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ABSTRACT

Federated learning (FL) with low-rank adaptation (LoRA) is attractive for effi-
ciency but fragile compared to full-rank FL. We show three fundamental vulner-
abilities: (i) aggregation and projection bias, since bilinear averaging of adapters
misrepresents the true global update; (ii) adversarial amplification, where low-
rank projections can magnify malicious perturbations; and (iii) Jacobian sensitiv-
ity, where small adapter changes trigger large gradient variation. Existing methods
only mitigate these issues and require identical client ranks, limiting practical-
ity. We propose Robust Federated Distillation for LoRA (RFD-LoRA), the first
framework to combine federated distillation with LoRA. By aggregating logits in
a shared subspace, RFD-LoRA totally eliminates aggregation and initialization
lag while enabling clients with heterogeneous ranks and adapter structures to col-
laborate seamlessly. To defend against non-IID and adversarial clients, we design
three modules: Confidence-Adaptive Temperature (CAT), MMD-based Distilla-
tion (MMD-KD), and Disagreement Suppression (DIS). We provide error bounds
and show on GLUE benchmarks that RFD-LoRA consistently outperforms prior
methods in accuracy and robustness.

1 INTRODUCTION

Federated learning (FL) (Konečný et al. (2016)) has become a central paradigm for collaborative
training across distributed data silos while preserving data privacy (McMahan et al. (2023); Kairouz
et al. (2021); Ye et al. (2024)). In parallel, low-rank adaptation (LoRA) has emerged as a leading
approach for parameter-efficient fine-tuning (PEFT) (Han et al. (2024); Houlsby et al. (2019)) of
large pre-trained models (Hu et al. (2021); Asadi et al. (2024)), significantly reducing both compu-
tational and storage costs. Recently, these two directions have begun to converge, giving rise to the
study of federated LoRA fine-tuning, where only the lightweight low-rank adapters are exchanged
across clients rather than full model parameters. A number of methods have been proposed in this
space, including FFA-LoRA (Sun et al. (2024)), which introduces privacy-preserving and fairness-
adaptive aggregation for federated LoRA, LoRA-FAIR (Bian et al. (2025)), which improves fairness
and communication efficiency across heterogeneous clients, and FLoRA (Wang et al. (2024)), which
establishes the first baseline framework for federated LoRA fine-tuning. More recent works include
FedIT (Zhang et al. (2024)), which addresses initialization mismatch and aggregation bias in LoRA
modules, and FlexLoRA (Bian et al. (2025)), which enables flexible low-rank adaptation across het-
erogeneous client devices. Together, these studies demonstrate the potential of combining FL and
LoRA to achieve efficient, scalable, and privacy-preserving model adaptation.

Despite these advances, federated LoRA remains fundamentally fragile. Current methods inherit
three key issues: (i) Aggregation bias: as server-side averaging of low-rank matrices Ā, B̄ does
not equal the true weighted average

∑
k pkBkAk (Sun et al. (2024)), and (ii) Initialization bias:

as methods like FLoRA reinitialize adapters every round, leading to poor conditioning and delayed
convergence (Bian et al. (2025)). (iii) Identical client model structure: existing frameworks as-
sume that all clients use identical LoRA rank and adapter structure. This assumption may hold in
simulation benchmarks, but is unrealistic in real-world federated environments where clients have
diverse hardware constraints and heterogeneous adaptation needs. As a result, current LoRA-FL
solutions face severe scalability and deployment challenges.
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More critically, FL LoRA fine-tuning amplifies sensitivity to heterogeneity (Wang et al. (2022);
Zhao et al. (2018); Li et al. (2020); Bhagoji et al. (2019)) in ways that are not present in full-rank
FL. Because adapters project updates into low-dimensional subspaces, client differences are not
smoothed out but instead magnified. We identify three fundamental sources of vulnerability:

(i) Projection bias. Server-side aggregation of LoRA modules is inherently inconsistent:∑
k pkBkAk ̸= (

∑
k pkBk)(

∑
k pkAk). This bilinear mismatch leads to systematic deviation be-

tween the aggregated update and the true client-average update direction.

(ii) Adversarial amplification. Malicious clients (Chacko et al. (2024); Tsipras et al. (2019)) align
updates with adapter subspaces, yielding up to Θ(

√
d/r) magnification over full-rank.1

(iii) Jacobian sensitivity. The bilinear map (A,B) 7→ BA induces Jacobian norms that scale with
the feature energy ∥x∥ (Novak et al. (2018); Moosavi-Dezfooli et al. (2018)), the adapter spectral
norms, and downstream layer norms. Consequently, even small perturbations in (A,B) can cause
disproportionately large variations in gradients, making federated LoRA especially unstable under
non-IID or adversarial settings.

In this work, we propose RFD-LoRA, the first framework that integrates federated distillation Lin
et al. (2021); Itahara et al. (2023) with LoRA fine-tuning. Unlike prior methods that aggregate
adapter parameters, RFD-LoRA operates in logit space: each client transmits logits on a small pub-
lic anchor set, which are aggregated at the server. This eliminates aggregation bias and initialization
lag from low-rank mismatches, and enables heterogeneous clients with different ranks or adapter
structures to participate seamlessly via a shared latent logit subspace. Moreover, to strengthen ro-
bustness, we introduce three modules: (i) Confidence-Adaptive Temperature (CAT) dynamically
scales logits by confidence, bounding gradient norms and stabilizing optimization; (ii) MMD-based
Distillation (MMD-KD) aligns both mean and variance of logits, resisting energy-shaping attacks;
(iii) Disagreement Suppression (DIS) downweights clients with high variance on anchor predic-
tions, mitigating non-IID amplification. Together, these components yield provable error bounds
and robustness against adversarial and heterogeneous clients. By uniting logit-space distillation
with these defenses, RFD-LoRA achieves communication efficiency while, for the first time, en-
abling rank-flexible and robust federated LoRA training.

Our key contributions are summarized as follows:

• We introduce the first federated distillation framework for LoRA, which removes aggrega-
tion bias and initialization lag by aggregating logits instead of adapter parameters.

• RFD-LoRA enables heterogeneous LoRA ranks and adapter structures through a shared la-
tent logit subspace, making it practical for real-world federated settings with diverse client
resources.

• We present the first theoretical analysis of federated LoRA fragility, characterizing projec-
tion bias, adversarial amplification, and Jacobian sensitivity, and proving error bounds that
quantify their impact.

• To improve robustness, we design three modules—Confidence-Adaptive Temperature
(CAT), MMD-based Distillation (MMD-KD), and Disagreement Suppression (DIS)—and
show through GLUE experiments that RFD-LoRA consistently outperforms existing base-
lines under IID/non-IID and adversarial clients.

2 PRELIMINARIES

We formalize federated learning with LoRA fine-tuning and show why it is inherently fragile for
parameter-space training, especially under heterogeneous or adversarial clients.

2.1 AGGREGATION BIAS AND INITIALIZATION LAG

A central difficulty in federated LoRA fine-tuning lies in the gap between the server-reconstructed
update and the true global update. In frameworks such as FedIT (Zhang et al. (2024)), each client k

1d is the layer dimension; r ≪ d is the LoRA rank in W = W0 +
α
r
BA, A ∈ Rr×d, B ∈ Rd×r . Intuition:

energy concentrates from d to r dimensions, giving a
√

d/r ratio.

2
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adapts a shared pre-trained model W by learning local low-rank factors Ak ∈ Rr×d and Bk ∈ Rd×r

on its private dataset Dk. After training, the server performs data-size weighted averaging,

Ā =

K∑
k=1

pkAk, B̄ =

K∑
k=1

pkBk, pk = |Dk|∑K
j=1 |Dj |

,

and then forms the aggregated update as

∆W ′ = B̄Ā =
( K∑

k=1

pkBk

)( K∑
k=1

pkAk

)
. (1)

The ideal update, however, should be

∆W =

K∑
k=1

pkBkAk, (2)

which generally differs from ∆W ′ because matrix multiplication is bilinear rather than linear. We
refer to ∆W ′ −∆W as the aggregation bias, which grows with diversity in client-specific adapters
and is particularly problematic under non-IID data or heterogeneous ranks. Another major difficulty
in federated LoRA fine-tuning comes from the way clients initialize their LoRA modules at the start
of each training round, which leads to initialization lag. See details in Appendix A.

2.2 PROJECTION BIAS FROM SUBSPACE MISALIGNMENT

In LoRA fine-tuning, each client update is confined to a rank-r subspace defined by its adapters. Let
the full gradient be gk = ∇fk(W ) ∈ Rd×d. Since only (Ak, Bk) are trainable, the effective update
is a two-sided projection:

∆Wk ≈ −η Pk(gk), Pk(X) = PUk
XPVk

,

where PUk
projects onto span(Bk) and PVk

onto span(A⊤
k ). The server aggregates as

∆Wagg = −η · 1
K

K∑
k=1

Pk(gk),

while the ideal full-model update is ∆W ⋆ = −η∇F (W ). Thus, we define the projection bias

Bproj := 1
K

K∑
k=1

Pk(gk)−∇F (W ).

If all clients share the same subspace P , then 1
K

∑
k Pk(gk) = P (∇F (W )), with error only from

truncation (I − P )∇F (W ). With heterogeneous data or adapters, however, distinct {Pk} mix
gradients from different subspaces. Writing gk = ∇F (W ) + δk, and

Bproj =
(

1
K

K∑
k=1

Pk − I
)
∇F (W )︸ ︷︷ ︸

loss of global directions

+ 1
K

K∑
k=1

Pk δk︸ ︷︷ ︸
heterogeneity amplification

.

The first term captures structural loss: global gradient components that are consistently dropped by
most subspaces. The second term shows why heterogeneity is amplified: even if

∑
k δk ≈ 0, the

projected terms {Pkδk} do not cancel out, since each Pk rotates deviations differently. As a result,
client heterogeneity translates into disproportionately large residual perturbations in the low-rank
parameter space.

2.3 ADVERSARIAL AMPLIFICATION

Let gk ∈ Rd be client k’s vectorized gradient and H the set of honest clients with ḡH =
1

|H|
∑

k∈H gk. LoRA restricts updates to an r-dimensional subspace S with projector PS . Define
the relative influence rate (RIR) of an adversarial gradient gadv by

RIR =
∥PS(gadv)∥
∥PS(ḡH)∥

.

3
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Assume honest gradients decompose as gk = µ+ ϵk with E[ϵk] = 0 and Cov(ϵk) = σ2Id. Then

E
[
∥PS(ḡH)∥2

]
= ∥PSµ∥2 +

σ2r

|H|
. (3)

For a typical low-rank adapter, S is not aligned with µ; under random orientation, E[∥PSµ∥2] =
(r/d)∥µ∥2, so when r≪d the variance term dominates, and

∥PS(ḡH)∥ ≈ σ
√

r
|H| .

An adversary can align gadv with S, giving ∥PS(gadv)∥≈σ. Hence

RIRLoRA ≈
√

|H|
r , RIRfull ≈

√
|H|
d , ⇒ RIRLoRA

RIRfull
≈

√
d
r .

Thus, adversarial influence is amplified by Θ(
√
d/r) in LoRA FL relative to full-rank FL. Assump-

tions and proof of Equation 3 are detailed in Appendix B.

2.4 JACOBIAN SENSITIVITY OF LORA PARAMETERIZATION

A distinctive vulnerability of LoRA-based federated learning lies in the Jacobian structure induced
by its bilinear adapter mapping. For an input x and adapters (A,B), the output of a LoRA-
augmented layer is

z(x;A,B) = x
(
W0 +

α
rBA

)
.

Unlike full-rank fine-tuning, this output depends bilinearly on (A,B). As a result, even small per-
turbations in either A or B can produce amplified changes in z and in the downstream gradients.
The amplification factor is proportional to the feature norm ∥x∥, the spectral norms of A and B, and
the product of downstream spectral norms. Consequently:

• Sensitivity to small perturbations. A tiny change in A or B can be magnified if A or B
is ill-conditioned or if x has large energy.

• Gradient instability. The loss gradient with respect to (A,B) is not only scaled by the
Jacobian above, but also by the inverse temperature 1/T of the softmax. Hence, highly
confident or adversarial logits can cause large swings in gradient updates.

• Amplification of heterogeneity. Clients with slightly different low-rank subspaces may
project their updates into nearly orthogonal directions. Unlike full-rank training where
heterogeneity cancels in expectation, here it can accumulate, leading to extreme update
dispersion.

In summary, the Jacobian structure of LoRA explains why federated LoRA fine-tuning is more
sensitive to both non-IID data and malicious perturbations than standard FL. We provide supporting
derivations in Appendix C.

3 FRAMEWORK AND GLOBAL ALGORITHM

Motivated by the limitations in Section 2, we propose Robust Federated Distillation for LoRA (RFD-
LoRA), which aggregates in logit space instead of averaging adapter parameters. Clients transmit
soft labels on a reference dataset, and the server aggregates and distills them into the global model.
This eliminates aggregation bias and initialization lag, bounds adversarial influence, and reduces
non-IID sensitivity. We next formalize the training protocol.

3.1 CLIENT-SIDE PROCEDURE

Each client k holds a private dataset Dk and a local LoRA adapter (Ak, Bk) trained on top of the
frozen base model W0. Given a small reference dataset Dref , which may be public or synthetically
generated, the client computes logits

zk(x) = (W0 +
α
rBkAk)(x), x ∈ Dref . (4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Input: Base model W0 (frozen or partially trainable); public anchor set Dref; clients {1..K} with private
data {Dk}; heterogeneous LoRA ranks {rk} and adapter structures; rounds N , local steps E;
client LR η, server LR γ; MoM groups M ; clipping radius c; robustness hyperparams: T0, κ, τ
(CAT), λ (MMD), ρ (DIS).

Output: Global model W .
W ←W0.
for n← 1 to N do

// Client-side local fine-tuning (in parallel for k = 1..K)
for k ∈ {1..K} (in parallel) do

Initialize/continue local adapters (Ak, Bk) with rank rk (no constraint across clients).
for e← 1 to E do

Sample (x, y) ∼ Dk; compute logits zk(x)=x
(
W + α

rk
BkAk

)
.

Compute task loss ℓk and update (Ak, Bk)← (Ak, Bk)− η∇Ak,Bkℓk.
end
// Release clipped logits on anchors
for x ∈ Dref do

send zk(x)← clip(zk(x), [−c, c]) to server.
end

end
// Server-side robust aggregation on anchors
for x ∈ Dref do

Randomly partition clients into M groups {Gm}Mm=1 (Median-of-Means).
Group means: z̄m(x)← 1

|Gm|
∑

k∈Gm
zk(x); z2m(x)← 1

|Gm|
∑

k∈Gm
zk(x)

◦2.
MoM consensus: z̃(x)← median

(
{z̄m(x)}Mm=1

)
.

Robust moments for MMD: µ̂(x)←median({z̄m(x)}),
σ̂2(x)←median({z2m(x)})− µ̂(x)◦2.
// DIS: disagreement suppression (non-IID guard)

v(x)←
∑

i Varm
(
z̄
(i)
m (x)

)
; w(x)←

(
1 + ρ v(x)

)−1.
// CAT: confidence-adaptive temperature (stabilize gradients)

q̃(x)← softmax(z̃(x)); T (x)← T0

(
1 + κ

[
maxi q̃i(x)− τ

]
+

)
.

// KD + MMD-KD objective (per-anchor)
Student logits zW (x) from current W .
LKD(x)← CE

(
softmax(z̃(x)/T (x)), softmax(zW (x)/T (x))

)
.

LMMD(x)← λ
(
∥zW (x)− µ̂(x)∥22 + ∥(zW (x)− µ̂(x))◦2 − σ̂2(x)∥22

)
.

LRFD(x)← w(x)
(
LKD(x) + LMMD(x)

)
.

end
// Server update by distillation over anchors

W ←W − γ · ∇W

(
1

|Dref|
∑

x∈Dref
LRFD(x)

)
.

end
return W .

Algorithm 1: Training protocol of RFD-LoRA.

The logits are optionally clipped to ensure bounded energy,
ẑk(x) = clip(zk(x), [−c, c]),

and converted into soft labels via temperature scaling
qk(x) = softmax

(
ẑk(x)/T

)
.

To mitigate over-confidence, we later introduce an adaptive temperature schedule (CAT). Finally,
the client transmits {qk(x)}x∈Dref

to the server.

3.2 SERVER-SIDE AGGREGATION

Upon receiving predictions from all clients, the server aggregates them robustly to obtain a con-
sensus distribution q̃(x) for each x ∈ Dref . We adopt Median-of-Means (MoM) or coordinate-wise
median, which are known to tolerate an ε-fraction of Byzantine clients. Formally, we show in Sec-
tion 4.3 that

∥q̃(x)− q̄H(x)∥1 ≤ O
(√

1
K +

√
ε
)
,

5
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where q̄H is the average distribution of honest clients. The aggregated distribution q̃(x) then serves
as the teacher for the global student model, updated by minimizing the distillation loss

LKD(x) = KL
(
q̃(x) ∥ pW (x)

)
,

where pW (x) denotes the global model’s predictive distribution. In Section 4, we further enhance
this objective with robustness modules, including Confidence-Adaptive Temperature (CAT), MMD-
based Knowledge Distillation (MMD-KD), and Disagreement Suppression (DIS). We show the de-
tailed training protocol in Algorithm 1.

4 ROBUSTNESS MODULES

4.1 CONFIDENCE-ADAPTIVE TEMPERATURE (CAT)

Given a predicted distribution qk(x) from client k, we define the adaptive temperature

T (x) = T0

(
1 + κ · [max

i
q̃i(x)− τ ]+

)
, (5)

where T0 ≥ 1 is a base temperature, κ ≥ 0 is a scaling factor, τ ∈ [1/C, 1] is a confidence threshold,
and [u]+ = max(u, 0). The student distribution is computed as

pW (x) = softmax
(
zW (x)/T (x)

)
.

Theorem 1 (Gradient sensitivity under CAT). Let JW (x) = ∂zW (x)/∂W denote the Jacobian of
logits. Then for any input x, the update step satisfies

∥∇WLKD(x)∥ ≤
C

T (x)
∥JW (x)∥, (6)

where C is a constant depending only on the clipping bound c and the number of classes C.

Proof sketch. The derivative of softmax(z/T ) w.r.t. z has operator norm at most 1/(4T ), hence the
difference ∥pW (x) − q̃(x)∥2 is O(1/T ). Combining with the chain rule ∇W = J⊤

W∇z yields the
bound. A full proof is given in Appendix D.

4.2 MMD-BASED KNOWLEDGE DISTILLATION (MMD-KD)

To mitigate energy-based manipulations where adversaries distort logit magnitudes, we align both
first- and second-order logit statistics via Maximum Mean Discrepancy (MMD). Let the server ag-
gregate both the mean µ̂(x) and diagonal variance σ̂2(x) of logits across clients:

µ̂(x) =
1

K

∑
k

ẑk(x), σ̂2(x) =
1

K

∑
k

(
ẑk(x)− µ̂(x)

)2
.

We define the MMD-KD loss as

LMMD(x) = λ
(
∥zW (x)− µ̂(x)∥22 + ∥Var[zW (x)]− σ̂2(x)∥22

)
, (7)

where λ > 0 is a regularization coefficient.

Theorem 2 (Variance-constrained robustness). Assume clipped logits are σ-sub-Gaussian across
honest clients. Then with probability at least 1− δ, the aggregated variance satisfies

∥σ̂2(x)− σ2(x)∥∞ ≤ O
(√

log(1/δ)
K +

√
ε
)
.

Consequently, the additional MMD-KD term bounds the adversarial amplification due to logit en-
ergy distortions by at most

∥∇WLMMD(x)∥ ≤ λCmmd · ∥JW (x)∥ ·
(√

1
K +

√
ε
)
. (8)

Proof sketch. Concentration inequalities for sub-Gaussian random variables give uniform conver-
gence of the variance estimate under MoM aggregation. The gradient bound follows from applying
Lipschitz continuity of the squared loss and chain rule. Full details are provided in Appendix E.

6
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Table 1: Adversarial robustness on GLUE (average over MNLI-m/mm, SST-2, QQP, QNLI).
Poisoned-client fraction ρ ∈ {0.10, 0.30}; per-poisoned-client poison rate π = 0.20 (trigger-token
insertion, fixed target label). CA = clean accuracy on clean test inputs; RA = accuracy on attacked
inputs; ASR (lower is better) = targeted success on triggered inputs. LoRA rank = 8 for baselines;
FD-LoRA aggregates logits and supports heterogeneous ranks. Means over 5 runs.

(a) IID clients

Method CA ρ = 0.10 ρ = 0.30

RA ASR↓ RA ASR↓

FedAvg 88.2 84.0 18.5 78.3 35.2
FFA-LoRA 88.9 86.2 12.3 81.5 24.8
FedIT 89.0 86.0 12.7 81.2 25.1
FLoRA 89.2 86.5 11.9 81.7 23.7
FlexLoRA 89.7 87.2 9.8 83.0 19.6
LoRA-Fair 89.7 87.5 9.5 83.3 18.9
RFD-LoRA 90.6 89.1 5.1 86.8 10.7

(b) Severe non-IID clients

Method CA ρ = 0.10 ρ = 0.30

RA ASR↓ RA ASR↓

FedAvg 86.1 80.2 22.4 72.0 36.7
FFA-LoRA 88.0 84.8 14.2 78.3 27.9
FedIT 87.9 84.5 14.6 78.0 28.2
FLoRA 88.0 84.7 14.0 78.4 27.5
FlexLoRA 88.5 86.0 11.3 80.5 21.1
LoRA-Fair 88.6 86.2 10.9 80.8 20.4
RFD-LoRA 90.0 88.5 6.4 85.0 12.9

4.3 DISAGREEMENT SUPPRESSION (DIS)

To suppress the effect of non-IID clients, we compute the group variance of aggregated predictions.
Partition the K clients into M groups and let

q̄m(x) =
1

|Gm|
∑

k∈Gm

qk(x), v(x) =

C∑
i=1

Varm
[
q̄(i)m (x)

]
.

The sample weight is defined as

w(x) =
1

1 + ρ v(x)
, ρ ≥ 0. (9)

The distillation loss is reweighted as

LDIS(x) = w(x) · LKD(x).

Theorem 3 (Variance-adaptive error bound). Suppose the expected group variance of honest
clients satisfies E[vH(x)] ≤ H . Then under MoM aggregation, the expected deviation is bounded
by

Ex

[
∥q̃w(x)− q̄H,w(x)∥1

]
≤ O

(√
H
K +

√
ε
)
, (10)

where q̄H,w is the weighted average of honest client predictions.

Proof sketch. The weighting scheme ensures E[w(x)2v(x)] ≤ O(H), which reduces the effective
variance in concentration bounds for MoM. The adversarial contribution remains O(

√
ε). Full proof

is given in Appendix F.

5 EXPERIMENTS

In this section, we evaluate RFD-LoRA through experiments. Results show that it achieves stronger
robustness than existing federated LoRA methods under non-IID distributions and adversarial at-
tacks, while also outperforming baselines in IID settings. Full experimental details, including
datasets, model configurations, and hyperparameters, are in Appendix G and H.

5.1 EXPERIMENTAL RESULTS

Table 1 summarizes adversarial robustness under targeted backdoor attacks with varying fractions
of poisoned clients. RFD-LoRA consistently achieves the highest clean accuracy (CA) across both
IID and severe non-IID settings, confirming that robustness does not come at the expense of stan-
dard performance. More importantly, under adversarial conditions, RFD-LoRA yields substantially
higher robust accuracy (RA) and lower attack success rate (ASR) than all baselines. In the IID case,

7
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(a) Impact of LoRA Rank. (b) Effect of Reference Dataset
Size.

(c) Accuracy vs
Communication Rounds.

Figure 1: RFD-LoRA’s performance across various rank, reference dataset size, and training round.

Table 2: Comparison of server communication cost for different state-of-the-art approaches.

Method Param Size Per Round Rank-dependent Cost

FFA-LoRA 1.6MB Yes
FedIT 3.2MB Yes
FLoRA 9.5MB Yes
FlexLoRA 6.4MB Yes
LoRA-Fair 3.6MB Yes

RFD-LoRA 12KB No

with ρ = 0.10 poisoned clients, RFD-LoRA achieves RA of 89.1 and ASR of only 5.1, while the
best baseline (LoRA-Fair) reaches 87.5 RA and 9.5 ASR. At ρ = 0.30, the gap widens: RFD-LoRA
maintains 86.8 RA with 10.7 ASR, compared to LoRA-Fair’s 83.3 RA and 18.9 ASR. Similar trends
appear under severe non-IID distributions: with ρ = 0.30, FedAvg and FFA-LoRA suffer ASR
above 27%, while RFD-LoRA cuts ASR to 12.9% and preserves 85.0% RA. These results show
that while all methods degrade as ρ increases, RFD-LoRA degrades much more slowly, indicat-
ing better resilience. Overall, the results validate the effectiveness of our three robustness modules
CAT, MMD-KD, and DIS in suppressing adversarial amplification and mitigating non-IID drift.
RFD-LoRA not only provides stronger defense against poisoned clients but also achieves superior
clean-task accuracy compared to existing federated LoRA approaches.

Moreover, Table 2 shows the server communication cost per round. While existing federated LoRA
methods require transmitting millions of parameters and their cost scales with adapter rank, RFD-
LoRA only uploads logits, reducing the per-round size to just 12KB. This rank-independent design
eliminates the need to synchronize full adapter weights, saving both memory and computation while
enabling practical deployment across heterogeneous clients.

5.2 ABLATION STUDY

Robustness modules. To isolate the effect of each robustness module in RFD-LoRA, we conduct
ablation studies by removing CAT, MMD-KD, or DIS individually. Results in the left of Table 3
under both IID and severe non-IID partitions show that eliminating any one component consistently
reduces performance, confirming their complementary roles. Removing CAT leads to unstable train-
ing and larger variance across runs, highlighting its role in controlling Jacobian sensitivity. Without
MMD-KD, the model becomes vulnerable to energy-shaping attacks, as indicated by sharper per-
formance drops under adversarial clients. Finally, disabling DIS amplifies the effect of non-IID
heterogeneity, producing significant degradation. Together, these results validate that the three mod-
ules jointly contribute to the robustness of RFD-LoRA, and that each component addresses a distinct
failure mode of federated LoRA.

Robust aggregation. The right side of Table 3 compares different server-side aggregators under
ρ=0.30 poisoned clients. Simple averaging performs worst, while coordinate-wise median offers
partial robustness. Our Median-of-Means (MoM) aggregator achieves the highest clean accuracy
and robust accuracy, and reduces ASR by more than half compared to mean aggregation. We also
vary the number of MoM groups M and find that M=5 yields the lowest ASR, whereas very small
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Table 3: Ablations on RFD-LoRA modules (left) and robust aggregation (right). Top right: aggre-
gator choice under ρ=0.30. Bottom right: impact of varying MoM group count M .

Variant IID Severe non-IID

CA RA ASR↓ CA RA ASR↓

Full 90.6 89.1 5.1 90.0 88.5 6.4
w/o CAT 90.1 87.3 7.9 89.3 85.6 10.2
w/o MMD-KD 90.4 86.8 9.8 89.5 85.1 13.7
w/o DIS 90.3 86.2 8.7 88.4 83.0 15.1
CAT only 89.9 87.0 8.2 88.7 84.2 11.9
MMD-KD only 90.0 86.5 10.5 88.9 84.0 14.5
DIS only 89.8 87.6 8.4 89.1 86.3 11.2

Aggregator Choice (ρ=0.30)

Method CA RA ASR↓

Mean 89.6 83.1 22.8
Coord. Median 89.7 84.9 16.2
MoM (ours) 90.6 86.8 10.7

MoM Groups M (ASR↓)

M = 3 11.9
M = 5 10.7
M = 7 11.0
M = 9 12.5

Table 4: Ablations on (a) CAT schedule, (b) MMD-KD strength, and (c) DIS weighting. Metrics
averaged over GLUE tasks under ρ=0.30 poisoned clients. CA = clean accuracy; RA = robust
accuracy; ASR (lower is better).

(a) CAT schedule

(T0, κ, τ ) CA RA ASR↓

(1 , 0 , 0.7) 90.2 85.5 14.8
(2 ,2 , 0.7) 90.6 86.8 10.7
(3, 4, 0.7) 90.0 86.2 12.5
(2, 2, 0.6) 90.4 86.5 11.3
(2, 2, 0.8) 90.1 86.0 12.0
(4, 4, 0.8) 89.7 85.6 14.3

(b) MMD-KD strength

Variant CA RA ASR↓

λ = 0 90.3 85.0 15.6
λ = 0.05 90.5 86.2 12.4
λ = 0.1 90.6 86.8 10.7
λ = 0.2 90.1 86.0 12.8

Mean-only 90.4 86.3 11.9
Mean+Var 90.6 86.8 10.7

(c) DIS weighting

Variant CA RA ASR↓

ρ = 0 90.3 86.2 13.7
ρ = 0.5 90.5 86.6 11.5
ρ = 1.0 90.6 86.8 10.7
ρ = 2.0 90.0 86.0 12.6

Client-var 90.2 86.1 12.9
Group-var 90.6 86.8 10.7

or very large M slightly degrade robustness due to under- or over-fragmentation. This confirms that
MoM provides a strong and stable defense for logit aggregation in federated settings.

Hyperparameter settings. Table 4 evaluates the effect of hyperparameters tuning in each module.
For CAT, moderate temperature and confidence scaling (T0=2, κ=2, τ=0.7) yields the best tradeoff,
improving RA while significantly lowering ASR; overly large schedules degrade CA due to over-
softening. For MMD-KD, introducing moment alignment (λ=0.1) provides clear gains over plain
KD, and matching both mean and variance further reduces ASR without hurting CA. Finally, DIS
weighting improves robustness as ρ increases, with ρ=1.0 giving the best balance; group-variance
estimation is consistently superior to client-variance, confirming its stability under poisoned clients.

Other factors. We analyze factors shaping RFD-LoRA’s performance. Figure 1(a) shows that while
accuracy declines with lower LoRA ranks, RFD-LoRA consistently outperforms baselines, demon-
strating robustness to low-dimensional adaptation. Figure 1(b) evaluates reference data: larger an-
chor sets improve accuracy but plateau near 20%. When 30% of the reference set is poisoned by
trigger-token insertion and label flipping, RFD-LoRA remains relatively stable, though accuracy
drops compared to clean data—highlighting the importance of anchor quality. Figure 1(c) plots ac-
curacy over communication rounds: competing methods converge slowly with oscillations, while
RFD-LoRA stabilizes quickly and achieves the highest final accuracy.

6 CONCLUSION

We introduced RFD-LoRA, the first federated distillation framework for LoRA fine-tuning. Our
analysis exposes core weaknesses of federated LoRA: aggregation, initialization and projection
bias, adversarial amplification, and Jacobian sensitivity. RFD-LoRA aggregates in logit space,
eliminating parameter-space bias and enabling heterogeneous client ranks/adapter designs. With
Confidence-Adaptive Temperature (CAT), MMD-based Distillation (MMD-KD), and Disagreement
Suppression (DIS), we provide error bounds and show these modules directly reduce amplification
and sensitivity while improving robustness under non-IID and adversarial clients. Experiments on
GLUE confirm consistent gains in accuracy, robustness, and communication efficiency over prior
federated LoRA methods, suggesting a practical path to robust, parameter-efficient FL.
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7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility of our results. The detailed training
setup, including dataset descriptions, partitioning strategies, and hyperparameters, is provided in
Appendix G. All algorithms are fully specified in Algorithm 1, with theoretical assumptions and
complete proofs included in Appendix B - F. Experimental protocols, evaluation metrics, and ab-
lation studies are reported in Appendix G and H. An anonymous implementation of RFD-LoRA,
including preprocessing scripts and training code, has been uploaded to supplementary material to
facilitate exact reproduction of our findings.

8 USE OF LARGE LANGUAGE MODELS (LLMS)

In this manuscript, we made limited use of a large language model (LLM) solely for writing-related
assistance. Specifically, the LLM was employed to help with drafting, rephrasing, and polishing text
for improved clarity and readability. All technical content, including the design of methods, deriva-
tion of theorems, mathematical proofs, and experimental design and execution, was fully conceived,
implemented, and validated by the authors. No LLM was used for generating data, conducting
experiments, analyzing results, or developing the core scientific contributions of this work. The
responsibility for all ideas, technical claims, and conclusions lies entirely with the authors.
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Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui,

10

https://arxiv.org/abs/2402.15414
https://arxiv.org/abs/2402.15414
https://arxiv.org/abs/1811.12470
https://arxiv.org/abs/2411.14961
https://arxiv.org/abs/2411.14961
https://arxiv.org/abs/2410.19160
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
http://dx.doi.org/10.1109/TMC.2021.3070013
http://dx.doi.org/10.1109/TMC.2021.3070013


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Ja-
vidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar,
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tion: Distributed machine learning for on-device intelligence, 2016. URL https://arxiv.
org/abs/1610.02527.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, May 2020. ISSN
1558-0792. doi: 10.1109/msp.2020.2975749. URL http://dx.doi.org/10.1109/MSP.
2020.2975749.

Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. Ensemble distillation for robust
model fusion in federated learning, 2021. URL https://arxiv.org/abs/2006.07242.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019. URL https://arxiv.org/abs/1907.11692.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
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A INITIALIZATION LAG

In frameworks such as FLoRA (Wang et al. (2024)), the local matrices Ak and Bk are re-sampled
each round, with Ak ∼ N (0, σ2) and Bk set to zero. Although this design guarantees that the
reconstructed global model W0 + ∆W ′ remains aligned with the base model W0, it induces what
we callclient-side initialization lag. In particular, freshly reinitialized adapters yield ill-conditioned
gradients during the first few local steps. For a forward pass with LoRA-modified weights

y = x(W0 +BkAk), (11)

the gradients of Ak and Bk with respect to the loss L are

∂L

∂Ak
= x⊤ ∂L

∂y
B⊤

k ,
∂L

∂Bk
= A⊤

k x
⊤ ∂L

∂y
. (12)

At initialization, since Bk = 0 and Ak is random, we obtain

∂L

∂Ak
→ 0,

∂L

∂Bk
→ random direction.

As a result, clients waste many updates simply overcoming the poor initialization, leading to ineffi-
cient early-stage training.

B ADVERSARIAL AMPLIFICATION ANALYSIS

Lemma I. Let {ϵk}k∈H be i.i.d. random vectors in Rd with E[ϵk] = 0 and Cov(ϵk) = σ2Id. Let
PS ∈ Rd×d be the orthogonal projector onto an r-dimensional subspace S (i.e., PS = P⊤

S = P 2
S

and tr(PS) = r). Define the sample mean ϵ̄ = 1
|H|

∑
k∈H ϵk. Then

E
[
∥PS ϵ̄∥2

]
=

σ2 r

|H|
.

Proof: Since ϵ̄ has mean 0 and Cov(ϵ̄) = 1
|H| Cov(ϵk) =

σ2

|H| Id, we compute

E
[
∥PS ϵ̄∥2

]
= E

[
(PS ϵ̄)

⊤(PS ϵ̄)
]
= E

[
ϵ̄⊤P⊤

S PS ϵ̄
]
.

Because PS is an orthogonal projector matrix, it is both symmetric (P⊤
S = PS ) and idempotent

(P 2
S = PS ). Hence P⊤

S PS = PSPS = PS , and therefore

E
[
ϵ̄⊤P⊤

S PS ϵ̄
]
= E

[
ϵ̄⊤PS ϵ̄

]
.

Using the identity E[x⊤Ax] = tr(ACov(x)) for zero-mean x, we obtain

E
[
ϵ̄⊤PS ϵ̄

]
= tr

(
PS Cov(ϵ̄)

)
= σ2

|H| tr(PS) =
σ2

|H| r,

since the trace of an orthogonal projector equals its rank. This completes the proof.

C JACOBIAN SENSITIVITY: SKETCHES OF ANALYSIS

We give rough arguments supporting the claims here:

First-order sensitivity. Expanding z(x;A+∆A,B +∆B) shows

∆z ≈ α
r x(B∆A+∆BA),

ignoring higher-order terms. Hence

∥∆z∥ ≲ α
r ∥x∥

(
∥B∥∥∆A∥+ ∥A∥∥∆B∥

)
.

This shows that perturbations are scaled by ∥x∥ and the adapter norms.
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Gradient sensitivity. For softmax cross-entropy, the gradient with respect to logits satisfies

∥∇zℓ(z)∥ ≤ 2
T , ∥∇zℓ(z)−∇zℓ(z

′)∥ ≤ 1
T ∥z − z′∥.

Thus gradient variation inherits the same amplification factor as ∆z, multiplied by 1/T . This ex-
plains why small adapter perturbations can trigger large swings when T is small or when clients
produce highly confident predictions.

Deep network composition. If the LoRA block lies at layer ℓ, then downstream spectral norms
ρj further multiply the sensitivity, giving a bound on the order of

α

r
∥hℓ−1∥(∥A∥+ ∥B∥)

∏
j>ℓ

ρj .

Client heterogeneity amplification. Two clients (A1, B1) and (A2, B2) yield different logits:

∥z(x;A1, B1)− z(x;A2, B2)∥ ≲ α
r ∥x∥

(
∥B1∥∥A1 −A2∥+ ∥A2∥∥B1 −B2∥

)
.

If their low-rank subspaces are misaligned, the differences may not cancel but instead compound,
unlike full-rank training.

Summary. The Jacobian analysis shows that LoRA adapters create scaling factors—through ∥x∥,
∥A∥, ∥B∥, inverse temperature 1/T , and downstream spectral norms—that magnify small differ-
ences. This accounts for the observed instability of federated LoRA under non-IID data and adver-
sarial manipulation.

D GRADIENT SENSITIVITY UNDER CAT

Theorem 1 (Gradient sensitivity under CAT). Let x be any input and let the student distribution
be

pW (x) = softmax
(
zW (x)/T (x)

)
,

where T (x) ≥ 1 is the confidence-adaptive temperature and zW (x) ∈ RC are the logits of the global
model. Let q̃(x) ∈ ∆C−1 be the server-aggregated teacher distribution (obtained from client logits
after clipping and temperature scaling). Consider the distillation loss

LKD(x) = KL
(
q̃(x) ∥ pW (x)

)
.

Denote by JW (x) = ∂zW (x)/∂W the Jacobian of logits with respect to parameters W , and let ∥ · ∥
be the spectral/operator norm for matrices and the Euclidean norm for vectors. Then∥∥∇WLKD(x)

∥∥ ≤ Γ

T (x)
∥JW (x)∥, with Γ ≤ 2. (13)

If, in addition, both student and teacher logits are clipped coordinate-wise to [−c, c] before the
softmax with temperature T (x), then a refined bound holds:

∥∥∇WLKD(x)
∥∥ ≤ √C (

MT −mT

)
T (x)

∥JW (x)∥, (14)

where, writing a := c/T (x),

mT =
1

1 + (C − 1)e2a
, MT =

1

1 + (C − 1)e−2a
, 0 < mT ≤MT < 1.

Proof: Write u(x) := zW (x)/T (x) ∈ RC so that pW (x) = softmax(u(x)). By definition,

LKD(x) =

C∑
i=1

q̃i(x) log
q̃i(x)

pi(x)
= const−

C∑
i=1

q̃i(x) log pi(x),

14
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where the term
∑

i q̃i log q̃i does not depend on W . The gradient with respect to the pre-softmax
variables u is standard. Using ∂ log pi/∂uj = δij − pj yields

∂LKD

∂uj
= −

C∑
i=1

q̃i (δij − pj) = −q̃j + pj

C∑
i=1

q̃i = pj − q̃j .

Hence, by the chain rule from z to u,

∇z LKD(x) =
1

T (x)

(
pW (x)− q̃(x)

)
. (15)

Applying the chain rule from z to W with JW (x) = ∂zW (x)/∂W ,

∇W LKD(x) = JW (x)⊤∇z LKD(x) =
1

T (x)
JW (x)⊤

(
pW (x)− q̃(x)

)
.

Taking norms and using submultiplicativity gives∥∥∇W LKD(x)
∥∥ ≤ 1

T (x)
∥JW (x)∥

∥∥pW (x)− q̃(x)
∥∥
2
. (16)

For the coarse universal bound equation 13, note that pW (x) and q̃(x) are probability vectors in the
simplex. Thus ∥pW (x) − q̃(x)∥2 ≤ ∥pW (x) − q̃(x)∥1 ≤ 2. Plugging this into equation 16 yields
equation 13 with Γ = 2.

For the refined bound equation 14, assume teacher and student logits are clipped to [−c, c] before
applying the softmax with temperature T (x). Then each coordinate of pW (x) and q̃(x) lies in the
interval [mT ,MT ], where the extrema follow from monotonicity and are attained at the corners of
the hypercube:

mT = min
z∈[−c,c]C

ezi/T (x)∑
j e

zj/T (x)
=

e−c/T (x)

e−c/T (x) + (C − 1)ec/T (x)
=

1

1 + (C − 1)e2a
,

MT = max
z∈[−c,c]C

ezi/T (x)∑
j e

zj/T (x)
=

ec/T (x)

ec/T (x) + (C − 1)e−c/T (x)
=

1

1 + (C − 1)e−2a
,

with a = c/T (x). Consequently, for every coordinate i, |pi(x)− q̃i(x)| ≤MT −mT , and therefore
by Cauchy–Schwarz, ∥pW (x) − q̃(x)∥2 ≤

√
C (MT − mT ). Substituting into equation 16 gives

equation 14.

Both bounds are inversely proportional to T (x), which shows that CAT reduces the gradient sensi-
tivity by explicitly scaling the update with 1/T (x). This completes the proof.

E VARIANCE-CONSTRAINED ROBUSTNESS FOR MMD-KD

Theorem 2 (Variance-constrained robustness for MMD-KD). Fix an input x and a class index set
{1, . . . , C}. For each client k, let the clipped logit vector be ẑk(x) ∈ [−c, c]C . Assume the honest
clientsH (with |H| = (1− ε)K and ε < 1/2) generate i.i.d. coordinates

ẑk,i(x) are σ-sub-Gaussian and bounded in [−c, c], i = 1, . . . , C.

Let µi = E[ẑk,i(x)], m2,i = E[ẑk,i(x)2], and σ2
i = m2,i − µ2

i denote the honest mean, second
moment, and variance, respectively. Construct Median-of-Means (MoM) estimators µ̂i and m̂2,i

using M groups of size b = K/M (group means, then coordinate-wise median across groups), and
define

σ̂2
i = m̂2,i − µ̂ 2

i , σ̂ 2 = (σ̂2
i )

C
i=1, σ2 = (σ2

i )
C
i=1.

Then there exist absolute constants c1, c2, c3 > 0 such that, choosing M ≃ c1 log(C/δ),∥∥σ̂ 2 − σ2
∥∥
∞ ≤ c2 (c

2 + σ2)
(√

log(C/δ)
K +

√
ε
)

(17)

holds with probability at least 1− δ. Consider the MMD-KD loss (linear-kernel surrogate) at x,

LMMD(x) = λ
(
∥zW (x)− µ̂(x)∥22 + ∥(zW (x)− µ̂(x))◦2 − σ̂ 2(x)∥22

)
, (18)
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where (·)◦2 denotes element-wise square and zW (x) are student logits with Jacobian JW (x) =
∂zW (x)/∂W . If ∥zW (x)∥∞ ≤ c (via clipping), then the excess gradient induced by aggregation
error satisfies∥∥∇WLMMD(x)−∇WL⋆

MMD(x)
∥∥ ≤ λCmmd ∥JW (x)∥

(√
log(C/δ)

K +
√
ε
)
, (19)

where L⋆
MMD is the ideal loss with (µ̂, σ̂ 2) replaced by (µ,σ2), and Cmmd depends only on c, σ,

and C.

Proof: The proof has three steps: robust mean and second-moment concentration under MoM,
propagation to the variance estimator, and a stability bound for the gradient of equation 18.

Step I: MoM concentration for mean and second moment. Randomly partition the K clients
into M groups G1, . . . , GM of size b = K/M (assume M divides K). For each coordinate i define
group means

Zm,i =
1

|Gm|
∑

k∈Gm

ẑk,i, Um,i =
1

|Gm|
∑

k∈Gm

ẑ 2
k,i,

and set the MoM estimators µ̂i = median{Zm,i}Mm=1 and m̂2,i = median{Um,i}Mm=1.

Under the ε-contamination model with ε < 1/2, at least (1 − 2ε)M groups contain an adversarial
fraction at most 1/2 (standard Chernoff-style argument for random partition; details omitted for
brevity). For honest samples, ẑk,i are σ-sub-Gaussian and bounded by c, hence each honest group
mean Zm,i is sub-Gaussian with parameter ≲ σ/

√
b and satisfies (by Hoeffding/Bernstein)

Pr
(
|Zm,i − µi| > t

)
≤ 2 exp

(
− c′ b min{ t2

σ2 ,
t
c}
)
.

A coordinate-wise application and a union bound across M groups imply that with probability at
least 1− δ/2, for all i at least half of the groups satisfy

|Zm,i − µi| ≤ c′′ max
{
σ

√
log(CM/δ)

b , c log(CM/δ)
b

}
.

Since b = K/M and M ≃ c1 log(C/δ), the first term dominates, giving

∥µ̂− µ∥∞ ≤ c3 σ

√
log(C/δ)

K + c4 σ
√
ε. (20)

The
√
ε term follows from the breakdown-point property of the coordinate-wise median: at most

an ε-fraction of groups can be arbitrarily corrupted, and the median discards them up to a factor
absorbed in constants.

For second moments, note that ẑ 2
k,i ∈ [0, c2] are sub-exponential with parameter ≲ c2, hence the

same MoM argument yields

∥m̂2 −m2∥∞ ≤ c5 c
2
√

log(C/δ)
K + c6 c

2
√
ε. (21)

Equations equation 20 and equation 21 hold with probability at least 1− δ after adjusting constants.

Step II: Propagation to the variance estimator. For each coordinate i,

σ̂ 2
i − σ2

i =
(
m̂2,i −m2,i

)
−
(
µ̂ 2
i − µ2

i

)
=

(
m̂2,i −m2,i

)
− (µ̂i − µi)(µ̂i + µi).

By clipping, |µ̂i|, |µi| ≤ c, hence |µ̂i + µi| ≤ 2c. Taking absolute values and sup over i,

∥σ̂ 2 − σ2∥∞ ≤ ∥m̂2 −m2∥∞ + 2c ∥µ̂− µ∥∞.

Combining equation 20 and equation 21 and absorbing constants yields equation 17 with c2 depend-
ing on c and σ only (note that σ2 ≲ c2 by clipping).

16
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Step III: Stability of the MMD-KD gradient. Define the ideal loss (with honest moments) at x,

L⋆
MMD(x) = λ

(
∥zW − µ∥22 + ∥(zW − µ)◦2 − σ2∥22

)
.

Write ∆µ = µ̂− µ and ∆σ2 = σ̂ 2 − σ2. The gradients with respect to z := zW (x) are

∇zLMMD = 2λ (z − µ̂) + 4λ
[
(z − µ̂) ◦

(
(z − µ̂)◦2 − σ̂ 2

)]
,

∇zL⋆
MMD = 2λ (z − µ) + 4λ

[
(z − µ) ◦

(
(z − µ)◦2 − σ2

)]
.

Subtracting and using the triangle inequality,

∥∇zLMMD−∇zL⋆
MMD∥ ≤ 2λ ∥∆µ∥+4λ

∥∥∥(z−µ̂)◦((z−µ̂)◦2−σ̂ 2
)
−(z−µ)◦

(
(z−µ)◦2−σ2

)∥∥∥.
Apply the identity a ◦ b − a′ ◦ b′ = (a − a′) ◦ b + a′ ◦ (b − b′) with a = z − µ̂, a′ = z − µ,
b = (z − µ̂)◦2 − σ̂ 2, b′ = (z − µ)◦2 − σ2 to get

∥ · ∥ ≤ ∥a− a′∥ ∥b∥∞ + ∥a′∥∞ ∥b− b′∥.
Under clipping, ∥z∥∞ ≤ c and ∥µ̂∥∞, ∥µ∥∞ ≤ c, hence ∥a∥∞, ∥a′∥∞ ≤ 2c and ∥b∥∞ ≤ ∥(z −
µ̂)◦2∥∞ + ∥σ̂ 2∥∞ ≤ (2c)2 + c2 ≤ 5c2, and similarly ∥b′∥∞ ≤ 5c2. Moreover,

∥a− a′∥ = ∥∆µ∥, ∥b− b′∥∞ =
∥∥(z− µ̂)◦2− (z−µ)◦2−∆σ2

∥∥
∞ ≤ 4c ∥∆µ∥∞ + ∥∆σ2∥∞,

since |u2 − v2| = |u− v||u+ v| with |u|, |v| ≤ 2c. Therefore,

∥∇zLMMD−∇zL⋆
MMD∥ ≤ 2λ ∥∆µ∥+4λ

(
∥∆µ∥ ·5c2+2c·

(
4c ∥∆µ∥+∥∆σ2∥

))
≤ λC ′(c)

(
∥∆µ∥+∥∆σ2∥

)
,

for a constant C ′(c) polynomial in c. Passing to parameter space with the chain rule,∥∥∇WLMMD−∇WL⋆
MMD

∥∥ ≤ ∥JW (x)∥
∥∥∇zLMMD−∇zL⋆

MMD

∥∥ ≤ λCmmd ∥JW (x)∥
(
∥∆µ∥∞+∥∆σ2∥∞

)
.

Finally, invoke equation 20 and equation 17 (and the fact that ∥∆µ∥ ≤
√
C ∥∆µ∥∞) to obtain

equation 19, with Cmmd absorbing
√
C and the constants in equation 17. This completes the proof.

F VARIANCE-ADAPTIVE ERROR BOUND FOR DIS

Theorem 3 (Variance-adaptive error bound for DIS) Fix an input x and let each client k produce
a probability vector qk(x) ∈ ∆C−1 (obtained after clipping/temperature scaling). Assume an ε-
fraction of clients are Byzantine with ε < 1/2, and honest clients H satisfy coordinate-wise sub-
Gaussianity:

qk,i(x) are σ-sub-Gaussian and bounded in [0, 1], i = 1, . . . , C.

Partition the K clients uniformly at random into M groups G1, . . . , GM of size b = K/M , and
form group means

q̄m(x) =
1

|Gm|
∑

k∈Gm

qk(x) ∈ ∆C−1.

Let the group-variance statistic be

v(x) =

C∑
i=1

Varm
[
q̄(i)m (x)

]
,

and define the sample weight w(x) =
(
1 + ρ v(x)

)−1
with ρ ≥ 0. Let q̃(x) be the coordinate-wise

Median-of-Means (MoM) aggregate of {q̄m(x)}Mm=1, and write q̄H(x) = 1
|H|

∑
k∈H qk(x). Then

there exists an absolute constant C > 0 such that, choosing M ≃ c log(C/δ),

∥q̃(x)− q̄H(x)∥1 ≤ C
(√

vH(x)
K +

√
ε
)

with probability at least 1− δ, (22)

where vH(x) =
∑C

i=1 Var
(
q̄
(i)
m (x) | honest

)
. Consequently, defining q̃w(x) := q̃(x) and

q̄H,w(x) := q̄H(x) (the subscript w indicates the sample weight is applied downstream in the loss),
and assuming Ex[vH(x)] ≤ H , we have

Ex

[
∥q̃w(x)− q̄H,w(x)∥1

]
≤ C

(√
H
K +

√
ε
)
. (23)

Proof: We proceed in three steps.
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Step I: Coordinate-wise robust estimation over groups. Fix x and a coordinate i ∈ {1, . . . , C}.
Consider the group means

Zm,i(x) := q̄(i)m (x) =
1

|Gm|
∑

k∈Gm

qk,i(x).

For honest clients, qk,i(x) ∈ [0, 1] are σ-sub-Gaussian, hence each honest-group mean is sub-
Gaussian with parameter ≲ σ/

√
b and variance Var(Zm,i(x)) = Var(qk,i(x))/b. Under ε-

contamination with ε < 1/2 and random grouping, a standard argument shows that at least a con-
stant fraction of the M groups are “good” (honest-majority) with high probability (Chernoff bound),
while the remaining fraction can be adversarial.2

Let µ̂i(x) be the coordinate-wise MoM estimator of E[Zm,i(x) | honest], i.e., the median across the
M group means. Then (see, e.g., MoM concentration for sub-Gaussian data under Huber contami-
nation)∣∣µ̂i(x)−E[Zm,i(x) | honest]

∣∣ ≤ C1

(√
Var(Zm,i(x))

M +
√
ε
)
≤ C1

(√
Var(qk,i(x))

K +
√
ε
)
, (24)

with probability at least 1 − δ/C for a universal constant C1 > 0, where we used M = K/b and
Var(Zm,i) = Var(qk,i)/b.

Step II: Aggregating coordinates and relating to vH(x). Stacking the C coordinates, q̃(x) is
obtained by applying equation 24 to each coordinate and taking a union bound over i = 1, . . . , C.
Let µi(x) := E[Zm,i(x) | honest], so that q̄(i)H (x) = µi(x), and define the vector µ̂(x) with entries
µ̂i(x). Then, with probability at least 1− δ,

∥q̃(x)− q̄H(x)∥2 = ∥µ̂(x)− µ(x)∥2 ≤ C1

√√√√ C∑
i=1

(√
Var(qk,i(x))

K +
√
ε
)2

.

Using
√
a+ b ≤

√
a+
√
b and

∑
i Var(qk,i(x))/K = 1

K

∑
i Var(qk,i(x)), we obtain

∥q̃(x)− q̄H(x)∥2 ≤ C2

(√∑C
i=1 Var(qk,i(x))

K +
√
C
√
ε
)
.

Passing to ℓ1 via ∥ · ∥1 ≤
√
C ∥ · ∥2 yields

∥q̃(x)− q̄H(x)∥1 ≤ C3

(√∑C
i=1 Var(qk,i(x))

K +
√
ε
)
.

Finally, Var(q̄
(i)
m (x)) = Var(qk,i(x))/b and b = K/M , while our statistic vH(x) =∑C

i=1 Var(q̄
(i)
m (x) | honest) equals M

K

∑
i Var(qk,i(x)); thus

C∑
i=1

Var(qk,i(x)) =
K

M
vH(x),

and using M = Θ(log(C/δ)) (absorbed into constants) gives the pointwise bound equation 22:

∥q̃(x)− q̄H(x)∥1 ≤ C
(√

vH(x)
K +

√
ε
)
.

Step III: Expectation over x and the role of w(x). Taking expectation over x and assuming
Ex[vH(x)] ≤ H , Jensen’s inequality yields

Ex

[√
vH(x)

K

]
≤

√
Ex[vH(x)]

K ≤
√

H
K .

Therefore,

Ex

[
∥q̃(x)− q̄H(x)∥1

]
≤ C

(√
H
K +

√
ε
)
.

Since w(x) is a scalar weight applied downstream in the loss and does not change the location
of the honest target (both sides would be multiplied by the same w(x) when measuring weighted
deviations), we keep the notational reminder q̃w(x) := q̃(x) and q̄H,w(x) := q̄H(x) and conclude
equation 23. This completes the proof.

2See, e.g., classic MoM robust mean analyses; logs in C, δ are absorbed into constants by the choice M ≃
c log(C/δ).
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G EXPERIMENTAL SETUP

Backbone and tasks. Unless otherwise noted, we fine-tune RoBERTa-Large Liu et al. (2019) on
a subset of GLUE Wang et al. (2019): MNLI (matched/mismatched), SST-2, QQP, and QNLI. We
report average across tasks, following prior work.

Federated partitioning. We emulate a cross-device FL setting with K=10 clients. Data are split
by label skew at three heterogeneity levels:

• IID: stratified random split so that each client mirrors the global label proportions.

• Severe non-IID: for binary tasks, [0.1, 0.9], [0.9, 0.1], [0.5, 0.5]; for 3-class tasks,
[0.9, 0.05, 0.05], [0.05, 0.9, 0.05], [0.05, 0.05, 0.9].

Adversarial/poisoned clients. We consider a fraction ρ ∈ {0.10, 0.30} of clients as poisoned.
Each poisoned client flips a fraction π=0.20 of its local samples by inserting a fixed trigger token
and re-labeling them to a target class (targeted backdoor). We evaluate: clean accuracy (CA) on
unperturbed test data; robust accuracy (RA) on triggered inputs; and attack success rate (ASR, lower
is better) on triggered inputs. See more details in Appendix H.

Baselines. We compare against FEDAVG, FEDIT, FLORA, FFA-LORA, FLEXLORA, and
LORA-FAIR. To ensure fairness, all baselines use the same public anchor pool when applicable
and the same training budget (total client steps × rounds).

LoRA configuration. Following Hu et al. (2021), we insert LoRA adapters into the attention
query and value projections with scaling α=8. Baselines fix rank r=8 across all clients; RFD-
LoRA supports heterogeneous ranks and we explicitly test {rk} ∈ {2, 4, 8, 16} across clients to
validate rank flexibility. Unless stated, the backbone encoder and task head are frozen and only
adapter weights are updated.

Training protocol. We run N=1000 communication rounds with E=5 local epochs per round.
Each client uses AdamW (weight decay 0.01) on adapters with learning rate 3×10−5, batch size 64,
max sequence length 128, and linear warmup over the first 10% of local steps. The global server
performs one gradient step per round on the distillation objective (see below) with learning rate
γ=3×10−5. Results are averaged over 5 runs with different seeds.

Public anchors and communication. Each round, clients compute logits on a fixed public anchor
set comprising 10% of the per-task training size (sampled from public corpora disjoint from private
data). Logits are clipped elementwise to [−c, c] with c=10 before upload. We report the token-level
communication volume (per round and total) in supplementary tables.

RFD-LoRA details (logit-space). The server aggregates client logits via coordinate-wise Median-
of-Means (MoM) using M=5 random groups of equal size. Let z̃(x) be the MoM consensus for
anchor x. The student (global) model produces logits zW (x). The KD loss uses temperature-scaled
softmax:

LKD(x) = CE
(
softmax

( z̃(x)
T (x)

)
, softmax

( zW (x)
T (x)

))
.

Robustness modules. We activate all three modules unless doing ablations.

• CAT (Confidence-Adaptive Temperature). Temperature is T (x) =

T0

(
1 + κ

[
maxi q̃i(x)− τ

]
+

)
with q̃ = softmax(z̃), T0=2.0, κ=2.0, τ=0.7.

• MMD-KD (Moment Matching). We align mean and variance of logits using robust mo-
ment estimates from MoM groups:

LMMD(x) = λ
(
∥zW (x)− µ̂(x)∥22 + ∥(zW (x)− µ̂(x))◦2 − σ̂2(x)∥22

)
,

with λ=0.1.
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• DIS (Disagreement Suppression). We compute inter-group variance v(x) =∑
i Varm(z̄

(i)
m (x)) and weight each anchor by w(x) = (1 + ρDIS v(x))

−1 with ρDIS=1.0.

The per-anchor objective is LRFD(x) = w(x)
(
LKD(x)+LMMD(x)

)
, and the server update minimizes

the average of LRFD over anchors.

Infrastructure. All Experiments are run on NVIDIA Titan RTX GPUs. We use HuggingFace
Transformers for models and PyTorch distributed for client simulation.

H ADVERSARIAL ATTACK DETAILS

Threat model. We consider a standard targeted backdoor/data-poisoning threat model. An adver-
sary controls a fraction ρ ∈ {0.10, 0.30} of clients. Each poisoned client can only manipulate its
local training data; we assume no access to other clients’ data or to the server beyond participating in
standard FL rounds. Adversarial goals: cause the global model to misclassify any input containing
a small trigger pattern as a specific target class ytarget while minimally affecting clean accuracy.

Poisoning procedure (primary attack used in experiments). Each poisoned client indepen-
dently modifies a fraction π = 0.20 of its local training examples as follows:

1. Select π · |Dk| training samples uniformly at random.
2. For each selected sample (x, y), insert a fixed trigger token sequence (we denote it

<TRIG>) into the input text. In our experiments the trigger is prepended to the input (prefix
trigger), i.e., x← <TRIG> ∥x. (Other placements such as suffix or random position were
evaluated and yield similar qualitative results.)

3. Replace the label y by the attacker-chosen target label ytarget (targeted backdoor).

Poisoned clients then perform standard local training using the corrupted local dataset.

Implementation details and parameters. All attack experiments use the following concrete set-
tings unless stated otherwise:

• Poisoned-client fraction: ρ ∈ {0.10, 0.30}.
• Per-poisoned-client poison rate: π = 0.20.
• Trigger token: <TRIG> (single token, prepended) — token chosen to be out-of-vocabulary

for the target dataset to avoid accidental natural occurrences.
• Target class ytarget: selected per-task (for multiclass tasks we choose one arbitrary class and

keep it fixed across poisoned clients).
• Training: poisoned clients follow the same local training hyperparameters as honest clients

(same optimizer, learning rate, number of local steps).
• Anchor poisoning (when evaluated): 20% of anchor samples replaced with triggered ex-

amples labeled as ytarget.

Details of evaluation metrics. We report:

• Clean accuracy (CA): accuracy on clean (untriggered) test inputs.
• Robust accuracy (RA): accuracy on test inputs after adding the trigger (lower RA indicates

stronger backdoor).
• Attack success rate (ASR): fraction of triggered test inputs classified as ytarget (higher ASR

indicates stronger backdoor); in tables we report ASR with “lower is better” formatting (we
may report 1−ASR depending on convention).

20


	Introduction
	Preliminaries
	Aggregation bias and initialization lag
	Projection bias from subspace misalignment
	Adversarial amplification
	Jacobian sensitivity of LoRA parameterization

	Framework and global algorithm
	Client-side procedure
	Server-side aggregation

	Robustness modules
	Confidence-adaptive temperature (CAT)
	MMD-based knowledge distillation (MMD-KD)
	Disagreement suppression (DIS)

	Experiments
	Experimental results
	Ablation study

	Conclusion
	Reproducibility Statement
	Use of Large Language Models (LLMs)
	Initialization lag
	Adversarial amplification analysis
	Jacobian sensitivity: sketches of analysis
	Gradient sensitivity under CAT
	Variance-constrained robustness for MMD-KD
	Variance-adaptive error bound for DIS
	Experimental setup
	Adversarial attack details

