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ABSTRACT

Existing methods usually leverage a fixed strategy, such as natural language
reasoning, code-augmented reasoning, tool-integrated reasoning, or ensemble-
based reasoning, to guide Large Language Models (LLMs) to perform mathe-
matical reasoning. Our analysis reveals that the single strategy cannot adapt to
problem-specific requirements and thus overlooks the trade-off between effective-
ness and efficiency. To address these issues, we propose Planning and Routing
through Instance-Specific Modeling (PRISM), a novel framework that decouples
mathematical reasoning into two stages: strategy planning and targeted execu-
tion. Specifically, we first curate a multi-strategy preference dataset, which we
call MathStrat, capturing correctness, process quality, and computational ef-
ficiency for each problem—strategy pair. Then, we train a lightweight Strategy
Adapter based on the dataset to obtain confidence distributions over the mentioned
four reasoning strategies. At inference time, an adaptive routing policy dynam-
ically tailors the reasoning approach based on predictor confidence. It directs
the model to use single-strategy execution for high-confidence predictions, dual-
strategy verification for competitive scenarios, or comprehensive multi-strategy
exploration for uncertain cases. Extensive experiments across five mathematical
reasoning benchmarks demonstrate that PRISM consistently outperforms individ-
ual strategies and ensemble baselines, achieving improvements ranging from 0.9%
to 7.6% across different base models. The adaptive routing approach shows par-
ticularly strong benefits for mathematical reasoning tasks across diverse model ar-
chitectures. Our code is released at https://github.com/reml-group/
PRISM.

1 INTRODUCTION

Large Language Models (LLMs), such as ChatGPT and Qwen, have achieved significant advance-
ments across diverse natural language processing tasks (Ma et al.l 2025alb). Notably, they have
demonstrated strong performance in mathematical reasoning—a long-standing and challenging do-
main that requires precise logical inference, symbolic manipulation, and multi-step problem-solving
(Gou et all 2024b). Existing approaches to improving mathematical reasoning in LLMs can be
broadly divided into three categories: (1) designing effective prompting methods for frozen LLMs
(Trivedi et al.| |2025)), (2) developing strategies to enhance the capability of frozen LLMs (Didolkar
et al.| [2024), and (3) post-training LLMs on domain-specific data (Xia et al.| 2025)). Among these,
the method of enhancing frozen LLMs through inference-time mechanisms such as chain-of-thought
refinement (Wei et al.|[2022b)) and tool invocation (Xie et al.||2025)) has garnered considerable atten-
tion due to its ease of deployment. Although these methods have achieved significant success, they
still face two challenges.

Challenge 1: One strategy does not fit all. Existing methods primarily rely on isolated reason-
ing strategies, including Natural Language Reasoning (NLR) (Wang et al.,|2024), Code-Augmented
Reasoning (CAR) (Ye et al., 2024), Tool-Integrated Reasoning (TIR) (Li et al., 2024), and Ensemble-
Based Reasoning (EBR) (Ranaldi et al.| [2024)), to enhance the mathematical reasoning of frozen
LLMs. As illustrated in Figure [T} we evaluate the performance of these individual strategies in
boosting the reasoning ability of Qwen-2.5-math across four question types sampled from MATH
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Figure 1: Performance of four reasoning strategies on four problem slices. Each slice (e.g., Number
Theory, Geometry) comprises over 100 instances drawn from the MATH, GSMS8K, and SVAMP
benchmarks.

(Hendrycks et al., [2021)), GSMS8K (Cobbe et al., 2021), and SVAMP (Patel et al.,|2021). Our anal-
ysis reveals that no single strategy consistently outperforms others across diverse problem cate-
gories. This performance variance underscores a key limitation: rigidly adhering to a fixed reasoning
paradigm fails to fully unlock the latent capabilities of frozen LLMs and hampers the adaptability to
various problem types.

Challenge 2: Trade-offs between efficiency and effectiveness are overlooked. Current ap-
proaches (Xin et al., [2025; Zhang & Xiong}, 2025) often disregard the computational cost, latency,
and resource efficiency of reasoning strategies. As shown in Figure [I] we report the normalized
inference efficiency of different strategies for enhancing the reasoning ability of Qwen2.5-7B across
four question types. Notably, no single strategy consistently achieves the best efficiency. This obser-
vation suggests that a fixed reasoning paradigm leads to suboptimal deployments, where substantial
computational expense does not yield commensurate improvements in accuracy.

To address these challenges, we introduce Planning and Routing through Instance-Specific Mod-
eling (PRISM), a framework that decouples mathematical reasoning into two core stages: strategy
planning and targeted execution. Specifically, we propose a data construction approach based on
multi-strategy performance profiling, which systematically evaluates diverse reasoning strategies on
each problem instance to generate fine-grained suitability distributions rather than single-strategy la-
bels. To achieve this, we execute four distinct reasoning strategies (i.e., NLR, CAR, TIR, and EBR)
on problems from standard benchmarks like MATH and GSM8k. Each resulting solution trajectory
is then evaluated using a multi-faceted scoring function that considers correctness, process quality,
and efficiency to generate per-strategy suitability scores. These raw scores are then transformed into
a soft target distribution via a temperature-scaled softmax function. We then train a lightweight Strat-
egy Adapter by minimizing the Kullback-Leibler (KL) divergence between its output and this target
distribution, which encourages the model to capture the relative suitability of strategies for each
instance. At inference time, the output from the predictor drives our problem-aware strategy rout-
ing that reconciles the efficiency-effectiveness trade-off through confidence-based execution paths:
high-confidence predictions trigger streamlined single-path execution; competitive scores between
strategies invoke dual-path verification for robustness; and diffuse uncertainty defaults to compre-
hensive multi-path exploration. Through this confidence-guided orchestration, PRISM achieves both
strategic flexibility and computational efficiency, selecting the most suitable reasoning approach for
each problem while scaling computational effort according to prediction certainty.

To verify the effectiveness and superiority, we evaluate PRISM across five standard mathematical
reasoning benchmarks, including MATH500, GSMS8K, AQUA-RAT (Ling et al., 2017), SVAMP,
and ASDiv (Miao et al., [2020). Our experiments show that PRISM consistently delivers signifi-
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cant performance gains. Notably, on the challenging MATH benchmark, our method achieves an
accuracy of 53.2%, surpassing the best-performing single-strategy baseline (TIR) by 3.1% absolute.
Furthermore, it outperforms the standard ensemble-based approach (EBR) by a margin of 2.5%
absolute, demonstrating the superiority of pre-execution routing over post-hoc aggregation.

Our main contributions are as follows:

1. We introduce PRISM, a novel framework that decouples the mathematical reasoning pro-
cess into two distinct stages: strategy planning and targeted execution. This is operational-
ized through a lightweight meta-predictor trained on MathStrat, our curated dataset of
~13,000 instances that provides rich, multi-faceted supervision signals that capture the
relative suitability of various reasoning strategies.

2. We design a dynamic, verifier-free routing policy for inference. This policy interprets the
predictor’s output to adaptively select among single, dual, or multi-path execution modes,
providing a principled mechanism to balance performance with computational cost.

3. We conduct extensive experiments across five standard mathematical benchmarks. The re-
sults demonstrate that PRISM consistently and significantly outperforms all single-strategy
baselines and a standard ensemble method, validating the superiority of our problem-aware
routing approach.

2 RELATED WORK

Natural Language Reasoning The dominant paradigm for complex reasoning in LLMs is Chain-
of-Thought (CoT), which externalizes intermediate steps in natural language (Wei et al., 2022a)).
Recent efforts to improve NLR have focused on enhancing the quality of process data used for fine-
tuning, with representative approaches such as bootstrapping via question back-translation (Yu et al.,
2024; Lu et al., [2024b) and evolutionary rewriting of instructions (Luo et al., [2025). While effective
for symbolic deduction, NLR’s reliance on unstructured text makes it prone to arithmetic and logical
errors in computationally intensive problems.

Code-Augmented Reasoning To address the computational limitations of NLR, CAR reframes
mathematical problems as program generation tasks, offloading calculations to a deterministic code
interpreter (Zhang et al., [2024). This is often implemented through prompting paradigms like
Program-of-Thoughts (PoT) (Chen et al., [2023) or by fine-tuning models on interleaved text and
code, as in Program-Aided Language Models (PAL) (Gao et al., [2023b)). CAR excels at numerical
precision but remains dependent on the initial natural language understanding for problem decom-
position and program planning.

Tool-Integrated Reasoning TIR extends the role of LLMs from solvers to agents that dispatch tasks
to external tools like calculators or symbolic solvers. This approach, exemplified by works such
as ToRA (Gou et al.| 2024a), creates a call-verify-iterate loop that enhances robustness on high-
difficulty problems. Recent studies (Jin et al., 2024} [Wu et al.| 2024) have also demonstrated strong
performance by leveraging advanced integrated environments like the GPT-4 Code Interpreter for
complex problem-solving (Nguyen & Allanl 2024). The primary trade-off for TIR is the increased
complexity and latency associated with tool selection and orchestration.

Ensemble-Based Reasoning To improve robustness with minimal engineering, lightweight en-
semble methods aggregate multiple solution trajectories. The most prominent example is Self-
Consistency, which samples multiple CoT paths and selects the answer via majority voting (Wang
et al., [2023). Other works extend this by exploring more complex reasoning structures like a Tree
of Thoughts (Yao et al., 2023b)). These methods (Zhang et al., 2025} |Yao et al.| [2023a; Xia et al.,
2025)), however, are fundamentally forms of post-hoc selection, requiring the generation of multiple
costly trajectories before aggregation and failing to identify the optimal strategy in advance. Related
work has also explored selecting among reasoning modes before inference, such as routing between
CoT and PAL using an external selector and assigning problems to predefined reasoning types via
supervised classification. (Yue et al., 2023));(Zhao et al.| 2023)

3
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Figure 2: Overview of the PRISM framework. The framework consists of two stages: Offline
training (top and bottom-left), where mathematical problems are solved under multiple reasoning
strategies and build a dataset called MathStrat for training the Strategy Adapter; Online inference
(bottom-right), where the Strategy Adapter guides adaptive routing to produce the final answer.

3 METHODOLOGY

The PRISM framework is designed in two stages that decouple strategy planning from execution.
The first stage involves an offline training of a Strategy Adapter (SA). This model learns to map a
given problem instance to a suitability distribution over a set of reasoning strategies. The second
stage is the online inference, where the prediction of SA guides an adaptive routing policy to select
an execution pathway dynamically. The subsequent sections detail the mentioned stages: Section
[B-T]describes the formulation and training of the SA, and Section [3.2] presents the adaptive routing
policy used at inference.

3.1 STRATEGY ADAPTER

As outlined in Section [I] existing reasoning strategies can be broadly categorized into four
paradigms: NLR, CAR, TIR, and EBR. To achieve dynamic strategy selection, we propose the
strategy adaptation pipeline, implemented in two stages: (1) collection of strategy preference data,
and (2) training of the strategy suitability assessment model.

Collection of Strategy Preference Data. To generate effective training signals for strategy selec-
tion, we evaluate each approach across multiple performance aspects. We construct supervision
signals using three complementary dimensions that capture the essential trade-offs: (1) answer cor-
rectness, which determines whether the strategy produces the correct solution to the given mathe-
matical problem; (2) process quality, which evaluates whether the strategy follows mathematically
valid reasoning steps and avoids logical errors or redundant operations; and (3) computational effi-
ciency, which measures whether the strategy achieves results within reasonable time and resource
consumption. We quantify computational efficiency using two metrics: the actual wall-clock in-
ference time and the number of generated tokens, both normalized via within-instance min—max
scaling. To implement this evaluation framework, we execute all four reasoning strategies (NLR,
CAR, TIR, and EBR) on each problem instance x using identical base models and decoding config-
urations. This yields three measurements per strategy s: (i) binary correctness corr (s, x) € {0,1}
indicating successful problem solving; (ii) process quality qual(s,z) € [0,1] from an automated
evaluator that penalizes invalid steps and redundant reasoning (Xia et al., 2025); and (iii) efficiency
score eff (s, x) € [0, 1] computed from raw timing and output length metrics. Specifically, we define
the efficiency score eff (s, x) as:

eff(s,z)=1— %(f(s,x) +f(s,x)), (D
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where the normalized timing and length components (s, z) and (s, z) are obtained through min-
max scaling within each problem instance:

- t(s,z) — ming t(s', x)

t(s,x) =

— ] , /
(s, 2) = {(s,x) — miny {(s',2)

2

maxy t(s', ) — ming t(s', z) + €’

3)

maxy £(s’,x) — ming £(s',x) + €’

and € > 0 ensures numerical stability. The three signals are aggregated using fixed weights
(we, wg,wy) to yield a per-strategy suitability score score(s, ):

score(s,x) = we - corr(s,x) + wq - qual(s, ) +wy - eff (s, ). 4)

We then form a soft supervision target distribution y(x) by applying a temperature-scaled softmax
function over the four scores within the same instance, where y(s, x) represents the target probability
for strategy s on instance x:

exp(score(s, x)/7)

ses exp(score(s', ) /T)’

y(s,x) = > T =0.5. Q)

Strategy Adapter Training. We train the Strategy Adapter fy to output logits z(x) € RISI and
predict a probability distribution py(z) = softmax (zg(x)) over strategies for each problem instance.
Our training objective is designed to match the full target distribution while explicitly stabilizing the
ranking of the top strategy. The primary objective minimizes the Kullback—Leibler (KL) divergence
between the target distribution y(z) and the predicted distribution pg(z):

N
Laal8) = > KL(y(w:) | po(r) 6)
i=1

To reinforce learning of the top-ranked strategy, we add an auxiliary cross-entropy loss. Let s} =
arg maxses S(s, x;) be the best strategy for instance z;. The auxiliary loss is:

N
1
Loa(0) = =5 >~ log pp «: (1) 7
=1

This auxiliary loss explicitly enforces top-1 selection, which is essential for our routing mechanism,
and it also prevents the predictor from producing overly soft distributions when trained with the KL
term alone. The final loss combines these objectives:

‘C(a) = £dist(9) + /\Eord(e)a (8)

where A is a hyperparameter that balances the two objectives. This combined distributional and
ranking-aware objective encourages the model to capture the relative suitability of strategy families,
which guides the inference-time routing policy. We implement the Strategy Adapter as a lightweight
language model (e.g., 1.5B parameters) trained on our curated dataset of approximately 13,000
problem instances with multi-strategy performance evaluations. Upon completion of training, the
adapter demonstrates effective suitability assessment capabilities, with a representative example of
its prediction behavior provided in Appendix

3.2 ADAPTIVE ROUTING POLICY AT INFERENCE

The Strategy Adapter produces a probability distribution py(x) over strategies for each problem in-
stance z. Simply selecting the highest-probability strategy, however, would result in uniform single-
strategy execution regardless of prediction confidence (as illustrated in Figure [T). This approach
fails to exploit opportunities for computational efficiency when predictions are highly confident or
for enhanced robustness when predictions are uncertain.

Our adaptive routing policy interprets the predictor output through a confidence-based framework
that dynamically selects among three execution modes: Confident, Deliberative, and Exploratory
routing. The mode selection depends on two calibrated thresholds: a confidence threshold 7. and
an ambiguity margin 7,, which are optimized through grid search on a validation set (see Ap-
pendix for details), applied to the top two predicted probabilities pyax and pang. Confident
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Routing (Pmax > Te and (Pmax — P2nd) = To) €xecutes only the single best-ranked strategy when
the predictor exhibits high confidence with a clear preference. Deliberative Routing (Pmax > Te
and (pmax — Pand) < Ta) executes the top two strategies when confidence is high but rankings
are close, selecting the answer with agreement or, in case of disagreement, the answer from the
higher-confidence strategy. Exploratory Routing (pmax < T.) executes all available strategies when
predictor confidence is insufficient, again using majority voting for final answer selection. The
routing mode distribution under different threshold configurations on this validation set is analyzed
in Figure {4 (left), demonstrating that lower confidence thresholds lead to increased confident rout-
ing (single-strategy execution) while higher thresholds favor more exploratory multi-strategy ap-
proaches. For multi-strategy modes, answers undergo standardization to normalize numerical for-
mats before voting, with ties resolved by selecting the strategy with highest predicted probability.
This mechanism provides principled computational resource allocation without requiring external
verification components.

4 EXPERIMENT

4.1 SETUP

Datasets and Baselines We use as diverse mathematical datasets as possible for experiments. In
addition to the widely used MATH (Hendrycks et al.,[202 1)) and GSM8K (Cobbe et al.,[202 1)) dataset,
we also adopt AQUA-RAT (Ling et al., 2017), SVAMP (Patel et al.,2021)) and ASDiv (Miao et al.,
2020). These datasets cover multiple fields of mathematics, such as elementary arithmetic problems,
mathematical algebra, inferential counting, and probability number theory. They also span a wide
range of difficulty levels, including simple elementary school math problems, intermediate-level
questions, and even Olympiad-style competition problems. We select large language models from
three series. Our experiments use Qwen2.5-Math-7B (Yang et al., 2024)), Deepseek-math-7b-v1 (Lu
et al., [2024a), and Llama-3-8B to conduct thorough evaluations. For evaluation metrics, we report
Pass@k accuracy, where a problem is considered solved if the correct answer appears in the top-k
generated solutions. Specifically, Pass@]1 reflects single-shot correctness, while Pass@5 captures
the probability of producing at least one correct solution among five independent generations.

Reasoning Approaches As mentioned in previous studies, our experiment also involves four other
mathematical reasoning approaches like CoT (Wei et al., 2022a)), PAL (Gao et al., 2023a)), ToORA
(Zhang et al.|, [2023), Hybrid (Yue et al., [2023)). Chain-of-Thought (CoT) prompting is a technique
designed to elicit more robust reasoning from LLMs by encouraging them to generate a series of in-
termediate, step-by-step rationales before concluding with a final answer. Program-Aided Language
Models (PAL) introduce a neuro-symbolic approach that offloads the reasoning and calculation logic
to an external tool. Tool-Augmented Reasoning Agent (ToRA) can interleave natural language rea-
soning steps with calls to different tools, such as a calculator, a symbolic solver, or retrieval APIs.
Hybrid approaches aim to combine the strengths of different reasoning paradigms to achieve supe-
rior performance and robustness.

4.2 MAIN RESULTS

Table [T shows performance across three base models and five mathematical reasoning benchmarks.
PRISM achieves average improvements of 0.9% on Qwen2.5-Math-7B, 2.9% on Deepseek-math-
7b-v1, and 7.6% on Llama-3-8B over the best single strategies. The inverse relationship between
relative improvement and base model capability suggests that strategic routing provides greater value
when addressing model limitations. The results confirm our central observation that no single strat-
egy dominates across all benchmarks—while ToRA excels on MATHS500, PAL leads on GSM8K
for Qwen (95.3%), and performance varies dramatically across datasets. PRISM effectively handles
this heterogeneity through adaptive strategy selection. The method substantially outperforms the
Hybrid baseline, particularly on complex reasoning tasks like AQUA-RAT, demonstrating that pre-
execution routing is more effective than post-hoc strategy aggregation. Individual strategies exhibit
high variance (PAL ranges from 13.5% to 95.3%), while PRISM maintains consistent performance
across all test conditions.
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Table 1: Performance comparison of different mathematical reasoning strategies across three base
language models and five datasets. CoT refers to Chain-of-Thought reasoning, PAL to Program-
Aided Language models, ToRA to Tool-integrated Reasoning Agent, and Hybrid to ensemble-based
approaches. PRISM represents our proposed adaptive routing framework. Pass@k denotes the
percentage of problems for which at least one correct solution appears in the top-k generated outputs.
Blue highlighting indicates the best performance for each model-dataset combination.

MATH500 GSMSK AQUA-RAT SVAMP ASDiv Average
Model Approach

Pass@] Pass@5 Pass@l Pass@5 Pass@] Pass@5 Pass@] Pass@5 Pass@1 Pass@5 Pass@1 Pass@5

CoT 212 50.8 78.1 935 37.0 575 85.7 94.6 82.8 92.5 61.0 778

PAL 304 55.4 84.8 953 18.1 44.1 135 45.2 86.3 937 46.6 66.7

%3‘}27; ToRA 414 620 694 945 42 646 758 962 757 936 619 822

Hybrid 372 53.2 24.0 68.2 154 445 21.8 63.9 15.9 50.1 22.9 56.0

PRISM (ours) | 46.2 64.4 86.7 96.0 42.1 64.8 91.8 96.9 86.5 93.6 70.7 83.1

CoT 43.0 57.2 87.6 933 335 56.7 83.7 9.8 85.6 91.2 68.6 79.2

PAL 38.0 53.2 83.9 91.8 47.6 55.1 84.8 90.2 84.2 89.7 67.7 76.0

n?;?;f‘f/l ToRA 322 492 783 930 386 587 765 924 797 915 6Ll 77.0

Hybrid 12.6 30.8 60.0 90.1 26.3 50.0 71.9 932 68.2 90.2 478 70.9

PRISM (ours) | 5222 61.6 87.8 93.6 453 62.2 88.0 94.3 88.6 923 724 79.9

CoT 13.6 29.8 45.6 76.8 17.7 36.6 64.6 88.6 226 60.1 32.8 58.4

PAL 10.4 229 543 78.4 16.5 354 72.4 89.3 135 317 334 515

Llama-3-8B  ToRA 11.0 25.0 439 75.1 14.6 33.1 65.6 89.2 21.9 60.0 314 56.5

Hybrid 11.8 262 446 88.9 109 377 220 62.7 25.1 62.7 229 55.6

PRISM (ours) | 15.2 36.2 53.0 78.5 14.6 33.1 66.1 89.6 63.7 83.1 25 64.1

4.3 ABLATION STUDY ON ROUTING COMPONENTS

To understand the contribution of each routing component, we conducted progressive ablation exper-
iments across GSM8K, MATHS500, and Hungarian Math datasets. As detailed in@ adding confident
routing shows mixed results—76.0% on GSM8K (below the 78.1% CoT baseline) but improvements
on MATHS00 (28.6% vs 21.2%) and Hungarian Math (50.0% vs 40.6%). Incorporating deliberative
routing provides continued gains on MATHS500 (32.2%) with variable performance elsewhere. The
complete PRISM system achieves substantial improvements across all datasets (86.7%, 46.2%, and
53.1% respectively), with dramatic jumps from the previous configuration demonstrating that the
full adaptive routing policy is essential for optimal performance. These results validate that indi-
vidual routing modes provide limited benefits, while the intelligent coordination of all components
through problem-aware strategy selection delivers significant performance gains.

Table 2: Ablation study of adaptive routing components using the Qwen2.5-Math-7B model.

Setting GSMSK MATHS00 Hungarian Math
pass@1 pass@5 pass@1 pass@5 pass@l  pass@S5
CoT baseline 78.1 93.5 21.2 50.8 40.6 56.3
Confident 76.0 95.0 28.6 56.1 50.0 62.5
Confident + Deliberative 75.8 95.6 322 57.3 43.8 50.0
PRISM 86.7 96.0 46.2 64.4 53.1 71.9

4.4 PERFORMANCE-EFFICIENCY TRADE-OFF

To examine the computational efficiency of our adaptive routing approach, we measured perfor-
mance and resource consumption across different framework configurations, as shown in Figure [3]
The baseline CoT approach achieves 9.5% Pass@1 accuracy with 5,200ms inference time and 45-
token average output length. Adding the Strategy Adapter with confident routing (SA+Conf.) shows
minimal performance improvement to 10.0% but increases computational cost to 6,300ms and 50
tokens. The combination of confident and deliberative routing (SA+Conf.+Delib.) achieves 17.8%
accuracy while maintaining similar efficiency profiles at 6000ms and 80 tokens. The complete
PRISM system demonstrates substantial performance gains, reaching 33.3% Pass@ 1 accuracy while
achieving better efficiency than intermediate configurations at 5,600ms inference time and 85 tokens
output length. This efficiency-performance trade-off reveals that the full adaptive routing policy not
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only improves accuracy but also optimizes resource utilization by intelligently selecting execution
pathways. The results indicate that the Strategy Adapter alone provides limited benefits, but when
combined with the complete adaptive routing mechanism, it enables significant performance im-
provements while maintaining computational efficiency. This validates our design choice of inte-
grating prediction-guided strategy selection with dynamic execution pathways rather than relying on
individual components in isolation.

40

6000 - 80

w
o
L

£ 4000 601

40 1

Pass @1 (%)
N
o

9 2000 A

-
o
L

20 1

Output Length (tokens)

T T T T 0 T T T T 0 T T T T
CoT Conf. Conf.+ PRISM CoT Conf. Conf.+ PRISM CoT  Conf. Conf+ PRISM
Delib. Delib. Delib.

Figure 3: Analysis of PRISM framework components across three key metrics. (a) Pass@1 accuracy
shows substantial gains with the full system. (b) Inference time and (c) output length demonstrate
that PRISM achieves higher performance with better or comparable computational efficiency than
intermediate configurations.

4.5 SCALABILITY ANALYSIS

To evaluate the scalability of our approach, we conducted experiments across Qwen2.5 models rang-
ing from 1.5B to 72B parameters on GSM8K and MATHS500 benchmarks, using Qwen2.5 7B with
chain-of-thought prompting as our baseline. As illustrated in Figure 4 (right), PRISM demonstrates
consistent improvements over the baseline across all model scales, achieving accuracy from 74.2%
to 95.2% on GSMS8K and 32.3% to 78.4% on MATH500. The framework exhibits distinct scal-
ing patterns across benchmarks: steady improvements on GSM8K with notable gains from 7B to
32B parameters, and more dramatic scaling effects on MATH500 where performance nearly dou-
bles from smallest to largest models. These scaling results validate that adaptive strategy selec-
tion provides robust benefits across different model capacities. The sustained improvements across
parameter scales demonstrate that the framework generalizes effectively and does not depend on
specific model characteristics to achieve performance gains. Importantly, since PRISM operates
as a training-free approach that works purely through inference-time strategy selection, it can be
readily applied to any pre-trained model without requiring additional fine-tuning or domain-specific
training, making it broadly applicable across different model families and computational budgets.
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Figure 4: Left: Routing mode distribution analysis across different confidence threshold configura-
tions. The stacked bars show the percentage of problems routed to each execution mode (Confident,
Deliberative, Exploratory) for varying 7. values while keeping 7, = 0.08. Right: Scalability of
PRISM across Qwen2.5 models of varying sizes on GSM8K and MATHS500 benchmarks. Dotted
lines indicate the baseline performance of Qwen2.5-7B with standard chain-of-thought prompting.

4.6 STRATEGY ADAPTER BEHAVIOR ANALYSIS

We analyze the prediction behavior patterns of our Strategy Adapter across different mathemati-
cal reasoning datasets to validate its learned strategy selection characteristics. This analysis ex-
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Figure 5: Strategy Adapter behavior across mathematical reasoning datasets. Top row shows predic-
tion confidence (pp,ax) distributions, bottom row shows strategy competition gaps (Pyax —P2nd)- The
SA exhibits dataset-appropriate confidence levels: conservative predictions on competition problems
(MATHS500) and higher confidence on elementary problems (ASDiv, SVAMP), while maintaining
competitive strategy landscapes across all datasets.

amines both the confidence levels in predictions and the competitive landscape among strategies.
Figure [5] presents the distributions of prediction confidence (pmax) and strategy competition gaps
(Pmax — P2na) across four mathematical reasoning datasets. The results reveal several important pat-
terns that validate our framework design. First, the SA exhibits prediction confidence patterns that
correlate with dataset complexity. On MATHS500, which contains competition-level mathematical
problems, the predictor shows notably conservative behavior with prediction confidence (py,ax) con-
centrated in the 0.0 to 0.2 range. This low confidence reflects both the inherent difficulty of these
problems and the SA’s learned caution when dealing with competition-level mathematics, where
strategy effectiveness is less predictable.

In contrast, datasets containing more elementary mathematical problems show progressively higher
prediction confidence. GSMS8K demonstrates moderate confidence levels with py,,, distributed
across 0.2 ~ 0.6, while ASDiv and SVAMP exhibit relatively higher confidence with peaks around
0.3 ~ 0.4. This graduated confidence pattern indicates that the SA has successfully learned to asso-
ciate problem complexity with prediction uncertainty, demonstrating sophisticated meta-reasoning
about strategy applicability. The adaptive confidence calibration also suggests that the SA effec-
tively captures the inherent variability in strategy effectiveness across different mathematical do-
mains, with higher uncertainty appropriately assigned to problems where multiple strategies might
yield similar performance. Furthermore, the distribution shapes themselves provide insight into the
SA’s decision-making process: sharp peaks indicate clear strategy preferences for certain problem
types, while flatter distributions suggest scenarios where multiple strategies remain viable options.
The strategy competition analysis reveals consistently small gaps between top strategies across all
datasets. This competitive landscape validates our adaptive routing design rationale: the narrow mar-
gins between strategy preferences require nuanced confidence-based decision making rather than
simple winner-take-all selection. Additionally, we provide a detailed analysis of strategy perfor-
mance patterns and inter-strategy correlations across datasets in Appendix [A.5]

4.7 PROBLEM DIFFICULTY AND SUBJECT ANALYSIS

To understand how problem characteristics influence strategy effectiveness and routing decisions,
we conduct a fine-grained analysis on MATHS500 across two dimensions: difficulty levels (1-5)
and mathematical subjects (Precalculus, Counting & Probability, Geometry, Algebra, Intermediate
Algebra, Number Theory, Prealgebra). Figure [f] presents the performance breakdown and routing
behavior patterns.
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Figure 6: Problem difficulty and subject analysis on MATHS500. (a-c) Strategy performance and
routing behavior across five difficulty levels. (d-f) Subject-specific strategy suitability and routing
mode distributions across seven mathematical domains.

Difficulty-stratified performance. The inter-strategy performance gap peaks at moderate difficulty
(Levels 3-4), with approximately 30% separation between TIR (45%) and CAR (15%). This pattern
reflects fundamental discrimination dynamics: easy problems (Level 1-2) offer limited discrimi-
nation as all strategies succeed, while hard problems (Level 5) reduce discrimination from a low
baseline floor where all strategies struggle. The moderate difficulty range (Level 3-4) creates the
optimal regime for adaptive routing, where problems are neither trivial nor universally intractable.
Correspondingly, PRISM’s routing mode distribution adapts intelligently: confident routing dom-
inates at Level 1-2 (90%+), while the system progressively shifts toward balanced multi-strategy
exploration at Level 5, demonstrating learned uncertainty calibration.

Subject-specific strategy suitability. Performance across mathematical subjects reveals distinct
strategy-domain affinities. TIR consistently dominates in symbolic manipulation domains (Precal-
culus, Algebra, Intermediate Algebra) with 45-50% accuracy, while all strategies exhibit comparable
struggles with probabilistic reasoning (Counting & Probability: 10-15%). Geometry triggers max-
imum routing diversity, with exploratory mode reaching 50%—indicating the Strategy Adapter’s
recognition of high inter-problem variability within this subject. The Pass@35 benefit also varies by
subject: Number Theory shows +29% absolute gain over Pass @ 1, suggesting that sampling diversity
provides greater value in domains with high solution path variability.

The difficulty-subject interaction reveals PRISM’s dual-dimensional adaptivity: routing decisions
respond to both problem complexity and domain characteristics, delivering maximum benefit where
strategy differentiation is most pronounced.

5 CONCLUSION

We introduce a problem-aware strategy routing framework termed PRISM, which decouples math-
ematical reasoning into strategy planning and targeted execution. Specifically, it leverages a multi-
strategy performance profiling mechanism to curate a 13K strategy preference dataset MathStrat.
Then, a strategy adaptor is trained on this dataset to perform policy routing for the given problem
at inference time. Extensive experiments with three language models across five datasets, com-
bined with comprehensive ablation studies and efficiency analysis, demonstrate the effectiveness,
superiority, and scalability of PRISM.

10
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A APPENDIX

A.1 ADAPTIVE STRATEGY ROUTING ALGORITHM

This section provides the detailed pseudo-code for the PRISM adaptive routing policy, as referenced
in Section 3.2

Algorithm 1 ADAPTIVE ROUTING POLICY AT INFERENCE

Require: Problem P; Preference Model M; Set of k reasoning strategies S = {o1,09,...,01};
Confidence threshold 7.; Ambiguity threshold 7,
Ensure: Final answer A; Used routing mode R; Set of executed strategies >*

1. p+ M(P) > Predict strategy probabilities p(o; | P) forall o; € S
2! imax ¢ argmax; Pi; Pmax Pimaxs OTmax < Oy

3: dpng < Argmaxiz; . Pi;  P2nd < Pigd  O2nd < Tinyg

4: > Route based on the predicted probability distribution
5. if Pmax Z Te N\ (pmax - p2nd) Z Ta then

6: R < CONFIDENT > Confident Routing
7: ¥ {Omax}

8: A+ opax(P)

9: else if Pmax Z Te N (pmax - pan) < Tq then
10: R < DELIBERATIVE > Deliberative Routing
11: ¥ {UrrlaX7 Uan}

12: Al — Unlax(P)
13: AQ < Uznd(P)
14: A < Vote ({Al, AQ})

15: else

16: R < EXPLORATORY > Exploratory Routing
17: XS

18: A<+

19: for o; € S do

20: A; 0 (P)

21: A— AU{A;}

22: end for

23: A <« Vote(A)

24: end if

25: return (A, R, ¥*)
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A.2 PREFERENCE DATA EXAMPLE

Figure [/| presents a representative case of our multi-strategy performance evaluation process for
collecting training data. The case shows a trigonometric function analysis problem where we execute
all four reasoning strategies and collect comprehensive performance metrics.

The data collection captures three complementary dimensions as described in our methodology:
answer correctness (validity scores), process quality (redundancy measures), and computational ef-
ficiency (execution time and output length). As illustrated in this case, different strategies exhibit
distinct performance profiles: NLR achieves moderate validity (0.23) but suffers from high redun-
dancy (0.68), while TIR demonstrates better process quality with higher validity (0.29) and lower
redundancy (0.72). CAR shows the poorest validity (0.18) with the highest redundancy (0.73), and
EBR balances the highest validity (0.35) with acceptable redundancy (0.66).

The condensed output summaries reveal how each strategy approaches the same trigonometric prob-
lem differently: NLR relies on numerical approximation methods, CAR attempts algebraic simpli-
fication, TIR uses analytical identities, and EBR combines multiple approaches. This diversity in
solution paths, combined with varying performance across the three evaluation dimensions, pro-
vides rich supervision signals that enable our Strategy Adapter to learn nuanced associations be-
tween problem characteristics and strategy effectiveness. The multi-faceted evaluation ensures that
our training data captures the essential trade-offs between correctness, reasoning quality, and com-
putational cost.

Example of Collected Preference Data

Strategy  Time Length Validity Redundancy Condensed Output Summaries

. The equation ﬁ%\nx is analyzed by comparing the linear function f(x)=x/100 and the periodic
function g(x)=sinx.

. Since |sinx|<1|sinx|<1, intersections occur only for |x|<100, and within this range, the
approximately 31.83 periods of sinx suggest about 64 intersections (two per period plus

NLR 7.6281 2151 0.23 0.68 endpoints).

. A Python script numerically checks for sign changes between the functions over the
interval [-100,100] using a high-resolution grid of 10,000 points.

. The numerical computation yields 63 intersections, correcting the initial analytical estimate and
providing the final solution count.

N

w

IS

. The function is first simplified using trigonometric identities to the core form f(x)=\“25in(2x+?) for
easier analysis.

. The period is calculated directly from the simplified function's angular frequency, yielding a
smallest positive period of 1.

N

CAR 12.0192 3197 0.18 0.73 3. By analyzing the sine function over the transformed interval of its argument, the maximum
of sin(u)sin(u) is found to be 1 and the minimum to be — g
4. The extreme values are scaled by the amplitude V2 to give the final results: a maximum
of V2 and a minimum of -1 for f(x)
1. The original trigonometric expression is simplified using sum-to-product and double-angle
identities to obtain f(x)=sin2x+cos2x.
2. The simplified function \“25m(2x+2) has a period of 1, derived from the standard sine period
formula 21/|B|
TIR 7.0319 1907 0.29 0.72 3. On the interval x€[~ g %]‘ the argument 2x+g ranges from —g to STW , covering key
monotonic segments of the sine function.
4. The maximum value of f(x) is V2 (when sin(-)=1) and the minimum is -1 (at the left endpoint
Lo \2
where sin(- T )= - ).
1. The equation is analyzed by comparing the linear function f(x)=x/100 with the periodic sine
function g(x)=sinx.
2. Intersections occur only when |x|<100, since the sine function is bounded between -1 and 1.
EBR 15.5082 4367 0.35 0.66 3. Within this range, sinxsinx completes about 31.83 periods, suggesting approximately 64

intersections (two per period plus endpoints).
Python code confirms the actual number of intersections is 63, refining the initial estimate.

&

Figure 7: Strategy preference data collection showing multi-strategy performance evaluation for a
trigonometric function problem. Each strategy exhibits distinct profiles across the three evaluation
dimensions: correctness, process quality, and computational efficiency.

A.3 SENSITIVITY ANALYSIS OF SCORE AGGREGATION WEIGHTS

The suitability score in Equation [f] aggregates three evaluation dimensions through weighted com-
bination. To determine the optimal weight configuration, we conducted systematic ablation ex-
periments on the same 200-problem validation set used for threshold optimization. We evalu-
ated seven configurations representing different design choices: correctness-prioritized (0.70, 0.15,
0.15), balanced-moderate (0.60, 0.20, 0.20), fully uniform (0.33, 0.33, 0.33), quality-prioritized
(0.20, 0.60, 0.20), efficiency-prioritized (0.20, 0.20, 0.60), quality-extreme (0.15, 0.70, 0.15), and
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Figure 8: Sensitivity analysis of score aggregation weights on validation set. The scatter plot shows
Rank-1 Accuracy versus Spearman Correlation across seven weight configurations.

efficiency-extreme (0.15, 0.15, 0.70). For each configuration, we measure Rank-1 Accuracy (per-
centage of problems where the top-ranked strategy matches the ground-truth best) and Spearman
Correlation (rank correlation between predicted and ground-truth strategy rankings).

Figure [§] presents the results across the accuracy-stability space. The correctness-prioritized config-
uration (0.70, 0.15, 0.15) achieves the highest Rank-1 accuracy at 61.0%, outperforming quality-
prioritized weighting (52.0%) by 9 percentage points. This substantial difference validates empha-
sizing correctness, which directly determines whether the selected strategy successfully solves the
problem. Higher correctness weights improve Top-1 selection accuracy but reduce ranking stability.
This reflects our focus on selecting the best strategy for deployment rather than achieving perfect
ranking consistency.The moderate Spearman correlations (0.30-0.43) are expected given the lim-
ited ranking space with only 4 strategies and the similarity in strategy performance on individual
problems. Configurations maintaining correctness weights between 0.33-0.70 demonstrate robust
performance (56-61%), indicating stability within reasonable parameter ranges while exhibiting a
clear optimal region. We select wg = 0.70, wg = 0.15, wy = 0.15 based on its empirical su-
periority and theoretical alignment with mathematical reasoning evaluation practices that prioritize
correctness.

A.4 THRESHOLD PARAMETER OPTIMIZATION

To determine the optimal confidence threshold 7. and ambiguity margin 7, for our adaptive rout-
ing policy, we conducted a comprehensive grid search on a validation set comprising 200 prob-
lems sampled from MATH, GSMS8K, AQUA-RAT, SVAMP, and ASDiv datasets to ensure cov-
erage across different mathematical domains and difficulty levels. We evaluated 7. € [0.1,0.7]
and 7, € [0.02,0.20] with step sizes of 0.05 and 0.01 respectively. Figure |§| shows the param-
eter optimization results across the two-dimensional parameter space. The contour plot reveals a
well-defined optimal region at 7. = 0.4 and 7, = 0.08, achieving 78.0% Pass@1 accuracy on the
validation set. The performance landscape exhibits several notable characteristics:

Confidence Threshold Sensitivity: The 7. parameter shows an inverted-U relationship with per-
formance (Figure [9] top right panel). Very low confidence thresholds (7, < 0.2) result in over-
conservative routing that fails to leverage high-confidence predictions effectively, achieving only
65% accuracy. Conversely, excessively high thresholds (7. > 0.5) force the system into single-
strategy execution even for uncertain predictions, degrading performance to 71%.

Ambiguity Margin Sensitivity: The 7, parameter demonstrates a sharp optimum (Figure[9] bottom
right panel). The optimal value of 0.08 creates an appropriate balance for distinguishing competi-
tive strategy scenarios. Lower values (7, < 0.06) cause excessive deliberative routing even when
strategy preferences are clear, while higher values (7, > 0.12) prevent beneficial dual-strategy veri-
fication in genuinely competitive cases.
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Figure 9: Threshold parameter optimization on validation set. Left: Contour plot showing accuracy
across the 7.-7, parameter space with optimal point marked by red star. Right: Sensitivity analysis
showing accuracy curves for individual parameters while holding the other at optimal value. The
validation set consists of 200 problems sampled across MATH, GSM8K, AQUA-RAT, SVAMP, and
ASDiv to ensure diverse difficulty coverage.

The relatively narrow optimal region indicates that careful parameter tuning is essential for achieving
peak performance. However, the clear convex structure around the optimum suggests stable conver-
gence during hyperparameter search. We use these validated parameters (7. = 0.4,7, = 0.08)
across all experimental settings to ensure fair comparison with baseline methods.

A.5 STRATEGY PERFORMANCE AND CORRELATION ANALYSIS

Figure [T0] presents the mean performance scores and inter-strategy correlations across four mathe-
matical reasoning datasets. The left panel shows that all strategies achieve similar average suitability
scores (ranging from 0.18 to 0.31), with no single strategy demonstrating clear dominance across
datasets. The right panel displays correlation matrices revealing predominantly low or negative cor-
relations between strategies, indicating complementary rather than redundant capabilities. Notably,
TIR exhibits consistent negative correlations with other strategies across most datasets, suggesting
its specialized applicability to distinct problem characteristics. These patterns validate the neces-
sity of adaptive strategy selection, as the low inter-strategy correlations demonstrate that different
approaches excel on different problem subsets.

A.6 CASE STUDY: STRATEGY ADAPTER PREDICTION

Figure [TT] presents a representative example demonstrating how our Strategy Adapter evaluates dif-
ferent reasoning approaches for a logarithmic geometry problem. The problem requires finding the
x-coordinate where a horizontal line intersects the curve f(z) = Inz, involving both coordinate
geometry concepts and logarithmic calculations.

The Strategy Adapter assigns suitability scores that align well with actual strategy performance:
TIR receives the highest score (0.63) and successfully solves the problem through tool-assisted
computation, while NLR and CAR receive lower scores (0.28 and 0.16 respectively) and both fail
to produce correct solutions. EBR achieves a moderate score (0.58) and succeeds through ensemble
reasoning. This case exemplifies how the adapter learns to associate problem characteristics—such
as the need for precise numerical computation in logarithmic contexts—with appropriate reasoning
strategies.
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Figure 10: Strategy performance and correlation analysis. Left: Mean suitability scores by strategy
and dataset. Right: Inter-strategy correlation matrices for each dataset. Low correlations indicate
complementary strategy capabilities.

[Strategy-Specific Responses and Preference Scores on a Benchmark Math Problem J

Problem: Two points $A(x_1, y 1)$ and $B(x_2, y_2)$ are chosen on the graph of $f(x) = \In x$, with $0 < x_1 < x_28. The points $C$ and $D$ trisect
S\overline{AB}$, with $AC < CBS. Through $C$ a horizontal line is drawn to cut the curve at SE(x_3,y_3)$. Find $x_3$ if $x_1 = 1$ and $x_2 = 10008.
Golden Answer: 10

NLR Suitability Score : 0.28
Text: The coordinates of $A$ and $BS$ are $(1, 0)$ and $(1000, \1ln 1000)$,
respectively....Substituting the values, we get: $$6(x + \frac{1}{2}) + (y - \frac{3}{2}) + 10(z + °
\frac{1}{2}) = 0$$ $$6x + 3 + y - \frac{3}{2} + 10z + 5 = 0$$ $$6x + y + 1"

CAR Suitability Score : 0.16
Text: Two points A(x1l, yl) and B(x2, y2) are chosen on the graph of f(x) = 1ln x, with 0 < x1 <
X2. ...S0, y3 = 1In(x3) = y c # Therefore, x3 = exp(y c) x3 = math.exp(y_c) result = x3 return °
result °°°

TIR Suitability Score : 0.63
Text: To solve this problem, we need to find the x-coordinate of the point \(E(x_3, y_3)\) where a
horizontal line through point \(C\) intersects the curve \(f(x) = \ln x\)....we get: \[ x 3 =
e”{\frac{\1n 1000} {3}} = \left(e”{\1ln 1000}\right)~{\frac{1}{3}} = 1000~{\frac{1}{3}} = 10 \] So,

the x-coordinate \(x_3\) is \(10\).Let‘s confirm this with Python code..

EBR Suitability Score : 0.58

Text: To solve this problem, we need to find the x-coordinate of the point \(E(x_3, y 3)\) where a
horizontal line through point \(C\) intersects the curve \(f(x) = \ln x\)....Therefore, we need to 0
solve \(\1n x_3 = \1n 10\), which gives \(x_3 = 10\). Let's confirm this with Python code..

Figure 11: Case study showing Strategy Adapter suitability scores and corresponding strategy out-
comes for a logarithmic geometry problem. Higher suitability scores correlate with successful
problem-solving performance.

The correlation between prediction scores and actual outcomes validates our approach of using
suitability scores to guide adaptive routing decisions, demonstrating that higher Strategy Adapter
scores generally correspond to better strategy performance on specific problem instances.

A.7 ERROR CASE ANALYSIS

To better understand PRISM’s limitations, we analyze representative failure cases that reveal two
primary error patterns. Figure [T2] illustrates a high-confidence routing error where the Strategy
Adapter assigns the highest score to TIR (0.357) for a trigonometric product calculation problem.
Despite this confident prediction, TIR produces an incorrect numerical result (0.0195 instead of %),
demonstrating that high discriminator scores do not always guarantee correct solutions. This case
reveals a calibration issue where the adapter overestimates strategy suitability based on problem
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[ Error Case Analysis — High-Confidence Routing Errors }

Problem: Find $\\sin 20"\circ \\sin 40"\\circ \\sin 60™M\circ \\sin 80"\\circ \\sin 100"\\circ \\sin 120"\\circ \\sin 140"\\circ \\sin 160"\\circ.$
Golden Answer: \\frac{9}{256}

Mode: prism
Chosen_path: prism-single-path
Strategies_actually_executed_in_path: [TIR]

Discriminator_scores: { NLR: 0.236978, CAR: 0.221464, TIR: 0.357294, EBR: 0.184264 }

Raw_llm_output: \nTo solve the problem, we can use trigonometric identities and properties. The given
expression is:\n\n\\[\n\\sin 20"\\circ \\sin 40”\\circ \\sin 60~\\circ \\sin 80"\\circ \\sin 100"~\\circ
\\sin 120"\\circ \\sin 140*\\circ \\sin 160~\\circ\n\\]\n\nWe can use the identity ..,Now we need to find

\\ ((\\sin  20"\\circ) "2 (\\'sin 40~\\circ) ~*2\\) . We can use the  product-to-sum identities.
Specifically, ..,Now we can multiply this by \\(\\frac{3}{4}\\) :\n\n\\[\n(\\sin 207\\circ)”2 (\\sin
40"\ \circ)~2 (\\sin 60~\\circ)~2 = \\left (\\frac{1}{2} \\cos(20"\\circ) - \\frac{1l}{4}\\right)~2 \\cdot

\\frac{3}{4}\n\\]1\n\nThis expression is quite complex to simplify further without numerical evaluation.
However, we can use Python to evaluate this expression accurately. Let's use Python to compute the
value.\n ' 'python\nimport math\n\n# Define the angles in degrees\nangles = [20, 40, 60, 80, 100, 120,
140, 160]\n\n# Convert degrees to radians\nangles_rad = [math.radians(angle) for angle in angles]\n\n#
Calculate the product of sines,.., \n\nprint (product_of_ sines)

Extracted_answer: 0.01953125

Figure 12: High-confidence routing error: Strategy Adapter assigns highest score to TIR, which
executes but produces incorrect numerical result.

[ Error Case Analysis — Aggregation Errors

Problem: Let $z =2 + \\sqrt{2} - (3 + 3 \\sqrt{2})i$, and let $c = 2 - 3i$. Let $w$ be the result when $z$ is rotated around $c$ by $\\frac {\\pi} {4}$ counter-
clockwise.\n\n[asy]\n unitsize(0.6 cm);\n\n pair C, W, Z;\n\nZ = (2 + sqrt(2), -3 - 3*sqrt(2));\nC = (2,-3);\nW = rotate(45,C)*(Z);\n\ndraw(Z--C--W);\n\n
dot(\"$c$\", C, N);\n dot(\"$w$\", W, SE);\ndot(\"$z$\", Z, S);\nlabel(\"$\\frac {\\pi} {4}$\", C + (0.6,-1));\n[/asy]\n\n Find $w.$

Golden Answer: 6 - 5i

Mode: prism
Chosen_path: prism-dual-path
Strategies_actually_executed_in_path: [CAR, NLR]

Discriminator_scores: { NLR: 0.284763, CAR: 0.329766, TIR: 0.20969, EBR: 0.175781 }

Strategy_name: CAR

Raw_llm_output: import cmath\n\n # Given complex numbers\n z = 2 + cmath.sqrt(2) - (3 + 3 * cmath.sqrt(2)) *
1j\n ¢ = 2 - 3* 1j\n\n # Rotate z around c by pi/4 counter-clockwise\n angle = cmath.pi / 4\n w = c +
(z = ¢) * cmath.exp(lj * angle)\n\n result = w.real, w.imag\n return result\n " "\n

Extracted_answer: (6,-5.000000000000001)

Is_correct_intermediate_answer: FALSE

Strategy_name: NLR

Raw_llm_output: Let's think step by step\nWe write $z$ as $2 + \\sqrt{2} - (3 + 3 \\sqrt{2})i$ and $c$ as $2
- 3i$.\nThe difference $z - c$ is .,To rotate this complex number by $\\frac{\\pi}{4}$, we multiply
by ..,This gives.., we add $c$ to get Sw = (4 - 2i) + (2 - 3i) = \\boxed{6 - 5i}$.\nThe answer is 6-5i\n
Extracted_answer: 6-5i

Is_correct_intermediate_answer: TRUE

Figure 13: Aggregation error: In dual-path routing, CAR (higher score) produces malformed output
while NLR (lower score) generates correct answer, but confidence-based selection chooses incor-
rectly.

surface features (presence of trigonometric functions suggesting tool usage) without anticipating
execution failures in symbolic manipulation.

Figure [[3] presents an aggregation error in dual-path routing. For a complex number rotation prob-
lem, the adapter correctly identifies CAR (0.330) and NLR (0.285) as competitive strategies. How-
ever, while both strategies are executed, CAR produces a formatting error (6,-5.0000000000000001)
and NLR generates the correct answer (6-51). The routing policy selects CAR’s output based on
higher predicted confidence, resulting in failure. This case highlights a limitation in our confidence-
based aggregation mechanism: when strategies produce inconsistent answers, prediction scores
alone may not reliably indicate correctness. These failure patterns suggest that future work could
benefit from incorporating runtime validation signals or more sophisticated answer consistency
checking beyond confidence-weighted selection.
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