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Abstract

We evaluate CS-Shapley, a data valuation method introduced in Schoch et al. (2022) for
classification problems. We repeat the experiments in the paper, including two additional
methods, the Least Core (Yan & Procaccia, 2021) and Data Banzhaf (Wang & Jia, 2023),
a comparison not found in the literature. We include more conservative error estimates
and additional metrics, like rank stability, and a variance-corrected version of Weighted
Accuracy Drop, originally introduced in Schoch et al. (2022). We conclude that while CS-
Shapley helps in the scenarios it was originally tested in, in particular for the detection of
corrupted labels, it is outperformed by the conceptually simpler Data Banzhaf in the task
of detecting highly influential points, except for highly imbalanced multi-class problems.

1 Definitions and notation

We define data valuation as the task of assigning a scalar value to training points which measures their
contribution to the estimated performance of a supervised machine learning model.1 This sets us in the
framework of model-agnostic data valuation (in the sense that any model can be used, but one is needed),
and we specifically focus on the class of methods based in marginal contributions. These define the value of
a datum zi in the training set T := {zi = (xi, yi) : i = 1, . . . , n} as a function of its marginal utility, which
is the difference in performance when training with and without zi, measured over a separate valuation
set D. A third set Dtest for testing is held out and only used for final evaluation.

The simplest example of a valuation method based on marginal contributions is Leave-One-Out (LOO),
which is defined as the marginal utility of zi for the whole T :

vloo(zi) := u(T ) − u(T \ {zi}), (1)

where the utility u = uD : 2T → R is the performance of the model when trained on any S ⊆ T , measured
on a held-out valuation set D. The standard choice for u in classification is accuracy, while for regression
one can take for example the negative empirical risk. Because for large training sets T the contribution of
single points will be vanishingly small, LOO is typically outperformed by methods averaging many marginal
contributions to different subsets of T .

Drawing from the literature in cooperative game theory, the seminal paper Data-Shapley (Ghorbani &
Zou, 2019) takes a weighted mean of the marginal utility for every subset S ⊆ T \ {zi}, with weights given
by the Shapley coefficients:

vshap(zi) := 1
n

∑
S⊆T \{zi}

(
n − 1
|S|

)−1
[u(S ∪ {zi}) − u(S)]. (2)

1The field includes a wider range of definitions of value. For an overview of goals and applications of data valuation, we
refer to Sim et al. (2022) as well as to the documentation of PyDVL (TransferLab, 2022).
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Because of the exponential cost of O(2|T |) evaluations of the utility (each of which entails retraining the model
of interest), previous work on Shapley value (Castro et al., 2009) had proposed iterating over permutations
to increase the accuracy of Monte Carlo estimates: A random permutation of the index set of T \ {zi} is
sampled, and one iterates over the permutation, incrementally computing marginal utilities. The authors
of Ghorbani & Zou (2019) truncate this process after the inclusion of a new point results within a certain
threshold of the total utility. Their method Truncated Monte Carlo Shapley (TMCS) can drastically
reduce computation time, thus enabling Shapley-based methods for ML applications for the first time.2

This spurred a series of works proposing different Monte Carlo estimators (Okhrati & Lipani, 2021), variations
of the Shapley value (Kwon et al., 2021), and other game-theoretic solution concepts like the Least Core
(Yan & Procaccia, 2021; Benmerzoug & de Benito Delgado, 2023) (LC in the sequel), which we include in
our analysis. Several sampling strategies to reduce the variance of the Monte Carlo estimates exist (Wu
et al., 2023; Covert et al., 2024), but generalizations to so-called semi-values are more successful. The
idea is to change the weights in Equation (2) with the goal of compensating for the variance of u(S), which
typically increases with model capacity at low set sizes |S|. Beta-Shapley (Kwon & Zou, 2022) gives more
weight to subsets S in the lower- to mid-size range by using a Beta function for the coefficients. A simpler
approach, Data Banzhaf (Wang & Jia, 2023) (DB in the sequel), defined as follows, is of particular interest
to our analysis:3

vbzf(zi) := 1
2n−1

∑
S⊆T \{zi}

[u(S ∪ {zi}) − u(S)]. (3)

As mentioned, the main motivation behind DB is addressing the stochasticity in S 7→ u(S) (cf. Section 3.5
for more on randomness). Intuitively, the constant coefficients 2n−1 are the best one can do for general u,
since given any weighting scheme, it is always possible to adversarially construct a utility with high variance
at the set sizes with highest weights. The authors do indeed prove certain optimality results with respect to
(wrt.) a notion of stability in value rankings. We will see in the experiments that this simple idea yields the
best results in many situations.4

Further lines of work tackle the exponential complexity by learning a model for the utility after a few
evaluations (Wang et al., 2022), or by replacing the values with a proxy model altogether Jia et al. (2021).
Alternative approaches avoid the cost of game solution concepts altogether, like Data-OOB Kwon & Zou
(2023) which uses the out-of-bag error estimate of a bagging model. Reformulations of Shapley like AME
Lin et al. (2022) use off-the-shelf models like Lasso to look for sparse solutions with many points being
assigned zero value, since one is typically interested in the extreme situations.5

In this context, CS-Shapley Schoch et al. (2022) (CS in the sequel) appears as a valuation method based
on Shapley values exclusively designed for classification problems, and aware of the in-class and out-of-class
impact of training points. The core observation motivating the work (Claim 1) is that mislabeled points can
simultaneously improve overall accuracy (the utility), while being detrimental for the model’s performance
on the class they actually belong to. The authors propose that a better definition of value should account
for this phenomenon, and introduce a novel utility Equation (4) which considers the positive or negative
impact a datum has within its class and outside it.

To define CS, fix zi = (xi, yi) ∈ T and split the valuation data into Dyi
, the data with the same label as

xi, and its complement D−yi
:= D\Dyi

. Analogously, T = Tyi
⊎ T−yi

is a partition into the subsets of all
training data with the same and different class than yi, respectively. Trained over any S ⊆ T the model

2The rationale for the truncation is that as the size k of the subsets S grows towards |D|, individual points contribute less
and less to the performance of a model when trained on S, as happens with LOO. Some estimates from stability theory show
that it is reasonable to expect an upper bound on the utility of O(1/k). It is interesting to note that diminishing returns apply
also as k decreases to 0. This motivates computing (2) for a certain range of set sizes |S| ∈ +[Blow, Bup], as proposed in Watson
et al. (2023), an idea that is also behind the weighting strategy of Kwon & Zou (2022) described later.

3Despite the formulation with a sum over the powerset of T \ {zi}, as with all game-theoretic methods, in practice one does
not draw subsets S from it, but iterates over permutations as described above, or uses another sampling strategy. To this avail,
Wang & Jia (2023) introduced Maximum Sample Reuse, an efficient strategy with good performance, see below.

4(Li & Yu, 2023) recently extended DB to weighted Banzhaf values, but we were not able to include this method in our
experiments.

5This is by far not an exhaustive list, but we want to restrict ourselves mostly to methods we discuss.
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has in-class accuracy:6 aS(Dyi
) :=

(
# correct predictions over Dyi

)
/|D|, and out-of-class accuracy:

aS(D−yi
) := (# correct predictions over D−yi

)/|D|. Given an arbitrary set S−yi
⊆ T−yi

, the conditional
utility conditioned on S−yi

is defined for every Syi
⊆ Tyi

as:

u(Syi
|S−yi

) := aS(Dyi
)eaS(D−yi

), (4)

where we define S := Syi
∪ S−yi

in order to compute the accuracies.7 Because of this form and aS(Dyi
) +

aS(D−yi
) ⩽ 1, aS(D−yi

) is controlled by aS(Dyi
) in the sense that when the latter is small, the effect of

out-of-class accuracy on u is negligible, cf. (Schoch et al., 2022, Figure 2). In particular, even a small in-class
accuracy leads to greater utility than perfect out-of-class accuracy, cf. (Schoch et al., 2022, Property 1, p.
5). With these ingredients, Schoch et al. (2022) define the conditional CS-Shapley value of zi given
S−yi

as:

ϕ(zi|S−yi
) :=

∑
Syi

⊆Tyi
\{zi}

(
|Tyi

| − 1
|Syi

|

)−1
[u(Syi

∪ {zi}|S−yi
) − u(Syi

|S−yi
)]. (5)

Finally, the CS-Shapley value is an average over all possible out-of-class environments S−yi
:

v(zi) := 1
2|T−yi

|

∑
S−yi

⊆T−yi

ϕ(zi|S−yi
). (6)

In practice, this sum is approximated in Monte Carlo fashion with a few hundred S−yi
. For each S−yi

,
sampling of the Syi

⊆ Tyi
\{zi} is not done from the powerset as suggested by Equation (5), but following

the permutation approach first proposed in Castro et al. (2009). In the implementation of Schoch et al.
(2022) and ours, one permutation per set is used.

2 Scope of the reproduction

In this report, we set to verify the main claims of Schoch et al. (2022), incorporating two additional methods:
Least Core (Yan & Procaccia, 2021) and DB (Wang & Jia, 2023), which led to some unexpected results.
To the best of our knowledge, this represents the first direct comparison of DB with other methods in the
tasks described in Section 3.4. This work also extends the evaluation of LC conducted in Yan & Procaccia
(2021) and replicates the findings of Benmerzoug & de Benito Delgado (2023) across many more datasets
and scenarios. Finally, we strive to provide more accurate error estimates and include additional metrics.

Claim 1 Schoch et al. (2022) Training points can be simultaneously beneficial for average accuracy, and
detrimental for in-class accuracy. A valuation method accounting for this should perform better than one
that does not.

This observation is backed by (Schoch et al., 2022, Figure 1), using one point and one set. How often does
it happen that the marginal global accuracy of a datum is positive, but the marginal in-class accuracy is
negative, and vice versa? And, how do these situations correlate with better performance of CS wrt. other
methods? We address these questions in Section 4.1.

Claim 2 Schoch et al. (2022) CS is generally better suited for classification problems.

We find that it is in fact DB which outperforms all methods in the detection of highly influential points,
except in the case of highly imbalanced multiple classes, although it fails to do so in noise detection. See
Section 3.4 for a description of these tasks, and Sections 4.2 and 4.4 for the conclusions.

Claim 3 Schoch et al. (2022) Data values can be successfully transferred across classifiers, including to
neural models.

6We follow the notation of Schoch et al. (2022), but observe that the sub-index in aS is a variable. A more obvious notation
would be a(S, Dyi

).
7There is a problem with the original notation in the paper: In p. 4 it is stated that S−yi

is the complement in S of Syi
,

which is not what is intended. Instead S−yi
is an arbitrary subset of T−yi

.

3



Published in Transactions on Machine Learning Research (06/2024)

We partially verify the claim for one scenario in Section 4.3, but observe that the signal is rather small,
if at all present in many cases. Using a second target classifier, we observe an almost complete failure to
transfer values. This does not correlate with any obvious characteristic of the data, like class imbalance or
the prevalence of the property described in Claim 1, leaving open for a practitioner the fundamental question
of what source model to use for value transfer for a particular dataset.

Additionally, we observe the following (these claims are our own):

Claim 4 Under full randomness of data sampling, subset sampling, and training method, CS tends to exhibit
higher variance than most other methods in the point removal task.

When we resample the datasets for each experiment run, we note that the behaviour of CS is more strongly
affected by the training / valuation / test split than other methods. This is of relevance since in practice,
cross-validation of values is computationally prohibitive. Nevertheless, we observed that the general trends
were respected across splits.

Claim 5 Under similar computational budgets, DB is preferable to all other methods for the identification
of highly influential points, while CS is for the detection of corrupted ones.

We substantiate this in Section 4.2 and Section 4.4.

Claim 6 A modified version of the metric WAD (cf. Section 3.4) is better suited for quantitative comparison
of valuation methods.

We address this in Section 4.5.

3 Methodology

We run all experiments on the same datasets and models as Schoch et al. (2022), adding two new valuation
methods. Details of the datasets, and parameters of the classifiers and valuation methods follow.

3.1 Datasets

Datasets are from openml (Vanschoren et al., 2013). All but Covertype and MNIST-multi are for binary
classification. Stratified sampling was used for the splits to maintain label distribution. Image datasets
underwent feature extraction using ResNet-18, then dimensionality reduction using 32 PCA components.

Dataset Type Features Instances %positive Training Valuation Test
Diabetes tabular 8 768 65.1 128 128 512

Click tabular 9⋆ 3000 95.5 500 500 2000
Covertype tabular 54 3000 (♮) 500 500 2000

CPU† tabular 21 3000 46.7 500 500 2000
Phoneme tabular 5 3000 70.6 500 500 2000

FMNIST†† image 32 3000 50 500 500 2000
CIFAR10† † † image 32 3000 50 500 500 2000

MNIST-binary† † †† image 32 3000 51.9 500 500 2000
MNIST-multi image 32 3000 (♮♮) 500 500 2000

Table 1: Datasets used. (⋆) 11 features declared online, but 9 effective after fetching using the openml library.
(†) CPU is originally a regression dataset, binarized using the threshold 89. (††) FMNIST is restricted to
the classes “t-shirt and tops” vs “shirts”. (†††) CIFAR10 is restricted to the classes “automobile” vs “truck”.
(† † ††) MNIST-binary is MNIST restricted to the classes “1” vs “7”. (♮) Covertype is highly imbalanced
with 7 classes with frequencies 36.5% / 48.8% / 6.2% / 0.5% / 1.6% / 3% / 3.5%. (♮♮) MNIST-multi has 10
classes with almost equal frequencies.
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3.2 Valuation methods tested

Parameters for all methods were taken as suggested in Schoch et al. (2022) or the corresponding papers.
Convergence criteria for the methods were kept as consistent as possible by stopping computation after the
value for every training point had been updated at least a fixed amount of times.

Method Convergence crit. Utility evaluations Parameters
LOO NA† |T | + 1 NA
TMCS (Ghorbani & Zou, 2019) MinUpdates>500 O(K|T |) ε = 10−4

BetaShap (Kwon & Zou, 2022) MinUpdates>500 O(K|T |) α = 16, β = 1
CS-Shapley (Schoch et al., 2022) MinUpdates>500 O(RK|T |/2)†† ε = 10−4, K = 1
Data Banzhaf (Wang & Jia, 2023) MinUpdates>5000 K K = 5000 samples
Least Core (Yan & Procaccia, 2021) NA K K = 5000 constraints

Table 2: Methods evaluated. Convergence criteria as provided by pyDVL (TransferLab, 2022). See the
text for details on each method. (†) “NA” = Not Applicable. (††) |T |/2 is the expected size of a set S−yi

sampled from 2T , and hence of its complement. K is the number of samples taken, i.e. of permutations for
all methods, except for Least Core, where we sample from the powerset. For CS-Shapley, R is the number
of context samples S−yi

.

Leave-One-Out: Baseline, no parameters. Values given by Equation (1).

Truncated Monte Carlo Shapley, TMCS (Ghorbani & Zou, 2019): This was the first efficient
Shapley-based method and remains one of the most effective approximations. It iterates over permutations
of the index set of T to reduce variance of the Monte Carlo estimate, and heuristic stopping to reduce
computation. For every permutation, marginal utilities are calculated incrementally using the next index
in the permutation. The process is stopped early for a permutation when the relative change in marginal
utility is below a threshold ε. Therefore the number of utility evaluations is O(K|T |).

Beta Shapley, BS (Kwon & Zou, 2022): A semi-value approach like TMCS, where the weights for the
marginal utilities are defined using a Beta function. For the parameters we use the best values according to
the paper, α = 16 and β = 1. We use the same permutation sampling scheme as for TMCS.

CS-Shapley, CS (Schoch et al., 2022): The key parameter mentioned in the paper is the number R
of context samples S−yi

, which we mimic with MinUpdates. For each one of these, one permutation of Syi

is used. Additionally, a threshold is used to compare the absolute difference between value estimates and
update the values. Finally, there are two minor variants of the algorithm not detailed in the paper. Their
implementation does not condition on sets S with |S| < c − 1, where c is the number of classes, which for
binary problems means that one never conditions on the empty set. We use the default in pyDVL which
does not include this restriction, hence sometimes conditioning on S = ∅ and setting u(∅|S) = u(S). We
tested both without observing major differences.

Data Banzhaf, DB (Wang & Jia, 2023): A semi-value approach with constant weights, with the goal
of counteracting the variance in stochastic utility functions. The idea is that for any particular choice of
weights there will always be a utility for which they perform poorly, thus making a constant the best choice.
In particular wrt. rank stability of the methods, see Figure 9.

The paper also introduces an efficient sampling technique, dubbed Maximum Sample Reuse (MSR), which
for every sample S ⊂ T updates all indices in the training set. This drastically reduces the amount of utility
evaluations required for approximation, by a factor |T | wrt. TMCS.

The idea is that vbzf(zi) = ES∼Unif(2T \{zi})[u(S ∪{zi})−u(S)], and by linearity of the expectation vbzf(zi) =
E[u(S ∪ {zi})] − E[u(S)], which can be approximated by sampling sets Sk ⊂ T\{zi}, splitting them into
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S∋i := {Sk : zi ∈ Sk}, S̸∋i := {Sk : zi ̸∈ Sk} and setting:

v̂bzf(zi) := 1
|S∋i|

∑
S∈S∋i

u(S) − 1
|S̸∋i|

∑
S∈S ̸∋i

u(S).

In our experiments we chose to stop the method after all values had been updated at 5000 times, which
means the same amount of utility evaluations. This was to provide a comparison to LC. We also ran DB
with permutation sampling as TMCS and Beta Shapley, but performance was comparable or worse at a
much higher computational cost.

Least-Core, LC (Yan & Procaccia, 2021): Another game-theoretic approach. It computes values with
a stability property called Coalitional Rationality, which ensures (in the exact case) that every subset
is assigned an aggregate value at least as large as its utility.8 Given the different nature of the algorithm,
which solves a linear program and cannot use the same convergence criteria, we choose K = 5000 constraints
for stability and run-time considerations.9

3.3 Models for value computation

Values are computed using each of the models in Table 3 with the given parameter choices.

Model Changed parameters
Logistic regression solver=’liblinear’
Gradient Boosting classifier n_estimators=40, min_samples_leaf=6, maxdepth=2
K-Nearest Neighbours n_neighbors=5, weights=’uniform’
SVM kernel=’rbf’

Table 3: Models used to compute values and changes made to the default parameters in scikit-learn 1.2.2.

3.4 Tasks for the evaluation of data valuation methods

Data valuation is particularly useful for data selection, pruning and inspection in general. For this reason,
the most common benchmarks are data removal and noisy label detection. We describe these and
related ones here, and present the results in Section 4.

High-value point removal. (Section 4.2) After computing the values for all data in T = {zi :
i = 1, . . . , n}, the set is sorted by decreasing value. We denote by T[i:] the sorted sequence of points
(zi, zi+1, . . . , zn) for 1 ⩽ i ⩽ n. Now train successively fT [i:] and compute its accuracy aT[i:](Dtest) on the
held-out test set, then plot all numbers. By using Dtest one approximates the expected accuracy drop on
unseen data. Because the points removed have a high value, one expects performance to drop visibly wrt. a
random baseline.

Low-value point removal. The complementary experiment removes data in increasing order, with lowest
valued points first. Here one expects performance to increase relatively to randomly removing points before
training. Additionally, every real dataset will include slightly out-of-distribution points, so one should also
expect an absolute increase in performance when some of the lowest valued points are removed.

8This principle guarantees that each group is compensated with at least the value it brings in terms of the specified utility.
This is deemed particularly relevant when compensating multiple data providers: as a purchaser, one would seek a system
of credit allocation that motivates the contribution of data. However, we do not believe LC or Shapley-based methods to be
relevant in data markets for practical reasons like the scarcity of data, which translates into highly unstable and potential unfair
valuations, and the concentrated distribution of values, which make noise a major issue (because only those at the extrema are
separated enough to be robust against randomness in the utility, cf. Figure 10).

9A natural choice would be K = 125000 constraints, in order to have the same order of magnitude in the number of utility
evaluations to Beta Shapley and TMCS (accounting for truncation of permutations at around half length). However, the solvers
often failed to converge and we had to reduce the number of constraints, settling in the end for 5000. Given that LC was not
the focus of this reproduction, we decided to postpone investigation of this issue.
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Value transfer. (Section 4.3) This experiment explores the extent to which data values computed with
one (cheap) model can be transferred to another (potentially more complex) one. Different classifiers are
used as a source to calculate data values. These values are then used in the point removal tasks described
above, but using a different (target) model for evaluation of the accuracies aT [i:]. A multi-layer perceptron
is added for evaluation as well.

Noisy label detection. (Section 4.4) This experiment tests the ability of a method to detect mislabeled
instances in the data. A fixed fraction α of the training data are picked at random and their labels flipped.
Data values are computed, then the α-fraction of lowest-valued points are selected, and the overlap with the
subset of flipped points is computed.10

Rank stability. (Section 4.6) Following Wang & Jia (2023), we look at how stable the top k% of the values
is across runs. Rank stability of a method is necessary but not sufficient for good results. Ideally one wants
to identify high-value points reliably (good precision and recall) and consistently (good rank stability).

Weighted Accuracy Drop. (Section 4.5) While not a new task, the authors of Schoch et al. (2022)
introduce the metric Weighted Accuracy Drop (WAD) as an aggregate way of measuring performance
drop in high-value point removal with a single scalar. Given a fixed valuation method, with the notation
above:

WAD(T ) :=
n∑

j=1

1
j

j∑
t=1

(aT[t:] − aT[t+1:]) ≈ (log(n) + C)aT[1:] −
n∑

j=1

1
j

aT[j+1:] , (7)

where we simplified the expression by using the telescopic nature of the inner sum, and the classical approxi-
mation of the harmonic series for large n, with C > 0 a constant. This weighted mean places more weight on
training with the highest valued points, where one hopes to see the highest decrease in accuracy. Note that
under the third randomness scenario, i.e. when keeping all but the inner sampling of methods constant, the
value aT [1:] will be equal for all methods compared, making the first term a constant shift, and the second
term the only effective one.11

Even though WAD is convenient for comparison, and it is possible to add confidence intervals as in Figure 7,
we find that it has several drawbacks. First, it is effectively a weighted mean of the tail accuracies aT [j+1:],
for which one could argue that stronger decays make more sense (maybe even clipping). More importantly,
it does not take into account the heteroscedasticity of the accuracy. In Figure 2 we can see that the 95% CI
tends to grow as data are removed from T , possibly reflecting the fact that after the few initial high values,
many are very small, inducing changes in their ranking (see Figure 10 for the distribution of values).

Variance Adjusted Relative Weighted Accuracy Drop. For the aforementioned reason, we propose
an adjustment based on the standard error. We also compare to random values at the same time step, an
approach we believe to be more informative and easier to interpret. Finally, we keep the hyperbolic decay
rate for a closer comparison to WAD, and to avoid an additional degree of freedom choosing decay rates.

Let the valuation methods be indexed with k ∈ {0, . . . , m}, where k = 0 is random valuation. Let p ∈
{1, . . . , nruns} index runs. Our proposed metric VarWAD for run p and method k > 0 is defined as the
average weighted difference to the mean performance achieved with random values:

VarWAD(T, p, k) :=
n∑

t=1
wk(t)(aT p

k
[t:] − aT0[t:]), (8)

where aTk[t:] := 1
nruns

∑nruns
p=1 aT p

k
[t:] is the average performance of the (fixed) model when trained on the

subsets of T from the t-th index onwards, as sorted by decreasing value by method k in all runs p. The
differences are weighted by hyperbolic decay like WAD, and by standard error at each time-step across all

10This synthetic experiment is however hard to put into practical use, since the fraction α is of course unknown in practice.
11This changes however if one retrains with different seeds to compute accuracies.
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runs: wk(t) := (1 − s̃k(t))/t, where s̃k(t) = sk(t)
maxt sk(t) is the normalized standard error sk(t) across runs at

time-step t for method k. The effect of this correction is to further reduce contributions where noise is high,
and to set them to 0 when it is at its maximum.

3.5 Randomness in value computations

There are three potential sources of randomness that affect the computation of Shapley-like values. The
first two stem from the stochasticity of model performance, while the last one is due to the Monte Carlo
approximations of the value:

1. For a fixed S ⊆ T , the utility u(S) is affected by the randomness in the training algorithm mapping
S 7→ fS . E.g. for SGD, different initial weights, and different sequences of minibatches (Bj)N

j=1 ⊆ S

will produce different models fS .12

2. For a fixed, trained model fS , there will be noise in the computation of the score. E.g. the accuracy
aD(S) is an empirical risk estimate for some loss l (e.g. 0-1 loss), and the distance to the true
generalization error EX,Y [l(fS(X), Y )] will depend on the choice of valuation set D.

3. The set of samples {Sj ⊆ T : j = 1, . . . , M} used to approximate the sums Equation (5) and
Equation (6).

If one is interested in evaluating the convergence properties of a certain valuation method (e.g. how good the
Monte Carlo approximation is), one must focus on the third item. One freezes the dataset split, the choice
of subsets {Sj ⊆ T : j = 1, . . . , M} and utility computations u(Sj) (which is equivalent to retraining with
the same sequence of batches / initialization / random seed), and computes the different values with these
fixed. A new run of the experiment will keep the split, but sample the subsets Sj anew and compute any
new utilities u(Sj), reusing the results for all valuation methods. This is the approach we follow whenever
possible.

However, the above procedure can produce results which are misleading from a practitioner’s point of view.
If interested in the performance “in the wild”, one wants to at least consider the sensitivity of the method
to the variance in the estimation of generalization error, mainly in order to understand the impact that the
size of D has.13 In addition, it is crucial to consider the stability of the valuation procedure wrt. noise in
u(S), e.g. for unstable stochastic training procedures. As discussed above, methods like Beta-Shapley and
DB try to tackle this with better choices for the weights of marginal contributions.

3.6 Implementation details

We ran all experiments with the method implementations available in the open source library PyDVL v0.9.1
(TransferLab, 2022), on several high-cpu VMs of a cloud vendor. We initially used DVC to organize the
experiment pipelines, but lock-file writing times after each combination of parameters where too long (in the
several minutes each time). This motivated a switch to MLFlow (Wilson et al., 2023). Code for all our
experiments is available in (Semmler, 2024), including both setups and instructions on running them. In
order to best compare methods and maximally reuse computation, we employed PyDVL’s caching strategies
for the utility function.

We consistently observed some discrepancies between the results in Schoch et al. (2022) and ours, namely dif-
ferent baseline performance of the classifiers across several experiments. We presume different pre-processing
or sampling strategies to be the cause, but found the issue of no consequence for the purposes of this report.

12In our experiments this is however not the case for most models
13Note that it is not the magnitude of this error in itself, but the variation in value ranking as a function of the choice of

D that is of interest. Note also that we are assuming i.i.d. samples but of course D might contain outliers, and mislabeled or
corrupt data, thus distorting value computations.
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4 Results

We repeat all experiments 20 times, keeping the data splits constant and reusing utility computations
whenever possible. All plots use 95% centered percentile bootstrap confidence intervals with 10000 samples,
unless otherwise stated. This approach is better suited than Normal CIs for random variables that are not
normally distributed (like accuracy numbers) and for which only a few data are available. One consequence
is that our confidence intervals tend to be larger than those seen in Schoch et al. (2022) and other literature.

Box plots display 1st and 3rd bootstrap quartiles, also using 10000 samples.

4.1 Dataset characteristics

We start with Claim 1, namely the existence of a certain type of points in datasets and the suitability
of CS to address it. We look at aggregate statistics over subsets of T : we compute in-class accuracy
aS(Dyi

) :=
(
# correct predictions over Dyi

)
/|D|, and global accuracy changes for each training point,

averaged over subsets S ⊆ T . By using constant coefficients in the averages, they coincide with Banzhaf
values vin, vglob for the respective within-class, and global accuracy utilities. We look at the fraction of points
in each dataset that have either vin > ε and vglob > ε, or vin < −ε and vglob > ε, for various values of ε > 0.
Such points are globally useful to the model but either beneficial (denoted »), or detrimental (denoted <>)
to their own class, respectively. CS is designed to give more weight to the former than to the latter and is
expected to excel for datasets in which the latter abound.

In Figure 1 we see that CPU, Diabetes, FMNIST-binary and MNIST-binary contain non-negligible
amounts of points of type <>, sometimes as much as roughly 40% as many as of type ». However, despite
suggestive trends, there is no clear correlation between the frequency (and magnitude) of the phenomenon,
and the gain in performance of CS wrt. other methods, as can be seen e.g. in Figures 2 and 8: for CPU
and Diabetes, CS seems to leverage the presence of <> points, but this is no longer the case for FMNIST-
binary, and also not exclusive of these datasets. This rather inconclusive result leaves open the question of
how much of an effect the utility Equation (4) has, within the many sources of uncertainty involved.

Figure 1: Prevalence of data which positively or negatively affects in-class accuracy while increasing global
accuracy. The abscissa is change in average marginal accuracy. A point on the <> curve at (x, y) means that
a fraction y ∈ [0, 1] of the data simultaneously induce a marginal in-class accuracy decrease and a global
accuracy increase of x, averaged over multiple subsets S ⊆ T . We note that, surprisingly, the class >< (not
plotted) contains anywhere from 10 to 35% of samples for most datasets at ε = 0. For the particular case of
Click, almost 50% of the samples are in «, possibly indicating that the model lacks capacity

4.2 High-value point removal

We continue with Claim 2. In Figure 2 we are able to reproduce the experiment in Schoch et al. (2022), albeit
with wider confidence intervals and some spurious differences. The exception is Click, where we believe
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class imbalance to distort results: despite our best efforts, and stratified sampling, all methods except for DB
fail at the task for this dataset (observe that more than 40% of the points are removed before a noticeable
drop in accuracy). Experimentation with multiple training set splits (not depicted) shows that the general
trends are respected under full randomness, indicating that for the remaining datasets, differences to Schoch
et al. (2022) are mostly artifacts of the data split. We refer to A.1 for the evaluation with other models.

Qualitatively, CS is outperformed by DB (at a much lower computational budget), on 8 out of 9 datasets,
as seen by the sharp initial decrease in accuracies. We recall that the number of utility evaluations used for
DB is 2 orders of magnitude smaller than for the other semi-value methods. LC fails to perform in several
cases with the notable exception of Phoneme, where it is unexpectedly on par with DB. For a summary
evaluation with WAD and VarWAD see Section 4.5.
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Figure 2: Accuracy drop of a logistic regression model, for values computed using logistic regression. x-axis
is number of highest-value samples removed from the training set.

4.3 Value transfer

For Claim 3, we transfer values from each of the 4 models to the remaining ones, plus a neural network for
evaluation, resulting in a matrix of 20 experiments. For brevity, we report only on the transfer from logistic
regression to a neural network and to a gradient boosting classifier, which is the typical situation of interest:
cheap value computation, expensive evaluation. For the remaining experiments, we refer to A.2.

With the neural network as target (Figure 3), we observe similar behaviour of CS as Schoch et al. (2022),
again with the exception of the dataset Click. But in our case the addition of DB changes the landscape,
since it does better in 8 out of 9 datasets. Interestingly, CS excels at the imbalanced multi-class problem.
The trends are similar for all other transfers to the neural network.

For the transfer to a gradient boosting classifier (Figure 4), we experience much higher variance than Schoch
et al. (2022), leading to the conclusion that all methods are ineffective for all but 4 datasets. In particular,
we see negligible initial performance drop for 4 out of 9 datasets with most methods, invalidating the claim
that the most influential samples are assigned the highest values. These, and similar mixed results for other
models lead us to question the practicality of value transfer across models, despite occasional good results.

4.4 Noise detection

In Figure 5 we see slightly different results from those in Schoch et al. (2022): TMCS tends to perform as
well as, or better than CS in most cases, while Beta Shapley does much worse. This is best seen in the AUC
box plot of Figure 6, where median AUC for TMCS is typically better than for CS. Interestingly, the two
cases where CS clearly wins are the imbalanced datasets Click and Covertype, whereas it loses in the
multi-class dataset MNIST-Multi.
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Figure 3: Accuracy drop of a fully connected neural network, for values computed using logistic regression.
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Figure 4: Accuracy drop of a gradient boosting classifier, for values computed using logistic regression.

Finally, we observe that DB performs poorly compared with the point removal task, indicating a certain
insensitivity to label corruption. It is unclear why this happens, but our best guess for this phenomenon is
that given a small fraction α of corrupted labels, they will be poorly represented among the smaller sample
sizes |S|, and have negligible effect on the utility for the larger subsets, where they appear more often,
while always being weighted with the same coefficients. Given the low rank stability seen in Figure 9, this
conjecture must be taken with a grain of salt.

4.5 WAD and VarWAD

Following the discussion in Section 3.4, we compute WAD (with additional error bars) in Figure 7 for the
same high-value removal task of Section 4.2. We then compare this to VarWAD Equation (8), which we
propose as a more informative measure of aggregate performance, that better reflects the variability in
performance drop.

To see this, consider dataset Click in Figure 2: DB exhibits better performance than other methods,
albeit with high variability, and yet WAD reports similar values in Figure 7. VarWAD more accurately
depicts the situation in Figure 8, setting DB ahead, while correctly reporting on its high variance. We
have a similar situation in MNIST-multi, where WAD incorrectly ranks TMCS above DB, but VarWAD
yields the intuitively correct ordering. And in CPU, where LC is relocated ahead of Beta Shapley, slightly
improving the results with WAD.
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Figure 5: Precision-Recall curve for noisy label detection using logistic regression and 20% of the labels
corrupted. Precision is the fraction of noisy samples among the top k values. Recall is the fraction of all
noisy samples identified.
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Figure 6: AUC for Figure 5, noise detection with values computed using logistic regression. Random values
removed since they have the expected AUC ≈ 0.2.

While we believe VarWAD tends to provide a more useful description of the situation, we note that these
are all qualitative observations and somewhat arbitrary choices. WAD and VarWAD should thus serve as
indication that it is important to design better metrics to compare these methods.

4.6 Rank stability

A crucial question in practice is how stable is the ranking of training points by values across runs. We look
at this in Figure 9 by plotting the percentage of indices among the top k% which consistently make it to
these top positions, across all runs. A value of 100% for any given k means then that the top k% indices by
value remain constant in every execution of the method.

The first observation is that both Beta Shapley and TMCS entirely fail to keep any fraction of points among
the highest valued across runs. This instability accounts for their inability to induce stark changes in accuracy
when removing the first points, as seen in Section 4.2. Next we remark how CS is more stable than DB for
Covertype, the highly imbalanced set where it clearly outperforms every other method. Besides this case,
DB shows generally higher stability than the rest, something it was designed to achieve. In particular for
Click, where the lack of negative cases makes training highly noisy. This is corroborated by the faster drop
and wider confidence intervals seen in Figure 2.
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Figure 7: WAD for all datasets. Values computed with a logistic regression utility and performance drop of
a logistic regression model. Because we have fixed the dataset split and reuse utility values, LOO exhibits
no variance.
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Figure 8: VarWAD for logistic regression values and point removal using logistic regression for evaluation as
depicted in Figure 2. Positive numbers indicate relative improvement wrt. to random values. Because we
have fixed the dataset split and reuse utility values, LOO exhibits no variance.

Generally speaking however, we observe poor stability across all datasets and methods. Given that the
model used is deterministic, this means that the given computational budget is insufficient for accurate
value estimation. This being a reproduction, we remained faithful to the setup in Schoch et al. (2022),
but believe that a better practical understanding of sample complexity is required for applications. For
deterministic methods, Maleki et al. (2014) were the first to provide Hoeffding-type bounds, which imply up
to two orders of magnitude more Monte Carlo samples for an approximation with ε = 0.01 accuracy with
probability 0.95. The most influential constant in the bound is a factor ε−2, and the choice of this tolerance
will depend on the number of training points. For Shapley values, larger datasets imply shorter intervals
between values because of the efficiency axiom.14 But more importantly it will also depend on the rank,
because most values are concentrated around zero and with very little distance between each other, as seen
in Figure 10. Further bounds in the literature prove even harder to apply in practice, e.g. those in Watson
et al. (2023). All this means that it is in fact very difficult to choose the constants a priori. And the situation
in the case of stochastic utilities is clearly even worse, as explained in Wang & Jia (2023).

14This axiom states that the sum of all the values must equal the total utility, and is fulfilled by Shapley values. For ML
applications it has been argued that it is not essential to “distribute” a fixed amount of utility among all training points Kwon
& Zou (2022), and semi-values like BS or DB dispense with it.
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Figure 9: Rank stability of all methods. Percentage of indices (y-axis) that remain among the top k%
(x-axis) across all 20 runs. Values computed using a logistic regression model. LOO is excluded because its
rank stability curves are essentially flat at 1, due to the training set split (which we keep constant) being
the almost unique source of randomness for LOO. Similarly we leave out random values which clearly have
no stability.

4.7 Value decay

We conclude with an exploration of the value distributions over different datasets. Values tend to concentrate
around the extrema, following a shape like the tangent function. Because of noise, mid-range values are
then typically not informative.15 Contrary to our expectation, we observe no clear correlation between the
concentration of values and their rank stability or the method’s performance.
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Figure 10: Value decay (y-axis) for all methods. x-axis is value rank. Values computed on a logistic regression
model, sorted decreasingly and normalized for comparison. 99% t-student confidence interval over 20 runs.

5 Discussion

As is often the case with data valuation methods, the multiple sources of randomness make it difficult to draw
clear-cut conclusions. We have attempted to isolate the evaluation of convergence properties of the methods,
as described in Section 3.5, but the fact remains that stochasticity in u(S) due to training or evaluation is
the major hurdle that Shapley-based valuation methods face (besides time complexity). An interesting path

15We note in passing that the changes in curvature of the value decay function might be good spots to pick for automatic
threshold selection in high-/low-value sample identification.
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to explore pointed to us by a reviewer would be to use a different weighting scheme in Equation (5) and
Equation (6), perhaps leading to a class-specific Data Banzhaf method incorporating the best from both.

It is alas not possible to provide clear advice to a practitioner, other than perhaps to prefer DB for high-value
point identification, except for highly-imbalanced multi-class problems, where CS has proven superior. A
very strong argument in favour of the former is its much greater sample efficiency when using MSR, but
this technique could in principle be applied to the other methods, something that we must leave for a future
more comprehensive benchmark.

We cannot unequivocally substantiate Claim 1 with our experiments and must conclude that, while definitely
present, the successes of CS might be partly due to its unique utility function, partly to sampling properties
and other factors. Additionally, we find that DB outperforms CS for high-value point removal with all
models, except, interestingly, for Covertype, in favour of the adequacy of CS for multiclass problems. The
situation is reversed in noise detection, partially invalidating Claim 2 within the context of the new methods
added. Attempts at transferring values from 4 models to 5 yield mixed results, with DB as a winner in
many scenarios, but Claim 3 can only be accepted with caution, given the practical difficulties involved. In
particular, transferred values might only useful in applications where manual inspection of the selected data
is performed (which is what we recommend in any case).

Next, while DB is designed for rank stability, CS performs better in this respect for many datasets, although
it must identify less important points than DB, given the worse curves in Section 4.2. This “failure” might
well be due to the low sample regime, and inclusion of Maximum Sample Reuse in future benchmarks should
DB is proven to be best at compensating for a worst-case noisy utility, showing that other choices of valuation
method will be preferable in certain situations.

Finally, our proposed metric Equation (8) tends to capture qualitative behaviour of the methods better, but
remains heuristic and arbitrary.

We conclude by remarking that the evaluations have been done at a constant computational budget (in terms
of utility evaluations) when possible, but that, as explained in Section 4.6, this budget needs to be increased
for most methods for reliable value estimation. The exceptions have been LC for computational reasons, and
MSR Banzhaf, which we felt was only fair to the original work. Nevertheless, final performance in downstream
tasks is what matters in the end and lower budgets might work just fine. All in all, marginal contribution-
based data valuation methods of the sort considered in this reproduction, while still far from being fire-
and-forget, automatable data selection mechanisms, remain a tool in the belt of a cautious practitioner who
appreciates the value of spending time looking at their data.
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A.1 High-value point removal
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Figure 11: Accuracy drop of an SVM, with values computed on an SVM.
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Figure 12: Accuracy drop of a KNN classifier, with values computed on a KNN classifier.

17

https://arxiv.org/abs/2311.05346
https://arxiv.org/abs/2311.05346
https://github.com/mlflow/mlflow
https://github.com/mlflow/mlflow
https://www.sciencedirect.com/science/article/pii/S0305054823001697
https://www.sciencedirect.com/science/article/pii/S0305054823001697
https://ojs.aaai.org/index.php/AAAI/article/view/16721


Published in Transactions on Machine Learning Research (06/2024)

0 100 200

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

cifar10

0 100 200
0.88

0.90

0.92

0.94

click

0 100 200

0.45
0.50
0.55
0.60
0.65
0.70

covertype

0 100 200

0.800

0.825

0.850

0.875

0.900
cpu

0 20 40 60
0.5

0.6

0.7

diabetes

0 100 200
n

0.91

0.92

0.93

0.94

0.95

Ac
cu

ra
cy

fmnist_binary

0 100 200
n

0.88

0.90

0.92

0.94

mnist_binary

0 100 200
n

0.4

0.5

0.6

mnist_multi

0 100 200
n

0.700
0.725
0.750
0.775
0.800

phoneme

Beta Shapley
Classwise Shapley
Least Core
Leave-One-Out
MSR Banzhaf Shapley
Random
Truncated Monte-Carlo Shapley

Figure 13: Accuracy drop of gradient boosting classifier, for values computed using a gradient boosting
classifier.

A.2 Value transfer
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Figure 14: Accuracy drop of a fully connected neural network, for values computed using an SVM.
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Figure 15: Accuracy drop of a fully connected neural network, for values computed using KNN.
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Figure 16: Accuracy drop of a gradient boosting classifier, for values computed using an SVM.
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Figure 17: Accuracy drop of a gradient boosting classifier, for values computed using KNN.
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