
LLM-ML Teaming: Integrated Symbolic Decoding and Gradient
Search for Valid and Stable Generative Feature Transformation

Anonymous ACL submission

Abstract001

Feature transformation enhances data represen-002
tation by deriving new features from the origi-003
nal data. Generative AI offers potential for this004
task, but faces challenges in stable generation005
(consistent outputs) and valid generation (error-006
free sequences). Existing methods—traditional007
ML’s low validity and LLMs’ instability—fail008
to resolve both. We find that LLMs ensure valid009
syntax, while ML’s gradient-steered search010
stabilizes performance. To bridge this gap,011
we propose a teaming framework combining012
LLMs’ symbolic generation with ML’s gradi-013
ent optimization. This framework includes four014
steps: (1) golden examples generation, aim-015
ing to prepare high-quality samples with the016
ground knowledge of the teacher LLM; (2) fea-017
ture transformation sequence embedding and018
search, intending to uncover potentially supe-019
rior embeddings within the latent space; (3) stu-020
dent LLM feature transformation, aiming to dis-021
till knowledge from the teacher LLM; (4) LLM-022
ML decoder teaming, dedicating to combine023
ML and the student LLM probabilities for valid024
and stable generation. The experiments on var-025
ious datasets show that the teaming policy can026
achieve 5% improvement in downstream perfor-027
mance while reducing nearly half of the error028
cases. The results also demonstrate the effi-029
ciency and robustness of the teaming policy.030
Additionally, we also have exciting findings on031
LLMs’ capacity to understand the original data.032
The codes are available at this link.033

1 Introduction034

Feature transformation is to derive a new feature035

set from an original feature set to reprogram data036

representation, for instance, transforming [a, b] into037

[a/b, a− b, (a+ b)/a]. Feature transformation can038

reconstruct distance measures, reshape discrimina-039

tive patterns, and enhance data AI readiness (e.g.,040

structural, predictive, interaction, and expression041

levels). Generative AI (e.g., LLM) has the poten-042

tial to deliver far better features (Zhao et al., 2023)043

(a) ML Drawbacks (b) LLMs Drawbacks
Figure 1: Traditional ML’s Low Validity and LLMs’
Instability.

than manual reconstruction or machine-assisted 044

approaches (e.g., genetic algorithms, simulated an- 045

nealing, reinforcement learning). Generative Fea- 046

ture Transformation (GFT) formulates the task as 047

a sequence generation problem, where each trans- 048

formed feature (e.g., a/b) is treated as a token, and 049

a new feature set (e.g., [a/b, a− b, (a+ b)/a]) be- 050

comes a token sequence (Wang et al., 2025). Solv- 051

ing GFT efficiently avoids exhaustive search over 052

exponentially large spaces and accelerates auto- 053

mated feature engineering. 054

There are two major challenges (Figure 1) in 055

solving GFT: (1) stable generation, and (2) valid 056

generation. First, some generative methods exhibit 057

unstable variability by causing significant shifts 058

in generated features; that is, the same input fea- 059

ture set results in different feature transformations 060

across different runs with different performances. 061

Stable generation seeks to answer: how can we 062

ensure the consistency and stability of generated 063

features across different inputs and runs? Second, 064

we observed that some generative methods can gen- 065

erate undefined values (e.g., division by zero), vi- 066

olate mathematical constraints, and introduce re- 067

dundancy that does not contribute to feature trans- 068

formations. Valid generation of feature transforma- 069

tions is intended to answer: how can we generate 070

legal and sound feature transformation sequences 071

1

https://anonymous.4open.science/r/LLM-ML-Teaming-DCAI-B391

that contribute to downstream performance?072

Relevant work can only partially solve the two073

challenges of GFT. First, GFT is related to auto-074

mated discrete search-based approaches, such as075

genetic algorithms, simulated annealing, and rein-076

forcement learning, which search for optimal fea-077

ture transformations. However, these methods suf-078

fer from an exponential search space and rely on079

hand-crafted reward functions. Second, GFT is con-080

nected to deep sequential learning (e.g., encoder-081

decoder architectures), which aims to learn the data082

embedding and decode the embedding into feature083

transformation sequences. However, such methods084

often generate illegal tokens due to the lack of ro-085

bust tokenization, post-validation mechanisms, and086

weak syntax enforcement. Third, GFT is related087

to LLMs, where we fine-tune models to generate088

feature transformation sequences. However, LLMs089

suffer from instability and the preference for us-090

ing simple operators (e.g., addition) (Küken et al.,091

2024) to generate different feature transformations092

with different performances in different runs, due093

to stochastic sampling and probabilistic token se-094

lection. Existing studies demonstrate the inability095

to jointly address both stable and valid generation096

in GFT. As a result, a new method is needed to097

achieve stable and valid feature transformations.098

Our Perspective: teaming ML gradient099

search for stability and LLM symbolic gener-100

ation for validity. After a massive analysis, we101

have two observations: (1) While LLMs can gener-102

ate different feature transformation sequences with103

different performances across different runs, LLMs104

are capable of generating valid, legal token expres-105

sions of feature transformation; (2) another solution106

is encoding-search-decoding which computes the107

embedding space of data to transform, then lever-108

ages gradient search to identify the best embedding109

space, and decodes the best embedding space into110

optimal feature transformation sequence. While111

such the method generates illegal tokens, its gradi-112

ent search can ensure that the identified embedding113

of feature transformation is better than initializa-114

tion embeddings, thus, demonstrating stable perfor-115

mance improvements. We derive two key insights116

from the two observations: (1) LLM symbolic gen-117

eration for valid generation; and (2) ML gradient118

search for stable generation. Our perspective is to119

team LLM symbolic generation with ML gradient120

search together to achieve a valid and stable gen-121

eration of feature transformations. We highlight122

that leveraging teacher LLM-generated data to train123

both the ML model and the student LLM, along 124

with collaboratively decoding between the student 125

LLM and ML decoder, is an effective way to inte- 126

grate both validity and stability. Our work’s key 127

innovation focuses on LLM–ML teaming rather 128

than solely relying on LLMs. Our method incor- 129

porates an ML gradient-based search with LLM 130

symbolic generation to address LLM instability 131

and ML validity limitations. 132

Summary of Proposed Solution: Inspired by 133

these findings, we develop a four-step LLM-ML 134

teaming framework to integrate valid symbolic gen- 135

eration and stable gradient-steered search. Step 1 136

data is to leverage generic LLM (i.e., ChatGPT-4 137

API and prompting) to generate high-quality and 138

diverse transformed feature sets, along with corre- 139

sponding performance on a downstream task (e.g., 140

random forest classification) as golden training ex- 141

amples. Step 2 stability is to exploit the golden 142

training examples of Step 1 to train an embed- 143

ding, gradient-steered search, decoding based ML 144

pipeline for GFT. The gradient-steered mountain- 145

climbing search provides stable improvements in 146

identifying better feature transformations in an em- 147

bedding space. Step 3 validity is to utilize the gold 148

training examples of Step 1 to fine-tune a founda- 149

tion LLM model with subword mechanism, contex- 150

tual self-attention, and structured data pre-training 151

through two tasks: sequence reconstruction and cor- 152

responding feature performance prediction. This 153

is to build the LLM side with logits for teaming. 154

Step 4: collaboration is to integrate stable search 155

in ML and valid generation in LLM by calibrating 156

LLM’s next token probability using the next token 157

probability of the gradient search based decoder. 158

Extensive experiments show that the teaming of 159

ML’s gradient search and LLM’s generation can im- 160

prove the validity and stability of GFT. In addition, 161

it achieves 5% improvement on such generalized 162

and challenging feature engineering tasks. 163

Our Contributions: (1) Formulation: We tackle 164

an interesting problem: stability and validity in 165

generative feature transformation, which is an auto- 166

mated data engineering task. (2) Insights: we find 167

that gradient-steered search can strengthen genera- 168

tion stability on performance improvement in GFT; 169

LLMs’ symbolic generation can improve valid and 170

legal generation. (3) Techniques: we propose an 171

LLM-ML teaming strategy to integrate valid sym- 172

bolic generation and stable gradient-steered search. 173

The integration is achieved through teacher-guided 174

training and collaborative decoding. 175

2

2 Preliminaries and Problem Statement176

2.1 Important Concepts177

Operation Set. We define a set of mathematical178

operations, including unary (e.g., log, exp) and179

binary (e.g., add, divide) operators. The operators180

are applied to existing features to construct new181

ones.182

Feature Transformation Sequence. A feature183

transformation sequence is a collection of symbolic184

expressions that define how raw features are com-185

bined. These expressions are represented as token186

sequences composed of feature IDs and operators.187

Figure 2 shows an example.

Figure 2: A Feature Transformation Sequence Example.

188
Postfix Representation. To reduce ambiguity and189

simplify decoding, we adopt the postfix notation in-190

stead of infix. Postfix sequences eliminate the need191

for brackets and enable left-to-right parsing. Fig-192

ure 6 illustrates the difference. See Appendix A193

for examples and details.194

2.2 Problem Statement195

We aim to develop a generative AI system that196

generates a feature transformation sequence given197

a tasking dataset, by integrating LLM symbolic198

generation for valid generation and ML gradient199

search for stable generation. Formally, given a200

dataset D = {X, y} and an operation set O, the201

goal is to find the optimal feature transformation202

sequence Γ∗ that maximizes the downstream ML203

model M’s performance (i.e., balance among ac-204

curacy, validity, and stability) on the transformed205

feature set:206

Γ∗ = argmax
Γ

A(M(Transform(X,Γ)), y) (1)207

where Transform(X,Γ) transforms the original fea-208

ture set X using Γ, and A is the downstream per-209

formance metric for M.210

3 Proposed Method211

3.1 Framework Overview212

Figure 3 shows the framework includes four com-213

ponents: (1) Golden Examples Generation. We214

use an advanced LLM (e.g., ChatGPT) to gener-215

ate feature transformation sequences and design216

downstream tasks (e.g., regression or classifica- 217

tion) to evaluate each sequence. The sequences 218

and their evaluation scores form golden exam- 219

ples that serve as training data. (2) Transforma- 220

tion Sequence Embedding and Search. To learn 221

golden examples and facilitate the exploration of 222

the optimal transformation path, we deploy an 223

encoder-evaluator-decoder ML framework. The 224

encoder embeds feature transformation sequences 225

into fixed-length vectors to construct an embedding 226

space. The evaluator assesses the utility of these 227

embedding vectors of feature transformations and 228

provides gradient guidance to search for optimal 229

embeddings in the latent embedding space. The 230

decoder reconstructs embeddings into transforma- 231

tion sequences. (3) LLM Supervised Fine-tuning. 232

Since ChatGPT is a black-box model that only out- 233

puts discrete tokens, we cannot directly access its 234

probability distribution. Additionally, ChatGPT is 235

too large to fine-tune efficiently. Therefore, we 236

adopt a lightweight Llama model as a student LLM 237

to learn from the golden examples. This allows the 238

student LLM to become more efficient and com- 239

pact while acquiring knowledge of feature transfor- 240

mations and generating transformation sequences 241

with probabilistic outputs. (4) LLM-ML Decoder 242

Teaming. We leverage LLM-generated probability 243

to guide the ML model’s decoding process. The 244

ML decoder, informed by the finetuned LLM’s 245

prior knowledge, improves the stability and valid- 246

ity of the results. 247

3.2 Golden Examples from Teacher LLM 248

We leverage powerful APIs, such as GPT-4o, to 249

generate golden examples as training data. Given 250

a dataset D = {X, y} with the features X = 251

[f1, · · · , fN], we construct prompts that cross origi- 252

nal features with operators from the operation set O. 253

Besides, we add certain rules and one-shot example 254

about how to transform a feature set in a prompt, 255

to guide the LLM. A sample prompt is described 256

in Appendix B. Under such prompts, the LLM 257

generates feature transformation sequences, there- 258

after evaluated on downstream tasks to obtain per- 259

formance. The resulting pairs form a high-quality 260

database, denoted as (Γi, si)
M
i=1, where Γ and s rep- 261

resent the feature transformation sequence and the 262

downstream performance, respectively, and M is 263

the number of golden examples. This high-quality 264

database serves two purposes: (1) distilling the 265

knowledge of the teacher LLM as a reference for 266

fine-tuning the student LLM, enabling it to generate 267

3

Figure 3: Overview of the LLM-ML Teaming Framework. The framework consists of four key components: (1)
Golden Examples Generation, where LLMs generate high-quality feature transformation examples; (2) Feature
Transformation Sequence Embedding and Search, optimizing transformation sequences in the latent space; (3)
Student LLM Feature Transformation, distilling knowledge into a compact LLM; and (4) LLM-ML Decoder
Teaming, refining sequence generation via teaming decoding.

more efficient and controlled feature transforma-268

tions, and (2) providing diverse, high-performing269

samples to guide search-based ML methods, ensur-270

ing that the optimization process explores a well-271

informed and promising search space while avoid-272

ing suboptimal or redundant transformations.273

Golden examples provide high-quality training274

data and optimization signals to guide the direc-275

tions of optimal feature transformation search and276

generation. Compared to random methods, golden277

examples help narrow the search space, making the278

optimization process more efficient. The evalua-279

tor assesses golden examples, steering the search280

toward high-quality feature transformation pat-281

terns while avoiding ineffective exploration. Addi-282

tionally, golden examples establish an experience-283

driven search boundary, allowing search methods284

to focus on meaningful paths, thereby improving285

the accuracy and stability of generations. Golden286

examples provide a strong foundation for guiding287

both the search process and the student LLM, but288

their quality and diversity depend on the generation289

method. Traditional RL-based algorithms often290

struggle to generate innovative feature crosses, as291

they tend to follow fixed reward patterns, leading292

to repetitive and predictable outputs. In contrast,293

LLMs, with their vast general knowledge, can gen-294

erate a wide variety of feature crosses, including 295

unconventional and innovative patterns that tradi- 296

tional methods may overlook. By leveraging LLMs 297

to generate golden examples, we ensure a richer 298

and more diverse set of high-quality transformation 299

sequences, which in turn enhances the effectiveness 300

of the search process and encodes more knowledge 301

into the student LLM. 302

3.3 Feature Transformation Sequence 303

Embedding and Search 304

This module is designed to explore and opti- 305

mize feature transformation sequence embeddings 306

within a latent space. It employs a gradient-steered 307

search approach to iteratively refine transforma- 308

tion sequences, ensuring that the generated features 309

align closely with the objectives of downstream 310

tasks. The module adopts an encoder-evaluator- 311

decoder structure: the encoder maps transformation 312

sequences into a high-dimensional latent space, the 313

evaluator predicts downstream performance based 314

on embeddings, and the decoder reconstructs em- 315

beddings back into transformation sequences. 316

3.3.1 Training of Encoder-Evaluator-Decoder 317

To build a robust encoder-evaluator-decoder struc- 318

ture, a multi-step training strategy is employed, 319

4

leveraging the golden examples as reference. We320

use a bidirectional GRU encoder and a two-layer321

MLP evaluator. The decoder is the LSTM followed322

by a token classifier.323

Given a transformation sequence Γ =324

[τ1, τ2, . . . , τK], the encoder maps it to a latent325

embedding zi = Encoder(Γi). The latent em-326

bedding zi is then fed into both the decoder and327

the evaluator, which are trained jointly. The de-328

coder minimizes the reconstruction loss Lrec =329

∥Γi − Decoder(Encoder(Γi))∥22 to ensure the em-330

beddings retain sufficient information to recon-331

struct the original sequence. The evaluator predicts332

the downstream performance of each sequence333

based on the golden examples with the predic-334

tion loss Lest = 1
N

∑N
i=1 (ŝi − si)

2, where ŝi is335

the predicted performance, and si is the corre-336

sponding ground-truth value. The joint training337

objective combines these two losses: Ljoint =338

αLrec + (1− α)Lest.339

3.3.2 Embedding Search340

After training the encoder-evaluator-decoder struc-341

ture, an embedding search is performed to identify342

high-performing transformation sequences.343

First, the latent embedding zi for a given se-344

quence Γ is obtained. Then the evaluator predicts345

the downstream performance ŝi = Evaluator(zi).346

The evaluator computes the performance score’s347

gradient ∇zi ŝi =
∂ŝi
∂zi

with respect to the embed-348

ding, guiding the search process. Then the embed-349

ding is updated iteratively as znew
i = zi + η∇zi ŝi350

to maximize the predicted performance, where η351

is the learning step size. The updated embedding352

znew
i is decoded into a new transformation sequence353

Γnew
i = Decoder(znew

i).354

This search process iteratively alternates be-355

tween embedding optimization and sequence de-356

coding, progressively refining the quality of the357

generated sequences. By aligning the sequences358

with task objectives and exploring diverse regions359

of the feature space, this approach maximizes both360

performance and innovation.361

While neither LLMs nor black-box ML mod-362

els are inherently interpretable, ML-guided search363

offers clearer gradient-driven rationale for transfor-364

mation selection. Unlike autoregressive LLM gen-365

eration, which is sensitive to decoding temperature366

and sampling noise, ML-guided latent optimization367

offers smoother, reproducible search dynamics, en-368

abling stable feature discovery.369

3.4 Student LLM Feature Transformation 370

The student LLM is fine-tuned using golden sam- 371

ples to get the token probability for use in the de- 372

coder teaming process. Two key tasks are involved: 373

(1) Sequence Generation Task, where the LLM 374

generates transformation sequences based on input 375

prompts to enable the student LLM to learn the 376

structure and syntax of transformation sequences 377

from the teacher LLM’s examples, and (2) Perfor- 378

mance Prediction Task, where the LLM predicts 379

the downstream performance of the generated se- 380

quences to enhance the student model’s ability to 381

generate valid and informative sequences. 382

Details of the training objectives and loss func- 383

tions are provided in Appendix C. 384

3.5 LLM-ML Decoder Teaming 385

The decoder teaming policy enhances sequence 386

generation by ensuring validity, coherence, and 387

logical consistency. It integrates the ML Decoder 388

and LLM Decoder using a probabilistic framework 389

that leverages their complementary strengths for 390

robust, high-quality outputs. 391

Let the probabilities from the ML Decoder 392

and LLM Decoder at time step t be denoted as 393

PML(wt | znew
i , w<t) and PLLM(wt | Γi, w<t), re- 394

spectively. We adopt a posterior correction strategy 395

inspired by the Product of Experts. The combined 396

probability is: 397

P (wt) = 398

PML(wt | znew
i , w<t)

λ · PLLM(wt | Γi, w<t)
1−λ∑

w∈V
PML(w | znew

i , w<t)λ · PLLM(w | Γi, w<t)1−λ
,

(2)

399

where wt is the predicted token, w<t represents 400

the preceding sequence, and λ ∈ [0, 1] controls 401

the balance between two decoders. This formula- 402

tion ensures the multiplicative combination of PML 403

and PLLM, aligning the ML Decoder’s structured 404

precision with the LLM Decoder’s generative flex- 405

ibility. By adjusting λ, we balance deterministic 406

rule-following with creative exploration, enhancing 407

sequence reliability and efficiency. 408

Our method combines gradient search and sym- 409

bolic generation through a joint decoder that bal- 410

ances stability from ML and validity from LLM. 411

This integration is simple but effective and has not 412

been used in prior feature transformation methods. 413

5

Table 1: Overall Downstream Performance Comparison.

Dataset Source Task Samples Features Original RDG LDA ERG NFS AFAT PCA TTG GRFG MOAT FeatLLM CAAFE AutoFeat OpenFE ELLM-FT Teaming

Amazon Employee Kaggle C 32,769 9 93.37% 92.31% 91.64% 92.43% 93.21% 92.97% 92.29% 92.79% 93.02% 93.13% 93.62% 91.41% 93.29% 93.44% 93.17% 93.52%
AP-omentum-ovary OpenML C 275 10,936 78.16% 74.32% 59.46% 73.65% 75.00% 74.32% 73.65% 68.24% 76.35% 79.64% 78.89% 78.16% 77.63% 78.16% 80.06% 81.39%
SpectF UCIrvine C 267 44 76.06% 76.03% 66.29% 75.66% 79.40% 76.03% 70.92% 76.03% 81.65% 86.95% 80.07% 70.60% 76.06% 76.06% 86.14% 90.49%
German Credit UCIrvine C 1,000 24 74.20% 68.01% 63.91% 74.43% 68.67% 68.32% 67.92% 64.51% 68.29% 72.44% 76.35% 59.92% 74.86% 74.50% 76.39% 85.32%
UCI Credit UCIrvine C 30,000 23 79.29% 80.32% 74.37% 80.16% 80.13% 80.32% 73.27% 79.81% 80.67% 80.87% 76.39% 76.80% 79.72% 80.11% 79.29% 80.86%
Spam Base UCIrvine C 4,601 57 94.53% 90.61% 88.89% 91.70% 92.50% 91.20% 81.66% 91.91% 92.20% 92.90% 95.03% 88.51% 94.54% 94.53% 96.68% 93.46%
Ionosphere UCIrvine C 351 34 93.37% 91.17% 65.53% 92.02% 91.17% 92.87% 92.87% 90.31% 93.16% 95.69% 95.38% 92.84% 93.37% 93.37% 96.01% 97.10%
Higgs Boson UCIrvine C 50,000 28 69.66% 67.51% 51.32% 69.02% 69.17% 69.70% 53.45% 68.99% 69.77% 69.12% 70.35% 61.26% 67.35% 69.66% 69.66% 70.81%
PimaIndian Kaggle C 768 8 80.68% 76.04% 63.80% 76.17% 74.87% 76.56% 63.80% 74.48% 75.39% 80.73% 89.66% 79.86% 80.86% 80.86% 89.66% 91.95%
Messidor Feature UCIrvine C 1,151 19 69.09% 62.38% 47.52% 66.90% 63.77% 66.55% 67.21% 66.46% 69.24% 73.02% 72.62% 66.10% 69.08% 69.09% 74.80% 75.61%
Wine Quality Red UCIrvine C 999 11 60.95% 46.65% 43.31% 46.10% 46.21% 48.05% 42.21% 46.71% 47.01% 62.10% 62.65% 51.74% 62.52% 53.71% 61.11% 62.94%
Wine Quality White UCIrvine C 4,898 11 54.75% 52.41% 44.94% 51.04% 52.51% 51.67% 43.01% 53.12% 53.41% 54.52% 56.87% 42.82% 54.26% 54.75% 55.03% 55.18%
SVMGuide3 LibSVM C 1,243 21 81.85% 78.68% 65.24% 82.62% 79.16% 79.49% 67.60% 79.81% 81.17% 81.74% 82.54% 75.30% 83.05% 81.85% 82.70% 84.64%
Lymphography UCIrvine C 148 18 83.19% 79.36% 70.38% 83.73% 85.25% 82.38% 70.38% 82.38% 85.51% 88.38% 85.24% 75.00% 79.26% 83.73% 90.54% 91.89%

Airfoil UCIrvine R 1,503 5 0.5749 0.5193 0.2201 0.5193 0.5193 0.5210 0.2730 0.5003 0.5587 0.5967 0.5877 N/A 0.5746 0.5746 0.6174 0.6329
Housing Boston Kaggle R 506 13 0.4148 0.4043 0.0201 0.4090 0.4251 0.4161 0.1048 0.3967 0.4043 0.4463 0.4442 N/A 0.4149 0.4148 0.4564 0.4584
Openml 586 OpenML R 1,000 25 0.6311 0.5681 0.1109 0.6147 0.5443 0.5435 0.1109 0.5443 0.5768 0.6251 0.6477 N/A 0.6329 0.6311 0.6328 0.6569
Openml 589 OpenML R 1,000 25 0.5388 0.5091 0.0112 0.5103 0.5053 0.5087 0.0112 0.5032 0.5047 0.5139 0.5545 N/A 0.5423 0.5388 0.5836 0.5990
Openml 607 OpenML R 1,000 50 0.6207 0.5208 0.1071 0.5553 0.5194 0.5158 0.1071 0.5222 0.6021 0.6051 0.5608 N/A 0.6191 0.6207 0.6089 0.6181
Openml 616 OpenML R 500 50 0.3736 0.0701 0.0241 0.1937 0.1667 0.1489 0.0242 0.1567 0.3722 0.4063 0.3836 N/A 0.3924 0.3736 0.4082 0.4073
Openml 618 OpenML R 1,000 50 0.4402 0.3720 0.0521 0.3561 0.3473 0.2472 0.1016 0.3467 0.4562 0.4734 0.4597 N/A 0.4407 0.4402 0.4734 0.4840
Openml 620 OpenML R 1,000 25 0.6434 0.5111 0.0293 0.5466 0.5130 0.5267 0.1138 0.5123 0.5591 0.5722 0.5725 N/A 0.6576 0.6434 0.6203 0.5847
Openml 637 OpenML R 500 50 0.3162 0.1364 0.0433 0.1521 0.1521 0.1758 0.0352 0.1439 0.2071 0.2125 0.2945 N/A 0.3251 0.3162 0.2946 0.3095

Average Ranking - - - - 5.52 11.35 15.00 9.74 9.78 9.87 14.00 11.65 7.83 5.04 4.22 14.00 5.52 5.13 3.35 1.83

4 Experiment414

4.1 Experimental Settings415

4.1.1 Datasets416

We conducted experiments using datasets from417

UCIrvine (Public, 2023c), CPLM (Public, 2023a),418

Kaggle (Howard, 2023), and OpenML (Public,419

2023b). The corresponding statistics and tasks are420

presented in Table 1, where ’C’ represents classifi-421

cation and ’R’ represents regression.422

4.1.2 Baseline Algorithms423

We compared our method with widely-used feature424

generation methods, shown in Table 1. The details425

of the baselines are presented in Appendix D.426

4.1.3 Evaluation Metrics427

We evaluated our framework on both classification428

and regression tasks. For classification, we use429

the F1-Score, and for regression, we report 1-RAE430

(Relative Absolute Error). The detailed metrics431

definitions are provided in Appendix E.432

4.2 Research Questions433

We aim to address the following research questions:434

RQ1: Does the proposed feature transformation435

framework enhance the downstream performance?436

RQ2: What is the impact of the teaming strategy,437

in terms of error rate, operator ratio, and ablation438

studies? RQ3: How well does the proposed frame-439

work generalize across different downstream mod-440

els? RQ4: How effective are LLMs in feature441

transformation tasks, and how do they compare to442

traditional methods?443

4.3 Overall Performance444

To evaluate the effectiveness of our proposed fea-445

ture transformation framework, we conducted ex-446

periments on 23 diverse datasets, covering both 447

classification and regression tasks. These datasets 448

vary significantly in size, feature dimensions, and 449

complexity, ensuring a comprehensive assessment 450

of the framework’s generalization ability. We com- 451

pare our Teaming method with several baseline 452

feature transformation approaches, including both 453

traditional and reinforcement learning (RL)-based 454

methods. For classification tasks, we use F1-Score 455

as the primary evaluation metric, while for regres- 456

sion tasks, we adopt 1-RAE (inverse relative ab- 457

solute error). The results, summarized in Table 1, 458

provide a detailed performance comparison across 459

different datasets. 460

The “Original” results refer to models trained 461

solely on the raw feature set, without any trans- 462

formed features. The consistent improvements ob- 463

served across most datasets after applying feature 464

transformation highlight the necessity of generating 465

new, informative features to enhance downstream 466

model performance. 467

The experimental results reveal that Teaming 468

consistently outperforms other methods across both 469

classification and regression tasks. In classification 470

datasets, Teaming achieves the highest F1-Score, 471

indicating its effectiveness in learning meaningful 472

feature representations. Similarly, in regression 473

datasets, Teaming outperforms other methods in 474

terms of 1-RAE, showcasing its adaptability in dif- 475

ferent learning tasks. 476

A key observation is the robust and stable perfor- 477

mance of Teaming across diverse datasets. While 478

some baseline methods show performance fluc- 479

tuations due to varying dataset characteristics, 480

Teaming remains consistently strong regardless 481

of dataset size, feature dimensions, or complex- 482

ity. This suggests that our framework generalizes 483

6

well and can be applied effectively in a wide range484

of tasks. Furthermore, the results demonstrate that485

Teaming surpasses both traditional and RL-based486

methods. Traditional approaches struggle to cap-487

ture complex data patterns. Even compared to ad-488

vanced RL-based methods, Teaming still achieves489

higher performance, highlighting its ability to gen-490

erate more informative and useful features. The491

average ranking at the bottom of Table 1 further492

confirms the advantage of Teaming.493

Traditional ML methods (e.g., RDG, LDA, PCA)494

generally offer fast computation but struggle to495

capture higher-order or semantically rich transfor-496

mations, limiting their performance on complex497

tasks. Pure LLM-based methods (e.g., FeatLLM,498

CAAFE) exhibit greater expressiveness but are of-499

ten unstable or biased toward simple operators. Hy-500

brid methods (e.g., MOAT, ELLM-FT, AutoFeat)501

combine rule-based or optimization strategies with502

generative components and tend to perform better503

than single-paradigm approaches. Our proposed504

Teaming method integrates LLM symbolic reason-505

ing with ML gradient guidance, which results in506

superior average ranking across all datasets. These507

results demonstrate both robustness and represen-508

tational power.509

We also check the efficiency in Appendix G.510

4.4 Teaming Study511

To investigate the impact of different teaming strate-512

gies on feature transformation performance, we513

conducted experiments comparing four different514

policies. The downstream performance and error515

rate in Table 2 across multiple datasets show how516

different teaming strategies influence feature trans-517

formation quality.518

The Traditional ML setting represents a stan-519

dard machine learning approach without golden520

examples. The Teaming w/o Search configuration521

reduces the search steps to examine the impact of522

limiting the search space. The w/o Decoder Team-523

ing setting removes the contribution of decoding524

alignment. Finally, the Teaming Policy applies the525

full proposed strategy. The evaluation focuses on526

two key metrics: downstream performance, which527

measures the effectiveness of transformed features528

in enhancing classification and regression tasks,529

and error rate, which quantifies the proportion of530

invalid or incorrect sequences generated during fea-531

ture transformation.532

The results in Table 2 (where values are pre-533

sented as “performance (error rate)”) demonstrate534

Table 2: Ablation Study. Comparison of Models with
Downstream Performance and Error Rate.

Dataset Traditional
ML

Teaming
w/o Search

w/o Decoder
Teaming

Teaming
Policy

Amazon Employee 93.13% (0.00%) 93.47% (0.00%) 93.45% (0.00%) 93.52% (0.00%)
AP-omentum-ovary 79.64% (35.00%) 79.70% (25.00%) 80.54% (20.00%) 81.39% (5.00%)
SpectF 86.95% (22.50%) 88.02% (7.73%) 89.44% (2.50%) 90.49% (0.00%)
German Credit 72.44% (85.83%) 84.42% (75.91%) 72.75% (61.25%) 85.32% (70.71%)
UCI Credit 80.87% (17.50%) 80.67% (10.83%) 80.80% (11.36%) 80.86% (0.00%)
Spam Base 92.90% (4.17%) 92.92% (4.09%) 93.13% (1.67%) 93.46% (0.00%)
Ionosphere 95.69% (80.83%) 95.74% (72.27%) 95.74% (77.73%) 97.10% (70.00%)
Higgs Boson 69.12% (54.17%) 70.01% (45.00%) 70.36% (48.33%) 70.81% (37.62%)
PimaIndian 80.73% (54.17%) 90.13% (46.67%) 88.99% (45.00%) 91.95% (21.36%)
Messidor Feature 73.02% (13.18%) 74.83% (5.83%) 73.80% (10.83%) 75.61% (3.75%)
Wine Quality Red 62.10% (20.48%) 62.19% (3.75%) 62.35% (0.83%) 62.94% (0.00%)
Wine Quality White 54.52% (10.83%) 54.95% (8.18%) 54.22% (6.36%) 55.18% (5.83%)
SVMGuide3 81.74% (32.50%) 82.60% (20.83%) 83.84% (30.71%) 84.64% (20.83%)
Lymphography 88.38% (43.33%) 85.28% (25.00%) 88.57% (15.91%) 91.81% (11.90%)

Airfoil 0.5967 (55.00%) 0.6311 (48.57%) 0.6211 (58.33%) 0.6329 (45.00%)
Housing Boston 0.4463 (12.50%) 0.4482 (2.27%) 0.4469 (6.67%) 0.4584 (0.00%)
Openml 586 0.6251 (52.50%) 0.6405 (33.33%) 0.6446 (37.86%) 0.6569 (24.17%)
Openml 589 0.5139 (4.17%) 0.5937 (0.83%) 0.5937 (0.83%) 0.5990 (0.00%)
Openml 607 0.6051 (45.00%) 0.6181 (41.67%) 0.6056 (40.71%) 0.6181 (29.17%)
Openml 616 0.4063 (16.36%) 0.4066 (15.00%) 0.4073 (9.17%) 0.4073 (3.33%)
Openml 618 0.4734 (51.67%) 0.4823 (45.91%) 0.4831 (30.00%) 0.4840 (22.50%)
Openml 620 0.5722 (5.91%) 0.5748 (1.67%) 0.5751 (2.50%) 0.5847 (3.33%)
Openml 637 0.2125 (32.73%) 0.2588 (38.33%) 0.2859 (34.05%) 0.3095 (22.50%)

that the Teaming Policy consistently achieves the 535

highest downstream performance while maintain- 536

ing the lowest error rate across various datasets. 537

One key finding is that reducing search steps nega- 538

tively impacts feature transformation quality, indi- 539

cating that a more extensive search process is cru- 540

cial for generating effective transformations. This 541

underscores the importance of maintaining a well- 542

optimized search space to fully exploit the potential 543

of the transformation framework. 544

Another critical observation is the role of de- 545

coder teaming in enhancing stability. When the 546

decoder teaming mechanism is removed, perfor- 547

mance drops significantly, particularly in regres- 548

sion tasks. This suggests that decoder teaming 549

is essential for aligning ML and LLM-generated 550

transformations. Without this alignment, the trans- 551

formed features may lose consistency, leading to 552

suboptimal results in downstream tasks. 553

A particularly notable advantage of the Teaming 554

policy is its ability to reduce error rates. In several 555

datasets, the error rate reaches 0.00%, demonstrat- 556

ing that the transformed features are highly reliable. 557

The ability to consistently generate valid and high- 558

quality feature transformations further reinforces 559

Teaming as a robust and effective approach for im- 560

proving downstream task performance. 561

We also studied the importance of two fine- 562

tuning tasks when building the student LLM 563

(Appendix C), which shows that both tasks en- 564

hance the student LLM’s capacity and contribute 565

to the final transformation quality. We also 566

tried different ML-Teacher-Student combinations 567

(Appendix H) to test the generalization of teaming. 568

7

4.5 Robustness Check569

(a) SVMGuide3 Dataset (b) SpectF Dataset

Figure 4: Robustness Check. The radar charts show the
performance across seven downstream models.

To evaluate the robustness of the teaming policy,570

we test its performance across multiple different571

downstream models. Specifically, we apply our572

feature transformation framework to two datasets:573

SVMGuide3 and SpectF, utilizing seven different574

models for downstream tasks. Figure 4 presents575

the results of the robustness check.576

The radar charts show that the transformed fea-577

tures perform consistently across different models,578

with minimal variation in downstream outcomes.579

This highlights the robustness and adaptability of580

our framework across diverse downstream models.581

4.6 LLM for Feature Transformation582

We conducted additional experiments to understand583

how LLMs behave when directly used for feature584

transformation. While these models can generate585

high-performing features, we also observed some586

interesting behaviors: they tend to prefer simple587

operators, show unstable outputs across runs, and588

naturally focus on important features even without589

supervision. These insights help explain both the590

strengths and limitations of LLM-driven transfor-591

mations. Full results, visualizations, and analysis592

are provided in Appendix I.593

5 Related Work594

Feature Transformation. Feature transformation595

aims to improve the feature space by applying596

mathematical operations to the original features.597

Existing methods fall into two main types: (1) Dis-598

crete decision-based methods, which treat trans-599

formation as a discrete search problem. Various600

strategies are adopted to improve search quality,601

such as heuristic rules (Kanter and Veeramacha-602

neni, 2015; Khurana et al., 2016; Tran et al., 2016;603

Xiao et al., 2023, 2024), feature space expansion604

with selection (Katz et al., 2016), evolutionary al-605

gorithms (Zhu et al., 2022a; Gong et al., 2025),606

and reinforcement learning (Wang et al., 2022). (2) 607

Continuous optimization methods, which embed 608

features into continuous latent spaces and optimize 609

them through gradient-based search (Wang et al., 610

2023; Zhu et al., 2022b). 611

LLM for Specific Task. Recent studies explore 612

how LLMs assist in feature-related tasks. Aug- 613

imodels (Singh et al., 2023) and Kasneci et al. (Kas- 614

neci and Kasneci, 2024) enrich classical models 615

with LLM-generated embeddings or features. Li et 616

al. (Li et al., 2023) offer a financial-domain review 617

and model selection framework. CAAFE (Holl- 618

mann et al., 2024) generates features iteratively 619

based on task context. FeatLLM (Han et al., 2024) 620

applies few-shot prompting to synthesize transfor- 621

mation rules. Kuken et al. (Küken et al., 2024) ana- 622

lyze LLMs’ preference for simple operators. Jeong 623

et al. (Jeong et al., 2024) show LLMs can select 624

relevant features using only column names and task 625

descriptions. LFG (Zhang et al., 2024) uses LLM 626

agents and Monte Carlo Tree Search to guide dy- 627

namic feature generation. Xu et al. (Xu et al., 2024) 628

integrate LLMs with AutoML to programmatically 629

optimize data pipelines. 630

ML-LLM Alignment. Though ML-LLM align- 631

ment is still emerging, several related works offer 632

insights. ARGS (Khanov et al., 2024) adjusts token 633

probabilities during decoding using reward signals 634

to improve output alignment. Kong et al. (Kong 635

et al., 2024) model LLMs as discrete-time stochas- 636

tic systems and apply value function learning via 637

Bellman equations. TreeBoN (Qiu et al., 2024) 638

introduces speculative tree search to guide Best- 639

of-N sampling using token-level rewards, balanc- 640

ing efficiency and quality. ELLM-FT (Gong et al., 641

2025) adapts evolutionary strategies with few-shot 642

prompting and RL data collection for efficient, 643

high-quality feature transformation. 644

6 Conclusion Remarks 645

We propose an LLM-ML teaming framework to 646

address the challenges of stability and validity in 647

Generative Feature Transformation. By combining 648

ML gradient search with LLM symbolic generation, 649

our method produces consistent and high-quality 650

features. Experimental results demonstrate that 651

this approach improves transformation reliability 652

and enhances feature expressiveness, achieving a 653

5% performance gain. This work highlights the 654

promise of LLM-ML collaboration in advancing 655

automated feature engineering. 656

8

Limitations657

While our framework improves feature transforma-658

tion performance across multiple tasks and mod-659

els, it still has several limitations. (1) The stu-660

dent LLM offers a more efficient alternative to the661

teacher model, but it remains less accurate and662

more prone to instability during generation. (2)663

The framework is task-agnostic and does not incor-664

porate domain-specific information. Incorporating665

task-aware prompts or fine-tuning may improve rel-666

evance and interpretability. (3) The ML and LLM667

components are trained independently. A unified668

or end-to-end training strategy could potentially669

improve alignment and collaborative performance.670

(4) The method has not yet been evaluated in full671

production pipelines, such as time-series data or672

enterprise-scale automated systems, where deploy-673

ment constraints may differ. (5) The LLM tends to674

favor simpler operators (e.g., addition, subtraction),675

which may limit the diversity and complexity of676

generated transformations in certain tasks.677

References678

David M Blei, Andrew Y Ng, and Michael I Jordan.679
2003. Latent dirichlet allocation. Journal of machine680
Learning research, 3(Jan):993–1022.681

Xiangning Chen, Qingwei Lin, Chuan Luo, Xudong Li,682
Hongyu Zhang, Yong Xu, Yingnong Dang, Kaixin683
Sui, Xu Zhang, Bo Qiao, and 1 others. 2019. Neural684
feature search: A neural architecture for automated685
feature engineering. In 2019 IEEE International686
Conference on Data Mining (ICDM), pages 71–80.687
IEEE.688

Nanxu Gong, Chandan K Reddy, Wangyang Ying,689
Haifeng Chen, and Yanjie Fu. 2025. Evolutionary690
large language model for automated feature trans-691
formation. In Proceedings of the AAAI Conference692
on Artificial Intelligence, volume 39, pages 16844–693
16852.694

Sungwon Han, Jinsung Yoon, Sercan O Arik, and Tomas695
Pfister. 2024. Large language models can automati-696
cally engineer features for few-shot tabular learning.697
arXiv preprint arXiv:2404.09491.698

Noah Hollmann, Samuel Müller, and Frank Hutter. 2023.699
Large language models for automated data science:700
Introducing caafe for context-aware automated fea-701
ture engineering. Advances in Neural Information702
Processing Systems, 36:44753–44775.703

Noah Hollmann, Samuel Müller, and Frank Hutter. 2024.704
Large language models for automated data science:705
Introducing caafe for context-aware automated fea-706
ture engineering. Advances in Neural Information707
Processing Systems, 36.708

Franziska Horn, Robert Pack, and Michael Rieger. 2019. 709
The autofeat python library for automated feature 710
engineering and selection. In Joint European Confer- 711
ence on Machine Learning and Knowledge Discovery 712
in Databases, pages 111–120. Springer. 713

Franziska Horn, Robert Pack, and Michael Rieger. 2020. 714
The autofeat python library for automated feature 715
engineering and selection. In Machine Learning and 716
Knowledge Discovery in Databases: International 717
Workshops of ECML PKDD 2019, Würzburg, Ger- 718
many, September 16–20, 2019, Proceedings, Part I, 719
pages 111–120. Springer. 720

Jeremy Howard. 2023. Kaggle dataset download. 721
[EB/OL]. 722

Daniel P Jeong, Zachary C Lipton, and Pradeep Raviku- 723
mar. 2024. Llm-select: Feature selection with large 724
language models. arXiv preprint arXiv:2407.02694. 725

James Max Kanter and Kalyan Veeramachaneni. 2015. 726
Deep feature synthesis: Towards automating data sci- 727
ence endeavors. In 2015 IEEE international confer- 728
ence on data science and advanced analytics (DSAA), 729
pages 1–10. IEEE. 730

Gjergji Kasneci and Enkelejda Kasneci. 2024. Enrich- 731
ing tabular data with contextual llm embeddings: A 732
comprehensive ablation study for ensemble classi- 733
fiers. arXiv preprint arXiv:2411.01645. 734

Gilad Katz, Eui Chul Richard Shin, and Dawn Song. 735
2016. Explorekit: Automatic feature generation and 736
selection. In 2016 IEEE 16th international confer- 737
ence on data mining (ICDM), pages 979–984. IEEE. 738

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. 739
2024. Args: Alignment as reward-guided search. 740
arXiv preprint arXiv:2402.01694. 741

Udayan Khurana, Horst Samulowitz, and Deepak 742
Turaga. 2018. Feature engineering for predictive 743
modeling using reinforcement learning. In Proceed- 744
ings of the AAAI Conference on Artificial Intelligence, 745
volume 32. 746

Udayan Khurana, Deepak Turaga, Horst Samulowitz, 747
and Srinivasan Parthasrathy. 2016. Cognito: Au- 748
tomated feature engineering for supervised learn- 749
ing. In 2016 IEEE 16th international conference on 750
data mining workshops (ICDMW), pages 1304–1307. 751
IEEE. 752

Lingkai Kong, Haorui Wang, Wenhao Mu, Yuanqi Du, 753
Yuchen Zhuang, Yifei Zhou, Yue Song, Rongzhi 754
Zhang, Kai Wang, and Chao Zhang. 2024. Align- 755
ing large language models with representation 756
editing: A control perspective. arXiv preprint 757
arXiv:2406.05954. 758

Jaris Küken, Lennart Purucker, and Frank Hutter. 759
2024. Large language models engineer too many 760
simple features for tabular data. arXiv preprint 761
arXiv:2410.17787. 762

9

https://www.kaggle.com/datasets

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen.763
2023. Large language models in finance: A survey.764
In Proceedings of the fourth ACM international con-765
ference on AI in finance, pages 374–382.766

Andrzej Maćkiewicz and Waldemar Ratajczak. 1993.767
Principal components analysis (pca). Computers &768
Geosciences, 19(3):303–342.769

Public. 2023a. Cplm dataset download. [EB/OL].770

Public. 2023b. Openml dataset download. [EB/OL].771

Public. 2023c. Uci dataset download. [EB/OL].772

Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Ji-773
ayi Geng, Huazheng Wang, Kaixuan Huang, Yue774
Wu, and Mengdi Wang. 2024. Treebon: Enhanc-775
ing inference-time alignment with speculative tree-776
search and best-of-n sampling. arXiv preprint777
arXiv:2410.16033.778

Chandan Singh, Armin Askari, Rich Caruana, and Jian-779
feng Gao. 2023. Augmenting interpretable models780
with large language models during training. Nature781
Communications, 14(1):7913.782

Binh Tran, Bing Xue, and Mengjie Zhang. 2016. Ge-783
netic programming for feature construction and se-784
lection in classification on high-dimensional data.785
Memetic Computing, 8:3–15.786

Dongjie Wang, Yanjie Fu, Kunpeng Liu, Xiaolin Li, and787
Yan Solihin. 2022. Group-wise reinforcement feature788
generation for optimal and explainable representation789
space reconstruction. In Proceedings of the 28th790
ACM SIGKDD Conference on Knowledge Discovery791
and Data Mining, pages 1826–1834.792

Dongjie Wang, Yanyong Huang, Wangyang Ying,793
Haoyue Bai, Nanxu Gong, Xinyuan Wang, Sixun794
Dong, Tao Zhe, Kunpeng Liu, Meng Xiao, and 1 oth-795
ers. 2025. Towards data-centric ai: A comprehensive796
survey of traditional, reinforcement, and generative797
approaches for tabular data transformation. arXiv798
preprint arXiv:2501.10555.799

Dongjie Wang, Meng Xiao, Min Wu, Yuanchun Zhou,800
Yanjie Fu, and 1 others. 2023. Reinforcement-801
enhanced autoregressive feature transformation:802
Gradient-steered search in continuous space for post-803
fix expressions. Advances in Neural Information804
Processing Systems, 36:43563–43578.805

Meng Xiao, Dongjie Wang, Min Wu, Kunpeng Liu,806
Hui Xiong, Yuanchun Zhou, and Yanjie Fu. 2024.807
Traceable group-wise self-optimizing feature trans-808
formation learning: A dual optimization perspective.809
ACM Transactions on Knowledge Discovery from810
Data, 18(4):1–22.811

Meng Xiao, Dongjie Wang, Min Wu, Ziyue Qiao,812
Pengfei Wang, Kunpeng Liu, Yuanchun Zhou, and813
Yanjie Fu. 2023. Traceable automatic feature trans-814
formation via cascading actor-critic agents. In Pro-815
ceedings of the 2023 SIAM International Conference816
on Data Mining (SDM), pages 775–783. SIAM.817

Jinglue Xu, Jialong Li, Zhen Liu, Nagar An- 818
thel Venkatesh Suryanarayanan, Guoyuan Zhou, Jia 819
Guo, Hitoshi Iba, and Kenji Tei. 2024. Large lan- 820
guage models synergize with automated machine 821
learning. arXiv preprint arXiv:2405.03727. 822

Tianping Zhang, Zheyu Aqa Zhang, Zhiyuan Fan, 823
Haoyan Luo, Fengyuan Liu, Qian Liu, Wei Cao, and 824
Li Jian. 2023. Openfe: Automated feature generation 825
with expert-level performance. In International Con- 826
ference on Machine Learning, pages 41880–41901. 827
PMLR. 828

Xinhao Zhang, Jinghan Zhang, Banafsheh Rekabdar, 829
Yuanchun Zhou, Pengfei Wang, and Kunpeng Liu. 830
2024. Dynamic and adaptive feature generation with 831
llm. arXiv preprint arXiv:2406.03505. 832

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 833
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen 834
Zhang, Junjie Zhang, Zican Dong, and 1 others. 2023. 835
A survey of large language models. arXiv preprint 836
arXiv:2303.18223. 837

Guanghui Zhu, Shen Jiang, Xu Guo, Chunfeng Yuan, 838
and Yihua Huang. 2022a. Evolutionary automated 839
feature engineering. In Pacific Rim International 840
Conference on Artificial Intelligence, pages 574–586. 841
Springer. 842

Guanghui Zhu, Zhuoer Xu, Chunfeng Yuan, and Yi- 843
hua Huang. 2022b. Difer: differentiable automated 844
feature engineering. In International Conference on 845
Automated Machine Learning, pages 17–1. PMLR. 846

A Important Concept 847

Operation Set: To refine the feature space, we 848

need to apply mathematical operations to existing 849

features to generate new informative features. All 850

operations are collected in an operation set, de- 851

noted by O. These operations can be classified as 852

unary and binary operations. The unary operations 853

such as "square", "exp", "log", etc. The binary 854

operations such as "plus", "multiply", "minus", etc. 855

Feature Transformation Sequence: Assuming 856

a dataset D = {X, y} includes the original feature 857

set X = [f1, · · · , fN] and predictive targets y. We 858

transform the existing features using mathematical 859

compositions τ consisting of feature ID tokens and 860

operations to generate new and informative features 861

(Figure 5). K compositions are adopted to refine 862

X to a better feature space X̃ = [f̃1, · · · , f̃K]. The 863

collection of the K compositions refers to the fea- 864

ture transformation sequence, which is denoted by 865

Γ = [τ1, · · · , τK]. 866

10

https://cplm.biocuckoo.cn/
https://www.openml.org
https://archive.ics.uci.edu/

Figure 5: A Feature Transformation Sequence Example.

Postfix Expressions: The transformation se-867

quence should be in a computable and machine-868

learnable format. Figure 6a shows a transforma-869

tion sequence with two generated features. The870

original infix representation (Figure 6b) has issues871

like redundancy, semantic sparsity, a high likeli-872

hood of illegal transformations, and an overly large873

search space.874

(a) Original Sequence

(b) Infix Expression

(c) Postfix Expression

Figure 6: Different Expressions of Transformation
Sequence.

We introduce postfix expressions (Figure 6c) to875

solve these problems. Postfix expressions don’t876

need many brackets to determine calculation pri-877

ority. Scanning from left to right suffices to recon-878

struct the corresponding sequence, greatly reducing879

sequence-modeling difficulty and computational880

cost. They also reduce the ambiguity of the trans-881

formation sequence. Most importantly, it reduces882

the search space from exponential to a finite set883

|C| = |O| + |X|D + 3. Here, |O| represents the884

operation set size, |X| is the original feature set di-885

mension, D is feature numbers, and 3 refers to start886

tokens < SOS >, separation token < SEP >,887

and end token < EOS >.888

B Feature Transformation Prompt889

This is a detailed description of the generation890

prompt used in the study. The prompt is designed to891

guide LLMs on feature transformation to improve892

downstream task performance.893

The prompt is structured into several parts. The894

Task Description section introduces the role of the895

expert and the overall goal of the transformation.896

It states that the expert is given a set of features897

and operators and is tasked with dataset transfor-898

mation. The Feature Description part lists the899

available feature tokens that can be used in the900

transformation. The Operator Description section 901

details the unary and binary operator tokens avail- 902

able. The unary operator tokens include [sin, sqrt, 903

tanh, ...], and the binary operator tokens include 904

[add, subtract, ...]. The Force Prompt section en- 905

forces several rules for the transformation. These 906

rules ensure that the generated feature combina- 907

tions are valid and follow the specified format. For 908

example, it requires generating multiple (less than 909

50) feature combinations separated by ’token_sep’, 910

each combination to include at least one feature 911

and one operator token, and also has specific rules 912

for binary and unary operators in terms of the num- 913

ber of feature tokens they can operate on. It also 914

mandates the use of postfix notation and the use 915

of ’token_sep’ to separate different combinations. 916

Finally, the Few-shot Prompt section provides an 917

example of how the response should be formatted 918

and requests that only the feature combinations be 919

given in the response. 920

C Student LLM Feature Transformation 921

To construct a reliable student LLM, we employ 922

two fine-tuning tasks: (1) Sequence Generation 923

Task and (2) Performance Prediction Task. 924

C.1 Sequence Generation Task 925

The student LLM is fine-tuned to generate feature 926

transformation sequences, leveraging patterns and 927

principles captured in the teacher LLM’s golden 928

example database. The input prompts provided 929

to the student LLM are consistent with those 930

used for the teacher LLM in the golden exam- 931

ple generation phase. To optimize this task, a 932

cross-entropy loss function is employed: Lseq = 933

−
∑m

n=1 log(PLLM(Γn)), where Γn represents the 934

n-th golden example, PLLM(Γn) is the student 935

LLM generating probability, and m is the total 936

number of sequences. This fine-tuning process dis- 937

tills the teacher LLM’s knowledge into the student 938

LLM, enabling it to explore complex and innova- 939

tive feature transformations while adhering to the 940

postfix expression format. This ensures low error 941

rates during decoding. 942

C.2 Performance Prediction Task 943

The student LLM is also trained to predict the 944

effectiveness of its generated feature transforma- 945

tion sequences Γ. Let v(Γ) denote the actual 946

performance of a sequence Γ, and v̂(Γ) is pre- 947

dicted by the LLM. The MSE loss is defined as: 948

11

Figure 7: The prompt details.

Lperf = 1
m

∑m
i=1 (v̂(Γi)− v(Γi))

2, with m train-949

ing samples. By learning to associate transforma-950

tion patterns with performance metrics, the student951

LLM prioritizes high-quality transformations while952

discarding suboptimal ones. This dual-task training953

enhances the overall efficiency and effectiveness of954

the feature transformation framework.955

C.3 Distillation Study956

We conducted experiments on those two fine-tuning957

tasks to illustrate their importance.958

Table 3: Distillation Study on OpenML 586 Dataset.

Dataset Performance ↑ Error Rate ↓

with Performance Prediction 0.6569 24.17%
w/o Performance Prediction 0.6519 34.00%

Table 3 presents a comparative study on the ef- 959

fect of performance prediction. The results indicate 960

that omitting the performance prediction task leads 961

to a decrease in downstream performance and an 962

increase in error rate. This highlights the impor- 963

tance of performance prediction in improving the 964

model’s effectiveness. 965

D Baselines 966

Here are the baselines that we used in our experi- 967

ments. 968

• RDG: Generates feature-operation-feature 969

transformation records at random to create 970

a new feature space. 971

• LDA (Blei et al., 2003): A matrix 972

factorization-based method to obtain the fac- 973

torized hidden state as the generated feature 974

12

space.975

• ERG: Applies operations on each feature to976

expand the feature space and selects crucial977

features as new features.978

• NFS (Chen et al., 2019): Models the trans-979

formation sequence of each feature and uses980

reinforcement learning (RL) to optimize the981

entire feature generation process.982

• AFAT (Horn et al., 2020): An enhanced ver-983

sion of ERG that repeatedly generates new984

features and uses multi-step feature selection985

to select informative ones.986

• PCA (Maćkiewicz and Ratajczak, 1993)987

Generates new features through linear feature988

correlation.989

• TTG (Khurana et al., 2018): Formulates the990

transformation process as a graph and imple-991

ments an RL-based search method to find the992

best feature set.993

• GRFG (Wang et al., 2022): Utilizes three994

collaborative reinforced agents to conduct fea-995

ture generation and proposes a feature group-996

ing strategy to accelerate agent learning.997

• MOAT (Wang et al., 2023): Utilizes a search-998

based method for better feature space repre-999

sentation, leading to better decoding operator1000

sequences.1001

• FeatLLM (Han et al., 2024): A recent ap-1002

proach that leverages large language models1003

for few-shot symbolic feature engineering, en-1004

abling interpretable transformations with min-1005

imal supervision.1006

• CAAFE (Hollmann et al., 2023): A context-1007

aware automated feature engineering frame-1008

work that uses LLMs to iteratively refine and1009

select transformations based on dataset meta-1010

data and task descriptions.1011

• AutoFeat (Horn et al., 2019): A classic1012

Python library for automatic feature engineer-1013

ing, generating polynomial and interaction1014

features followed by selection based on statis-1015

tical relevance.1016

• OpenFE (Zhang et al., 2023): An open-1017

source framework that applies model-agnostic,1018

gradient-guided search to select effective fea-1019

ture transformations.1020

• ELLM-FT (Gong et al., 2025):A hybrid evo-1021

lutionary learning method where LLMs gener-1022

ate transformation candidates and are filtered1023

using reinforcement-style utility scoring.1024

E Evaluation Metrics 1025

For classification tasks, we use the F1-Score as the 1026

evaluation metric: 1027

F1 = 2 · Precision · Recall
Precision + Recall

(3) 1028

where Precision = TP
TP+FP and Recall = TP

TP+FN . 1029

For regression tasks, we report 1-RAE (Relative 1030

Absolute Error): 1031

1-RAE = 1−
∥ypred − yreal∥1
∥yreal − ȳreal∥1

(4) 1032

where ypred is the predicted value, yreal is the true 1033

value, and ȳreal is the mean of the true values. 1034

F Configurations 1035

All experiments were conducted on the Ubuntu 1036

22.04.3 LTS operating system, with a 13th- 1037

generation Intel(R) Core(TM) i9-13900KF CPU 1038

and an NVIDIA GeForce RTX 4090 GPU. The ex- 1039

periments were implemented using Python 3.11.5 1040

and PyTorch 2.0.1. 1041

G Efficiency Study 1042

The goal of this experiment is to evaluate whether 1043

our framework can achieve considerable results 1044

with fewer search iterations, thereby improving 1045

the efficiency of the feature transformation process. 1046

Specifically, we compare the performance of the 1047

Teaming policy and the ML-Based policy under dif- 1048

ferent search rounds, measuring downstream task 1049

performance as a function of the number of search 1050

iterations. This comparison allows us to assess how 1051

effectively the Teaming strategy optimizes feature 1052

transformations in the latent space. 1053

Table 4: Efficiency Check Results

Dataset
Teaming Policy ML-Based Policy

epoch second/epoch epoch second/epoch

Openml 586 8 2.14 22 1.67

The results in Table 4 indicate that while the 1054

Teaming policy requires slightly more time per 1055

epoch (2.14 seconds) compared to the ML-Based 1056

policy (1.67 seconds), it converges significantly 1057

faster, requiring only 8 epochs, whereas the ML- 1058

Based policy takes 22 epochs to reach convergence. 1059

This suggests that the Teaming strategy acceler- 1060

ates the feature transformation process by guid- 1061

ing the search more effectively, reducing the total 1062

13

number of iterations required to reach an optimal1063

transformation. Despite the per-epoch time being1064

approximately 28.1% longer than the ML-Based1065

policy, the total computation time for convergence1066

is 17.12 seconds for the Teaming policy (8 × 2.14),1067

compared to 36.74 seconds for the ML-Based pol-1068

icy (22 × 1.67). This represents an overall 53.4%1069

reduction in total computation time.1070

To complement this analysis, we also bench-1071

mark the end-to-end runtime of our method against1072

other ML-based and LLM-based feature engineer-1073

ing methods. Table 5 summarizes the average1074

runtime (in seconds) for each method to complete1075

the transformation pipeline on the OpenML 5861076

dataset.1077

Table 5: End-to-End Runtime Comparison Across Meth-
ods

Method CAAFE OpenFE AutoFeat MOAT Pure LLM Teaming

Runtime (s) 94.69 6.55 37.83 36.74 8.32 17.12

As shown, our method runs faster than heavy1078

pipelines such as CAAFE and FSNS, while main-1079

taining competitive efficiency with Pure LLM-1080

based generation. Despite being slower than1081

OpenFE, which applies simple transformations, our1082

approach provides a more robust balance between1083

runtime and transformation quality.1084

H backbones Study1085

To evaluate the generality of our LLM-ML team-1086

ing framework, we conducted an experiment us-1087

ing different combinations of teacher and student1088

LLMs. Specifically, we tested three student LLMs:1089

LLaMA-3, GPT-2, and BART. We also thried a1090

diverse set of teacher LLMs, including GPT-4o,1091

o3-mini, o1-mini, LLaMA 3.2-405B, LLaMA 4,1092

Claude 3, and DeepSeek V3. Under Llama-3 stu-1093

dent LLM, we tried different ML methods, includ-1094

ing LSTM and Transformer decoders. Each config-1095

uration was integrated into our teaming framework,1096

and the downstream performance was measured on1097

a representative regression task from the OpenML1098

586 benchmark. Table 6 reports the average predic-1099

tion accuracy, along with the corresponding error1100

rate in parentheses.1101

The results demonstrate that our framework gen-1102

eralizes well across different architectures. Accu-1103

racy remains consistent across most teacher models,1104

with variation typically within 2–3%. Student mod-1105

els based on modern LLMs, such as LLaMA-3,1106

achieve the best overall performance, while older1107

architectures like GPT-2 and BART yield slightly 1108

lower accuracy and higher error rates. Interest- 1109

ingly, the LSTM-based decoder for LLaMA-3 out- 1110

performs the Transformer-based version in several 1111

settings, suggesting that sequential decoding may 1112

be more effective for symbolic generation tasks. 1113

Furthermore, combinations involving GPT-4o and 1114

Claude 3 as teacher models consistently deliver 1115

strong performance, highlighting the compatibility 1116

of our framework with both proprietary and open- 1117

source LLM ecosystems. 1118

These findings confirm that the teaming strategy 1119

is robust and architecture-agnostic, making it a 1120

practical choice for real-world applications that 1121

may involve heterogeneous LLM backbones. 1122

I LLM for Feature Transformation 1123

This section investigates the use of LLMs for di- 1124

rect feature transformation tasks, exploring their 1125

strengths, inherent limitations, and unexpected find- 1126

ings. 1127

I.1 Transformation Performance 1128

We evaluated the performance of the teacher LLM 1129

(GPT-4o) and the student LLM (Llama 3.2-3B) 1130

in generating feature transformation sequences di- 1131

rectly from prompts. Table 7 shows the result 1132

comparison on the OpenML 586 dataset. 1133

The teacher LLM achieved the highest perfor- 1134

mance, significantly outperforming both the stu- 1135

dent LLM and traditional ML methods. This high- 1136

lights the superior ability of LLMs to identify mean- 1137

ingful feature transformations that enhance model 1138

effectiveness. 1139

A key advantage of the teacher LLM is its ca- 1140

pacity to generate diverse and high-quality transfor- 1141

mations, often uncovering patterns that traditional 1142

ML methods might overlook. However, its lack of 1143

interpretability remains a notable limitation. 1144

The student LLM, distilled from data generated 1145

by the teacher LLM, maintains a performance level 1146

close to that of the teacher while exhibiting a higher 1147

error rate. This suggests that knowledge distillation 1148

to a smaller model introduces some degradation in 1149

feature transformation accuracy. Nevertheless, the 1150

student model offers a cost-effective alternative, 1151

as it incurs no additional computational expenses 1152

compared to the teacher LLM. Moreover, the prob- 1153

ability distribution of each transformation step en- 1154

ables the implementation of the decoder teaming 1155

policy. 1156

14

Table 6: Performance and error rate of different student-teacher LLM combinations on OpenML-586 dataset.

Student \ Teacher GPT-4o o3-mini o1-mini LLaMA 3.2-405B LLaMA 4 Claude 3 DeepSeek V3

LLaMA-3 (LSTM) 0.6569 (24.17%) 0.6807 (23.33%) 0.6728 (29.17%) 0.6807 (23.33%) 0.6807 (23.33%) 0.6807 (25.00%) 0.6688 (19.17%)
LLaMA-3 (Transformer) 0.6555 (17.45%) 0.6555 (17.45%) 0.6555 (17.45%) 0.6538 (23.33%) 0.6555 (17.45%) 0.6555 (17.45%) 0.6555 (17.45%)
GPT-2 (LSTM) 0.6446 (39.80%) 0.6669 (38.33%) 0.6677 (47.73%) 0.6694 (34.09%) 0.6694 (47.73%) 0.6669 (38.33%) 0.6336 (25.51%)
BART (LSTM) 0.6409 (33.33%) 0.6723 (39.55%) 0.6683 (49.09%) 0.6728 (29.17%) 0.6683 (49.09%) 0.6728 (29.17%) 0.6336 (25.51%)

Table 7: LLM V.S. ML on OpenML 586 Dataset.

Metric Teacher LLM Student LLM ML

Performance 0.7196 0.6867 0.6251
Error Rate 1.53% 20.34% 52.50%
Cost (Dallor) 1.93 0 0
Interpretability ✗ ✗ ✓

Conversely, while traditional ML approaches ex-1157

hibit lower performance, they remain highly in-1158

terpretable and computationally efficient, making1159

them a viable option in scenarios where explain-1160

ability is a priority.1161

I.2 Stability1162

Powerful LLMs like GPT-4o can generate feature1163

crosses with better downstream performance, but1164

their black-box nature and lack of stability make1165

cost control challenging. To achieve more diverse1166

outputs, we lower the temperature when generat-1167

ing sequences. However, a lower temperature also1168

increases randomness, making it unclear when to1169

stop.1170

(a) Traditional ML (b) LLM

Figure 8: Stability Comparison. Traditional ML en-
sures steady improvements, while LLM fluctuates un-
predictably.

Figure 8 compares two approaches. The tradi-1171

tional ML method with a search policy ensures sta-1172

ble performance improvements (Figure 8a). How-1173

ever, the LLM-based generation is unpredictable.1174

There is always the possibility that trying 1,0001175

more times might yield significantly better feature1176

crosses, but we cannot afford endless trials. In Fig-1177

ure 8b, each attempt (segmented regions) exhibits1178

significant fluctuations, lacking a consistent up-1179

ward trend. Some attempts yield improved results,1180

while others regress, making it uncertain whether1181

further trials will enhance performance or intro-1182

duce redundancy. If the temperature is too high, 1183

we risk redundancy and wasted cost; if it is too low, 1184

we never know if the next attempt will be better 1185

or worse, making every decision a gamble. This 1186

dilemma makes temperature tuning challenging, as 1187

it creates uncertainty in balancing efficiency and 1188

diversity. 1189

I.3 Operator Ratio 1190

This experiment investigates whether LLMs exhibit 1191

a tendency to prefer simple operators during fea- 1192

ture transformation tasks, as suggested by prior 1193

research (Küken et al., 2024). By analyzing the 1194

frequency of operator usage in transformation se- 1195

quences, we observed the following trends: 1196

(a) Teacher LLM (b) Student LLM (c) ML

Figure 9: Operator Usage. They illustrate the ratio of
simple vs. complex operators used by different methods.

As illustrated in Figure 9a, the teacher LLM 1197

mostly relies on simple operators, with complex op- 1198

erators accounting for only one-fifth of its transfor- 1199

mations. The student LLM (Figure 9b) exhibits an 1200

even stronger preference for simple operators, fur- 1201

ther reducing the use of complex transformations. 1202

In contrast, traditional ML methods (Figure 9c) 1203

demonstrate a more balanced distribution between 1204

simple and complex operators, with an approxi- 1205

mately equal proportion of each. 1206

These results indicate that LLMs exhibit a clear 1207

preference toward simple operations (e.g., addi- 1208

tion and subtraction) while under-utilizing more 1209

advanced transformations, such as logarithmic and 1210

exponential functions. This preference may restrict 1211

the diversity and effectiveness of generated fea- 1212

tures, particularly for datasets that benefit from 1213

complex mathematical transformations. These find- 1214

15

ings corroborate the prior study (Küken et al., 2024)1215

and highlight the need for strategies to encourage1216

using complex operators (e.g., prompt engineering1217

or fine-tuning).1218

We tried different prompts to encourage LLMs1219

to use more complex operators. To encourage LLM1220

to use more complex operators, we designed some1221

prompts and experimented. Specifically, we:1222

• Modified prompts to explicitly encourage di-1223

versity in operator use, increasing complex1224

operator rates from 19.9% to 37.6%;1225

• Added chain-of-thought reasoning examples,1226

which reduced repetition and encouraged com-1227

positionality;1228

• Applied rule-based post-filtering to discard1229

overly simple expressions, improving operator1230

complexity without degrading performance.1231

These techniques demonstrate the controllability1232

of symbolic output generation in LLMs. However,1233

LLMs prefer simple operators rather than complex1234

operators. The reason could be that they don’t want1235

to make a mistake. After all, the first priority of1236

LLMs is to answer the question rather than give the1237

correct answer. That’s also the reasons why LLMs1238

may create some unreliable answers, also known1239

as LLM hallucination.1240

Does it hurt the overall performance? There is no1241

empirical evidence suggesting that the use of more1242

simple operators negatively impacts downstream1243

performance. Feature transformation is inherently1244

an open-ended problem: there is no single optimal1245

solution, but rather multiple valid paths to effective1246

representations. Much like the notion that “there is1247

no absolute ranking in art,” the diversity of trans-1248

formation strategies reflects the creative space of1249

this task. This open-ended nature further bridges1250

feature transformation with natural language gen-1251

eration, making it particularly well-suited for solu-1252

tions based on large language models.1253

I.4 Findings of Feature Selection1254

To assess whether the LLMs truly understand the1255

dataset and task—an essential factor for the validity1256

of previous results—we analyze the distribution1257

of feature usage in the generated transformation1258

sequences.1259

In the LLM prompt setup (Figure 7), both fea-1260

tures and operators are treated as tokens, making it1261

crucial to determine whether the LLMs recognize1262

their actual significance. We select an OpenML1263

dataset. The first five features are original, while1264

the next twenty are generated from them. We found1265

strong feature selection characteristics, as shown 1266

in Figure 10. 1267

(a) Teacher (GPT-4o). (b) Student (Llama 3.2).

Figure 10: Feature Usage Distribution. The bar charts
depict how frequently each feature appears in transfor-
mation sequences by different LLMs.

Figure 10a shows that GPT-4o has a clear pref- 1268

erence for the first five original features, with a 1269

steep drop in usage for the derived ones. The stu- 1270

dent LLM (Figure 10b) exhibits an even stronger 1271

preference toward these original features. 1272

This suggests that the LLMs recognize the true 1273

meaning of the tokenized features rather than treat- 1274

ing them arbitrarily. Their implicit ability to prior- 1275

itize key features over less relevant ones provides 1276

insight into LLM-driven feature selection, poten- 1277

tially reducing reliance on traditional methods. 1278

16

	Introduction
	Preliminaries and Problem Statement
	Important Concepts
	Problem Statement

	Proposed Method
	Framework Overview
	Golden Examples from Teacher LLM
	Feature Transformation Sequence Embedding and Search
	Training of Encoder-Evaluator-Decoder
	Embedding Search

	Student LLM Feature Transformation
	LLM-ML Decoder Teaming

	Experiment
	Experimental Settings
	Datasets
	Baseline Algorithms
	Evaluation Metrics

	Research Questions
	Overall Performance
	Teaming Study
	Robustness Check
	LLM for Feature Transformation

	Related Work
	Conclusion Remarks
	Important Concept
	Feature Transformation Prompt
	Student LLM Feature Transformation
	Sequence Generation Task
	Performance Prediction Task
	Distillation Study

	Baselines
	Evaluation Metrics
	Configurations
	Efficiency Study
	backbones Study
	LLM for Feature Transformation
	Transformation Performance
	Stability
	Operator Ratio
	Findings of Feature Selection

