
CPO-SQL: Boosting Small LLMs for Text-to-SQL via
Efficient In-Context Learning and Preference Optimization

Anonymous ACL submission

Abstract001

Most recent researches in Text-to-SQL parsing002
overly rely on the proprietary Large Language003
Models (LLMs), raising concerns of data004
privacy and inference overheads. To narrow005
the gap between small LLMs and proprietary006
LLMs in Text-to-SQL, we introduce CPO-007
SQL, an approach aiming to efficiently boost008
the capability of small LLMs via In-Context009
Learning and Preference Optimization. This010
approach builds the enhanced training set by011
sampling demonstrations from beta distribution012
based on the similarity of questions and013
SQL, and then fine-tune the small LLMs to014
empower them with ICL capabilities of Text-015
to-SQL. Further, we propose a new Spider016
preference set, constructed by an agile semi-017
automated process, based on six types of SQL018
optimization. On this basis, we employ SFT-019
enhanced preference optimization to support020
the mixed training on the supervised set and021
the preference set, enabling us to optimize the022
SQL generation in complex query scenarios023
while maintaining the learning of original data.024
By this way, we can balance the generation025
ability of small LLMs for questions of varying026
difficulty. Finally, we evaluate our method027
on Spider and its three robustness-diagnostic028
variants, shedding light on the strengths and029
weaknesses of it.030

1 Introduction031

Text-to-SQL parsing, which centers on automated032

generation of SQL queries from natural language033

questions, has emerged as a significant research034

in both academic and industrial sectors. This035

long-term challenge is crucial for improving the036

convenience of operating databases and reducing037

the dependence on SQL expertise (Qin et al., 2022;038

Deng et al., 2022).039

Recent advances in LLMs, especially those have040

hundreds of billions parameters, achieved signifi-041

cant breakthroughs in Text-to-SQL. However, these042

approaches based on proprietary LLMs encounter 043

significant data privacy and cost concerns in 044

practical applications, making them unsustainable 045

as long-term privacy solutions. Recent studies 046

have reported the performance of fine-tuned small 047

LLMs that their effectiveness remains inferior to 048

SOTA methods powered by GPT-4. For example, 049

DAIL-SQL (Gao et al., 2024) demonstrated that 050

the fine-tuned small LLMs struggle to learn from 051

contextual examples due to overfitting to zero- 052

shot prompts. MAC-SQL (Wang et al., 2024) 053

fine-tuned Llama-7b (Meta, 2023) for multi-agent 054

collaborative framework, it still falls short of the 055

improved methods based on proprietary LLMs. 056

To alleviate the challenges, we introduce CPO- 057

SQL, an approach aiming to efficiently boost 058

the small LLMs for Text-to-SQL via In-Context 059

Learning (Brown et al., 2020) and Preference 060

Optimization (Brown et al., 2020), as shown in 061

Figure 1. We build the enhanced training set by 062

sampling demonstrations from beta distribution, 063

then fine-tune the small LLMs to empower them 064

with Text-to-SQL ICL capability. This effectively 065

avoids the fine-tuned small LLMs overfitting to 066

zero-shot prompt, thereby we can leverage retrieval- 067

augmented generation to improve its accuracy. 068

Moreover, we enhance the small LLMs’ capability 069

in handling difficult Text-to-SQL tasks through 070

preference optimization. We adopt an agile semi- 071

automated process to build a new Spider preference 072

set, which is derived from Spider training set (Yu 073

et al., 2018b), consisting of 1388 Question-SQL 074

pairs. Then we employ SFT-enhanced preference 075

optimization to train the small LLMs on Spider 076

preference set, enabling them to learn better 077

SQL generation styles. It performs both Direct 078

Preference Optimization and Supervised Fine- 079

Tuning simultaneously in training process, which 080

further boosts the performance of small LLMs in 081

challenging Text-to-SQL tasks. 082

1

What are names of stations that have

average bike availability above 10 and

are not located in San Jose city?

Schema sequence
station : station : station.id [number] , station.name [text] , station.city

[text] (San Jose) , station.dock_count [number] , ...

trip : trip : trip.end_station_name [text] , trip.duration [number] , trip.id

[number] , trip.zip_code [number] , ...

status : status : status.station_id [number] , status.bikes_available

[number] , status.time [text] , status.docks_available [number] , ...

...

status.station_id = station.id

Question with few-shot

/* Some SQL examples are provided based on similar problems: */

/* Answer the following: What are names of stations that have average bike availability above 10 and are not located in

San Jose city? */

Example 1 Example 2 Example 3

Table 1:

Table 2:

…
Table n:

Database Metadata

Values

Colunm type

Foreign keys

Question

Schema filterRetrive

Demonstration pool

SQL

Question

Prompt preparation

Code-LM

Domain-Specific

In-Context Learning

&

Step 1: SFT Training Step 2: DPO-SFT Training

LLM Training steps

SQL query

select station.name from station join status on station.id = status.station_id group by

status.station_id having avg (bikes_available) > 10 except select name from station

where city = 'San Jose'

Text-to-SQL parsing

Output Preference

Optimization

Generate

Figure 1: An overview of CPO-SQL. We train the code-LLM from both In-Context Learning and Preference
Optimization. The former enables it to be applied to RAG and the latter enhances it in handling difficult tasks. They
efficiently bridge the gap between small LLMs and proprietary LLMs.

We evaluate the performance of our method on083

Spider (Yu et al., 2018b) with three sizes of Code-084

LLMs: DeepSeek-Coder (1.3b, 7b) (DeepSeekAI,085

2024) and Starcoder2 (3b) (BigCode, 2023). The086

results demonstrate that our method efficiently087

enhanced the small LLMs’ Text-to-SQL ICL ability088

by fine-tuning. Based on the checkpoints after089

fine-tuning, we perform SFT-enhanced preference090

optimization using elaborate Spider preference set091

and the non-optimized part of Spider training set.092

Surprisingly, despite having fewer parameters (7b)093

than GPT-4, the model achieved accuracy rates of094

84.43% on Spider development set and 87.10% on095

Spider test set, reaching performance comparable096

to SOTA methods using GPT-4 (Li et al., 2024; Xie097

et al., 2024). Finally, we evaluate the robustness of098

our method on three Spider’s variants and shed light099

on the strengths and weaknesses of our method.100

Our contribution are threefold: (1) We introduce101

beta distribution sampling in similar examples102

matching for training set enhancement, to avoid103

fine-tuned small LLMs from overfitting on zero-104

shot prompts and leverage RAG to efficiently105

bridge the gap with proprietary LLMs. (2) We106

propose a new Spider preference set with 1388107

Question-SQL pairs, constructed by an agile semi-108

automated process. (3) We employ SFT-enhanced109

preference optimization to train the small LLMs110

on Spider preference set. It aims to optimize the111

small LLMs for SQL generation in complex query112

scenarios and preserve adaptability while facing113

questions of varying difficulty.114

2 Related work 115

Text-to-SQL with LLMs LLM-based Text-to- 116

SQL parsing includes two paradigms: Prompting 117

LLMs and Fine-tuning small LLMs. Prompting 118

methods, as demonstrated by DIN-SQL (Pourreza 119

and Rafiei, 2023), CoT-style (Tai et al., 2023), SQL- 120

Prompt (Sun et al., 2023), Self-debugging (Chen 121

et al., 2023), and DAIL-SQL (Gao et al., 2024), are 122

tailored to guide LLMs through intricate sub-tasks 123

such as schema linking, difficulty classification, 124

and self-correction. They powered by advanced 125

proprietary LLMs, such as GPT-4, raising concerns 126

of data privacy and inference overheads. Besides, 127

Fine-tuning methods, though proven effective in 128

coding tasks, remain relatively under-explored in 129

this field due to the expensive training overheads. 130

Notably, DAIL-SQL has investigated fine-tuning 131

small LLMs (e.g., LLaMA), revealing performance 132

gaps compared to prompting proprietary LLMs. 133

MAC-SQL (Wang et al., 2024) proposed a novel 134

multi-agent framework for Text-to-SQL, and 135

introduced a fine-tuned Code Llama as agents to 136

solve the subtasks. SQL-PaLM (Google, 2024) 137

focus on LLMs at larger scales, to investigate 138

the potential of achieving significant gain with 139

the increase of model size due to the emergent 140

ability of large models. Different from previous 141

researches, we primarily focus on enhancing the 142

Text-to-SQL capabilities of small LLMs through 143

instruction fine-tuning, including Text-to-SQL ICL 144

and preference optimization, to efficiently narrow 145

the gap with proprietary LLMs. 146

2

Simplification of SQL To alleviate the challenge147

of Text-to-SQL parsing, previous studies focused148

on developing a SQL intermediate representa-149

tion (IR) aiming at minimizing the mismatch150

between natural language descriptions and their151

corresponding SQL queries. SyntaxSQLNet (Yu152

et al., 2018a), EditSQL (Zhang et al., 2019), RAT-153

SQL (Wang et al., 2020), and NatSQL (Gan et al.,154

2021c), have sought to refine IR methods by155

removing or combining various SQL clauses to156

simplify the SQL representation. These efforts157

narrowed the gap between natural language and158

SQL in semantics. Nevertheless, the IR methods159

require extensive manual annotation and involve160

intricate transformation logic. Besides, they can161

not fully reconstruct the SQL statements, resulting162

in information loss. In contrast to previous studies,163

our objective is to agilely construct a preference164

dataset that includes both the original SQL and165

more concise variants, enabling our model to learn166

better SQL generation styles from it.167

3 Problem Definition168

Text-to-SQL Task The Text-to-SQL task in-169

volves generating a SQL query y that corresponds170

to a user question Q based on a database schema171

S , and demonstrations E . The database schema S172

of relational database D includes (1) a set of tables173

T = {T1,T2, ...,Tm}, (2) a set of columns C =174 {
C 1

T1
, ...,C n

T1
,C 1

T2
, ...,C n

T2
,C 1

Tm
, ...,C n

Tm

}
associated175

with the tables, (3) and a set of foreign key relations176

R =
{(

C i
k,C

j
h

)
|C i

k,C
j

h ∈ C
}

. Here, m and n177

denote the number of table names and column178

names, respectively. Finally, with the language179

model policy π, the Text-to-SQL task could be180

formulated as:181

y = f (Q ,S ,E |π) , (1)182

4 Methodology183

4.1 Model Overview184

The framework is shown in Figure 1, utilizing a185

fine-tuned code-LLM as the core of Text-to-SQL186

parsing with a retriever to provide similar examples187

and a filter to build relevant schema sequence from188

database. Firstly, We enhance the training set to189

equip the fine-tuned small LLMs with domain-190

specific ICL ability. Next, we construct the Spider191

preference set and further optimize the small LLMs’192

capability to handle challenging tasks by SFT-193

enhanced preference optimization.194

Alternative example

SQL

Question

SQL skeleton

SELECT count(_) FROM _

Questions

similarity

Questions skeleton

How many _ are there?

SQL

similarity

Remove table names,

column names, and

values

Remove table names,

column names, and values

Beta distribution

sampling

Figure 2: Examples selection for training data.

4.2 Text-to-SQL In-Context Learning 195

Fine-tuned small LLMs fail to learn from contextual 196

examples due to overfitting zero-shot prompts, as 197

mentioned by DAIL-SQL (Gao et al., 2024), is our 198

main challenge. To solve it, we first append similar 199

examples to the Spider training set Dtrain. For each 200

training data xi = (yi,Qi,Si,Ki) , we match the 201

suitable examples among the rest of the training 202

set
{

x j|x j ∈ Dtrain − xi
}

, by sorting them based on 203

question similarity, then select data x j = (y j,Q j) 204

with SQL similarity higher than a certain threshold 205

θ as the examples E for xi. 206

However, we observe that method above leads 207

the small LLMs to become over-dependent on 208

the provided demonstrations when generating SQL 209

statements. If the retrieved examples are irrelevant 210

to the task, it can significantly affect the accuracy of 211

the generated SQL. Besides, the examples at front 212

of the context are always the most similar to the 213

current task, leading the fine-tuned small LLMs to 214

be "lazy" in context learning, that is, overly relying 215

on E1 while not taking full advantage of subsequent 216

examples, resulting in poorer performance. 217

Beta Distribution Sampling To mitigate the 218

challenge, we introduce beta distribution sampling 219

for examples selection, as shown in Figure 2. 220

We view the beta distribution X ∼ Beta(α,β) as 221

the prior probability distribution for candidate 222

example x j,x j ∈ Dtrain − xi being selected as the 223

final demonstration. We hope the candidate x j 224

that is more similar to current data xi has a 225

higher probability of being selected. Therefore, 226

we sort the candidate examples Ecandidate = 227

{x|x ∈ Dtrain − xi} according to the normalized 228

similarity Sxi∼x j between current data xi and 229

candidate x j. Then sampling p ∈ (0,1) from 230

the beta distribution X ∼ Beta(α,β) each time, 231

and select the candidate x j with the minimum 232

difference
∣∣Sxi∼x j − p

∣∣ as the target example of xi. 233

3

We employ beta distribution sampling strategy to234

select h examples from Ecandidate based on the235

question similarity, and then select k examples236

as final E from h candidates based on the SQL237

similarity using the same strategy. We extract the238

skeleton of SQL and mask the database content239

of the questions as preprocessing before similarity240

calculation. Besides, we measure the similarity of241

questions Q and SQL statements l by Euclidean242

distance and Jaccard similarity respectively.243

Attributed to the uncertainty of Sxi∼x j introduced244

by beta distribution sampling , it effectively avoids245

the small LLMs overfitting to similar examples,246

improving their ability to learn from multiple247

examples. Moreover, the examples closely aligned248

with the current task have a greater likelihood of249

selection, ensuring the ICL training effectiveness.250

4.3 Spider Preference Set251

To perform preference optimization on LLMs, we252

describe the agile construction of the offline SQL253

preference set in this section. The complex Text-254

to-SQL tasks in Spider (Yu et al., 2018b) pose255

significant challenges to small LLMs. In order256

to reduce the difficulty of Text-to-SQL parsing,257

previous studies mainly focus on SQL intermediate258

representation (IR). They require extensive manual259

annotation, and the transformation logic is intricate,260

which cannot reconstitute SQL integrally, leading261

to the information loss. In contrast to these IR-262

based methods, we aim to efficiently construct a263

preference dataset that includes both the original264

SQL and more concise variants, then optimize the265

small LLMs to learn the improved SQL generation266

styles. We consider the following six optimizations267

of SQL statements, as shown in Figure 3, including268

Non-essential components, New SQL feature,269

Table join, Set operation, Sorting operation, and270

Other optimization involved SQL skeleton. See271

AppendixA for more details.272

We adopt an agile semi-automated process to build273

the Spider preference set, as depicted in Figure 4,274

with the objective of enabling the small LLMs to275

learn the superior SQL style from it. Based on276

Spider training set, we feed the SQL statement yw277

targeted for optimization into Qwen-max (Alibaba,278

2023), along with the associated database schema279

and question. Then we prompt the LLM to generate280

multiple equivalent SQL statements y∗. By using281

Test Suite (Zhong et al., 2020), we compare the282

execution results between SQL y∗ and original SQL283

Figure 3: Composition of Spider preference set.

yl , ensuring the same result of them. Finally, we 284

appraise the SQL that have passed inspection based 285

on six types of optimization and select the refined 286

SQL yw along with the original SQL yl to join the 287

preference set, finalizing the dataset construction, 288

which consists of 1388 samples. 289

4.4 Text-to-SQL Preference Optimization 290

Direct Preference Optimization (DPO) (Rafailov 291

et al., 2023), which directly optimizes the model 292

policy based on the ideal probability distribution of 293

human preferences without reward model, has been 294

proven effective in text generation. However, in our 295

attempt to perform DPO for small LLMs on Spider 296

preference set, the SQL statements generated by the 297

small LLMs lack logical coherence, falling short of 298

our anticipated outcomes. We find that the lack of 299

cross-entropy loss in DPO leads to the divergence 300

of the models’ generated results. Consequently, we 301

propose SFT-enhanced preference optimization 302

for Text-to-SQL training, which integrates cross- 303

entropy loss into the DPO training stage to enhance 304

it, and supports mixed training of supervised fine- 305

tuning data and preference optimization data by 306

modifying the loss calculation. 307

Our SFT-enhanced preference optimization in- 308

cludes three phases: 1) model initialization; 2) 309

offline preference set construction; 3) optimize the 310

small LLM based on preferences set. 311

Model Initialization Our model initialization is 312

the same as DPO, where we initialize the reference 313

model πref with a language model πSFT generally. 314

The language model πSFT obtained by fine-tuning 315

a pre-train model on high-quality data specific to 316

the downstream task, which refers to Text-to-SQL 317

parsing in the experiment. 318

4

select station.name from station join status on station.id = status.station_id where station.city != 'San Jose' group by

station.id having avg (status.bikes_available) > 10

select station.name from station join status on station.id = status.station_id group by status.station_id having avg

(bikes_available) > 10 except select name from station where city = 'San Jose'

Optimized SQL

SQL Statement 1

Spider
training set

Spider

preference set
select station.name from station join status on station.id = status.station_id group by status.station_id having avg

(bikes_available) > 10 except select name from station where city = 'San Jose'

Original SQL

Equivalent SQL
statements generation

Execution result
comparison

Original SQL

Schema

SQL Statement 2

SQL Statement 3
Qwen-max Evaluate and select

+Question

Figure 4: The agile construction process of Spider preference set. We provide the database schema and questions
to Qwen-max, prompting it to generate equivalent SQL statements. Then we compare their execution results with
the original one for filtration by test suite. Finally, we evaluate the optimization results and build the preference set.

Preferences Set Construction The fine-tuned319

model πSFT is provided with prompts x to generate320

pairs of answers (y1,y2)∼ πSFT(y | x). These pairs321

will be presented to human labelers to construct322

the offline preferences set D1 = {x(i),y(i)w ,y(i)l }N
i=1.323

For one answer over the other, the labelers indicate324

the preferences, denoted as yw ≻ yl | x, where yw325

and yl represent the preferred and less-preferred326

completions among (y1,y2) respectively.327

Original DPO Given πref and D and hyper-328

parameter β, we optimize the language model πθ329

to minimize LDPO, where β controls the deviation330

from the base reference policy πref. Usually, the331

model πref is the same as the initial SFT model332

πSFT. The negative log-likelihood loss of DPO can333

be represented as:334

LDPO(πθ;πref) =−E(x,yw,yl)∼D1 [logσ(η)] . (2)335

336

η = β log
πθ(yw | x)
πref(yw | x)

−β log
πθ(yl | x)
πref(yl | x)

. (3)337

SFT-enhanced preference optimization We338

integrate the cross-entropy loss, typically used339

in supervised training for LLMs, into the DPO340

optimization objective to enhance the small LLMs341

performance in Text-to-SQL. It can be written as:342

LSFT (πθ) =−E(x,y)∼D2 [y logπθ (y | x)] . (4)343

Presently, we possess both the Spider training set344

and the Spider preference set we constructed in345

the last section. Since it derived from optimizing 346

a subset of the training set, to avoid duplication, 347

we consider the preference data set Dpre f erence 348

and non-optimized part of training set Drest = 349{
(x,yr) |(x,yr) ∈ Dtrain,x not in Dpre f erence

}
as 350

training data in preference optimization stage. It is 351

remarkable that we adapt Drest to match the format 352

of the preference dataset to ensure uniformity in 353

the training data format, which represented as 354

Drest ′ = {(x,yw,yl) |yw = yl = yr,(x,yr) ∈ Drest}. 355

Based on Eq. 2 and Eq. 4 , we set the objective of 356

the SFT-enhanced preference optimization as: 357

LDPO_SFT (πθ;πref) =

−E(x,yw,yl)∼D

[
logσ(η)

+K f txyw logπθ (yw | x)

]
(5) 358

where hyper-parameter K f tx controls the degree to 359

which the model learns the optimal data format. 360

During optimization, we determine whether the 361

current data (x,yw,yl) comes from the preference 362

dataset Dpre f erence (D1) or the supervised dataset 363

Drest (D2) by comparing yw and yl for equivalence. 364

If yw = yl , it signifies that the data originates 365

from the supervised dataset Drest . We disregard the 366

DPO loss for the current data, and our optimization 367

objective function degrades to: 368

LDPO_SFT (πθ;πref) =

−E(x,yw,yl)∼D [K f txyw logπθ (yw | x)]
(6) 369

5

According to the definition 5 6, our optimization370

objective is to optimize the Text-to-SQL model πθ371

through SFT-enhanced preference optimization to372

learn from two diverging distributions: supervised373

dataset Drest and preference dataset Dpre f erence.374

The training process is completed in one phase.375

5 Experiments376

We evaluate our method on Spider (Yu et al., 2018b)377

and its three robustness-diagnostic variants: Spider-378

DK (Gan et al., 2021b), Spider-Syn (Gan et al.,379

2021a), and Spider-Realistic (Deng et al., 2021).380

Spider stands as the classical benchmark for381

Text-to-SQL tasks, comprising a training set of382

7,000 samples, a dev set of 1,034 samples, and383

a test set of 2,147 samples, being widely used384

to evaluate text-to-SQL parsers across various385

databases, requiring models to demonstrate their386

adaptability to unfamiliar database structures.387

Spider-DK, Spider-Syn, Spider-Realistic are388

variants derived from the Spider development set,389

specifically designed to mimic queries that could be390

posed by users in real-world scenarios. Concretely,391

Spider-DK incorporates domain knowledge to392

paraphrase questions. Spider-Syn replaces schema-393

related words with synonyms in questions. Spider-394

Realistic removes explicitly mentioned column395

names in questions.396

Evaluation Metrics To assess the fine-tuned small397

LLMs’ performance in Text-to-SQL, following398

Yu et al., 2018b; Zhong et al., 2020, we adopt399

two metrics: Exact-set-Match accuracy(EM) and400

Execution accuracy (EX). EM determines whether401

the predicted SQL query perfectly matches the402

Gold SQL query by converting both into a data403

structure (Yu et al., 2018b), while EX compares404

the execution outcomes of the predicted and Gold405

SQL queries. EX is particularly sensitive to the406

generated values, whereas EM is not. In practice,407

we combine EM and EX scores to determine the408

best checkpoint for small LLMs.409

Implementation Details We utilize the cross-410

encoder for schema selection from RESDSQL (Li411

et al., 2023a), and augment the schema sequence412

with column types and potentially useful database413

content based on fuzzy matching with question. We414

employ Sentence-BERT (Reimers and Gurevych,415

2019) for question encoding during examples’416

retrieval. For the core LLMs, we consider three417

sizes: DeekSeek Coder-(3b,7b) (DeepSeekAI, 418

2024), and StarCoder2 (3b) (BigCode, 2023). We 419

train them in two stages: SFT and DPO-SFT. In the 420

SFT stage, we select the similar examples from beta 421

distribution with parameter α=1.5, β=0.5 and full- 422

training the small LLMs on Spider training set with 423

k-shot, k ∈ [0,4]. We specify bs=96, lr=1e-5, and 424

employ AdamW optimizer (Loshchilov and Hutter, 425

2019) with linear warm-up (the first 10% training 426

steps) and cosine decay to adjust the learning rate. 427

In the DPO-SFT stage, we maintain the same batch 428

size, learning rate, and optimizer as the previous 429

stage. Differently, we fine-tune the small LLMs 430

with QLoRA to reduce GPU memory usage. We 431

set beam size of 8 for inference in both stages. 432

Environments We conduct all experiments on a 433

server with 4×V100 (32GB) GPUs and 200GB of 434

memory. Besides, we utilize DeepSpeed ZeRO-2 435

to mitigate the memory and compute demands of 436

each GPU utilized for training. 437

5.1 Evaluation on In-Context Learning 438

In few-shot scenario, we evaluate the small LLMs 439

under two example selection strategies: Precise 440

Matching (PM) and Beta distribution Sampling 441

(BS) . Under the PM strategy, we always select 442

the examples that are most similar to the current 443

training data as additional context. In contrast, 444

with the BS strategy, we select the examples 445

to be appended to the context from a beta 446

distribution based on the normalized similarity 447

between examples and the current training data. 448

To ensure a fair evaluation on Spider development 449

set, we select the best-performing checkpoint of 450

each model. For inference, we always select the 451

most similar example for current task. 452

Figure 5 reports the EM and EX results on Spider 453

under two example selection strategies for different 454

small LLMs. We observe that LLMs trained with 455

BS can benefit from more contextual examples than 456

PM. It’s evident in the performance of DeepSeek 457

Coder (1.3b) at 2-shot and StarCoder2 (3b) at 3- 458

shot. As the number of examples increases beyond 459

1-shot, these LLMs consistently outperform their 460

counterparts trained with PM in terms of both 461

EM and EX results, which indicates that the beta 462

distribution sampling for similar examples can 463

prevent small LLMs from overfitting to the similar 464

prompts provided in training. However, it should 465

be noted that compared to GPT-4, as reported by 466

DAIL-SQL (Gao et al., 2024), where EX increases 467

6

Easy Medium Hard Extra All
Stage Model Size EM% EX% EM% EX% EM% EX% EM% EX% EM% EX%

1.3b 87.90 91.93 79.82 87.89 59.77 71.83 54.21 61.44 74.27 81.91
DeepSeek Coder

7b 94.75 96.37 86.99 92.15 86.99 75.86 58.43 63.85 81.43 85.88SFT
StarCoder2 3b 92.33 93.14 82.06 86.54 60.91 72.41 45.18 54.21 75.04 80.56

1.3b 91.12 94.75 81.83 88.34 65.51 77.58 46.98 58.43 75.72 83.26
DeepSeek Coder

7b 94.75 95.96 84.52 91.92 70.68 78.73 51.20 63.25 79.30 86.07DPO-SFT
StarCoder2 3b 92.33 92.74 81.83 86.77 59.19 70.11 47.59 57.22 75.04 80.65

Table 1: Performance of small LLMs at SFT stage and DPO-SFT stage, across difficulty levels on the Spider’s dev
set. Darker shadows indicate poorer performance.

DeepSeek-Coder-1.3b PM DeepSeek-Coder-7b PM Starcoder2-3b PM

DeepSeek-Coder-1.3b BS DeepSeek-Coder-7b BS Starcoder2-3b BS

Figure 5: Few-shot evaluation with fine-tuned small LLMs on Spider-dev.

from 72.3% (0-shot) to 82.4% (5-shot), fine-tuned468

small LLMs’ improvement gained from retrieval-469

augmented generation is less pronounced (< 2.5%).470

One potential reason is that instruction fine-tuning471

significantly enhances the model’s ability to solve472

problems in zero-shot scenarios, thereby narrowing473

the performance gap compared to scenarios where474

examples are provided.475

5.2 Evaluation on Preference Optimization476

As shown in Table 1, we compare the result of477

small LLMs from two training stages on Spider478

development set. The small LLMs at SFT stage479

are trained with the BS strategy, while those at480

DPO-SFT stage are optimized from LLMs at481

SFT stage on Spider preference set. Since the482

preference set introduces SQL features that are483

not present in the original Spider set, leading to484

inaccurate retrieval, we only focus on zero-shot485

evaluation. The results demonstrate that our SFT-486

enhanced preference optimization resulted in an487

EX improvements of 1.35% for Deepseek Coder488

(1.3b), 0.19% for Deepseek Coder (7b), and 0.09%489

for StarCoder2 (3b). This suggests that our method490

performs more effectively on small LLMs with491

fewer parameters, as our Spider preference set492

primarily focuses on simplifying challenging SQL493

that small LLMs struggle to generate.494

Based on the difficulty-level stratification results, 495

small LLMs at DPO-SFT stage demonstrate more 496

advantages for Medium and Hard level compared 497

to Easy and Extra Hard level. Note that small 498

LLMs at DPO-SFT stage sometimes have a lower 499

EM result than their corresponding models at SFT 500

stage but a higher EX result. This occurs because 501

EM requires strict adherence to SQL formatting, 502

whereas LLMs at DPO-SFT stage may generate 503

SQL statements with formats that are inconsistent 504

with the target but yield the same execution results. 505

5.3 Result on Spider 506

Table 2 reports the results on Spider. Our 507

top-performing model, DeepSeek Coder (7b) at 508

DPO-SFT stage, achieved 87.1% EX on the test 509

set, reaching performance comparable to SOTA 510

methods using GPT-4 (Xie et al., 2024). This 511

demonstrates the high-efficiency of our method. 512

Besides, the DeepSeek Coder (1.3b) at DPO-SFT 513

stage, which achieved 75.7% EM and 83.2% EX, 514

stands as the best-performing model at equivalent 515

scale, suggesting that our SFT-enhanced preference 516

optimization effectively mitigates the challenges 517

faced by small LLMs in Text-to-SQL parsing. The 518

DeekSeek Coder (7b) at SFT stage also achieved 519

commendable result (EM 76.9%, EX 86.6%), by 520

leveraging RAG (3-shot) to learn from examples. 521

7

Approach Zero-Shot Few-Shot Fine-tuning Dev Set Test Set
EM% EX% EM% EX%

DAIL-SQL + GPT-4 + SC (Gao et al., 2024) ✓ 68.7 83.6 66.0 86.6
MAC-SQL + GPT-4 (Wang et al., 2024) ✓ 63.2 86.7 - 82.8
DEA-SQL + GPT-4 (Xie et al., 2024) ✓ - 85.4 - 87.1
C3 + ChatGPT + Zero-Shot (Dong et al., 2023) ✓ 71.4 81.8 - 82.3
ChatGPT (Liu et al., 2023) ✓ 34.6 74.4 - -
GPT-4 (OpenAI, 2024) ✓ 22.1 72.3 - -
T5-3B + PICARD (Scholak et al., 2021) ✓ 75.5 79.3 71.9 75.1
Graphix-T5-3B + PICARD (Li et al., 2023b) ✓ 77.1 81.0 74.0 77.6
RESDSQL-3B + NatSQL (Li et al., 2023a) ✓ 80.5 84.1 72.0 79.9
SQL-PaLM (Google, 2024) ✓ 78.2 82.8 - -

SFT DeepSeek Coder-1.3b ✓ ✓ 74.7 82.1 69.5 81.2
SFT DeepSeek Coder-7b ✓ ✓ 80.6 86.5 76.9 86.6
SFT StarCoder2-3b ✓ ✓ 76.2 82.0 74.2 82.9
DPO-SFT DeepSeek Coder-1.3b ✓ 75.7 83.2 71.0 81.0
DPO-SFT DeepSeek Coder-7b ✓ 77.5 84.4 74.9 87.1
DPO-SFT StarCoder2-3b ✓ 75.0 80.6 73.9 82.4

Table 2: Exact-set-Match accuracy (EM) and Execution accuracy (EX) results on Spider’s development set and test
set. We compare our approach with other baseline methods.

Spider-Syn Spider-Realistic Spider-DKApproach EM% EX% EM% EX% EM% EX%

T5-3B + PICARD (Scholak et al., 2021) 61.8 69.8 61.7 71.4 — 62.5
RESDSQL-3B + NatSQL (Li et al., 2023a) 66.8 76.9 70.1 81.9 53.3 66.0
ChatGPT (Liu et al., 2023) 48.5 58.6 49.2 63.4 — 62.6
SQL-Palm (Few-shot) (Google, 2024) 67.4 74.6 72.4 77.6 — 66.5
SQL-Palm (Fine-tuned) (Google, 2024) 66.4 70.9 73.2 77.4 — 67.5

SFT DeepSeek Coder-1.3b 53.7 65.8 65.3 72.6 54.9 62.4
SFT DeepSeek Coder-7b 68.6 75.6 78.1 81.4 62.9 70.4
SFT StarCoder2-3b 60.2 67.4 72.4 75.1 56.2 62.2
DPO-SFT DeepSeek Coder-1.3b 62.0 72.2 66.3 76.7 52.7 62.9
DPO-SFT DeepSeek Coder-7b 67.4 74.9 75.0 82.2 61.1 68.2
DPO-SFT StarCoder2-3b 60.1 67.1 71.4 74.8 56.2 62.4

Table 3: Evaluation results on Spider-DK, Spider-Syn, and Spider-Realistic.

5.4 Results on Robustness Settings522

Previous researches (Gan et al., 2021a; Deng523

et al., 2021) highlight the fragility of neural524

Text-to-SQL parsers faced with perturbations in525

questions. This fragility arises from the removal526

or substitution of explicitly mentioned schema527

items with semantically consistent words, such as528

synonyms, which complicates the schema linking.529

To investigate the robustness of the fine-tuned small530

LLMs, we evaluated them on three challenging531

variants of the Spider dataset: Spider-DK, Spider-532

Syn, and Spider-Realistic.533

As shown in Table 3, our fine-tuned LLMs achieved534

SOTA performance on multiple robustness metrics:535

Spider-Syn (EM 68.6%), Spider-Realistic (EM536

78.1%, EX 82.2%), and Spider-DK (EM 62.9%,537

EX 70.4%), demonstrating the high-efficiency of538

In-Context Learning and Preference Optimization539

we proposed. However, it should be noted that the540

improved metrics are primarily attributed to the541

LLMs at SFT stage, whereas LLMs at DPO-SFT542

stage are further optimized, did not exhibit superior543

robustness. We think this discrepancy may stem 544

from redundant learning on similar data and plan 545

to investigate it in future research. 546

5.5 Conclusion 547

In this paper, we propose CPO-SQL, an approach 548

aiming to boost the Text-to-SQL capability of small 549

LLMs via In-Context Learning and Preference 550

Optimization efficiently. In order to prevent the 551

fine-tuned small LLMs from overfitting to zero- 552

shot prompts, we enhance the training set by 553

sampling demonstrations from beta distribution, 554

then fine-tune the small LLMs to empower them 555

with Text-to-SQL ICL capability. Moreover, we 556

enhance the small LLMs’ ability in handling 557

difficult Text-to-SQL tasks through SFT-enhanced 558

preference optimization on Spider preference set, 559

constructed by an agile semi-automated process. 560

Our models achieve state-of-the-art performance 561

across multiple metrics on Spider and its three 562

robustness-diagnostic variants, demonstrating the 563

high-efficiency of CPO-SQL in bridging the gap 564

between small LLMs and proprietary LLMs. 565

8

Limitations566

Prompt engineering We did not extensively567

engineer the prompts for small LLMs input, which568

may not be optimal in the experiments.569

Preferences Set Construction The construction570

of Spider preference set only consider the SQL571

simplification to reduce the difficulty of Text-to-572

SQL parsing for small LLMs, We do not consider573

the execution efficiency in the real scenario and574

plan to explore it in future research.575

Differences in Pre-training Corpora We focus576

on boosting the capability of small LLMs in577

Text-to-SQL via efficient fine-tuning and without578

considering the differences in pre-training stage.579

We evaluate two types of code-LLMs in the580

experiment: DeekSeek Coder (DeepSeekAI, 2024)581

and StarCoder2 (BigCode, 2023). The different582

proportion of programming languages in their583

pretraining corpus may affect our comparison of584

small LLMs with different sizes. For example,585

StarCoder2 (3b) underperforms DeepSeek Coder586

(1.3b) in some metrics may due to the smaller587

proportion of SQL in its pretraining corpus.588

Ethics Statement589

Data Disclaimer We build a new SQL preference590

set based on Spider, a dataset widely used by591

academics and accessible to the public. Therefore,592

our proposed dataset does not involve any sensitive593

information that may harm others.594

Human Labeler When recruiting labelers for595

this study, we ensure that all potential labelers are596

free to choose whether they want to participate and597

can withdraw from the study anytime without any598

negative repercussions. Thus, the establishment of599

our dataset complies with ethics.600

References601

Alibaba. 2023. Qwen technical report. arXiv preprint602
arXiv:2309.16609.603

BigCode. 2023. Starcoder: may the source be with you!604
Preprint, arXiv:2305.06161.605

Tom B. Brown, Benjamin Mann, and Nick Ryder et al.606
2020. Language models are few-shot learners. In607
Advances in Neural Information Processing Systems,608
volume 33, pages 1877–1901. Curran Associates, Inc.609

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and610
Denny Zhou. 2023. Teaching large language models to611
self-debug. Preprint, arXiv:2304.05128.612

DeepSeekAI. 2024. Deepseek-coder: When the large 613
language model meets programming – the rise of code 614
intelligence. Preprint, arXiv:2401.14196. 615

Naihao Deng, Yulong Chen, and Yue Zhang. 2022. 616
Recent advances in text-to-SQL: A survey of what 617
we have and what we expect. In Proceedings of 618
the 29th International Conference on Computational 619
Linguistics, pages 2166–2187, Gyeongju, Republic 620
of Korea. International Committee on Computational 621
Linguistics. 622

Xiang Deng, Ahmed Hassan Awadallah, Christopher 623
Meek, Oleksandr Polozov, Huan Sun, and Matthew 624
Richardson. 2021. Structure-grounded pretraining for 625
text-to-SQL. In Proceedings of the 2021 Conference 626
of the North American Chapter of the Association 627
for Computational Linguistics: Human Language 628
Technologies, pages 1337–1350, Online. Association 629
for Computational Linguistics. 630

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, 631
Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang Lou. 632
2023. C3: Zero-shot text-to-sql with chatgpt. Preprint, 633
arXiv:2307.07306. 634

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew 635
Purver, John R. Woodward, Jinxia Xie, and Pengsheng 636
Huang. 2021a. Towards robustness of text-to-SQL 637
models against synonym substitution. In Proceedings 638
of the 59th Annual Meeting of the Association for 639
Computational Linguistics and the 11th International 640
Joint Conference on Natural Language Processing 641
(Volume 1: Long Papers), pages 2505–2515, Online. 642
Association for Computational Linguistics. 643

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b. 644
Exploring underexplored limitations of cross-domain 645
text-to-SQL generalization. In Proceedings of the 2021 646
Conference on Empirical Methods in Natural Language 647
Processing, pages 8926–8931, Online and Punta Cana, 648
Dominican Republic. Association for Computational 649
Linguistics. 650

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver, 651
John R. Woodward, John Drake, and Qiaofu Zhang. 652
2021c. Natural SQL: Making SQL easier to infer from 653
natural language specifications. In Findings of the 654
Association for Computational Linguistics: EMNLP 655
2021, pages 2030–2042, Punta Cana, Dominican 656
Republic. Association for Computational Linguistics. 657

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, 658
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024. 659
Text-to-sql empowered by large language models: 660
A benchmark evaluation. Proc. VLDB Endow., 661
17(5):1132–1145. 662

Google. 2024. Sql-palm: Improved large language 663
model adaptation for text-to-sql (extended). Preprint, 664
arXiv:2306.00739. 665

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 666
2023a. Resdsql: Decoupling schema linking and 667
skeleton parsing for text-to-sql. In Proceedings of the 668
AAAI Conference on Artificial Intelligence, volume 37, 669
pages 13067–13075. 670

9

https://arxiv.org/abs/2305.06161
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://aclanthology.org/2022.coling-1.190
https://aclanthology.org/2022.coling-1.190
https://aclanthology.org/2022.coling-1.190
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://arxiv.org/abs/2307.07306
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,671
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo672
Si, and Yongbin Li. 2023b. Graphix-t5: Mixing pre-673
trained transformers with graph-aware layers for text-to-674
sql parsing. In Proceedings of the AAAI Conference on675
Artificial Intelligence, volume 37, pages 13076–13084.676

Zhishuai Li, Xiang Wang, Jingjing Zhao, Sun Yang,677
Guoqing Du, Xiaoru Hu, Bin Zhang, Yuxiao Ye, Ziyue678
Li, Rui Zhao, and Hangyu Mao. 2024. Pet-sql: A679
prompt-enhanced two-stage text-to-sql framework with680
cross-consistency. Preprint, arXiv:2403.09732.681

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu.682
2023. A comprehensive evaluation of chatgpt’s zero-683
shot text-to-sql capability. Preprint, arXiv:2303.13547.684

Ilya Loshchilov and Frank Hutter. 2019. Decoupled685
weight decay regularization. In 7th International686
Conference on Learning Representations, ICLR 2019.687

Meta. 2023. Llama: Open and efficient foundation688
language models. arXiv preprint arXiv:2302.13971.689

OpenAI. 2024. Gpt-4 technical report. Preprint,690
arXiv:2303.08774.691

Mohammadreza Pourreza and Davood Rafiei. 2023.692
Din-sql: Decomposed in-context learning of text-to-sql693
with self-correction. Preprint, arXiv:2304.11015.694

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,695
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,696
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022. A697
survey on text-to-sql parsing: Concepts, methods, and698
future directions. Preprint, arXiv:2208.13629.699

Rafael Rafailov, Archit Sharma, Eric Mitchell,700
Christopher D Manning, Stefano Ermon, and Chelsea701
Finn. 2023. Direct preference optimization: Your702
language model is secretly a reward model. In Advances703
in Neural Information Processing Systems, volume 36,704
pages 53728–53741. Curran Associates, Inc.705

Nils Reimers and Iryna Gurevych. 2019. Sentence-706
BERT: Sentence embeddings using Siamese BERT-707
networks. In Proceedings of the 2019 Conference on708
Empirical Methods in Natural Language Processing709
and the 9th International Joint Conference on710
Natural Language Processing (EMNLP-IJCNLP), pages711
3982–3992, Hong Kong, China. Association for712
Computational Linguistics.713

Torsten Scholak, Nathan Schucher, and Dzmitry714
Bahdanau. 2021. PICARD: Parsing incrementally for715
constrained auto-regressive decoding from language716
models. In Proceedings of the 2021 Conference on717
Empirical Methods in Natural Language Processing,718
pages 9895–9901, Online and Punta Cana, Dominican719
Republic. Association for Computational Linguistics.720

Ruoxi Sun, Sercan Arik, Rajarishi Sinha, Hootan721
Nakhost, Hanjun Dai, Pengcheng Yin, and Tomas722
Pfister. 2023. SQLPrompt: In-context text-to-SQL with723
minimal labeled data. In Findings of the Association724
for Computational Linguistics: EMNLP 2023, pages725
542–550, Singapore. Association for Computational726
Linguistics.727

Chang-Yu Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, 728
and Huan Sun. 2023. Exploring chain of thought style 729
prompting for text-to-SQL. In Proceedings of the 2023 730
Conference on Empirical Methods in Natural Language 731
Processing, pages 5376–5393, Singapore. Association 732
for Computational Linguistics. 733

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr 734
Polozov, and Matthew Richardson. 2020. RAT- 735
SQL: Relation-aware schema encoding and linking 736
for text-to-SQL parsers. In Proceedings of the 58th 737
Annual Meeting of the Association for Computational 738
Linguistics, pages 7567–7578, Online. Association for 739
Computational Linguistics. 740

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, 741
Jiaqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang, 742
Di Yin, Xing Sun, and Zhoujun Li. 2024. Mac-sql: 743
A multi-agent collaborative framework for text-to-sql. 744
Preprint, arXiv:2312.11242. 745

Yuanzhen Xie, Xinzhou Jin, Tao Xie, MingXiong Lin, 746
Liang Chen, Chenyun Yu, Lei Cheng, ChengXiang 747
Zhuo, Bo Hu, and Zang Li. 2024. Decomposition 748
for enhancing attention: Improving llm-based text- 749
to-sql through workflow paradigm. arXiv preprint 750
arXiv:2402.10671. 751

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, 752
Dongxu Wang, Zifan Li, and Dragomir Radev. 2018a. 753
SyntaxSQLNet: Syntax tree networks for complex and 754
cross-domain text-to-SQL task. In Proceedings of the 755
2018 Conference on Empirical Methods in Natural 756
Language Processing, pages 1653–1663, Brussels, 757
Belgium. Association for Computational Linguistics. 758

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 759
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning 760
Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. 761
2018b. Spider: A large-scale human-labeled dataset for 762
complex and cross-domain semantic parsing and text- 763
to-SQL task. In Proceedings of the 2018 Conference 764
on Empirical Methods in Natural Language Processing, 765
pages 3911–3921, Brussels, Belgium. Association for 766
Computational Linguistics. 767

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric 768
Xue, Xi Victoria Lin, Tianze Shi, Caiming Xiong, 769
Richard Socher, and Dragomir Radev. 2019. Editing- 770
based SQL query generation for cross-domain context- 771
dependent questions. In Proceedings of the 2019 772
Conference on Empirical Methods in Natural Language 773
Processing and the 9th International Joint Conference 774
on Natural Language Processing (EMNLP-IJCNLP), 775
pages 5338–5349, Hong Kong, China. Association for 776
Computational Linguistics. 777

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic 778
evaluation for text-to-SQL with distilled test suites. 779
In Proceedings of the 2020 Conference on Empirical 780
Methods in Natural Language Processing (EMNLP), 781
pages 396–411, Online. Association for Computational 782
Linguistics. 783

10

https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2303.13547
https://arxiv.org/abs/2303.13547
https://arxiv.org/abs/2303.13547
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2023.findings-emnlp.39
https://doi.org/10.18653/v1/2023.findings-emnlp.39
https://doi.org/10.18653/v1/2023.findings-emnlp.39
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29

A SQL Optimization Categories 784

Non-essential components 785
786787

Original SQL: 788
select distinct (_) from _ | select distinct (catalog_entry_name) from 789

catalog_contents 790
791

Optimized SQL: 792
select distinct _ from _ | select distinct catalog_entry_name from catalog_contents 793

794795

New SQL feature 796
797798

Original SQL: 799
select distinct _ from _ where _ | select distinct department.creation from 800

department join management on department.department_id = management. 801
department_id join head on management.head_id = head.head_id where head. 802
born_state = ’Alabama ’ 803

804
Optimized SQL: 805
select _ from _ using (_) join _ where _ group by _ | select department.creation 806

from department join management using (department_id) join head on management. 807
head_id = head.head_id where head.born_state = ’Alabama ’ group by department. 808
creation 809

810811

Table join 812
813814

Original SQL: 815
select _ from _ where _ | select candidates.candidate_id from people join candidates 816

on people.person_id = candidates.candidate_id where people.email_address = ’ 817
stanley.monahan@example.org ’ 818

819
Optimized SQL: 820
select distinct _ from _ where _ in (select _ from _ where _) | select distinct 821

candidate_id from candidates where candidate_id in (select person_id from 822
people where email_address = ’stanley.monahan@example.org ’) 823

824825

Set operation 826
827828

Original SQL: 829
select _ from _ where _ | select candidates.candidate_id from people join candidates 830

on people.person_id = candidates.candidate_id where people.email_address = ’ 831
stanley.monahan@example.org ’ 832

833
Optimized SQL: 834
select distinct _ from _ where _ in (select _ from _ where _) | select distinct 835

candidate_id from candidates where candidate_id in (select person_id from 836
people where email_address = ’stanley.monahan@example.org ’) 837

838839

Sorting operation 840
841842

Original SQL: 843
select _ from _ order by _ desc limit _ | select acc_percent from basketball_match 844

order by acc_percent desc limit 1 845
846

Optimized SQL: 847
select max (_) from _ | select max (basketball_match.acc_percent) from 848

basketball_match 849
850851

11

Other optimization involved SQL skeleton.852
853854

Original SQL:855
select _ from _ except select _ from _ | select customer_name from customers except856

select customers.customer_name from customers join first_notification_of_loss on857
customers.customer_id = first_notification_of_loss.customer_id858

859
Optimized SQL:860
select _ from _ where _ not in (select _ from _) | select customer_name from861

customers where customer_id not in (select customer_id from862
first_notification_of_loss)863

864865

B Prompt details866

B.1 Few-shot Prompt867
868869

/* Some SQL examples are provided based on similar problems: */870
/* Answer the following: What is the average and minimum age of all artists from871

United States. */872
select avg (_) , min (_) from _ where _ | select avg (age) , min (age) from873

artist where country = ’United States ’874
875

/* Answer the following: What is the average distance and average price for flights876
from Los Angeles. */877

select avg (_) , avg (_) from _ where _ | select avg (distance) , avg (price878
) from flight where origin = ’Los Angeles ’879

880
/* Answer the following: What is the average and maximum number of total passengers881

for train stations in London or Glasgow? */882
select avg (_) , max (_) from _ where _ | select avg (total_passengers) , max883

(total_passengers) from station where location = ’London ’ or location = ’884
Glasgow ’885

886
/* Given the following database schema: */887
country : country.surfacearea [number] , country.population [number] , country.888

continent [text] (North America) , country.region [text] (North America)889
, country.name [text] | city : city.countrycode [text] (ARE , NOR) , city890

.population [number] , city.id [number] , city.name [text] (Americana ,891
Northampton) , city.district [text] (Northern) | sqlite_sequence :892
sqlite_sequence.name [text] , sqlite_sequence.seq [text] | countrylanguage :893
countrylanguage.countrycode [text] (ARE , NOR) , countrylanguage.language [894
text] (Northsotho) , countrylanguage.percentage [number] , countrylanguage895

.isofficial [text] | city.countrycode = country.code | countrylanguage.896
countrycode = country.code897

898
/* Answer the following: What is the total population and average area of countries899

in the continent of North America whose area is bigger than 3000 ? */900
901
902

/* Expected output */903
select sum (_) , avg (_) from _ where _ | select sum (population) , avg (904

surfacearea) from country where continent = ’north america ’ and surfacearea >905
3000906

907908

12

B.2 Prompt for generating SQL variants 909
910911

/* Given the following database schema: */ 912
station : station.id [number] , station.name [text] , station.city [text] (913

San Jose) , station.dock_count [number] , station.long [number] | weather : 914
weather.mean_temperature_f [number] , weather.max_gust_speed_mph [number] , 915
weather.min_temperature_f [number] , weather.max_wind_speed_mph [number] , 916

weather.max_dew_point_f [number] | trip : trip.end_station_name [text] , 917
trip.duration [number] , trip.id [number] , trip.zip_code [number] , trip. 918
end_date [text] | status : status.station_id [number] , status. 919
bikes_available [number] , status.time [text] , status.docks_available [920
number] | status.station_id = station.id 921

922
/* Answer the following: What are names of stations that have average bike 923

availability above 10 and are not located in San Jose city? */ 924
925

/* SQL statement */ 926
select station.name from station join status on station.id = status.station_id group 927

by status.station_id having avg (bikes_available) > 10 except select name 928
from station where city = ’San Jose ’ 929

930
Please rewrite the SQL statement above based on the database schema and question. 931

You should follow these rules: 932
1. Ensuring that the rewritten SQL statement is equivalent to the original SQL 933

statement. 934
2.Try to make the sql statements more concise than the original ones. 935
3.Don ’t use aliases in SQL statements. 936
4. Please directly output sql statements. 937

938
Output format: 939
#1 940
‘‘‘sql 941
SELECT ... 942
‘‘‘ 943
#2 944
‘‘‘sql 945
SELECT ... 946
‘‘‘ 947
#3 948
‘‘‘sql 949
SELECT ... 950
‘‘‘ 951
""" 952

953954

13

	Introduction
	Related work
	Problem Definition
	Methodology
	Model Overview
	Text-to-SQL In-Context Learning
	Spider Preference Set
	Text-to-SQL Preference Optimization

	Experiments
	Evaluation on In-Context Learning
	Evaluation on Preference Optimization
	Result on Spider
	Results on Robustness Settings
	Conclusion

	SQL Optimization Categories
	Prompt details
	Few-shot Prompt
	Prompt for generating SQL variants

