CPO-SQL: Boosting Small LLMs for Text-to-SQL via
Efficient In-Context Learning and Preference Optimization

Anonymous ACL submission

Abstract

Most recent researches in Text-to-SQL parsing
overly rely on the proprietary Large Language
Models (LLMs), raising concerns of data
privacy and inference overheads. To narrow
the gap between small LLMs and proprietary
LLMs in Text-to-SQL, we introduce CPO-
SQL, an approach aiming to efficiently boost
the capability of small LLMs via In-Context
Learning and Preference Optimization. This
approach builds the enhanced training set by
sampling demonstrations from beta distribution
based on the similarity of questions and
SQL, and then fine-tune the small LLMs to
empower them with ICL capabilities of Text-
to-SQL. Further, we propose a new Spider
preference set, constructed by an agile semi-
automated process, based on six types of SQL
optimization. On this basis, we employ SFT-
enhanced preference optimization to support
the mixed training on the supervised set and
the preference set, enabling us to optimize the
SQL generation in complex query scenarios
while maintaining the learning of original data.
By this way, we can balance the generation
ability of small LLMs for questions of varying
difficulty. Finally, we evaluate our method
on Spider and its three robustness-diagnostic
variants, shedding light on the strengths and
weaknesses of it.

1 Introduction

Text-to-SQL parsing, which centers on automated
generation of SQL queries from natural language
questions, has emerged as a significant research
in both academic and industrial sectors. This
long-term challenge is crucial for improving the
convenience of operating databases and reducing
the dependence on SQL expertise (Qin et al., 2022;
Deng et al., 2022).

Recent advances in LLMs, especially those have
hundreds of billions parameters, achieved signifi-
cant breakthroughs in Text-to-SQL. However, these

approaches based on proprietary LLMs encounter
significant data privacy and cost concerns in
practical applications, making them unsustainable
as long-term privacy solutions. Recent studies
have reported the performance of fine-tuned small
LLMs that their effectiveness remains inferior to
SOTA methods powered by GPT-4. For example,
DAIL-SQL (Gao et al., 2024) demonstrated that
the fine-tuned small LLMs struggle to learn from
contextual examples due to overfitting to zero-
shot prompts. MAC-SQL (Wang et al., 2024)
fine-tuned Llama-7b (Meta, 2023) for multi-agent
collaborative framework, it still falls short of the
improved methods based on proprietary LLMs.

To alleviate the challenges, we introduce CPO-
SQL, an approach aiming to efficiently boost
the small LLMs for Text-to-SQL via In-Context
Learning (Brown et al., 2020) and Preference
Optimization (Brown et al., 2020), as shown in
Figure 1. We build the enhanced training set by
sampling demonstrations from beta distribution,
then fine-tune the small LL.Ms to empower them
with Text-to-SQL ICL capability. This effectively
avoids the fine-tuned small LLMs overfitting to
zero-shot prompt, thereby we can leverage retrieval-
augmented generation to improve its accuracy.
Moreover, we enhance the small LLMs’ capability
in handling difficult Text-to-SQL tasks through
preference optimization. We adopt an agile semi-
automated process to build a new Spider preference
set, which is derived from Spider training set (Yu
et al., 2018b), consisting of 1388 Question-SQL
pairs. Then we employ SFT-enhanced preference
optimization to train the small LLMs on Spider
preference set, enabling them to learn better
SQL generation styles. It performs both Direct
Preference Optimization and Supervised Fine-
Tuning simultaneously in training process, which
further boosts the performance of small LLMs in
challenging Text-to-SQL tasks.

Prompt preparation

2 Question & Database Metadata
What are names of stations that have Table 1: Values
average bike availability above 10 and Table 2 g:r';zf: iﬁ‘;ﬁ
are not located in San Jose city? Talen: M

= Retrive v Schema filter

Q

Schema sequence
Demonstration pool

[text] (San Jose), station.dock_count [number] , ...

[number], trip.zip_code [number], ...

status.station_id = station.id

Question with few-shot
/* Some SQL examples are provided based on similar problems: */
Example 1

Example 2 Example 3

San Jose city? */

station : station : station.id [number] , station.name [text], station.city
trip : trip : trip.end_station_name [text] , trip.duration [number], trip.id

status : status : status.station_id [number] , status.bikes_available
[number] , status.time [text] , status.docks_available [number] , ..

1* Answer the following: What are names of stations that have average bike availability above 10 and are not located in

Text-to-SQL parsing

LLM Training steps

= I = R SR

Step 1: SFT Training Step 2: DPO-SFT Training

Output Preference
e Optimization
_ 7
) CodelM <
N
N
AN Domain-Specific
1 In-Context Learning
Generate
SQL query

select station.name from station join status on station.id = status.station_id group by
status.station_id having avg (bikes_available) > 10 except select name from station
where city = 'San Jose'

Figure 1: An overview of CPO-SQL. We train the code-LLM from both In-Context Learning and Preference
Optimization. The former enables it to be applied to RAG and the latter enhances it in handling difficult tasks. They
efficiently bridge the gap between small LLMs and proprietary LLMs.

We evaluate the performance of our method on
Spider (Yu et al., 2018b) with three sizes of Code-
LLMs: DeepSeek-Coder (1.3b, 7b) (DeepSeekAl,
2024) and Starcoder2 (3b) (BigCode, 2023). The
results demonstrate that our method efficiently
enhanced the small LLMs’ Text-to-SQL ICL ability
by fine-tuning. Based on the checkpoints after
fine-tuning, we perform SFT-enhanced preference
optimization using elaborate Spider preference set
and the non-optimized part of Spider training set.
Surprisingly, despite having fewer parameters (7b)
than GPT-4, the model achieved accuracy rates of
84.43% on Spider development set and 87.10% on
Spider test set, reaching performance comparable
to SOTA methods using GPT-4 (Li et al., 2024; Xie
et al., 2024). Finally, we evaluate the robustness of
our method on three Spider’s variants and shed light
on the strengths and weaknesses of our method.

Our contribution are threefold: (1) We introduce
beta distribution sampling in similar examples
matching for training set enhancement, to avoid
fine-tuned small LL.Ms from overfitting on zero-
shot prompts and leverage RAG to efficiently
bridge the gap with proprietary LLMs. (2) We
propose a new Spider preference set with 1388
Question-SQL pairs, constructed by an agile semi-
automated process. (3) We employ SFT-enhanced
preference optimization to train the small LLMs
on Spider preference set. It aims to optimize the
small LLMs for SQL generation in complex query
scenarios and preserve adaptability while facing
questions of varying difficulty.

2 Related work

Text-to-SQL with LLMs LLM-based Text-to-
SQL parsing includes two paradigms: Prompting
LLMs and Fine-tuning small LLMs. Prompting
methods, as demonstrated by DIN-SQL (Pourreza
and Rafiei, 2023), CoT-style (Tai et al., 2023), SQL-
Prompt (Sun et al., 2023), Self-debugging (Chen
et al., 2023), and DAIL-SQL (Gao et al., 2024), are
tailored to guide LLMs through intricate sub-tasks
such as schema linking, difficulty classification,
and self-correction. They powered by advanced
proprietary LLMs, such as GPT-4, raising concerns
of data privacy and inference overheads. Besides,
Fine-tuning methods, though proven effective in
coding tasks, remain relatively under-explored in
this field due to the expensive training overheads.
Notably, DAIL-SQL has investigated fine-tuning
small LLMs (e.g., LLaMA), revealing performance
gaps compared to prompting proprietary LLMs.
MAC-SQL (Wang et al., 2024) proposed a novel
multi-agent framework for Text-to-SQL, and
introduced a fine-tuned Code Llama as agents to
solve the subtasks. SQL-PalLM (Google, 2024)
focus on LLMs at larger scales, to investigate
the potential of achieving significant gain with
the increase of model size due to the emergent
ability of large models. Different from previous
researches, we primarily focus on enhancing the
Text-to-SQL capabilities of small LLMs through
instruction fine-tuning, including Text-to-SQL ICL
and preference optimization, to efficiently narrow
the gap with proprietary LLMs.

Simplification of SQL To alleviate the challenge
of Text-to-SQL parsing, previous studies focused
on developing a SQL intermediate representa-
tion (IR) aiming at minimizing the mismatch
between natural language descriptions and their
corresponding SQL queries. SyntaxSQLNet (Yu
et al., 2018a), EditSQL (Zhang et al., 2019), RAT-
SQL (Wang et al., 2020), and NatSQL (Gan et al.,
2021c), have sought to refine IR methods by
removing or combining various SQL clauses to
simplify the SQL representation. These efforts
narrowed the gap between natural language and
SQL in semantics. Nevertheless, the IR methods
require extensive manual annotation and involve
intricate transformation logic. Besides, they can
not fully reconstruct the SQL statements, resulting
in information loss. In contrast to previous studies,
our objective is to agilely construct a preference
dataset that includes both the original SQL and
more concise variants, enabling our model to learn
better SQL generation styles from it.

3 Problem Definition

Text-to-SQL Task The Text-to-SQL task in-
volves generating a SQL query y that corresponds
to a user question Q based on a database schema
S , and demonstrations ‘E. The database schema §

of relational database D includes (1) a set of tables
T =A{0,%,...Tyn}, (2) a set of columns C =

Cr»seoos
with the tables, (3) and a set of foreign key relations
% ={(d.¢])Ig.¢ e c}
denote the number of table names and column
names, respectively. Finally, with the language

model policy w, the Text-to-SQL task could be
formulated as:

7 Gl e %,C}m,...,a}m} associated

Here, m and n

y=rf(Q S, Eln),)

4 Methodology
4.1 Model Overview

The framework is shown in Figure 1, utilizing a
fine-tuned code-LLM as the core of Text-to-SQL
parsing with a retriever to provide similar examples
and a filter to build relevant schema sequence from
database. Firstly, We enhance the training set to
equip the fine-tuned small LLMs with domain-
specific ICL ability. Next, we construct the Spider
preference set and further optimize the small LLMs’
capability to handle challenging tasks by SFT-
enhanced preference optimization.

Remove table names,
column names, and
s "\ values
 Question-.)
— ~ J
_ o

Alternative example

Questions skeleton
How many _ are there?

Questions
Remove table names, similarity
column names, and values

| Betadistribution
sampling

SQL
similarity

SQL skeleton
SELECT count(_) FROM _

Figure 2: Examples selection for training data.

4.2 Text-to-SQL In-Context Learning

Fine-tuned small LLMs fail to learn from contextual
examples due to overfitting zero-shot prompts, as
mentioned by DAIL-SQL (Gao et al., 2024), is our
main challenge. To solve it, we first append similar
examples to the Spider training set Dy, For each
training data x; = (y;, Q,, S, X;) , we match the
suitable examples among the rest of the training
set {x X € Dirain —x,-}, by sorting them based on
question similarity, then select data x; = (y;, Q;)
with SQL similarity higher than a certain threshold
0 as the examples ‘E for x;.

However, we observe that method above leads
the small LLMs to become over-dependent on
the provided demonstrations when generating SQL
statements. If the retrieved examples are irrelevant
to the task, it can significantly affect the accuracy of
the generated SQL. Besides, the examples at front
of the context are always the most similar to the
current task, leading the fine-tuned small LLMs to
be "lazy" in context learning, that is, overly relying
on ‘E; while not taking full advantage of subsequent
examples, resulting in poorer performance.

Beta Distribution Sampling To mitigate the
challenge, we introduce beta distribution sampling
for examples selection, as shown in Figure 2.
We view the beta distribution X ~ Beta (.,) as
the prior probability distribution for candidate
example x;,x; € Dyqin — X; being selected as the
final demonstration. We hope the candidate x;
that is more similar to current data x; has a
higher probability of being selected. Therefore,
we sort the candidate examples E.ongidae =
{x|x € Dyygin — xi} according to the normalized
similarity Sy, between current data x; and
candidate x;. Then sampling p € (0,1) from
the beta distribution X ~ Bera(a.,3) each time,
and select the candidate x; with the minimum
difference !Sxiwxj — p‘ as the target example of x;.

We employ beta distribution sampling strategy to
select h examples from E.ngigare based on the
question similarity, and then select k examples
as final £ from / candidates based on the SQL
similarity using the same strategy. We extract the
skeleton of SQL and mask the database content
of the questions as preprocessing before similarity
calculation. Besides, we measure the similarity of
questions Q and SQL statements / by Euclidean
distance and Jaccard similarity respectively.

Attributed to the uncertainty of Sy~ : introduced
by beta distribution sampling , it effectively avoids
the small LLMs overfitting to similar examples,
improving their ability to learn from multiple
examples. Moreover, the examples closely aligned
with the current task have a greater likelihood of
selection, ensuring the ICL training effectiveness.

4.3 Spider Preference Set

To perform preference optimization on LLMs, we
describe the agile construction of the offline SQL
preference set in this section. The complex Text-
to-SQL tasks in Spider (Yu et al., 2018b) pose
significant challenges to small LLMs. In order
to reduce the difficulty of Text-to-SQL parsing,
previous studies mainly focus on SQL intermediate
representation (IR). They require extensive manual
annotation, and the transformation logic is intricate,
which cannot reconstitute SQL integrally, leading
to the information loss. In contrast to these IR-
based methods, we aim to efficiently construct a
preference dataset that includes both the original
SQL and more concise variants, then optimize the
small LL.Ms to learn the improved SQL generation
styles. We consider the following six optimizations
of SQL statements, as shown in Figure 3, including
Non-essential components, New SQL feature,
Table join, Set operation, Sorting operation, and
Other optimization involved SQL skeleton. See
AppendixA for more details.

We adopt an agile semi-automated process to build
the Spider preference set, as depicted in Figure 4,
with the objective of enabling the small LLMs to
learn the superior SQL style from it. Based on
Spider training set, we feed the SQL statement y,,
targeted for optimization into Qwen-max (Alibaba,
2023), along with the associated database schema
and question. Then we prompt the LLM to generate
multiple equivalent SQL statements y*. By using
Test Suite (Zhong et al., 2020), we compare the
execution results between SQL y* and original SQL

Other optimization involved SQL skeleton

(14.3%) —
Sorting operation —._ ‘
(3.9%)

Set operation —
(7.8%)

Non-essential

~— components
(39.0%)
Spider-

preference

-

L New SQL feature
(16.9%)

Table join -
(18.1%)

Figure 3: Composition of Spider preference set.

y1, ensuring the same result of them. Finally, we
appraise the SQL that have passed inspection based
on six types of optimization and select the refined
SQL y,, along with the original SQL y; to join the
preference set, finalizing the dataset construction,
which consists of 1388 samples.

4.4 Text-to-SQL Preference Optimization

Direct Preference Optimization (DPO) (Rafailov
et al., 2023), which directly optimizes the model
policy based on the ideal probability distribution of
human preferences without reward model, has been
proven effective in text generation. However, in our
attempt to perform DPO for small LLMs on Spider
preference set, the SQL statements generated by the
small LLMs lack logical coherence, falling short of
our anticipated outcomes. We find that the lack of
cross-entropy loss in DPO leads to the divergence
of the models’ generated results. Consequently, we
propose SFT-enhanced preference optimization
for Text-to-SQL training, which integrates cross-
entropy loss into the DPO training stage to enhance
it, and supports mixed training of supervised fine-
tuning data and preference optimization data by
modifying the loss calculation.

Our SFT-enhanced preference optimization in-
cludes three phases: 1) model initialization; 2)
offline preference set construction; 3) optimize the
small LLM based on preferences set.

Model Initialization Our model initialization is
the same as DPO, where we initialize the reference
model Tt with a language model ©5FT generally.
The language model ©3FT obtained by fine-tuning
a pre-train model on high-quality data specific to
the downstream task, which refers to Text-to-SQL
parsing in the experiment.

A A -
sﬁ -7 Original SQL

1 select station.name from station join status on station.id = status.station_id group by status.station_id having avg
1 (bikes_available) > 10 except select name from station where city = 'San Jose'
\

SQL Statement 2

SQL Statement 3

Equivalent SQL

SQL Statement 1

A

Evaluate and select

S

Execution result
comparison

statements generation

Spider N
trainingset T TTnTTTTTTToTTTTTTTTTTTT
@ +Question
Schema Qwen-max
h < 4 N / OptimizedsaL Q
/
Lo | > fem) < sctsion njoin st
s station.id having avg (status.bikes_available) > 10
Spider

Original SQL
preference set

1
1
|
1
1
|
1
\
\

select station.name from station join status on station.id = status.station_id where station.city !='San Jose' group by

select station.name from station join status on station.id = status.station_id group by status.station_id having avg
(bikes_available) > 10 except select name from station where city = 'San Jose'

Figure 4: The agile construction process of Spider preference set. We provide the database schema and questions
to Qwen-max, prompting it to generate equivalent SQL statements. Then we compare their execution results with
the original one for filtration by test suite. Finally, we evaluate the optimization results and build the preference set.

Preferences Set Construction The fine-tuned
model 3T is provided with prompts x to generate
pairs of answers (y1,y2) ~ T (y | x). These pairs
will be presented to human labelers to construct
the offline preferences set Dy = {x(i), ysj), ygi) f’: 1
For one answer over the other, the labelers indicate
the preferences, denoted as y,, > y; | x, where y,,
and y; represent the preferred and less-preferred

completions among (y;,y,) respectively.

Original DPO Given T and D and hyper-
parameter 3, we optimize the language model Tq
to minimize Lppg, where 3 controls the deviation
from the base reference policy T.r. Usually, the
model Ttr is the same as the initial SFT model
75FT. The negative log-likelihood loss of DPO can
be represented as:

LDPO(TCG;TCref> = —E(x.,yw,yl)~@1 [logc <n)] - @

o (V1 | x)
71'fref(YI | x) ’

Mo |2) g 5

=Blo
n B gnref(yw|x)

SFT-enhanced preference optimization We
integrate the cross-entropy loss, typically used
in supervised training for LLMs, into the DPO
optimization objective to enhance the small LLMs
performance in Text-to-SQL. It can be written as:

Lspr (Tg) = —E(1y)nm, [VlogTo (v [x)]. (4

Presently, we possess both the Spider training set
and the Spider preference set we constructed in

the last section. Since it derived from optimizing
a subset of the training set, to avoid duplication,
we consider the preference data set Dpeference
and non-optimized part of training set D,y =
{(xayr) ’ (xayr) € Dirain,X not in @preference} as
training data in preference optimization stage. It is
remarkable that we adapt D,y to match the format
of the preference dataset to ensure uniformity in
the training data format, which represented as

@rest/ = {(x7yW7yl) b)w =Y1=DYr (x>yr) S Q)rest}-

Based on Eq. 2 and Eq. 4 , we set the objective of
the SFT-enhanced preference optimization as:

Lppo_sFT (Te; Tref) =
logo(n))
—l—Kf,xyW log g (yw ‘ x)

(xhyw' 7y]) ~ D

where hyper-parameter Ky, controls the degree to
which the model learns the optimal data format.

During optimization, we determine whether the
current data (x,y,,,y;) comes from the preference
dataset Dy ference (D1) or the supervised dataset
Dyest (Do) by comparing y,, and y; for equivalence.
If y,» =y , it signifies that the data originates
from the supervised dataset D,,. We disregard the
DPO loss for the current data, and our optimization
objective function degrades to:

Lppo_sFT (T3 Tref) =

(6)
- E(x,yw,yl)wﬂ) [Kffxyw logmg (yw | x)]

According to the definition 5 6, our optimization
objective is to optimize the Text-to-SQL model g
through SFT-enhanced preference optimization to
learn from two diverging distributions: supervised
dataset D, and preference dataset Dy ference-
The training process is completed in one phase.

S Experiments

We evaluate our method on Spider (Yu et al., 2018b)
and its three robustness-diagnostic variants: Spider-
DK (Gan et al., 2021b), Spider-Syn (Gan et al.,
2021a), and Spider-Realistic (Deng et al., 2021).

Spider stands as the classical benchmark for
Text-to-SQL tasks, comprising a training set of
7,000 samples, a dev set of 1,034 samples, and
a test set of 2,147 samples, being widely used
to evaluate text-to-SQL parsers across various
databases, requiring models to demonstrate their
adaptability to unfamiliar database structures.

Spider-DK, Spider-Syn, Spider-Realistic are
variants derived from the Spider development set,
specifically designed to mimic queries that could be
posed by users in real-world scenarios. Concretely,
Spider-DK incorporates domain knowledge to
paraphrase questions. Spider-Syn replaces schema-
related words with synonyms in questions. Spider-
Realistic removes explicitly mentioned column
names in questions.

Evaluation Metrics To assess the fine-tuned small
LLMs’ performance in Text-to-SQL, following
Yu et al., 2018b; Zhong et al., 2020, we adopt
two metrics: Exact-set-Match accuracy(EM) and
Execution accuracy (EX). EM determines whether
the predicted SQL query perfectly matches the
Gold SQL query by converting both into a data
structure (Yu et al., 2018b), while EX compares
the execution outcomes of the predicted and Gold
SQL queries. EX is particularly sensitive to the
generated values, whereas EM is not. In practice,
we combine EM and EX scores to determine the
best checkpoint for small LLMs.

Implementation Details We utilize the cross-
encoder for schema selection from RESDSQL (Li
et al., 2023a), and augment the schema sequence
with column types and potentially useful database
content based on fuzzy matching with question. We
employ Sentence-BERT (Reimers and Gurevych,
2019) for question encoding during examples’
retrieval. For the core LLMs, we consider three

sizes: DeekSeek Coder-(3b,7b) (DeepSeekAl,
2024), and StarCoder2 (3b) (BigCode, 2023). We
train them in two stages: SFT and DPO-SFT. In the
SFT stage, we select the similar examples from beta
distribution with parameter a=1.5, $=0.5 and full-
training the small LLMs on Spider training set with
k-shot, k € [0,4]. We specify bs=96, Ir=1e-5, and
employ AdamW optimizer (Loshchilov and Hutter,
2019) with linear warm-up (the first 10% training
steps) and cosine decay to adjust the learning rate.
In the DPO-SFT stage, we maintain the same batch
size, learning rate, and optimizer as the previous
stage. Differently, we fine-tune the small LLMs
with QLoRA to reduce GPU memory usage. We
set beam size of 8 for inference in both stages.

Environments We conduct all experiments on a
server with 4xV100 (32GB) GPUs and 200GB of
memory. Besides, we utilize DeepSpeed ZeRO-2
to mitigate the memory and compute demands of
each GPU utilized for training.

5.1 Evaluation on In-Context Learning

In few-shot scenario, we evaluate the small LLMs
under two example selection strategies: Precise
Matching (PM) and Beta distribution Sampling
(BS) . Under the PM strategy, we always select
the examples that are most similar to the current
training data as additional context. In contrast,
with the BS strategy, we select the examples
to be appended to the context from a beta
distribution based on the normalized similarity
between examples and the current training data.
To ensure a fair evaluation on Spider development
set, we select the best-performing checkpoint of
each model. For inference, we always select the
most similar example for current task.

Figure 5 reports the EM and EX results on Spider
under two example selection strategies for different
small LLMs. We observe that LLMs trained with
BS can benefit from more contextual examples than
PM. It’s evident in the performance of DeepSeek
Coder (1.3b) at 2-shot and StarCoder2 (3b) at 3-
shot. As the number of examples increases beyond
1-shot, these LLMs consistently outperform their
counterparts trained with PM in terms of both
EM and EX results, which indicates that the beta
distribution sampling for similar examples can
prevent small LLMs from overfitting to the similar
prompts provided in training. However, it should
be noted that compared to GPT-4, as reported by
DAIL-SQL (Gao et al., 2024), where EX increases

‘ Easy Medium Hard Extra All
Stage Model S| EM% EX% EM% EX% EM% EX% EM% EX% EM% EX%
DeenSeck Coder 130 | 87:90 9193 79.82 87.80 [150.77" 71.83 [54210 6144 7427 8191
SFT P T 7b | 9475 9637 8699 9215 8699 7586 5843 6385 8143 85.88
StarCoder2 3b | 9233 93.14 8206 86.54 [6091 7241 | 4518 5421 7504 80.56
DecoSeck Coder 130 | 9112 9475 8183 8834 | 6551 77.58 [GOBN 5843 7572 83.26
DPO-SFT P 7o | 9475 9596 8452 9192 70.68 7873 5120 63.25 7930 86.07
StarCoder2 3b | 9233 9274 8183 8677 59.19 70.11 | 47.59 57.22 7504 80.65

Table 1: Performance of small LLMs at SFT stage and DPO-SFT stage, across difficulty levels on the Spider’s dev

set. Darker shadows indicate poorer performance.

o]
N

Execution Acc. (%)
o]
w

k-shot

DeepSeek-Coder-1.3b PM
DeepSeek-Coder-1.3b BS

—@—DeepSeek-Coder-7b PM
-- @ - DeepSeek-Coder-7b BS

o]
(=]

~
©

~
o

~
S

Exact-set-match Acc. (%)

k-shot

—l— Starcoder2-3b PM
-l Starcoder2-3b BS

Figure 5: Few-shot evaluation with fine-tuned small LLMs on Spider-dev.

from 72.3% (0-shot) to 82.4% (5-shot), fine-tuned
small LLMs’ improvement gained from retrieval-
augmented generation is less pronounced (< 2.5%).
One potential reason is that instruction fine-tuning
significantly enhances the model’s ability to solve
problems in zero-shot scenarios, thereby narrowing
the performance gap compared to scenarios where
examples are provided.

5.2 Evaluation on Preference Optimization

As shown in Table 1, we compare the result of
small LLMs from two training stages on Spider
development set. The small LLMs at SFT stage
are trained with the BS strategy, while those at
DPO-SFT stage are optimized from LLMs at
SFT stage on Spider preference set. Since the
preference set introduces SQL features that are
not present in the original Spider set, leading to
inaccurate retrieval, we only focus on zero-shot
evaluation. The results demonstrate that our SFT-
enhanced preference optimization resulted in an
EX improvements of 1.35% for Deepseek Coder
(1.3b), 0.19% for Deepseek Coder (7b), and 0.09%
for StarCoder2 (3b). This suggests that our method
performs more effectively on small LLMs with
fewer parameters, as our Spider preference set
primarily focuses on simplifying challenging SQL
that small LLMs struggle to generate.

Based on the difficulty-level stratification results,
small LLMs at DPO-SFT stage demonstrate more
advantages for Medium and Hard level compared
to Easy and Extra Hard level. Note that small
LLMs at DPO-SFT stage sometimes have a lower
EM result than their corresponding models at SFT
stage but a higher EX result. This occurs because
EM requires strict adherence to SQL formatting,
whereas LLMs at DPO-SFT stage may generate
SQL statements with formats that are inconsistent
with the target but yield the same execution results.

5.3 Result on Spider

Table 2 reports the results on Spider. Our
top-performing model, DeepSeek Coder (7b) at
DPO-SFT stage, achieved 87.1% EX on the test
set, reaching performance comparable to SOTA
methods using GPT-4 (Xie et al., 2024). This
demonstrates the high-efficiency of our method.
Besides, the DeepSeek Coder (1.3b) at DPO-SFT
stage, which achieved 75.7% EM and 83.2% EX,
stands as the best-performing model at equivalent
scale, suggesting that our SFT-enhanced preference
optimization effectively mitigates the challenges
faced by small LLMs in Text-to-SQL parsing. The
DeekSeek Coder (7b) at SFT stage also achieved
commendable result (EM 76.9%, EX 86.6%), by
leveraging RAG (3-shot) to learn from examples.

. . Dev Set Test Set

Approach Zero-Shot Few-Shot Fine-tuning EM% EX% EM% EX%
DAIL-SQL + GPT-4 + SC (Gao et al., 2024) v 68.7 83.6 66.0 86.6
MAC-SQL + GPT-4 (Wang et al., 2024) v 632 86.7 - 82.8
DEA-SQL + GPT-4 (Xie et al., 2024) v - 854 - 87.1
C3 + ChatGPT + Zero-Shot (Dong et al., 2023) v 71.4 81.8 - 823
ChatGPT (Liu et al., 2023) v 346 744 - -
GPT-4 (OpenAl, 2024) v 22.1 72.3 - -
T5-3B + PICARD (Scholak et al., 2021) v 75.5 793 719 751
Graphix-T5-3B + PICARD (Li et al., 2023b) v 77.1 81.0 740 776
RESDSQL-3B + NatSQL (Li et al., 2023a) v 80.5 84.1 720 799
SQL-PaLLM (Google, 2024) v 78.2 82.8 - -
SFT DeepSeek Coder-1.3b v v 74.7 82.1 69.5 81.2
SFET DeepSeek Coder-7b v v 80.6 86.5 769 86.6
SFT StarCoder2-3b v v 76.2 820 742 82.9
DPO-SFT DeepSeek Coder-1.3b v 75.7 832 710 810
DPO-SFT DeepSeek Coder-7b v 71.5 84.4 74.9 87.1
DPO-SFT StarCoder2-3b v 75.0 80.6 739 824

Table 2: Exact-set-Match accuracy (EM) and Execution accuracy (EX) results on Spider’s development set and test
set. We compare our approach with other baseline methods.

Approach Spider-Syn Spider-Realistic Spider-DK
EM% EX% EM% EX% EM% EX%
T5-3B + PICARD (Scholak et al., 2021) 61.8 69.8 61.7 71.4 — 62.5
RESDSQL-3B + NatSQL (Li et al., 2023a) 66.8 76.9 70.1 81.9 533 66.0
ChatGPT (Liu et al., 2023) 48.5 58.6 492 63.4 — 62.6
SQL-Palm (Few-shot) (Google, 2024) 674 746 724 77.6 — 66.5
SQL-Palm (Fine-tuned) (Google, 2024) 66.4 70.9 73.2 77.4 — 67.5
SFT DeepSeek Coder-1.3b 53.7 65.8 65.3 72.6 54.9 62.4
SFT DeepSeek Coder-7b 68.6 75.6 781 81.4 629 704
SFT StarCoder2-3b 60.2 674 724 75.1 56.2 62.2
DPO-SFT DeepSeek Coder-1.3b 62.0 722 66.3 76.7 52.7 62.9
DPO-SFT DeepSeek Coder-7b 67.4 74.9 75.0 82.2 61.1 68.2
DPO-SFT StarCoder2-3b 60.1 67.1 714 74.8 56.2 62.4

Table 3: Evaluation results on Spider-DK, Spider-Syn, and Spider-Realistic.

5.4 Results on Robustness Settings

Previous researches (Gan et al.,, 2021a; Deng
et al., 2021) highlight the fragility of neural
Text-to-SQL parsers faced with perturbations in
questions. This fragility arises from the removal
or substitution of explicitly mentioned schema
items with semantically consistent words, such as
synonyms, which complicates the schema linking.
To investigate the robustness of the fine-tuned small
LLMs, we evaluated them on three challenging
variants of the Spider dataset: Spider-DK, Spider-
Syn, and Spider-Realistic.

As shown in Table 3, our fine-tuned LLMs achieved
SOTA performance on multiple robustness metrics:
Spider-Syn (EM 68.6%), Spider-Realistic (EM
78.1%, EX 82.2%), and Spider-DK (EM 62.9%,
EX 70.4%), demonstrating the high-efficiency of
In-Context Learning and Preference Optimization
we proposed. However, it should be noted that the
improved metrics are primarily attributed to the
LLMs at SFT stage, whereas LLMs at DPO-SFT
stage are further optimized, did not exhibit superior

robustness. We think this discrepancy may stem
from redundant learning on similar data and plan
to investigate it in future research.

5.5 Conclusion

In this paper, we propose CPO-SQL, an approach
aiming to boost the Text-to-SQL capability of small
LLMs via In-Context Learning and Preference
Optimization efficiently. In order to prevent the
fine-tuned small LLMs from overfitting to zero-
shot prompts, we enhance the training set by
sampling demonstrations from beta distribution,
then fine-tune the small LLMs to empower them
with Text-to-SQL ICL capability. Moreover, we
enhance the small LLMs’ ability in handling
difficult Text-to-SQL tasks through SFT-enhanced
preference optimization on Spider preference set,
constructed by an agile semi-automated process.
Our models achieve state-of-the-art performance
across multiple metrics on Spider and its three
robustness-diagnostic variants, demonstrating the
high-efficiency of CPO-SQL in bridging the gap
between small LLMs and proprietary LLMs.

Limitations

Prompt engineering We did not extensively
engineer the prompts for small LLMs input, which
may not be optimal in the experiments.

Preferences Set Construction The construction
of Spider preference set only consider the SQL
simplification to reduce the difficulty of Text-to-
SQL parsing for small LLMs, We do not consider
the execution efficiency in the real scenario and
plan to explore it in future research.

Differences in Pre-training Corpora We focus
on boosting the capability of small LLMs in
Text-to-SQL via efficient fine-tuning and without
considering the differences in pre-training stage.
We evaluate two types of code-LLMs in the
experiment: DeekSeek Coder (DeepSeekAl, 2024)
and StarCoder2 (BigCode, 2023). The different
proportion of programming languages in their
pretraining corpus may affect our comparison of
small LL.Ms with different sizes. For example,
StarCoder2 (3b) underperforms DeepSeek Coder
(1.3b) in some metrics may due to the smaller
proportion of SQL in its pretraining corpus.

Ethics Statement

Data Disclaimer We build a new SQL preference
set based on Spider, a dataset widely used by
academics and accessible to the public. Therefore,
our proposed dataset does not involve any sensitive
information that may harm others.

Human Labeler When recruiting labelers for
this study, we ensure that all potential labelers are
free to choose whether they want to participate and
can withdraw from the study anytime without any
negative repercussions. Thus, the establishment of
our dataset complies with ethics.

References

Alibaba. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

BigCode. 2023. Starcoder: may the source be with you!
Preprint, arXiv:2305.06161.

Tom B. Brown, Benjamin Mann, and Nick Ryder et al.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates, Inc.

Xinyun Chen, Maxwell Lin, Nathanael Scharli, and
Denny Zhou. 2023. Teaching large language models to
self-debug. Preprint, arXiv:2304.05128.

DeepSeekAl 2024. Deepseek-coder: When the large
language model meets programming — the rise of code
intelligence. Preprint, arXiv:2401.14196.

Naihao Deng, Yulong Chen, and Yue Zhang. 2022.
Recent advances in text-to-SQL: A survey of what
we have and what we expect. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 2166-2187, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-grounded pretraining for
text-to-SQL. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1337-1350, Online. Association
for Computational Linguistics.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang Lou.
2023. C3: Zero-shot text-to-sql with chatgpt. Preprint,
arXiv:2307.07306.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R. Woodward, Jinxia Xie, and Pengsheng
Huang. 2021a. Towards robustness of text-to-SQL
models against synonym substitution. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2505-2515, Online.
Association for Computational Linguistics.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b.
Exploring underexplored limitations of cross-domain
text-to-SQL generalization. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language
Processing, pages 8926-8931, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R. Woodward, John Drake, and Qiaofu Zhang.
2021c. Natural SQL: Making SQL easier to infer from
natural language specifications. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 2030-2042, Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models:
A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132-1145.

Google. 2024. Sql-palm: Improved large language
model adaptation for text-to-sql (extended). Preprint,
arXiv:2306.00739.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37,
pages 13067-13075.

https://arxiv.org/abs/2305.06161
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://aclanthology.org/2022.coling-1.190
https://aclanthology.org/2022.coling-1.190
https://aclanthology.org/2022.coling-1.190
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://arxiv.org/abs/2307.07306
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo
Si, and Yongbin Li. 2023b. Graphix-t5: Mixing pre-
trained transformers with graph-aware layers for text-to-
sql parsing. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pages 13076—-13084.

Zhishuai Li, Xiang Wang, Jingjing Zhao, Sun Yang,
Guogqing Du, Xiaoru Hu, Bin Zhang, Yuxiao Ye, Ziyue
Li, Rui Zhao, and Hangyu Mao. 2024. Pet-sql: A
prompt-enhanced two-stage text-to-sql framework with
cross-consistency. Preprint, arXiv:2403.09732.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu.
2023. A comprehensive evaluation of chatgpt’s zero-
shot text-to-sql capability. Preprint, arXiv:2303.13547.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019.

Meta. 2023. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971.

OpenAl. 2024.
arXiv:2303.08774.

Gpt-4 technical report. Preprint,

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-to-sql
with self-correction. Preprint, arXiv:2304.11015.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022. A
survey on text-to-sql parsing: Concepts, methods, and
future directions. Preprint, arXiv:2208.13629.

Rafael Rafailov, Archit Sharma, Eric Mitchell,
Christopher D Manning, Stefano Ermon, and Chelsea
Finn. 2023. Direct preference optimization: Your
language model is secretly a reward model. In Advances
in Neural Information Processing Systems, volume 36,
pages 53728-53741. Curran Associates, Inc.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for
Computational Linguistics.

Torsten Scholak, Nathan Schucher, and Dzmitry
Bahdanau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895-9901, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Ruoxi Sun, Sercan Arik, Rajarishi Sinha, Hootan
Nakhost, Hanjun Dai, Pengcheng Yin, and Tomas
Pfister. 2023. SQLPrompt: In-context text-to-SQL with
minimal labeled data. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
542-550, Singapore. Association for Computational
Linguistics.

10

Chang-Yu Tai, Ziru Chen, Tianshu Zhang, Xiang Deng,
and Huan Sun. 2023. Exploring chain of thought style
prompting for text-to-SQL. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language
Processing, pages 5376-5393, Singapore. Association
for Computational Linguistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-
SQL: Relation-aware schema encoding and linking
for text-to-SQL parsers. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7567-7578, Online. Association for
Computational Linguistics.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,
Jiaqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2024. Mac-sql:
A multi-agent collaborative framework for text-to-sql.
Preprint, arXiv:2312.11242.

Yuanzhen Xie, Xinzhou Jin, Tao Xie, MingXiong Lin,
Liang Chen, Chenyun Yu, Lei Cheng, ChengXiang
Zhuo, Bo Hu, and Zang Li. 2024. Decomposition
for enhancing attention: Improving llm-based text-
to-sql through workflow paradigm. arXiv preprint
arXiv:2402.10671.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev. 2018a.
SyntaxSQLNet: Syntax tree networks for complex and
cross-domain text-to-SQL task. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1653-1663, Brussels,
Belgium. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning
Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev.
2018b. Spider: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing and text-
to-SQL task. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing,
pages 3911-3921, Brussels, Belgium. Association for
Computational Linguistics.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric
Xue, Xi Victoria Lin, Tianze Shi, Caiming Xiong,
Richard Socher, and Dragomir Radev. 2019. Editing-
based SQL query generation for cross-domain context-
dependent questions. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 5338-5349, Hong Kong, China. Association for
Computational Linguistics.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic
evaluation for text-to-SQL with distilled test suites.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 396-411, Online. Association for Computational
Linguistics.

https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2303.13547
https://arxiv.org/abs/2303.13547
https://arxiv.org/abs/2303.13547
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2023.findings-emnlp.39
https://doi.org/10.18653/v1/2023.findings-emnlp.39
https://doi.org/10.18653/v1/2023.findings-emnlp.39
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29

A SQL Optimization Categories

Non-essential components

Original SQL:
select distinct (_) from _ | select distinct (catalog_entry_name) from
catalog_contents

Optimized SQL:

select distinct _ from _ | select distinct catalog_entry_name from catalog_contents

New SQL feature

Original SQL:

select distinct _ from _ where _ | select distinct department.creation from
department join management on department.department_id = management.
department_id join head on management.head_id = head.head_id where head.
born_state = ’Alabama’

Optimized SQL:

select _ from _ using (_) join _ where _ group by _ | select department.creation
from department join management using (department_id) join head on management.
head_id = head.head_id where head.born_state = ’Alabama’ group by department.
creation

Table join

Original SQL:

select _ from _ where _ | select candidates.candidate_id from people join candidates
on people.person_id = candidates.candidate_id where people.email_address =’

stanley.monahan@example.org’

Optimized SQL:

select distinct _ from _ where _ in (select _ from _ where _) | select distinct
candidate_id from candidates where candidate_id in (select person_id from
people where email_address = ’stanley.monahan@example.org’)

Set operation

Original SQL:

select _ from _ where _ | select candidates.candidate_id from people join candidates
on people.person_id = candidates.candidate_id where people.email_address =’
stanley.monahan@example.org’

Optimized SQL:

select distinct _ from _ where _ in (select _ from _ where _) | select distinct
candidate_id from candidates where candidate_id in (select person_id from
people where email_address = ’stanley.monahan@example.org’)

Sorting operation

Original SQL:
select _ from _ order by _ desc limit _ | select acc_percent from basketball_match
order by acc_percent desc limit 1

Optimized SQL:
select max (_) from _ | select max (basketball_match.acc_percent) from
basketball_match

11

Other optimization involved SQL skeleton.

Original SQL:
select _ from _ except select _ from _ | select customer_name from customers except

select customers.customer_name from customers join first_notification_of_loss on
customers.customer_id = first_notification_of_loss.customer_id

Optimized SQL:

select _ from _ where _ not in (select _ from _) | select customer_name from
customers where customer_id not in (select customer_id from
first_notification_of_loss)

B Prompt details
B.1 Few-shot Prompt

/* Some SQL examples are provided based on similar problems: =*/

/* Answer the following: What is the average and minimum age of all artists from
United States. =*/

select avg (_) , min (_) from _ where _ | select avg (age) , min (age) from
artist where country = ’United States’

/* Answer the following: What is the average distance and average price for flights
from Los Angeles. =*/

select avg (_) , avg (_) from _ where _ | select avg (distance) , avg (price
) from flight where origin = ’Los Angeles’

/* Answer the following: What is the average and maximum number of total passengers
for train stations in London or Glasgow? x/

select avg (_) , max (_) from _ where _ | select avg (total_passengers) , max
(total_passengers) from station where location = ’London’ or location =’
Glasgow’

/* Given the following database schema: */

country : country.surfacearea [number] , country.population [number] , country.
continent [text] (North America) , country.region [text] (North America)
, country.name [text] | city : city.countrycode [text 1 (ARE , NOR) , city
.population [number] , city.id [number] , city.name [text] (Americana ,
Northampton) , city.district [text 1 (Northern) | sqglite_sequence
sqlite_sequence.name [text] , sqlite_sequence.seq [text] | countrylanguage
countrylanguage.countrycode [text] (ARE , NOR) , countrylanguage.language [
text] (Northsotho) , countrylanguage.percentage [number] , countrylanguage
.isofficial [text] | city.countrycode = country.code | countrylanguage.
countrycode = country.code

/* Answer the following: What is the total population and average area of countries
in the continent of North America whose area is bigger than 3000 ? =%/

/* Expected output =x/

select sum (_) , avg (_) from _ where _ | select sum (population) , avg (
surfacearea) from country where continent = ’north america’ and surfacearea >
3000

12

B.2 Prompt for generating SQL variants

/* Given the following database schema: #*/

station : station.id [number] , station.name [text] , station.city [text 1 (

San Jose) , station.dock_count [number] , station.long [number] | weather

weather.mean_temperature_f [number] , weather.max_gust_speed_mph [number 1 ,

weather.min_temperature_f [number] , weather.max_wind_speed_mph [number] ,
weather .max_dew_point_f [number] | trip : trip.end_station_name [text] ,
trip.duration [number] , trip.id [number] , trip.zip_code [number] , trip.
end_date [text] | status : status.station_id [number] , status.
bikes_available [number] , status.time [text] , status.docks_available [
number] | status.station_id = station.id

/* Answer the following: What are names of stations that have average bike
availability above 10 and are not located in San Jose city? =*/

/* SQL statement %/

select station.name from station join status on station.id = status.station_id group
by status.station_id having avg (bikes_available) > 10 except select name
from station where city = ’San Jose’

Please rewrite the SQL statement above based on the database schema and question.
You should follow these rules:

1.Ensuring that the rewritten SQL statement is equivalent to the original SQL
statement.

2.Try to make the sql statements more concise than the original ones.

3.Don’t use aliases in SQL statements.

4.Please directly output sgl statements.

Output format:
#1

‘¢fsql

SELECT

#2

“¢fsql

SELECT

#3

“¢fsql

SELECT

I

nnn

13

	Introduction
	Related work
	Problem Definition
	Methodology
	Model Overview
	Text-to-SQL In-Context Learning
	Spider Preference Set
	Text-to-SQL Preference Optimization

	Experiments
	Evaluation on In-Context Learning
	Evaluation on Preference Optimization
	Result on Spider
	Results on Robustness Settings
	Conclusion

	SQL Optimization Categories
	Prompt details
	Few-shot Prompt
	Prompt for generating SQL variants

