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Abstract

Since real-world machine systems are running in non-stationary and continually1

changing environments, Continual Test-Time Adaptation (CTTA) task is proposed2

to adapt the pre-trained model to continually changing target domains. Recently,3

existing methods mainly focus on model-based adaptation, which aims to leverage4

a self-training manner to extract the target domain knowledge. However, pseudo5

labels can be noisy and the updated model parameters are uncertain under dynamic6

data distributions, leading to error accumulation and catastrophic forgetting in7

the continual adaptation process. To tackle these challenges and maintain the8

model plasticity, we tactfully design a Visual Domain Adapter (ViDA) for CTTA,9

explicitly handling both domain-specific and domain-agnostic knowledge. Specifi-10

cally, we first comprehensively explore the different domain representations of the11

adapters with trainable high and low-rank embedding space. Then we inject ViDAs12

into the pre-trained model, which leverages high-rank and low-rank prototypes to13

adapt the current domain distribution and maintain the continual domain-shared14

knowledge, respectively. To adapt to the various distribution shifts of each sample15

in target domains, we further propose a Homeostatic Knowledge Allotment (HKA)16

strategy, which adaptively merges knowledge from each ViDA with different rank17

prototypes. Extensive experiments conducted on four widely-used benchmarks18

demonstrate that our proposed method achieves state-of-the-art performance in19

both classification and segmentation CTTA tasks. In addition, our method can be20

regarded as a novel transfer paradigm and showcases promising results in zero-shot21

adaptation of foundation models to continual downstream tasks and distributions.22

1 Introduction23

Deep Neural Networks (DNN) have achieved remarkable performance in various computer vision24

tasks, such as classification [22, 14], object detection [48, 63], and segmentation [9, 58], when the test25

data distribution is similar to the training data. However, real-world machine perception systems (i.e.,26

autonomous driving [1, 28]) operate in non-stationary and constantly changing environments, which27

contain heterogeneous and dynamic domain distribution shifts. Applying a pre-trained model in28

these real-world tasks [50] can lead to significant degradation in perception ability on target domains,29

especially when the target distribution changes unexpectedly over time. Therefore, developing30

continual domain adaptation (DA) methods that can enhance the generalization capability of DNNs31

and improve the reliability of machine perception systems in dynamic environments.32

A classical source-free DA task, Test-Time Adaptation [39] (TTA), eases the distribution shift between33

a source domain and a fixed target domain. This is typically achieved through the utilization of34

self-training mechanisms [42, 55]. However, when adapting to continually changing target domains,35

pseudo labels are noisy and the updated model parameters become uncertain, leading to error36
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Figure 1: The problem and motivation of our method. (a) Our goal is to effectively adapt the source
pre-trained model to continually changing target domains. We propose Visual Domain Adapters
with different domain representations to tackle the error accumulation and catastrophic forgetting
challenges during the continual adaptation process. We leverage ViDAs with high-rank and low-
rank prototypes to adapt current domain distribution and maintain the continual domain-agnostic
knowledge, respectively. (b) we conduct a t-SNE [53] analysis for the different adapter distributions
across four target domains (ACDC). The low-rank branch exhibits a consistent distribution across the
target domains, suggesting that it can effectively disregard the impact of dynamic distribution shifts.
The high-rank branch demonstrates noticeable distribution discrepancies between the various target
domains, suggesting that it primarily focuses on extracting domain-specific knowledge.

accumulation and catastrophic forgetting. To tackle this problem, Continual Test-Time Adaptation37

(CTTA) has been proposed [57], which addresses a sequence of different distribution shifts over time38

rather than a single shift as in TTA. Furthermore, CTTA also encompasses the efficient zero-shot39

adaptation of foundation models to continual downstream tasks or distributions [2, 29].40

Existing CTTA works [57, 7, 16, 59] have primarily employed model-based and prompt-based ap-41

proaches to extract target domain-specific and domain-invariant knowledge simultaneously. However,42

for model-based methods [57, 7], the noisy pseudo labels are still unreliable and play a limited role in43

avoiding error accumulation, particularly in scenarios with significant distribution gaps. Meanwhile,44

prompt-based methods [16, 59] face difficulties in leveraging soft prompts with limited trainable45

parameters to learn long-term domain-shared knowledge and prevent catastrophic forgetting.46

To tackle these limitations and maintain the model plasticity, we tactfully design a homeostatic47

Visual Domain Adapter (ViDA), shown in Fig. 1 (a), which explicitly manages domain-specific48

and domain-agnostic knowledge in the continual adaptation process. Specifically, we first carefully49

explore the different domain representations of ViDAs with trainable high and low-rank embedding50

space. Our observations reveal that ViDA with a low-rank prototype focuses on domain-agnostic51

feature representation in different domains. As shown in Fig. 1 (b), the prototype distribution of the52

adapter neglects the influence of dynamic distribution shifts. Conversely, ViDA with a high-rank53

prototype concentrates more on extracting domain-specific knowledge, as evidenced by the prototype54

distribution in different target domains showing an obvious discrepancy. We provide a detailed55

explanation of the motivations in Section 3.1.56

This observation motivates us to inject ViDAs into the pre-trained model, which leverages high and57

low-dimension prototype to adapt current domain distribution and maintain the continual domain-58

shared knowledge, respectively. According to the various distribution shift of each sample, we further59

propose a Homeostatic Knowledge Allotment (HKA) strategy to dynamically fuse the knowledge60

from each ViDA with different dimension prototypes. In Fig. 1 (b), HKA adaptively regularizes the61

balance of different feature representations, including original model, domain-specific, and domain-62

agnostic features. During inference, the different domain-represented ViDAs can be projected into63

the pre-trained model by re-parameterization [13], which ensures no extra parameter increase and64

maintain the model plasticity. In addition, through the proposed homeostatic ViDAs, we empower65

the model with domain generalization ability, which achieves a significant improvement (+7.6%) on66

the five unseen target domains of ImageNet-C. In summary, our contributions are as follows:67

• We carefully study the different domain representations of the adapters with high and low-68

rank prototypes. And we tactfully design a Visual Domain Adapter (ViDA) for CTTA,69

explicitly managing domain-specific and domain-shared knowledge to tackle the error70

accumulation and catastrophic forgetting problem, respectively.71
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• According to the various distribution shift of each sample in the target domains, we further72

propose a Homeostatic Knowledge Allotment (HKA) strategy to dynamically fuse the73

knowledge from each ViDA with different rank prototypes.74

• Our proposed approach outperforms most state-of-the-art methods according to the experi-75

ments on four benchmark datasets, covering classification and segmentation tasks.76

• Our CTTA method provides a novel transfer paradigm and achieves a promising result in77

zero-shot adapting of foundation models to continual downstream distributions. Meanwhile,78

we empower the source model with domain generalization ability through the proposed79

homeostatic ViDAs, achieving a significant improvement on the unseen target domains.80

2 Related work81

2.1 Continual Test-Time Adaptation82

Test-time adaptation (TTA), also referred to as source-free domain adaptation [6, 34, 40, 60], aims to83

adapt a source model to an unknown target domain distribution without relying on any source domain84

data. Recent research has explored self-training and entropy regularization techniques to fine-tune the85

source model [35, 56, 40, 8]. Tent [56] updates the training parameters in batch normalization layers86

by minimizing entropy. Recently, there has been a surge of interest in performing Transformer-based87

TTA works [57, 20, 20]. Continual Test-Time Adaptation (CTTA) refers to a scenario where the88

target domain is not static, presenting additional challenges for traditional TTA methods. The first89

approach to address this challenging task is introduced in [57], which combines bi-average pseudo90

labels and stochastic weight reset. While [57, 7] tackles the problem in both classification and91

segmentation tasks at the model level, [16] introduces the use of visual domain prompts to address92

the issue at the input level specifically for the classification task. In this paper, we simultaneously93

focus on both classification tasks and dense prediction tasks.94

2.2 Parameter-Efficient Fine-Tuning95

Recently, Parameter-Efficient Fine-Tuning (PEFT) has gained significant traction within the field96

of natural language processing (NLP) [30, 26, 25, 61, 37, 27, 19, 23, 54, 45]. Adapter-based97

models, a form of PEFT, have gained popularity in NLP. They employ bottleneck architecture adapter98

modules inserted between layers in pre-trained models. During fine-tuning, only these modules are99

updated. Adapter-based models demonstrate dominant performance over other methods in certain100

tasks, sometimes surpassing standard fine-tuning [12]. Inspired by NLP, adapters in visual tasks have101

also received widespread attention. In the initial phases of adapter development, residual adapter102

modules [46, 47] are proposed to aid in the effective adaptation of convolutional neural networks103

across multiple downstream tasks. AdaptFormer [10] enhances the ViT [14] model by replacing104

the original multi-layer perceptron (MLP) block with AdaptMLP. AdaptMLP introduces a trainable105

down-to-up bottleneck module in a parallel manner, effectively mitigating catastrophic interference106

between tasks. VL-Adapter [51] improves the efficiency and performance of adapters by sharing107

low-dimensional layers weights to attain knowledge across tasks. Existing methods, as mentioned,108

have not addressed the challenges of long-term preservation of domain-agnostic knowledge and109

timely exploration of domain-specific knowledge amidst continuous unknown domain variations.110

Consequently, there is an urgent demand for an adapter with different domain representations that111

can simultaneously tackle the challenges of error accumulation and catastrophic forgetting.112

3 Method113

In Continual Test-Time Adaptation (CTTA), we pre-train the model qθ(y|x) on the source domain114

DS = (YS , XS) and adapt it on multiple target domains DTi
= {(XTi

)}ni=1, where n represents115

the scale of the continual target datasets. The entire process can not access any source domain116

data and can only access target domain data once. The distributions of the target domains (i.e.,117

DT1
, DT2

, ..., DTn
) are constantly changing over time. Our goal is to adapt the pre-trained model to118

target domains and maintain the perception ability of the model on the seen domain distribution.119

Our approach proposes a novel Visual Domain Adapter (ViDA) that contains both high and low-120

dimensional prototypes. This design allows us to explicitly manage domain-specific and domain-121
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Figure 2: The framework of Visual Domain Adapter (ViDA). (a) We inject different domain-
represented ViDAs into either linear or Conv layers of the pre-trained source model. To update
the ViDAs, we construct a teacher-student framework and use a consistency loss (Eq. 5) as the
optimization objective. The student model processes the original image, while the teacher model
processes an augmented version of the same image. In addition to generating predictions, the teacher
model calculates an uncertainty value (Eq. 3), reflecting the distribution shift of each sample in the
target domain. (b) We illustrate the details of the Homeostatic Knowledge Allotment (HKA) strategy,
which aims to dynamically fuse the knowledge from each ViDA with different rank prototypes.

agnostic knowledge, addressing the challenges of error accumulation and catastrophic forgetting in122

CTTA. To effectively adapt to the diverse distribution shifts, a Homeostatic Knowledge Allotment123

(HKA) strategy is introduced to dynamically fuse the knowledge from different ViDA with different124

domain representations. The overall framework is shown in Fig. 2.125

3.1 Motivation126

The Continual Test-Time Adaptation (CTTA) faces significant challenges, primarily due to error127

accumulation and catastrophic forgetting [57, 16]. Meanwhile, adapters with different dimension128

prototypes demonstrate remarkable effectiveness in addressing these challenges. This encourages us129

to take a step further and investigate the principles underlying the use of domain adapters in CTTA.130

Adapter with low rank prototype. Our hypothesis regarding the effectiveness of adapters in131

mitigating catastrophic forgetting is that their low-rank prototype representation plays a crucial role.132

To explore this further, we conduct a t-SNE study [53] on the third transformer block to analyze133

the feature distributions across four target domains (ACDC). The results are depicted in Fig. 1 (b).134

Our analysis reveals that the low-rank adapter exhibits a relatively consistent distribution across the135

different target domains, suggesting that its low-rank prototype can effectively disregard the impact136

of dynamic distribution shifts and prioritize the extraction of domain-invariant knowledge.137

We adopt the domain distance definition proposed by Ben-David [4, 3] and build upon previous138

domain transfer research [18] by employing the H-divergence metric to further evaluate the domain139

representations of adapters across different target domains. H-divergence between DS and DTi
can140

be calculated as dH(DS , DTi
) = 2 supD∼H |Prx∼DS

[D(x) = 1]− Prx∼DTi
[D(x) = 1]|, where H141

denotes hypothetical space and D denotes discriminator. Similar to [18], calculating the H-divergence142

directly is challenging. We adopt the Jensen-Shannon (JS) divergence between two adjacent143

domains as an approximation. To investigate the effectiveness of adapters in adapting to continual144

target domains, we compare the JS values obtained by using the source model alone, injecting145

low-rank adapter, and combining low-high adapters, as illustrated in Fig. 3 (a). Our results indicate146

that the feature representation generated by the low-rank adapter exhibits lower divergence compared147

to those of the original source model and closely resembles the values of low-high combination.148

To provide clearer evidence for our assumption, we have developed an evaluation approach that149

directly reflects the extent of domain catastrophic forgetting. Shown in Table 1, after one round of150

CTTA on all target domains (ImageNet-C), we utilize the model and adapter from the last target151

domain to directly test on previously seen target domains. As expected, the performance degradation152

is observed in only 2 out of 15 corruption types, and there is an overall improvement of 1.0% in153

the average classification error. These findings further support our assumptions and indicate that154

low-rank adapters are more effective in preserving continual domain-shared knowledge.155
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Figure 3: c1 to c15 represent the 15 corruption domains in CIFAR10C listed in sequential order. (a)
Low-rank adapter based model effectively mitigates inter-domain divergence than the source model
across all 14 domain shifts. (b) High-rank adapter based model significantly enhances the intra-class
feature aggregation, yielding results that closely approximate those achieved by our ViDA method.

Adapter with high rank prototype. Regarding the domain representation of the adapter with a156

high-rank prototype, we propose that it is better suited to address error accumulation in the continual157

adaptation process. We verify this by visualizing the prototype distributions between different158

domains, as shown in Fig. 1 (b), and observe that there is a clear discrepancy between domains. And159

the distribution achieves a better aggregation in a single domain. This suggests that high-rank adapters160

primarily focus on extracting domain-specific knowledge in continual target domains. Inspired by161

intra-cluster dissimilarity proposed by k-means [41], we use normalized intra-class divergence to162

further verify the domain representations of high-rank adapters in CIFAR10C. As illustrated in Fig. 3163

(b), the high-rank adapter is found to drive down divergence within almost all domains, indicating164

that it can better adapt to current domain distribution and extract domain-specific knowledge in165

continual target domains. To straightforwardly measure it, we quantitatively evaluate its performance.166

As shown in Table 6 Ex2, the classification error rate exhibits a sustained reduction (-4.6%) in the167

dynamic target domains with the use of a high-rank adapter. This finding supports our hypothesis168

that high-rank adapters can extract more reliable domain-specific knowledge.169

3.2 Visual Domain Adapter170

The above observation motivates us to introduce high-rank and low-rank Visual Domain Adapters171

(ViDAs) into the source pre-trained model, aiming to simultaneously adapt current domain distribution172

and maintain the continual domain-shared knowledge in CTTA.173

The architecture. The design principle of injecting ViDAs into the pre-trained model is simple174

yet effective, which is illustrated in Figure .2 (b). As we can see there are three sub-branches, the175

linear (or Conv) layer in the middle branch is identical to the original network, while the right branch176

and left branch are bottleneck structures and separately indicate the high-rank ViDA and low-rank177

ViDA. Specifically, the right branch (high-rank) contains an up-projection layer with parameters178

Wh
up ∈ Rd×dh , a down-projection layer with parameters Wh

down ∈ Rdh×d, where dh (i.e., dh = 128)179

is the middle dimension of high-rank prototype and satisfies dh ≥ d. There is not any non-linear180

layer in the ViDA. And we utilize the linear layer as the projection layer when the original model181

is transformer architecture and adopt 1× 1 Conv as the projection layer when the original model is182

a convolution network. In contrast, the left branch (low-rank) first injects a down-projection layer183

with parameters W l
down ∈ Rd×dl

, then place an up-projection layer with parameters W l
up ∈ Rdl×d,184

where dl (i.e., dl = 1) stand for the middle dimension of the low-rank prototype (dl ≪ d). For a input185

feature f , the produced features of high-rank ViDA (fh) and low-rank ViDA (fl) are formulated as:186

fh = Wh
down · (Wh

up · f); fl = W l
up · (W l

down · f) (1)
The two-branch bottleneck is connected to the output feature of the original network (fo) through the187

residual connection via scale factors (λh and λl). The fusion knowledge (ff ) can be described as:188

ff = fo + λh × fh + λl × fl (2)
The domain knowledge scale factors (λh and λl) are adaptively obtained through the homeostatic189

knowledge allotment strategy, which is shown in Section 3.3.190

Continual adapting. During the continual adaptation process, we freeze the parameters of the191

original model (middle branch) and update the high-rank ViDA and low-rank ViDA on the dynamic192

target domains with unsupervised loss. During inference, the different domain-represented ViDAs193

(linear relation) can be projected into the pre-trained model by re-parameterization [13], which194

ensures no extra parameter increase and maintain the plasticity of the original model.195

5



3.3 Homeostatic Knowledge Allotment196

Method motivation. In CTTA, the target domain data can only be accessed once and show different197

distribution shifts, which makes the efficiency of domain transfer crucial. Moreover, to tackle error198

accumulation and catastrophic forgetting effectively, it becomes necessary to extract different domain199

knowledge and handle them separately. This requires regularization of the knowledge fusion weight200

to ensure efficient capture of relevant domain-specific knowledge without sacrificing the retention of201

long-term domain-shared knowledge. HKA design. As depicted in Figure .2 (b), we draw inspiration202

from [44, 49, 17] and introduce an uncertainty value to quantify the degree of distribution shift for203

each sample. While the confidence score is a common measure to assess prediction reliability, it tends204

to fluctuate irregularly and becomes unreliable in scenarios characterized by distribution shifts. To205

address this limitation, we employ the MC Dropout technique [15] on linear layers, enabling multiple206

forward propagations to obtain m sets of probabilities for each sample. Subsequently, we calculate207

the uncertainty value U(x) for a given input x, which are formulated as:208

U(x) =

(
1

m

m∑
i=1

∥pi(y|x)− µ∥2
) 1

2

(3)

Where pi(y|x) is the predicted probability of the input x in the ith forward propagation and µ is the209

average value of m times prediction. To dynamically adjust the scale factors (λh and λl) based on210

the uncertainty score, the formulation is as follows:211 {
λh = 1 + U(x) λl = 1− U(x), U(x) ≥ Θ
λh = 1− U(x) λl = 1 + U(x), U(x) < Θ

(4)

The threshold value of uncertainty is denoted as Θ, where Θ = 0.2. To realize the homeostasis of212

different domain knowledge, when facing the sample with a large uncertainty value, we adaptively213

increase the fusion weight of domain-specific knowledge (λh). Conversely, if the input has a low214

uncertainty value, the fusion weight of domain-agnostic knowledge (λl) will be increased. By215

employing the HKA strategy, our approach ensures that the adaptation process effectively captures216

relevant domain-specific knowledge while retaining long-term domain-shared knowledge.217

3.4 Optimization Objective218

Following previous CTTA work [57, 16], we leverage the teacher model T to generate the pseudo219

labels ỹ for updating ViDAs. And we adopt consistency loss Lce as the optimization objective.220

Lce(x) = − 1

C

C∑
c

ỹ(c) log ŷ(c) (5)

Where ŷ is the output of our student model S , C means the number of categories. Same as previous221

works[57, 16], we load the source pre-trained parameters to initialize the weight of both models and222

adopt the exponential moving average (EMA) to update the teacher model with ViDAs.223

T t = αT t−1 + (1− α)St (6)

Where t is the time step. And we set α = 0.999 [52], which is the updating weight of EMA.224

4 Experiment225

In Section 4.2 and 4.3, we compare our method with other SOTA methods on classification and226

segmentation of CTTA. In Section 4.4, we employ the foundation model [32, 43] as the backbone227

and evaluate the efficacy of our method. In Section 4.5, we further evaluate the domain generalization228

ability of the proposed method. Comprehensive ablation studies are conducted in Section 4.6. More229

quantitative comparisons and qualitative analyses are shown in the supplementary materials.230

4.1 Task settings and Datasets231

Dataset. We evaluate our method on three classification CTTA benchmarks, including CIFAR10-232

to-CIFAR10C(standard), CIFAR100-to-CIFAR100C [33] and ImageNet-to-ImageNet-C [24]. For233
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segmentation CTTA [57, 59], we evaluate our method on Cityscapes-to-ACDC, where the Cityscapes234

dataset [11] serves as the source domain, and the ACDC dataset [50] represents the target domains.235

Baselines. We compare the proposed method against two types of CTTA approaches, including236

(1)Modal-based: source model [14, 58], Pseudo-label [36], Tent-continual [56], CoTTA [57], and,237

SATA [7]. (2) Prompt-based: visual domain prompt [16].238

CTTA Task setting. Following [57, 16], in classification CTTA tasks, we sequentially adapt the239

pre-trained source model to the fifteen target domains with the largest corruption severity (level 5).240

The online prediction results were evaluated immediately after encountering the input data. Regarding241

segmentation CTTA [57, 59], the source model [58] is an off-the-shelf pre-trained on the Cityscapes242

dataset [11]. As for the continual target domains, we utilize the ACDC dataset [50], which consists243

of images collected in four unseen visual conditions: Fog, Night, Rain, and Snow. To simulate244

continual environmental changes in real-life scenarios, we cyclically repeat the same sequence of245

target domains (Fog→Night→Rain→Snow) multiple times.246

Implementation Details. In our CTTA experiments, we follow the implementation details specified247

in previous works [57, 59] to ensure consistency and comparability. we adopt ViT-base [14] and248

ResNet [22] as the backbone in classification CTTA. In the case of ViT-base, we resize the input249

images to 224x224, while maintaining the original image resolution for other backbones. For250

segmentation CTTA, we adopt the pre-trained Segformer-B5 model [58] as the source model. We251

down-sample the input size from 1920x1080 to 960x540 for target domain data [57]. The optimizer is252

performed using Adam [31] with (β1, β2) = (0.9, 0.999). We set the learning rates to specific values253

for each backbone, such as 1e-5 for ViT and 3e-4 for Segformer. To initialize our visual domain254

adapters, we train the model with adapters for one epoch on the source domain. We apply a range of255

image resolution scale factors [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0] for the augmentation method and256

construct the teacher model inputs [57]. All experiments are conducted on NVIDIA A100 GPUs.257

4.2 The Effectiveness on Classification CTTA258

Table 1: Classification error rate(%) for ImageNet-to-ImageNet-C online CTTA task. Gain(%)
represents the percentage of improvement in model accuracy compared with the source method.
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eg Mean↓ Gain

ResNet50

Source [21] CVPR2016 97.8 97.1 98.2 81.7 89.8 85.2 78 83.5 77.1 75.9 41.3 94.5 82.5 79.3 68.6 82 0.0
CoTTA [57] CVPR2022 52.9 51.6 51.4 68.3 78.1 57.1 62.0 48.2 52.7 55.3 25.9 90.0 56.4 36.4 35.2 62.7 +19.3

VDP [16] AAAI2023 - - - - - - - - - - - - - - - 51.5 +30.5
SATA [7] 2023.4.20 74.1 72.9 71.6 75.7 74.1 64.2 55.5 55.6 62.9 46.6 36.1 69.9 50.6 44.3 48.5 60.1 +21.9

ViT-base

Source ICLR2021 53.0 51.8 52.1 68.5 78.8 58.5 63.3 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 55.8 0.0
Pseudo [36] ICML2013 45.2 40.4 41.6 51.3 53.9 45.6 47.7 40.4 45.7 93.8 98.5 99.9 99.9 98.9 99.6 61.2 -5.4

Tent [56] ICLR2021 52.2 48.9 49.2 65.8 73 54.5 58.4 44.0 47.7 50.3 23.9 72.8 55.7 34.4 33.9 51.0 +4.8
CoTTA [57] CVPR2022 52.9 51.6 51.4 68.3 78.1 57.1 62.0 48.2 52.7 55.3 25.9 90.0 56.4 36.4 35.2 54.8 +3.6

VDP [16] AAAI2023 52.7 51.6 50.1 58.1 70.2 56.1 58.1 42.1 46.1 45.8 23.6 70.4 54.9 34.5 36.1 50.0 +5.8
Ours Proposed 47.7 42.5 42.9 52.2 56.9 45.5 48.9 38.9 42.7 40.7 24.3 52.8 49.1 33.5 33.1 43.4 +12.4

Directly test after adaptation −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Mean↓ Gain
ViT-base Ours Proposed 46.2 44.4 45.8 48.9 52.1 45.0 48.6 37.5 41.9 39.5 23.9 49.0 49.0 32.1 32.6 42.4 +13.4

ImageNet-to-ImageNet-C. Given the source model pre-trained on ImageNet, we conduct CTTA259

on ImageNet-C, which consists of fifteen corruption types that occur sequentially during the test260

time. Table .1 demonstrates that the majority of methods employing the ViT backbone achieve lower261

classification errors compared to those using the ResNet50 backbone. For ViT-base, the average262

classification error is up to 55.8% when we directly test the source model on target domains. In263

contrast, our method can outperform all previous methods, achieving a 12.4% and 6.6% improvement264

over the source model and previous SOTA method, respectively. Moreover, our method showcases265

remarkable performance across the majority of corruption types, highlighting its effective mitigation266

of error accumulation and its capability for continual adaptation. After completing the entire CTTA267

process, we evaluate the performance of our method on the seen target domains. As shown in268

Table 1, the performance degradation is observed in only 2 out of 15 corruption types. Additionally,269

we achieve an overall improvement of 1.0% in the average classification error. These findings270

demonstrate that our method successfully preserves continual domain-shared knowledge and avoids271

catastrophic forgetting during CTTA. In conclusion, our homeostatic ViDAs can extract the different272

domain knowledge and avoid CTTA main challenges simultaneously.273
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Table 2: Average error rate (%) for the stan-
dard CIFAR10-to-CIAFAR10C and CIFAR100-
to-CIAFAR100C CTTA task. All results are eval-
uated on the ViT-base, which is fully pre-trained
on the source domain dataset.

Target Method Source Tent CoTTA VDP Ours

Cifar10C Mean↓ 28.2 25.5 24.6 24.1 20.7
Gain↑ 0.0 +2.7 +3.6 +4.1 +7.5

Cifar100C Mean↓ 35.4 33.2 34.8 35.0 27.3
Gain↑ 0.0 +2.2 +0.7 +0.4 +8.1

Table 3: Average error rate (%) for the CIFAR10-
to-CIFAR10C CTTA task. All results are evalu-
ated on the ViT-Base, which uses the pre-trained
encoder parameter of foundation models (DI-
NOv2 [43] and SAM [32]).

Backbone Method Source Tent CoTTA Ours

DINOv2 Mean↓ 25.0 21.7 29.3 20.2
Gain↑ 0.0 +3.2 −4.3 +4.8

SAM Mean↓ 39.3 37.5 39.4 34.1
Gain↑ 0.0 +1.8 −0.1 +5.2

To further validate the effectiveness of our method, we conduct experiments on CIFAR10-to-274

CIFAR10C and CIFAR100-to-CIFAR100C. As illustrated in Table .2, in CIFAR10C, our approach275

achieved a 3.4% improvement compared to the previous SOTA model. We extend our evaluation to276

CIFAR100C, which comprises a larger number of categories in each domain. Our approach surpasses277

all previous methods, which show the same trend as the above CTTA experiments. Therefore, the re-278

sults prove that our method mitigates the challenges posed by continual distribution shifts, regardless279

of the number of categories present in each domain.280

4.3 The Effectiveness on Segmentation CTTA281

Table 4: Performance comparison for Cityscape-to-ACDC CTTA. We sequentially repeat the
same sequence of target domains three times. Mean is the average score of mIoU.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 2 3 Mean↑ GainMethod REF Fog Night Rain Snow Mean↑ Fog Night Rain Snow Mean↑ Fog Night Rain Snow Mean↑

Source [58] NIPS2021 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 56.7 /
TENT [55] ICLR2021 69.0 40.2 60.1 57.3 56.7 68.3 39.0 60.1 56.3 55.9 67.5 37.8 59.6 55.0 55.0 55.7 -1.0
CoTTA [57] CVPR2022 70.9 41.2 62.4 59.7 58.6 70.9 41.1 62.6 59.7 58.6 70.9 41.0 62.7 59.7 58.6 58.6 +1.9
DePT [20] ICLR2023 71.0 40.8 58.2 56.8 56.5 68.2 40.0 55.4 53.7 54.3 66.4 38.0 47.3 47.2 49.7 53.4 -3.3
VDP [16] AAAI2023 70.5 41.1 62.1 59.5 58.3 70.4 41.1 62.2 59.4 58.2 70.4 41.0 62.2 59.4 58.2 58.2 +1.5

Ours Proposed 71.6 43.2 66.0 63.4 61.1 73.2 44.5 67.0 63.9 62.2 73.2 44.6 67.2 64.2 62.3 61.9 +5.2

road sidew build wall fence pole tr.light tr.sign veget terrain sky person rider car truck bus train m.bike bike n/a.

Sn
ow

N
ig

ht

Image CoTTA VDP ViDA Ground Truth

Figure 4: Qualitative comparison of our method with previous SOTA methods on the ACDC dataset.
Our method could better segment different pixel-wise classes such as shown in the white box.

Cityscapes-to-ACDC. To demonstrate the effectiveness of our method in the semantic segmentation282

CTTA task, we conducted evaluations on four target domains from the ACDC dataset periodically283

during test time. As presented in Table 4, we observed a gradual decrease in the mIoUs of TENT284

and DePT over time, indicating the occurrence of catastrophic forgetting. In contrast, our method285

has a continual improvement of average mIoU (61.1→62.2→62.3) when the same sequence of286

target domains is repeated. Significantly, the proposed method surpasses the previous state-of-the-art287

CTTA method [57] by achieving a 3.3% increase in mIoU. This notable improvement showcases our288

method’s ability to adapt continuously to different target domains in the pixel-level task. In Fig .4,289

our method correctly distinguish the sidewalk from the road, avoiding mis-classification.290

4.4 Continual Adapting for Foundation Models291

Foundation models [5] are trained on large-scale datasets, endowing them with powerful generaliza-292

tion capabilities and the ability to capture representations of common features. However, performing293

full fine-tuning on the foundation model is time-consuming and economically impractical. Hence, our294

adaptation method proves valuable by enhancing the continual transfer performance of foundation295
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Table 5: The domain generalization compar-
isons on ImageNet-C. Results are evaluated on
ViT-base. Mean and Gain(%) represent the per-
formance on unseen target domains.

Directly test on unseen domains Unseen
Method bri. contrast elastic pixelate jpeg Mean↓
Source 26.4 91.4 57.5 38.0 36.2 49.9
Tent 25.8 91.9 57.0 37.2 35.7 49.5
CoTTA 25.3 88.1 55.7 36.4 34.6 48.0
Ours 24.6 68.2 49.8 34.7 34.1 42.3

Table 6: Average error rate (%) for the
ImageNet-to-ImageNet-C. Results are evaluated
on the ViT. V iDAh and V iDAl represent the
ViDAs with high-rank and low-rank prototypes.

V iDAh V iDAl HKA Mean↓
Ex1 - - - 55.8
Ex2 ✓ - - 51.2
Ex3 - ✓ - 50.7
Ex4 ✓ ✓ - 45.6
Ex5 ✓ ✓ ✓ 43.4

models. As indicated in Table. 3, we introduce foundation models as the pre-trained model and adapt296

them to continual target domains (CIFAR10C). Our approach achieved a performance improvement297

of 4.8% on the representative image-level foundation model DINOv2 [43] and 5.2% on pixel-level298

foundation model SAM [32]. Our method consistently and reliably improves the performance of the299

foundation model on the unseen continual target domains. Note that, we only use the pre-trained300

encoder of SAM and add a classification head, which is fine-tuned on the source domain. During the301

inference phase, the ViDAs with a linear relationship can be projected onto the pre-trained foundation302

model through re-parameterization. This process empowers the foundation model with the learned303

different domain representations and maintains the model plasticity.304

4.5 Domain Generalization on Unseen Continual Domains305

To investigate the domain generalization (DG) ability of our method, we follow the leave-one-domain-306

out rule [62, 38] to leverage 10/15 domains of ImageNet-C as source domains for model training while307

the rest (5/15 domains) are treated as target domains without any form of adaptation. Specifically,308

we first use our proposed method to continually adapt the pre-trained model to 10/15 domains of309

ImageNet-C without any supervision. Then we directly test on the 5/15 unseen domains. Surprisingly,310

our method reduces 7.6% on the average error on unseen domains (Table 5), which has a significant311

improvement over other methods. The promising results demonstrate that our method possesses DG312

ability by effectively extracting domain-agnostic knowledge. This finding provides a new perspective313

on enhancing DG performance. More DG experiments are provided in the supplementary materials.314

4.6 Ablation study315

Effectiveness of each component. We conduct the ablation study on ImageNet-to-ImageNet-C316

CTTA scenario and evaluate the contribution of each component in our method, including high-rank317

ViDA (V iDAh), low-rank ViDA (V iDAl), and Homeostatic Knowledge Allotment (HKA) strategy.318

As shown in Table .6, Ex1 represents the performance of the source pre-trained model (only 55.8%).319

In Ex2, by introducing the high-rank ViDA, the average error decrease 4.6%, demonstrating that320

the high-rank prototype can extract more domain-specific knowledge to adapt in target domains.321

As illustrated in Ex3, low-rank ViDA gains 5.1% improvement compared to Ex1. The result322

proves that the domain-share knowledge extracted from low-rank prototypes can also improve the323

classification ability on continual target domains. Ex4 has a remarkable improvement of 10.2%324

overall, demonstrating that the two types of ViDA can compensate for each other in the continual325

adaptation process. Ex5 achieves 12.4% improvement in total, showcasing the effectiveness of the326

HKA strategy in maximizing the CTTA potential of both types of ViDA.327

5 Conclusion and Limitations328

In this paper, we propose a homeostatic Visual Domain Adapter (ViDA) to address error accumulation329

and catastrophic forgetting problems in Continual Test-Time Adaptation (CTTA) tasks. And we330

investigate that the low-rank ViDA can disregard the impact of dynamic distribution shifts and331

prioritize the extraction of domain-invariant knowledge, and the high-rank ViDA can extract more332

reliable domain-specific knowledge. Meanwhile, we further propose a Homeostatic Knowledge333

Allotment (HKA) strategy to dynamically fuse the knowledge from each ViDA with different rank334

prototypes. For limitations, the injected ViDAs and teacher-student scheme brings extra parameters335

and computational costs during the continual adaptation process.336
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