally lead to small artifacts
in the animation. A rendered frame can fall between the discretely
sampled slices for two elements at an intermediate time where phys-
ical forces were not computed explicitly. It is therefore possible for
neighbouring elements to overlap briefly during such intervals.

7 IMPLEMENTATION AND RESULTS

The core AnimationPak algorithm consists of a C++ program that
reads in text files describing the spacetime elements and the con-
tainer, and outputs raster images of animation frames.

Large parts of AnimationPak can benefit from parallelism. In our
implementation we update the cells of the collision grid (Sect. 5.1)
in parallel by distributing them across a pool of threads. When the
updated collision grid is ready, we distribute the spacetime elements
over threads. We calculate forces, perform numerical integration,
and apply the end-to-end and simultaneity constraints for each ele-
ment in parallel. We must process any loop constraints afterwards,
as they can affect vertices in two separate elements.

We created the results in this paper using a Windows PC with a
3.60GHz Intel i7-4790 processor and 16 GB of RAM. We used a
pool of eight threads, corresponding to the number of logical CPU
cores. Table 1 shows statistics for our results. Each packing has tens
of thousands of vertices and hundreds of thousands of springs, and
requires about an hour to complete. We enable the loop constraint
in all results. The paper shows selected frames from the results; see
the accompanying videos for full animations.

Fig. 1 is an animation of aquatic fauna featuring two penguins
as guided elements. During one loop the penguins move clockwise
around the container, swapping positions at the top and the bottom.
Each ends at the other’s starting point, demonstrating a loop con-
straint between distinct elements. All elements are animated, as
shown in Fig. 1a. Note the coupling between the Pac-Man fish’s
mouth and the shark’s tail on the left side of the second and fourth
frames.

A snake chases a bird around an annular container in Fig. 11,
demonstrating a container with a hole and giving a simple example
of the narrative potential of animated packings. Fig. 12 animates the

giraffe-to-penguin illusion shown as a static packing in Repulsion-
Pak. This example uses torsional forces to control slice orientations.

Fig. 13 offers a direct comparison between packings computed
using Centroidal Area Voronoi Diagrams (CAVD) [33], the spectral
approach [10], and AnimationPak. These packings use stars that
rotate and pulsate. For each method we show the initial frame
(t = 0) and the halfway point ({ = 0.5). The CAVD approach
produces a satisfactory—albeit loosely coupled—packing for the
first frame, but because the algorithm was not intended to work on
animated elements, the evenness of the packing quickly degrades
in later frames. The spectral approach is much better than CAVD,
but their animated elements still have fixed spacetime shapes and
can only translate and rotate to improve their fit. Repulsion forces
and deformation allow AnimationPak to achieve a tighter packing
that persists across the animation, including gear-like meshing of
oppositely-rotating stars.

Fig. 14ais a static packing of a lion created by an artist and used
as an example in FLOWPAK [32]. In Fig. 14b, we reproduce it with
animated elements for the mane. The orientations of elements follow
a vector field inside the container, and are maintained during the
animation by torsional forces. We simulate only half of the packing
and reflect it to create the other half. The facial features were added
manually in a post-processing step.

Fig. 15 compares a static 2D packing created by RepulsionPak
with a frame from an animated packing created by AnimationPak.
The extra negative space in AnimationPak comes partly from the
trade-off between temporal coherence and tight packing, and partly
from the lack of secondary elements, which were used in a second
pass in RepulsionPak to fill pockets of negative space.

Fig. 16 emphasizes the trade-off between temporal coherence and
evenness of negative space by creating two animations with different
time springs stiffness. In (a), the time springs are 100 times stronger
than in (b). The resulting packing has larger pockets of negative
space, but the accompanying video shows that the animation is
smoother. The packing in (b) is tighter, but the elements must move
frantically to maintain that tightness.

Fig. 17 is a failed attempt to animate a “blender”. The packing
has a beam that rotates clockwise and a number of small unguided
circles. In a standard physics simulation we might expect the beam
to push the circles around the container, giving each one a helical
spacetime trajectory. Instead, as elements grow, repulsion forces
cause circles to explore the container boundary, where they discover
the lower-energy solution of slipping past the edge of the beam as
it sweeps past. If we extend the beam to the full diameter of the
container, consecutive slices simply teleport across the beam, hiding
the moment of overlap in the brief time interval where physical
forces were not computed. AnimationPak is not directly comparable
to a 3D physics simulation; it is better suited to improving the
packing quality of an animation that has already been blocked out at
a high level.

8 CONCLUSION AND FUTURE WORK

We introduced AnimationPak, a system for generating animated
packings by filling a static container with animated elements. Every
animated 2D element is represented by an extruded spacetime tube.
We discretize elements into triangle mesh slices connected by time
edges, and deform element shapes and animations using a spacetime
physical simulation. The result is a temporally coherent 2D anima-
tion of elements that attempt both to perform their scripted motions
and consume the negative space of the container. We show a variety
of results where 2D elements move around inside the container.

We see an number of opportunities for improvements and exten-
sions to AnimationPak:

* Because we use linear interpolation to synthesize an element’s
shape between slices, we require elements not to undergo
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Figure 11: A snake chasing a bird through a packing of animals. The snake and bird are both guided elements that move clockwise around the
annular container.
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Figure 12: Penguins turning into giraffes. The penguins animate by rotating in place. Torsional forces are used to preserve element orientations.
Frames are taken at ¢t = 0,¢ = 0.125,¢ = 0.25,¢t = 0.375, and t = 0.5.
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Figure 13: A comparison of (a) Centroidal Area Voronoi Diagrams (CAVDs) [33], (b) spectral packing [10], and (c) AnimationPak. We
show two frames for each method, taken at ¢t = 0 and ¢ = 0.5. The CAVD packing starts with evenly distributed elements but the packing
degrades as the animation progresses. The spectral approach improves upon CAVD with better consistency, but still leaves significant pockets
of negative space. The AnimationPak packing has less negative space that is more even.
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(c) (a) RepulsionPak (b) AnimationPak

Figure 14: (a) A static packing made by an artist, taken from  Figure 15: (a) A static packing created with RepulsionPak. (b)
StockUnlimited. (b) The first frame from an AnimationPak packing.  The first frame of a comparable AnimationPak packing. The input
(c) The input animated elements and the container shape with a  spacetime elements are shown on the right. The AnimationPak
vector field. Torsional forces keep elements oriented in the direction  packing has more negative space because we must tradeoff between
of the vector field. We simulate half of the lion’s mane and render  temporal coherence and packing density.

the other half using a reflection, and add the facial features by hand.



Table 1: Data and statistics for the results in the paper. The table
shows the number of elements, the number of vertices, the number
of springs, the number of envelope triangles, and the running time
of the simulation in hours, minutes, and seconds.

Packing Elements  Vertices | Springs | Triangles Time
Aq“?;fga';‘)mals 37 97,800 | 623,634 | 106,000 | 01:06:35
Snake and birb 37 58700 | 370,571 | 58,700 | 01:01:32

(Fig. 11)

Penguin to giraffe 33 124,300 | 824,164 | 143,000 | 01:19:50

(Fig. 12)

Heart stars 26 85200 | 598218 | 858,00 | 00:23:08

(Fig. 13c¢)

Animals on.

(Fig. 15b) 34 69,600 | 444337 | 69,800 | 01:00:19

Lion 1.

(Fig. 14b) 16 39,400 | 236,086 | 41,800 | 00:41:56
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Figure 16: (a) One frame from Fig. 1. (b) The same packing with
time springs that are 1% as stiff. Reducing the stiffness of time
springs leads to a more even packing with less negative space, but
the animated elements must move frantically to preserve packing
density. The spacetime trajectories of the highlighted fish in (a)
and (b) are shown in (c). The orange fish in (b) exhibits more high
frequency fluctuation in its position.

changes in topology. More sophisticated representations of
vector shapes, such as that of Dalstein et al. [11], could sup-
port interpolations between slices with complex topological
changes. We would also need to synthesize a watertight enve-
lope around the animating element in order to compute overlap
and repulsion forces.

* We would like to improve the performance of the physical
simulation. One option may be to increase the resolution of
element meshes progressively during simulation. Early in the
process, elements are small and distant from each other, so
lower-resolution meshes may suffice for computing repulsion
forces.

* As noted in Sect. 6 and Fig. 17, our discrete simulation can
miss element overlaps that occur between slices. A more robust
continuous collision detection (CCD) algorithm such as that
of Brochu et al. [3] could help us find all collisions between
the envelopes of spacetime elements.

* In RepulsionPak [30], an additional pass with small secondary
elements had a significant positive effect on the distribution
of negative space in the final packing. It may be possible to
identify stretches of unused spacetime that can be filled oppor-
tunistically with additional elements. The challenge would be
to locate tubes of empty space that run the full duration of the
animation, always of sufficient diameter to accommodate an
added element.

* Like the spectral method [10], and unlike Animosaics [33],
AnimationPak can pack animated elements into a static con-

°
b)

Figure 17: A failure case for AnimationPak, consisting of a rotating
beam and a number of small circles. Instead of being dragged around
by the beam, the circles dodge it entirely by sneaking through the
gap between the beam and the container. The red circle demonstrates
one such maneuver.

tainer. We would like to extend our work to also handle ani-
mated containers. This extension would certainly affect the
initial element placement, which would need to ensure that
elements are placed fully inside the spacetime volume of the
container. It could also lead to undesirable scaling of elements
if the container area changes too much. It would be interest-
ing to investigate whether we could adapt to changes in area
by adding and removing elements unobtrusively during the
animation, in the style of Animosaics.

¢ AnimationPak implements forces and constraints geared to-
wards spacetime animation, but many of the same ideas could
be adapted to develop a deformation-driven method for packing
purely spatial 3D objects into a 3D container. We would like
to evaluate the expressivity and visual quality of deformation-
driven 3D packings in comparison to other 3D packing tech-
niques.

* Our physical simulation relies in several places on our method
of constructing and animating spacetime elements. Our time
edges make use of the one-to-one correspondence between
boundary vertices of adjacent slices in order to construct a
mesh surface that bounds each element. We also make di-
rect use of that correspondence when rendering, to interpolate
new triangulations between existing slices. We would like
AnimationPak to be more agnostic about the method used to
create animated elements. Given a “generic” animated element,
we can easily compute independent triangulated slices, but we
would need robust algorithms to join them into an extrusion
and interpolate within that extrusion later.

¢ Saputra et al. [30] previously studied a set of measurements
inspired by spatial statistics for evaluating the evenness of
the distribution of negative space in a static packing. While
their measurements extend naturally to three purely spatial
dimensions, it is not clear whether they can be adapted to
our spacetime context. We would like to investigate spatial
statistics for the quality of animated packings that correlate
with human perceptual judgments.

* There are many examples of static two-dimensional packings
created by artists, which can serve as inspiration for an algo-
rithm like RepulsionPak. We were unable to find an equivalent
set of animated examples, probably because they would be
difficult and time-consuming to create by hand. We would like
to engage with artists to understand the aesthetic value and
limitations of AnimationPak.
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