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Abstract

Feature transformation enhances data represen-
tation by deriving new features from the origi-
nal data. Generative Al offers potential for this
task, but faces challenges in stable generation
(consistent outputs) and valid generation (error-
free sequences). Existing methods—traditional
ML’s low validity and LLMs’ instability—fail
to resolve both. We find that LLMs ensure valid
syntax, while ML’s gradient-steered search
stabilizes performance. To bridge this gap,
we propose a teaming framework combining
LLMs’ symbolic generation with ML’s gradi-
ent optimization. This framework includes four
steps: (1) golden examples generation, aim-
ing to prepare high-quality samples with the
ground knowledge of the teacher LLM; (2) fea-
ture transformation sequence embedding and
search, intending to uncover potentially supe-
rior embeddings within the latent space; (3) stu-
dent LLM feature transformation, aiming to dis-
till knowledge from the teacher LLM; (4) LLM-
ML decoder teaming, dedicating to combine
ML and the student LLM probabilities for valid
and stable generation. The experiments on var-
ious datasets show that the teaming policy can
achieve 5% improvement in downstream perfor-
mance while reducing nearly half of the error
cases. The results also demonstrate the effi-
ciency and robustness of the teaming policy.
Additionally, we also have exciting findings on
LLMs’ capacity to understand the original data.
The codes are available at this link.

1 Introduction

Feature transformation is to derive a new feature
set from an original feature set to reprogram data
representation, for instance, transforming [a, b] into
[a/b,a — b, (a + b)/a]. Feature transformation can
reconstruct distance measures, reshape discrimina-
tive patterns, and enhance data Al readiness (e.g.,
structural, predictive, interaction, and expression
levels). Generative Al (e.g., LLM) has the poten-
tial to deliver far better features (Zhao et al., 2023)
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than manual reconstruction or machine-assisted
approaches (e.g., genetic algorithms, simulated an-
nealing, reinforcement learning). Generative Fea-
ture Transformation (GFT) formulates the task as
a sequence generation problem, where each trans-
formed feature (e.g., a/b) is treated as a token, and
a new feature set (e.g., [a/b,a — b, (a + b)/a]) be-
comes a token sequence (Wang et al., 2025). Solv-
ing GFT efficiently avoids exhaustive search over
exponentially large spaces and accelerates auto-
mated feature engineering.

There are two major challenges (Figure 1) in
solving GFT: (1) stable generation, and (2) valid
generation. First, some generative methods exhibit
unstable variability by causing significant shifts
in generated features; that is, the same input fea-
ture set results in different feature transformations
across different runs with different performances.
Stable generation seeks to answer: how can we
ensure the consistency and stability of generated
features across different inputs and runs? Second,
we observed that some generative methods can gen-
erate undefined values (e.g., division by zero), vi-
olate mathematical constraints, and introduce re-
dundancy that does not contribute to feature trans-
formations. Valid generation of feature transforma-
tions is intended to answer: how can we generate
legal and sound feature transformation sequences
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that contribute to downstream performance?
Relevant work can only partially solve the two
challenges of GFT. First, GFT is related to auto-
mated discrete search-based approaches, such as
genetic algorithms, simulated annealing, and rein-
forcement learning, which search for optimal fea-
ture transformations. However, these methods suf-
fer from an exponential search space and rely on
hand-crafted reward functions. Second, GFT is con-
nected to deep sequential learning (e.g., encoder-
decoder architectures), which aims to learn the data
embedding and decode the embedding into feature
transformation sequences. However, such methods
often generate illegal tokens due to the lack of ro-
bust tokenization, post-validation mechanisms, and
weak syntax enforcement. Third, GFT is related
to LLMs, where we fine-tune models to generate
feature transformation sequences. However, LLMs
suffer from instability and the preference for us-
ing simple operators (e.g., addition) (Kiiken et al.,
2024) to generate different feature transformations
with different performances in different runs, due
to stochastic sampling and probabilistic token se-
lection. Existing studies demonstrate the inability
to jointly address both stable and valid generation
in GFT. As a result, a new method is needed to
achieve stable and valid feature transformations.
Our Perspective: teaming ML gradient
search for stability and LLM symbolic gener-
ation for validity. After a massive analysis, we
have two observations: (1) While LLMs can gener-
ate different feature transformation sequences with
different performances across different runs, LLMs
are capable of generating valid, legal token expres-
sions of feature transformation; (2) another solution
is encoding-search-decoding which computes the
embedding space of data to transform, then lever-
ages gradient search to identify the best embedding
space, and decodes the best embedding space into
optimal feature transformation sequence. While
such the method generates illegal tokens, its gradi-
ent search can ensure that the identified embedding
of feature transformation is better than initializa-
tion embeddings, thus, demonstrating stable perfor-
mance improvements. We derive two key insights
from the two observations: (1) LLM symbolic gen-
eration for valid generation; and (2) ML gradient
search for stable generation. Our perspective is to
team LLM symbolic generation with ML gradient
search together to achieve a valid and stable gen-
eration of feature transformations. We highlight
that leveraging teacher LLM-generated data to train

both the ML model and the student LLM, along
with collaboratively decoding between the student
LLM and ML decoder, is an effective way to inte-
grate both validity and stability. Our work’s key
innovation focuses on LLM-ML teaming rather
than solely relying on LLMs. Our method incor-
porates an ML gradient-based search with LLM
symbolic generation to address LLM instability
and ML validity limitations.

Summary of Proposed Solution: Inspired by
these findings, we develop a four-step LLM-ML
teaming framework to integrate valid symbolic gen-
eration and stable gradient-steered search. Step /
data is to leverage generic LLM (i.e., ChatGPT-4
API and prompting) to generate high-quality and
diverse transformed feature sets, along with corre-
sponding performance on a downstream task (e.g.,
random forest classification) as golden training ex-
amples. Step 2 stability is to exploit the golden
training examples of Step 1 to train an embed-
ding, gradient-steered search, decoding based ML
pipeline for GFT. The gradient-steered mountain-
climbing search provides stable improvements in
identifying better feature transformations in an em-
bedding space. Step 3 validity is to utilize the gold
training examples of Step 1 to fine-tune a founda-
tion LLM model with subword mechanism, contex-
tual self-attention, and structured data pre-training
through two tasks: sequence reconstruction and cor-
responding feature performance prediction. This
is to build the LLM side with logits for teaming.
Step 4: collaboration is to integrate stable search
in ML and valid generation in LLM by calibrating
LLM’s next token probability using the next token
probability of the gradient search based decoder.
Extensive experiments show that the teaming of
ML’s gradient search and LLM’s generation can im-
prove the validity and stability of GFT. In addition,
it achieves 5% improvement on such generalized
and challenging feature engineering tasks.

Our Contributions: (1) Formulation: We tackle
an interesting problem: stability and validity in
generative feature transformation, which is an auto-
mated data engineering task. (2) Insights: we find
that gradient-steered search can strengthen genera-
tion stability on performance improvement in GFT;
LLMs’ symbolic generation can improve valid and
legal generation. (3) Techniques: we propose an
LLM-ML teaming strategy to integrate valid sym-
bolic generation and stable gradient-steered search.
The integration is achieved through teacher-guided
training and collaborative decoding.



2 Preliminaries and Problem Statement

2.1 Important Concepts

Operation Set. We define a set of mathematical
operations, including unary (e.g., log, exp) and
binary (e.g., add, divide) operators. The operators
are applied to existing features to construct new
ones.

Feature Transformation Sequence. A feature
transformation sequence is a collection of symbolic
expressions that define how raw features are com-
bined. These expressions are represented as token
sequences composed of feature IDs and operators.
Figure 2 shows an example.

(f1 —cos(f2)

71z (tan(f1) % ( 73 )= fz, i ((Ff)* - (\/E)) s ey Tt (SIN((f2)%)

Figure 2: A Feature Transformation Sequence Example.

Postfix Representation. To reduce ambiguity and
simplify decoding, we adopt the postfix notation in-
stead of infix. Postfix sequences eliminate the need
for brackets and enable left-to-right parsing. Fig-
ure 6 illustrates the difference. See Appendix A
for examples and details.

2.2 Problem Statement

We aim to develop a generative Al system that
generates a feature transformation sequence given
a tasking dataset, by integrating LLM symbolic
generation for valid generation and ML gradient
search for stable generation. Formally, given a
dataset D = {X,y} and an operation set O, the
goal is to find the optimal feature transformation
sequence ['* that maximizes the downstream ML
model M’s performance (i.e., balance among ac-
curacy, validity, and stability) on the transformed
feature set:

I'* = argmax A(M (Transform(X,T")),y) (1)
r

where Transform (X, I') transforms the original fea-
ture set X using I', and A is the downstream per-
formance metric for M.

3 Proposed Method

3.1 Framework Overview

Figure 3 shows the framework includes four com-
ponents: (1) Golden Examples Generation. We
use an advanced LLM (e.g., ChatGPT) to gener-
ate feature transformation sequences and design

downstream tasks (e.g., regression or classifica-
tion) to evaluate each sequence. The sequences
and their evaluation scores form golden exam-
ples that serve as training data. (2) Transforma-
tion Sequence Embedding and Search. To learn
golden examples and facilitate the exploration of
the optimal transformation path, we deploy an
encoder-evaluator-decoder ML framework. The
encoder embeds feature transformation sequences
into fixed-length vectors to construct an embedding
space. The evaluator assesses the utility of these
embedding vectors of feature transformations and
provides gradient guidance to search for optimal
embeddings in the latent embedding space. The
decoder reconstructs embeddings into transforma-
tion sequences. (3) LLM Supervised Fine-tuning.
Since ChatGPT is a black-box model that only out-
puts discrete tokens, we cannot directly access its
probability distribution. Additionally, ChatGPT is
too large to fine-tune efficiently. Therefore, we
adopt a lightweight Llama model as a student LLM
to learn from the golden examples. This allows the
student LLM to become more efficient and com-
pact while acquiring knowledge of feature transfor-
mations and generating transformation sequences
with probabilistic outputs. (4) LLM-ML Decoder
Teaming. We leverage LLM-generated probability
to guide the ML model’s decoding process. The
ML decoder, informed by the finetuned LLM’s
prior knowledge, improves the stability and valid-
ity of the results.

3.2 Golden Examples from Teacher LLM

We leverage powerful APIs, such as GPT-40, to
generate golden examples as training data. Given
a dataset D = {X,y} with the features X =
[fi,-+-, fn], we construct prompts that cross origi-
nal features with operators from the operation set O.
Besides, we add certain rules and one-shot example
about how to transform a feature set in a prompt,
to guide the LLM. A sample prompt is described
in Appendix B. Under such prompts, the LLM
generates feature transformation sequences, there-
after evaluated on downstream tasks to obtain per-
formance. The resulting pairs form a high-quality
database, denoted as (T';, s;)*,, where T and s rep-
resent the feature transformation sequence and the
downstream performance, respectively, and M is
the number of golden examples. This high-quality
database serves two purposes: (1) distilling the
knowledge of the teacher LLM as a reference for
fine-tuning the student LL.M, enabling it to generate
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Figure 3: Overview of the LLM-ML Teaming Framework. The framework consists of four key components: (1)
Golden Examples Generation, where LLMs generate high-quality feature transformation examples; (2) Feature
Transformation Sequence Embedding and Search, optimizing transformation sequences in the latent space; (3)
Student LLM Feature Transformation, distilling knowledge into a compact LLM; and (4) LLM-ML Decoder
Teaming, refining sequence generation via teaming decoding.

more efficient and controlled feature transforma-
tions, and (2) providing diverse, high-performing
samples to guide search-based ML methods, ensur-
ing that the optimization process explores a well-
informed and promising search space while avoid-
ing suboptimal or redundant transformations.

Golden examples provide high-quality training
data and optimization signals to guide the direc-
tions of optimal feature transformation search and
generation. Compared to random methods, golden
examples help narrow the search space, making the
optimization process more efficient. The evalua-
tor assesses golden examples, steering the search
toward high-quality feature transformation pat-
terns while avoiding ineffective exploration. Addi-
tionally, golden examples establish an experience-
driven search boundary, allowing search methods
to focus on meaningful paths, thereby improving
the accuracy and stability of generations. Golden
examples provide a strong foundation for guiding
both the search process and the student LLM, but
their quality and diversity depend on the generation
method. Traditional RL-based algorithms often
struggle to generate innovative feature crosses, as
they tend to follow fixed reward patterns, leading
to repetitive and predictable outputs. In contrast,
LLMs, with their vast general knowledge, can gen-

erate a wide variety of feature crosses, including
unconventional and innovative patterns that tradi-
tional methods may overlook. By leveraging LLMs
to generate golden examples, we ensure a richer
and more diverse set of high-quality transformation
sequences, which in turn enhances the effectiveness
of the search process and encodes more knowledge
into the student LLM.

3.3 Feature Transformation Sequence
Embedding and Search

This module is designed to explore and opti-
mize feature transformation sequence embeddings
within a latent space. It employs a gradient-steered
search approach to iteratively refine transforma-
tion sequences, ensuring that the generated features
align closely with the objectives of downstream
tasks. The module adopts an encoder-evaluator-
decoder structure: the encoder maps transformation
sequences into a high-dimensional latent space, the
evaluator predicts downstream performance based
on embeddings, and the decoder reconstructs em-
beddings back into transformation sequences.

3.3.1 Training of Encoder-Evaluator-Decoder

To build a robust encoder-evaluator-decoder struc-
ture, a multi-step training strategy is employed,



leveraging the golden examples as reference. We
use a bidirectional GRU encoder and a two-layer
MLP evaluator. The decoder is the LSTM followed
by a token classifier.

Given a transformation sequence I' =
[T1,72,...,TK], the encoder maps it to a latent
embedding z; = Encoder(I';). The latent em-
bedding z; is then fed into both the decoder and
the evaluator, which are trained jointly. The de-
coder minimizes the reconstruction 10ss L. =
|T; — Decoder(Encoder(T;))||3 to ensure the em-
beddings retain sufficient information to recon-
struct the original sequence. The evaluator predicts
the downstream performance of each sequence
based on the golden examples with the predic-
tion loss Leg = % Zf\il (8 — si)Q, where §; is
the predicted performance, and s; is the corre-
sponding ground-truth value. The joint training
objective combines these two losses: Ljoine =
oLrec + (1 - a)ﬁesb

3.3.2 Embedding Search

After training the encoder-evaluator-decoder struc-
ture, an embedding search is performed to identify
high-performing transformation sequences.

First, the latent embedding z; for a given se-
quence I is obtained. Then the evaluator predicts
the downstream performance §; = Evaluator(z;).
The evaluator computes the performance score’s
gradient V 5; = g;; with respect to the embed-
ding, guiding the search process. Then the embed-
ding is updated iteratively as z;°V = z; +nVy,3;
to maximize the predicted performance, where n
is the learning step size. The updated embedding
z*V is decoded into a new transformation sequence

7
'Y = Decoder(z]V).

7

This search process iteratively alternates be-
tween embedding optimization and sequence de-
coding, progressively refining the quality of the
generated sequences. By aligning the sequences
with task objectives and exploring diverse regions
of the feature space, this approach maximizes both
performance and innovation.

While neither LLMs nor black-box ML mod-
els are inherently interpretable, ML-guided search
offers clearer gradient-driven rationale for transfor-
mation selection. Unlike autoregressive LLM gen-
eration, which is sensitive to decoding temperature
and sampling noise, ML-guided latent optimization
offers smoother, reproducible search dynamics, en-
abling stable feature discovery.

3.4 Student LLM Feature Transformation

The student LLM is fine-tuned using golden sam-
ples to get the token probability for use in the de-
coder teaming process. Two key tasks are involved:
(1) Sequence Generation Task, where the LLM
generates transformation sequences based on input
prompts to enable the student LLM to learn the
structure and syntax of transformation sequences
from the teacher LLM’s examples, and (2) Perfor-
mance Prediction Task, where the LLM predicts
the downstream performance of the generated se-
quences to enhance the student model’s ability to
generate valid and informative sequences.

Details of the training objectives and loss func-
tions are provided in Appendix C.

3.5 LLM-ML Decoder Teaming

The decoder teaming policy enhances sequence
generation by ensuring validity, coherence, and
logical consistency. It integrates the ML Decoder
and LLM Decoder using a probabilistic framework
that leverages their complementary strengths for
robust, high-quality outputs.

Let the probabilities from the ML Decoder
and LLM Decoder at time step ¢ be denoted as
PML(wt ’ Z?ew, w<t) and PLLM<’UJt ‘ FZ‘, 'LU<t), re-
spectively. We adopt a posterior correction strategy
inspired by the Product of Experts. The combined
probability is:

P(wy) =
new

P (wy | 22, wep)? - Pam(wy | Tiy wey) ™2

> Pui(w | 2], wee) - Paom(w | Ti, we) 17N

weY
(2)

where w; is the predicted token, w—; represents
the preceding sequence, and A € [0, 1] controls
the balance between two decoders. This formula-
tion ensures the multiplicative combination of Py
and Py, aligning the ML Decoder’s structured
precision with the LLM Decoder’s generative flex-
ibility. By adjusting A\, we balance deterministic
rule-following with creative exploration, enhancing
sequence reliability and efficiency.

Our method combines gradient search and sym-
bolic generation through a joint decoder that bal-
ances stability from ML and validity from LLM.
This integration is simple but effective and has not
been used in prior feature transformation methods.



Table 1: Overall Downstream Performance Comparison.

Dataset Source Task Samples Features Original RDG  LDA ERG NFS  AFAT PCA TTG GRFG MOAT FeatLLM CAAFE AutoFeat OpenFE ELLM-FT Teaming
Amazon Employee Kaggle C 32,769 9 93.37% 9231% 91.64% 92.43% 93.21% 92.97% 9229% 92.79% 93.02% 93.13%  93.62% 91.41%  93.29% 93.44% 93.17% 93.52%
AP-omentum-ovary ~ OpenML C 275 10,936 78.16%  74.32% 59.46% 73.65% 75.00% 74.32% 73.65% 68.24% 76.35% 79.64% 78.89% 78.16%  77.63% 78.16% 80.06% 81.39%
SpectF UClrvine C 267 44 76.06%  76.03% 66.29% 75.66% 79.40% 76.03% 70.92% 76.03% 81.65% 86.95% 80.07% 70.60% 76.06% 76.06% 86.14% 90.49%
German Credit UClrvine C 1,000 24 7420% 68.01% 6391% 74.43% 68.67% 68.32% 67.92% 64.51% 68.29% 72.44% 76.35% 59.92%  74.86% 74.50% 76.39% 85.32%
UCI Credit UClrvine C 30,000 23 79.29% 80.32% 74.37% 80.16% 80.13% 80.32% 73.27% 79.81% 80.67% 80.87%  76.39% 76.80%  79.72% 80.11% 79.29% 80.86%
Spam Base UCIrvine C 4,601 57 94.53%  90.61% 88.89% 91.70% 92.50% 91.20% 81.66% 91.91% 92.20% 92.90% 95.03% 88.51% 94.54% 94.53% 96.68% 93.46%
Tonosphere UClIrvine C 351 34 9337% 91.17% 65.53% 92.02% 91.17% 92.87% 92.87% 90.31% 93.16% 95.69% 95.38% 92.84%  93.37% 93.37% 96.01% 97.10%
Higgs Boson UClrvine C 50,000 28 69.66% 67.51% 51.32% 69.02% 69.17% 69.70% 53.45% 68.99% 69.77% 69.12% 70.35% 61.26%  67.35% 69.66% 69.66% 70.81%
Pimalndian Kaggle C 768 8 80.68%  76.04% 63.80% 76.17% 74.87% 76.56% 63.80% 74.48% 75.39% 80.73% 89.66% 79.86% 80.86% 80.86% 89.66% 91.95%
Messidor Feature UClrvine C 1,151 19 69.09%  62.38% 47.52% 66.90% 63.77% 66.55% 67.21% 66.46% 69.24% 73.02% 72.62% 66.10%  69.08% 69.09% 74.80% 75.61%
Wine Quality Red UClrvine C 999 11 60.95%  46.65% 43.31% 46.10% 46.21% 48.05% 4221% 46.71% 47.01% 62.10% 62.65% 51.74%  62.52% 53.71% 61.11% 62.94%
‘Wine Quality White  UCIrvine C 4,898 11 54.75% 5241% 44.94% 51.04% 52.51% 51.67% 43.01% 53.12% 53.41% 54.52%  56.87% 42.82% 54.26% 54.75% 55.03% 55.18%
SVMGuide3 LibSVM C 1,243 21 81.85% 78.68% 6524% 82.62% 79.16% 79.49% 67.60% 79.81% 81.17% 81.74% 82.54% 75.30% 83.05% 81.85% 82.70% 84.64%
Lymphography UClrvine  C 148 18 83.19% 79.36% 70.38% 83.73% 85.25% 82.38% 70.38% 82.38% 8551% 88.38%  8524%  75.00%  79.26%  83.73% 90.54% 91.89%
Airfoil UClrvine R 1,503 5 0.5749 05193  0.2201  0.5193  0.5193  0.5210 02730 0.5003  0.5587  0.5967 0.5877 N/A 0.5746 0.5746 0.6174 0.6329

Housing Boston Kaggle R 506 13 0.4148 04043  0.0201 04090 04251 0.4161 0.1048 0.3967 0.4043  0.4463 0.4442 N/A 0.4149 0.4148 0.4564 0.4584

Openml 586 OpenML R 1,000 25 0.6311 0.5681  0.1109  0.6147 0.5443 05435 0.1109 05443 0.5768  0.6251 0.6477 N/A 0.6329 0.6311 0.6328 0.6569

Openml 589 OpenML R 1,000 25 0.5388  0.5091 0.0112 0.5103  0.5053 0.5087 0.0112 05032 0.5047 0.5139 0.5545 N/A 0.5423 0.5388 0.5836 0.5990

Openml 607 OpenML R 1,000 50 0.6207  0.5208 0.1071  0.5553  0.5194 05158 0.1071 0.5222 0.6021  0.6051 0.5608 N/A 0.6191 0.6207 0.6089 0.6181

Openml 616 OpenML R 500 50 0.3736  0.0701  0.0241  0.1937  0.1667  0.1489 0.0242  0.1567 0.3722  0.4063 0.3836 N/A 0.3924 0.3736 0.4082 0.4073

Openml 618 OpenML R 1,000 50 0.4402 03720  0.0521  0.3561  0.3473  0.2472  0.1016  0.3467 04562 04734 0.4597 N/A 0.4407 0.4402 0.4734 0.4840

Openml 620 OpenML R 1,000 25 0.6434 05111  0.0293  0.5466  0.5130 0.5267 0.1138 0.5123  0.5591  0.5722 0.5725 N/A 0.6576 0.6434 0.6203 0.5847

Openml 637 OpenML R 500 50 03162 0.1364  0.0433  0.1521  0.1521  0.1758 0.0352 0.1439  0.2071  0.2125 0.2945 N/A 0.3251 0.3162 0.2946 0.3095

Average Ranking 5.52 11.35 15.00 9.74 9.78 9.87 14.00 11.65 7.83 5.04 4.22 14.00 5.52 5.13 335 1.83

4 Experiment

4.1 Experimental Settings

4.1.1 Datasets

We conducted experiments using datasets from
UClrvine (Public, 2023c), CPLM (Public, 2023a),
Kaggle (Howard, 2023), and OpenML (Public,
2023b). The corresponding statistics and tasks are
presented in Table 1, where *C’ represents classifi-
cation and 'R’ represents regression.

4.1.2 Baseline Algorithms

We compared our method with widely-used feature
generation methods, shown in Table 1. The details
of the baselines are presented in Appendix D.

4.1.3 Evaluation Metrics

We evaluated our framework on both classification
and regression tasks. For classification, we use
the F1-Score, and for regression, we report 1-RAE
(Relative Absolute Error). The detailed metrics
definitions are provided in Appendix E.

4.2 Research Questions

We aim to address the following research questions:
RQ1: Does the proposed feature transformation
framework enhance the downstream performance?
RQ2: What is the impact of the teaming strategy,
in terms of error rate, operator ratio, and ablation
studies? RQ3: How well does the proposed frame-
work generalize across different downstream mod-
els? RQ4: How effective are LLMs in feature
transformation tasks, and how do they compare to
traditional methods?

4.3 Overall Performance

To evaluate the effectiveness of our proposed fea-
ture transformation framework, we conducted ex-

periments on 23 diverse datasets, covering both
classification and regression tasks. These datasets
vary significantly in size, feature dimensions, and
complexity, ensuring a comprehensive assessment
of the framework’s generalization ability. We com-
pare our Teaming method with several baseline
feature transformation approaches, including both
traditional and reinforcement learning (RL)-based
methods. For classification tasks, we use F1-Score
as the primary evaluation metric, while for regres-
sion tasks, we adopt 1-RAE (inverse relative ab-
solute error). The results, summarized in Table 1,
provide a detailed performance comparison across
different datasets.

The “Original” results refer to models trained
solely on the raw feature set, without any trans-
formed features. The consistent improvements ob-
served across most datasets after applying feature
transformation highlight the necessity of generating
new, informative features to enhance downstream
model performance.

The experimental results reveal that Teaming
consistently outperforms other methods across both
classification and regression tasks. In classification
datasets, Teaming achieves the highest F1-Score,
indicating its effectiveness in learning meaningful
feature representations. Similarly, in regression
datasets, Teaming outperforms other methods in
terms of 1-RAE, showcasing its adaptability in dif-
ferent learning tasks.

A key observation is the robust and stable perfor-
mance of Teaming across diverse datasets. While
some baseline methods show performance fluc-
tuations due to varying dataset characteristics,
Teaming remains consistently strong regardless
of dataset size, feature dimensions, or complex-
ity. This suggests that our framework generalizes



well and can be applied effectively in a wide range
of tasks. Furthermore, the results demonstrate that
Teaming surpasses both traditional and RL-based
methods. Traditional approaches struggle to cap-
ture complex data patterns. Even compared to ad-
vanced RL-based methods, Teaming still achieves
higher performance, highlighting its ability to gen-
erate more informative and useful features. The
average ranking at the bottom of Table 1 further
confirms the advantage of Teaming.

Traditional ML methods (e.g., RDG, LDA, PCA)
generally offer fast computation but struggle to
capture higher-order or semantically rich transfor-
mations, limiting their performance on complex
tasks. Pure LL.M-based methods (e.g., FeatLLM,
CAAFE) exhibit greater expressiveness but are of-
ten unstable or biased toward simple operators. Hy-
brid methods (e.g., MOAT, ELLM-FT, AutoFeat)
combine rule-based or optimization strategies with
generative components and tend to perform better
than single-paradigm approaches. Our proposed
Teaming method integrates LLM symbolic reason-
ing with ML gradient guidance, which results in
superior average ranking across all datasets. These
results demonstrate both robustness and represen-
tational power.

We also check the efficiency in Appendix G.

4.4 Teaming Study

To investigate the impact of different teaming strate-
gies on feature transformation performance, we
conducted experiments comparing four different
policies. The downstream performance and error
rate in Table 2 across multiple datasets show how
different teaming strategies influence feature trans-
formation quality.

The Traditional ML setting represents a stan-
dard machine learning approach without golden
examples. The Teaming w/o Search configuration
reduces the search steps to examine the impact of
limiting the search space. The w/o Decoder Team-
ing setting removes the contribution of decoding
alignment. Finally, the Teaming Policy applies the
full proposed strategy. The evaluation focuses on
two key metrics: downstream performance, which
measures the effectiveness of transformed features
in enhancing classification and regression tasks,
and error rate, which quantifies the proportion of
invalid or incorrect sequences generated during fea-
ture transformation.

The results in Table 2 (where values are pre-
sented as “performance (error rate)”’) demonstrate

Table 2: Ablation Study. Comparison of Models with
Downstream Performance and Error Rate.

Traditional Teaming w/o Decoder Teaming

ML w/o Search Teaming Policy

Amazon Employee  93.13% (0.00%)  93.47% (0.00%)  93.45% (0.00%)  93.52% (0.00%)
AP-omentum-ovary ~ 79.64% (35.00%) 79.70% (25.00%) 80.54% (20.00%)  81.39% (5.00%)
SpectF 86.95% (22.50%)  88.02% (7.73%)  89.44% (2.50%)  90.49% (0.00%)
German Credit 72.44% (85.83%) 84.42% (75.91%) 72.75% (61.25%) 85.32% (70.71%)
UCI Credit 80.87% (17.50%) 80.67% (10.83%) 80.80% (11.36%) 80.86% (0.00%)

Dataset

Spam Base 92.90% (4.17%)  92.92% (4.09%)  93.13% (1.67%)  93.46% (0.00%)
Tonosphere 95.69% (80.83%)  95.74% (72.27%)  95.74% (71.73%)  97.10% (70.00%)
Higgs Boson 69.12% (54.17%)  70.01% (45.00%) 70.36% (48.33%) 70.81% (37.62%)

Pimalndian 80.73% (54.17%)  90.13% (46.67%) 88.99% (45.00%) 91.95% (21.36%)
Messidor Feature 73.02% (13.18%)  74.83% (5.83%)  73.80% (10.83%)  75.61% (3.75%)
Wine Quality Red 62.10% (20.48%)  62.19% (3.75%)  62.35% (0.83%)  62.94% (0.00%)
Wine Quality White  54.52% (10.83%)  54.95% (8.18%)  54.22% (6.36%)  55.18% (5.83%)
SVMGuide3 81.74% (32.50%) 82.60% (20.83%) 83.84% (30.71%) 84.64% (20.83%)

Lymphography 88.38% (43.33%) 85.28% (25.00%) 88.57% (15.91%) 91.81% (11.90%)

Airfoil 0.5967 (55.00%)  0.6311 (48.57%)  0.6211(58.33%)  0.6329 (45.00%)
Housing Boston 0.4463 (12.50%)  0.4482 (2.27%) 0.4469 (6.67%) 0.4584 (0.00%)
Openml 586 0.6251 (52.50%)  0.6405 (33.33%)  0.6446 (37.86%)  0.6569 (24.17%)
Openml 589 0.5139 (4.17%) 0.5937 (0.83%) 0.5937 (0.83%) 0.5990 (0.00%)
Openml 607 0.6051 (45.00%)  0.6181 (41.67%)  0.6056 (40.71%)  0.6181 (29.17%)
Openml 616 0.4063 (16.36%)  0.4066 (15.00%)  0.4073 (9.17%) 0.4073 (3.33%)
Openml 618 0.4734 (51.67%)  0.4823 (45.91%)  0.4831(30.00%)  0.4840 (22.50%)
Openml 620 0.5722 (5.91%) 0.5748 (1.67%) 0.5751 (2.50%) 0.5847 (3.33%)
Openml 637 0.2125(32.73%)  0.2588 (38.33%)  0.2859 (34.05%)  0.3095 (22.50%)

that the Teaming Policy consistently achieves the
highest downstream performance while maintain-
ing the lowest error rate across various datasets.
One key finding is that reducing search steps nega-
tively impacts feature transformation quality, indi-
cating that a more extensive search process is cru-
cial for generating effective transformations. This
underscores the importance of maintaining a well-
optimized search space to fully exploit the potential
of the transformation framework.

Another critical observation is the role of de-
coder teaming in enhancing stability. When the
decoder teaming mechanism is removed, perfor-
mance drops significantly, particularly in regres-
sion tasks. This suggests that decoder teaming
is essential for aligning ML and LLM-generated
transformations. Without this alignment, the trans-
formed features may lose consistency, leading to
suboptimal results in downstream tasks.

A particularly notable advantage of the Teaming
policy is its ability to reduce error rates. In several
datasets, the error rate reaches 0.00%, demonstrat-
ing that the transformed features are highly reliable.
The ability to consistently generate valid and high-
quality feature transformations further reinforces
Teaming as a robust and effective approach for im-
proving downstream task performance.

We also studied the importance of two fine-
tuning tasks when building the student LLM
(Appendix C), which shows that both tasks en-
hance the student LLM’s capacity and contribute
to the final transformation quality. We also
tried different ML-Teacher-Student combinations
(Appendix H) to test the generalization of teaming.



4.5 Robustness Check
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Figure 4: Robustness Check. The radar charts show the
performance across seven downstream models.

To evaluate the robustness of the teaming policy,
we test its performance across multiple different
downstream models. Specifically, we apply our
feature transformation framework to two datasets:
SVMGuide3 and SpectF, utilizing seven different
models for downstream tasks. Figure 4 presents
the results of the robustness check.

The radar charts show that the transformed fea-
tures perform consistently across different models,
with minimal variation in downstream outcomes.
This highlights the robustness and adaptability of
our framework across diverse downstream models.

4.6 LLM for Feature Transformation

We conducted additional experiments to understand
how LLMs behave when directly used for feature
transformation. While these models can generate
high-performing features, we also observed some
interesting behaviors: they tend to prefer simple
operators, show unstable outputs across runs, and
naturally focus on important features even without
supervision. These insights help explain both the
strengths and limitations of LLM-driven transfor-
mations. Full results, visualizations, and analysis
are provided in Appendix 1.

5 Related Work

Feature Transformation. Feature transformation
aims to improve the feature space by applying
mathematical operations to the original features.
Existing methods fall into two main types: (1) Dis-
crete decision-based methods, which treat trans-
formation as a discrete search problem. Various
strategies are adopted to improve search quality,
such as heuristic rules (Kanter and Veeramacha-
neni, 2015; Khurana et al., 2016; Tran et al., 2016;
Xiao et al., 2023, 2024), feature space expansion
with selection (Katz et al., 2016), evolutionary al-
gorithms (Zhu et al., 2022a; Gong et al., 2025),

and reinforcement learning (Wang et al., 2022). (2)
Continuous optimization methods, which embed
features into continuous latent spaces and optimize
them through gradient-based search (Wang et al.,
2023; Zhu et al., 2022b).

LLM for Specific Task. Recent studies explore
how LLMs assist in feature-related tasks. Aug-
imodels (Singh et al., 2023) and Kasneci et al. (Kas-
neci and Kasneci, 2024) enrich classical models
with LLM-generated embeddings or features. Li et
al. (Li et al., 2023) offer a financial-domain review
and model selection framework. CAAFE (Holl-
mann et al., 2024) generates features iteratively
based on task context. FeatLLM (Han et al., 2024)
applies few-shot prompting to synthesize transfor-
mation rules. Kuken et al. (Kiiken et al., 2024) ana-
lyze LLMs’ preference for simple operators. Jeong
et al. (Jeong et al., 2024) show LLMs can select
relevant features using only column names and task
descriptions. LFG (Zhang et al., 2024) uses LLM
agents and Monte Carlo Tree Search to guide dy-
namic feature generation. Xu et al. (Xu et al., 2024)
integrate LLMs with AutoML to programmatically
optimize data pipelines.

ML-LLM Alignment. Though ML-LLM align-
ment is still emerging, several related works offer
insights. ARGS (Khanov et al., 2024) adjusts token
probabilities during decoding using reward signals
to improve output alignment. Kong et al. (Kong
et al., 2024) model LLMs as discrete-time stochas-
tic systems and apply value function learning via
Bellman equations. TreeBoN (Qiu et al., 2024)
introduces speculative tree search to guide Best-
of-N sampling using token-level rewards, balanc-
ing efficiency and quality. ELLM-FT (Gong et al.,
2025) adapts evolutionary strategies with few-shot
prompting and RL data collection for efficient,
high-quality feature transformation.

6 Conclusion Remarks

We propose an LLM-ML teaming framework to
address the challenges of stability and validity in
Generative Feature Transformation. By combining
ML gradient search with LLM symbolic generation,
our method produces consistent and high-quality
features. Experimental results demonstrate that
this approach improves transformation reliability
and enhances feature expressiveness, achieving a
5% performance gain. This work highlights the
promise of LLM-ML collaboration in advancing
automated feature engineering.



Limitations

While our framework improves feature transforma-
tion performance across multiple tasks and mod-
els, it still has several limitations. (1) The stu-
dent LLM offers a more efficient alternative to the
teacher model, but it remains less accurate and
more prone to instability during generation. (2)
The framework is task-agnostic and does not incor-
porate domain-specific information. Incorporating
task-aware prompts or fine-tuning may improve rel-
evance and interpretability. (3) The ML and LLM
components are trained independently. A unified
or end-to-end training strategy could potentially
improve alignment and collaborative performance.
(4) The method has not yet been evaluated in full
production pipelines, such as time-series data or
enterprise-scale automated systems, where deploy-
ment constraints may differ. (5) The LLM tends to
favor simpler operators (e.g., addition, subtraction),
which may limit the diversity and complexity of
generated transformations in certain tasks.
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A Important Concept

Operation Set: To refine the feature space, we
need to apply mathematical operations to existing
features to generate new informative features. All
operations are collected in an operation set, de-
noted by O. These operations can be classified as
unary and binary operations. The unary operations
such as "square", "exp", "log", etc. The binary

operations such as "plus", " minus", etc.

"non

multiply",

Feature Transformation Sequence: Assuming
a dataset D = {X, y} includes the original feature
set X = [f1,- -, fn] and predictive targets y. We
transform the existing features using mathematical
compositions 7 consisting of feature ID tokens and
operations to generate new and informative features
(Figure 5). K compositions are adopted to refine
X to a better feature space X = [f, - - - , fx]. The
collection of the K compositions refers to the fea-
ture transformation sequence, which is denoted by
'=n, -, 7kl
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Figure 5: A Feature Transformation Sequence Example.

Postfix Expressions: The transformation se-
quence should be in a computable and machine-
learnable format. Figure 6a shows a transforma-
tion sequence with two generated features. The
original infix representation (Figure 6b) has issues
like redundancy, semantic sparsity, a high likeli-
hood of illegal transformations, and an overly large
search space.

T
(f1 + (sin(f2) — f3)/f2) , (Jtan(f1))

(%)

(a) Original Sequence
igonmuencenoenEneBRennE
(b) Infix Expression
Eioielmlaleloloc]miomlo

(c) Postfix Expression

Figure 6: Different Expressions of Transformation
Sequence.

We introduce postfix expressions (Figure 6¢) to
solve these problems. Postfix expressions don’t
need many brackets to determine calculation pri-
ority. Scanning from left to right suffices to recon-
struct the corresponding sequence, greatly reducing
sequence-modeling difficulty and computational
cost. They also reduce the ambiguity of the trans-
formation sequence. Most importantly, it reduces
the search space from exponential to a finite set
|C| = |O| + | X|D + 3. Here, |O| represents the
operation set size, | X| is the original feature set di-
mension, D is feature numbers, and 3 refers to start
tokens < SOS >, separation token < SEP >,
and end token < FOS >.

B Feature Transformation Prompt

This is a detailed description of the generation
prompt used in the study. The prompt is designed to
guide LLMs on feature transformation to improve
downstream task performance.

The prompt is structured into several parts. The
Task Description section introduces the role of the
expert and the overall goal of the transformation.
It states that the expert is given a set of features
and operators and is tasked with dataset transfor-
mation. The Feature Description part lists the
available feature tokens that can be used in the
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transformation. The Operator Description section
details the unary and binary operator tokens avail-
able. The unary operator tokens include [sin, sqrt,
tanh, ...], and the binary operator tokens include
[add, subtract, ...]. The Force Prompt section en-
forces several rules for the transformation. These
rules ensure that the generated feature combina-
tions are valid and follow the specified format. For
example, it requires generating multiple (less than
50) feature combinations separated by "token_sep’,
each combination to include at least one feature
and one operator token, and also has specific rules
for binary and unary operators in terms of the num-
ber of feature tokens they can operate on. It also
mandates the use of postfix notation and the use
of 'token_sep’ to separate different combinations.
Finally, the Few-shot Prompt section provides an
example of how the response should be formatted
and requests that only the feature combinations be
given in the response.

C Student LLM Feature Transformation

To construct a reliable student LLM, we employ
two fine-tuning tasks: (1) Sequence Generation
Task and (2) Performance Prediction Task.

C.1 Sequence Generation Task

The student LLM is fine-tuned to generate feature
transformation sequences, leveraging patterns and
principles captured in the teacher LLM’s golden
example database. The input prompts provided
to the student LLLM are consistent with those
used for the teacher LLM in the golden exam-
ple generation phase. To optimize this task, a
cross-entropy loss function is employed: Lgq =
—> o log(Prm(T'y)), where Iy, represents the
n-th golden example, P ym(T),) is the student
LLM generating probability, and m is the total
number of sequences. This fine-tuning process dis-
tills the teacher LLM’s knowledge into the student
LLM, enabling it to explore complex and innova-
tive feature transformations while adhering to the
postfix expression format. This ensures low error
rates during decoding.

C.2 Performance Prediction Task

The student LLM is also trained to predict the
effectiveness of its generated feature transforma-
tion sequences I'. Let v(I') denote the actual
performance of a sequence I', and o(I") is pre-
dicted by the LLM. The MSE loss is defined as:
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Few-shot Prompt:

\ Your response: <output>

\ Please give the response like this: [tanh(feature 1), feature 1+feature 3, ...]. /
\ Please only give the feature combinations. /

Figure 7: The prompt details.

Lopert = =3 (0(Ty) — v(T;))?, with m train-
ing samples. By learning to associate transforma-
tion patterns with performance metrics, the student
LLM prioritizes high-quality transformations while
discarding suboptimal ones. This dual-task training
enhances the overall efficiency and effectiveness of
the feature transformation framework.

C.3 Distillation Study

We conducted experiments on those two fine-tuning
tasks to illustrate their importance.

Table 3: Distillation Study on OpenML 586 Dataset.

Dataset Performance T Error Rate |
with Performance Prediction 0.6569 24.17%
w/o Performance Prediction 0.6519 34.00%
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Table 3 presents a comparative study on the ef-
fect of performance prediction. The results indicate
that omitting the performance prediction task leads
to a decrease in downstream performance and an
increase in error rate. This highlights the impor-
tance of performance prediction in improving the
model’s effectiveness.

D Baselines

Here are the baselines that we used in our experi-
ments.
* RDG: Generates feature-operation-feature
transformation records at random to create
a new feature space.
* LDA (Blei et al., 2003): A matrix
factorization-based method to obtain the fac-
torized hidden state as the generated feature



space.

ERG: Applies operations on each feature to
expand the feature space and selects crucial
features as new features.

NFS (Chen et al., 2019): Models the trans-
formation sequence of each feature and uses
reinforcement learning (RL) to optimize the
entire feature generation process.

¢ AFAT (Horn et al., 2020): An enhanced ver-
sion of ERG that repeatedly generates new
features and uses multi-step feature selection
to select informative ones.

PCA (Mackiewicz and Ratajczak, 1993)
Generates new features through linear feature
correlation.

TTG (Khurana et al., 2018): Formulates the
transformation process as a graph and imple-
ments an RL-based search method to find the
best feature set.

GRFG (Wang et al., 2022): Utilizes three
collaborative reinforced agents to conduct fea-
ture generation and proposes a feature group-
ing strategy to accelerate agent learning.
MOAT (Wang et al., 2023): Utilizes a search-
based method for better feature space repre-
sentation, leading to better decoding operator
sequences.

FeatLLM (Han et al., 2024): A recent ap-
proach that leverages large language models
for few-shot symbolic feature engineering, en-
abling interpretable transformations with min-
imal supervision.

CAAFE (Hollmann et al., 2023): A context-
aware automated feature engineering frame-
work that uses LLMs to iteratively refine and
select transformations based on dataset meta-
data and task descriptions.

¢ AutoFeat (Horn et al., 2019): A classic
Python library for automatic feature engineer-
ing, generating polynomial and interaction
features followed by selection based on statis-
tical relevance.

OpenFE (Zhang et al., 2023): An open-
source framework that applies model-agnostic,
gradient-guided search to select effective fea-
ture transformations.

ELLM-FT (Gong et al., 2025):A hybrid evo-
lutionary learning method where LLMs gener-
ate transformation candidates and are filtered
using reinforcement-style utility scoring.
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E Evaluation Metrics

For classification tasks, we use the F1-Score as the
evaluation metric:

Fl—9 Precision - Recall

3

" Precision + Recall

L. _ TP _ TP
where Precision = 7575 and Recall = 7575

For regression tasks, we report 1-RAE (Relative
Absolute Error):

”ypred - yreal”l
||y7‘eal - greal”l

1-RAE=1 — 4
where yp,¢q is the predicted value, y,.c, s the true
value, and ¥, 1S the mean of the true values.

F Configurations

All experiments were conducted on the Ubuntu
22.04.3 LTS operating system, with a 13th-
generation Intel(R) Core(TM) 19-13900KF CPU
and an NVIDIA GeForce RTX 4090 GPU. The ex-
periments were implemented using Python 3.11.5
and PyTorch 2.0.1.

G Efficiency Study

The goal of this experiment is to evaluate whether
our framework can achieve considerable results
with fewer search iterations, thereby improving
the efficiency of the feature transformation process.
Specifically, we compare the performance of the
Teaming policy and the ML-Based policy under dif-
ferent search rounds, measuring downstream task
performance as a function of the number of search
iterations. This comparison allows us to assess how
effectively the Teaming strategy optimizes feature
transformations in the latent space.

Table 4: Efficiency Check Results

Teaming Policy
epoch second/epoch

8 2.14

ML-Based Policy
epoch second/epoch

22 1.67

Dataset

Openml 586

The results in Table 4 indicate that while the
Teaming policy requires slightly more time per
epoch (2.14 seconds) compared to the ML-Based
policy (1.67 seconds), it converges significantly
faster, requiring only 8 epochs, whereas the ML-
Based policy takes 22 epochs to reach convergence.
This suggests that the Teaming strategy acceler-
ates the feature transformation process by guid-
ing the search more effectively, reducing the total



number of iterations required to reach an optimal
transformation. Despite the per-epoch time being
approximately 28.1% longer than the ML-Based
policy, the total computation time for convergence
is 17.12 seconds for the Teaming policy (8 x 2.14),
compared to 36.74 seconds for the ML-Based pol-
icy (22 x 1.67). This represents an overall 53.4%
reduction in total computation time.

To complement this analysis, we also bench-
mark the end-to-end runtime of our method against
other ML-based and LLM-based feature engineer-
ing methods. Table 5 summarizes the average
runtime (in seconds) for each method to complete
the transformation pipeline on the OpenML 586
dataset.

Table 5: End-to-End Runtime Comparison Across Meth-
ods

Method CAAFE OpenFE AutoFeat MOAT Pure LLM Teaming

94.69 6.55 36.74 8.32 17.12

Runtime (s) 37.83

As shown, our method runs faster than heavy
pipelines such as CAAFE and FSNS, while main-
taining competitive efficiency with Pure LLM-
based generation. Despite being slower than
OpenFE, which applies simple transformations, our
approach provides a more robust balance between
runtime and transformation quality.

H backbones Study

To evaluate the generality of our LLM-ML team-
ing framework, we conducted an experiment us-
ing different combinations of teacher and student
LLMs. Specifically, we tested three student LLMs:
LLaMA-3, GPT-2, and BART. We also thried a
diverse set of teacher LLMs, including GPT-4o,
03-mini, ol-mini, LLaMA 3.2-405B, LLaMA 4,
Claude 3, and DeepSeek V3. Under Llama-3 stu-
dent LLM, we tried different ML methods, includ-
ing LSTM and Transformer decoders. Each config-
uration was integrated into our teaming framework,
and the downstream performance was measured on
a representative regression task from the OpenML
586 benchmark. Table 6 reports the average predic-
tion accuracy, along with the corresponding error
rate in parentheses.

The results demonstrate that our framework gen-
eralizes well across different architectures. Accu-
racy remains consistent across most teacher models,
with variation typically within 2-3%. Student mod-
els based on modern LLMs, such as LLaMA-3,
achieve the best overall performance, while older
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architectures like GPT-2 and BART yield slightly
lower accuracy and higher error rates. Interest-
ingly, the LSTM-based decoder for LLaMA-3 out-
performs the Transformer-based version in several
settings, suggesting that sequential decoding may
be more effective for symbolic generation tasks.
Furthermore, combinations involving GPT-40 and
Claude 3 as teacher models consistently deliver
strong performance, highlighting the compatibility
of our framework with both proprietary and open-
source LLM ecosystems.

These findings confirm that the teaming strategy
is robust and architecture-agnostic, making it a
practical choice for real-world applications that
may involve heterogeneous LLM backbones.

I LLM for Feature Transformation

This section investigates the use of LLMs for di-
rect feature transformation tasks, exploring their
strengths, inherent limitations, and unexpected find-
ings.

I.1 Transformation Performance

We evaluated the performance of the teacher LLM
(GPT-40) and the student LLM (Llama 3.2-3B)
in generating feature transformation sequences di-
rectly from prompts. Table 7 shows the result
comparison on the OpenML 586 dataset.

The teacher LLM achieved the highest perfor-
mance, significantly outperforming both the stu-
dent LLM and traditional ML methods. This high-
lights the superior ability of LLMs to identify mean-
ingful feature transformations that enhance model
effectiveness.

A key advantage of the teacher LLM is its ca-
pacity to generate diverse and high-quality transfor-
mations, often uncovering patterns that traditional
ML methods might overlook. However, its lack of
interpretability remains a notable limitation.

The student LLLM, distilled from data generated
by the teacher LLM, maintains a performance level
close to that of the teacher while exhibiting a higher
error rate. This suggests that knowledge distillation
to a smaller model introduces some degradation in
feature transformation accuracy. Nevertheless, the
student model offers a cost-effective alternative,
as it incurs no additional computational expenses
compared to the teacher LLM. Moreover, the prob-
ability distribution of each transformation step en-
ables the implementation of the decoder teaming
policy.



Table 6: Performance and error rate of different student-teacher LLM combinations on OpenML-586 dataset.

Student \ Teacher GPT-40

03-mini

ol-mini

LLaMA 3.2-405B LLaMA 4 Claude 3

DeepSeek V3

LLaMA-3 (LSTM)
LLaMA-3 (Transformer)
GPT-2 (LSTM)

BART (LSTM)

0.6569 (24.17%)
0.6555 (17.45%)
0.6446 (39.80%)
0.6409 (33.33%)

0.6807 (23.33%)
0.6555 (17.45%)
0.6669 (38.33%)
0.6723 (39.55%)

0.6728 (29.17%)
0.6555 (17.45%)
0.6677 (47.73%)
0.6683 (49.09%)

0.6807 (23.33%)
0.6538 (23.33%)
0.6694 (34.09%)
0.6728 (29.17%)

0.6807 (23.33%)
0.6555 (17.45%)
0.6694 (47.73%)
0.6683 (49.09%)

0.6807 (25.00%)
0.6555 (17.45%)
0.6669 (38.33%)
0.6728 (29.17%)

0.6688 (19.17%)
0.6555 (17.45%)
0.6336 (25.51%)
0.6336 (25.51%)

Table 7: LLM V.S. ML on OpenML 586 Dataset.

Metric Teacher LLM  Student LLM ML
Performance 0.7196 0.6867 0.6251
Error Rate 1.53% 20.34% 52.50%
Cost (Dallor) 1.93 0 0
Interpretability X X

Conversely, while traditional ML approaches ex-
hibit lower performance, they remain highly in-
terpretable and computationally efficient, making
them a viable option in scenarios where explain-
ability is a priority.

LI.2 Stability

Powerful LLMs like GPT-40 can generate feature
crosses with better downstream performance, but
their black-box nature and lack of stability make
cost control challenging. To achieve more diverse
outputs, we lower the temperature when generat-
ing sequences. However, a lower temperature also
increases randomness, making it unclear when to
stop.

|

Ve ; :
£ £ : 3
Attemp 1 Attemp 2 : Attemp 3
Iteration Iteration
(a) Traditional ML (b) LLM

Figure 8: Stability Comparison. Traditional ML en-
sures steady improvements, while LLM fluctuates un-
predictably.

Figure 8 compares two approaches. The tradi-
tional ML method with a search policy ensures sta-
ble performance improvements (Figure 8a). How-
ever, the LLM-based generation is unpredictable.
There is always the possibility that trying 1,000
more times might yield significantly better feature
crosses, but we cannot afford endless trials. In Fig-
ure 8b, each attempt (segmented regions) exhibits
significant fluctuations, lacking a consistent up-
ward trend. Some attempts yield improved results,
while others regress, making it uncertain whether
further trials will enhance performance or intro-
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duce redundancy. If the temperature is too high,
we risk redundancy and wasted cost; if it is too low,
we never know if the next attempt will be better
or worse, making every decision a gamble. This
dilemma makes temperature tuning challenging, as
it creates uncertainty in balancing efficiency and
diversity.

L3 Operator Ratio

This experiment investigates whether LLMs exhibit
a tendency to prefer simple operators during fea-
ture transformation tasks, as suggested by prior
research (Kiiken et al., 2024). By analyzing the
frequency of operator usage in transformation se-
quences, we observed the following trends:

Complex

Complex Complex

19.9%

11.5% 45.5%

88.5% 54.5%

80.1%

Simple ~ Simple

Simple

(a) Teacher LLM (b) Student LLM (c) ML

Figure 9: Operator Usage. They illustrate the ratio of
simple vs. complex operators used by different methods.

As illustrated in Figure 9a, the teacher LLM
mostly relies on simple operators, with complex op-
erators accounting for only one-fifth of its transfor-
mations. The student LLM (Figure 9b) exhibits an
even stronger preference for simple operators, fur-
ther reducing the use of complex transformations.
In contrast, traditional ML methods (Figure 9c)
demonstrate a more balanced distribution between
simple and complex operators, with an approxi-
mately equal proportion of each.

These results indicate that LLMs exhibit a clear
preference toward simple operations (e.g., addi-
tion and subtraction) while under-utilizing more
advanced transformations, such as logarithmic and
exponential functions. This preference may restrict
the diversity and effectiveness of generated fea-
tures, particularly for datasets that benefit from
complex mathematical transformations. These find-



ings corroborate the prior study (Kiiken et al., 2024)
and highlight the need for strategies to encourage
using complex operators (e.g., prompt engineering
or fine-tuning).

We tried different prompts to encourage LLMs
to use more complex operators. To encourage LLM
to use more complex operators, we designed some
prompts and experimented. Specifically, we:

* Modified prompts to explicitly encourage di-
versity in operator use, increasing complex
operator rates from 19.9% to 37.6%;

* Added chain-of-thought reasoning examples,
which reduced repetition and encouraged com-
positionality;

» Applied rule-based post-filtering to discard
overly simple expressions, improving operator
complexity without degrading performance.

These techniques demonstrate the controllability
of symbolic output generation in LLMs. However,
LLMs prefer simple operators rather than complex
operators. The reason could be that they don’t want
to make a mistake. After all, the first priority of
LLMs is to answer the question rather than give the
correct answer. That’s also the reasons why LLMs
may create some unreliable answers, also known
as LLM hallucination.

Does it hurt the overall performance? There is no
empirical evidence suggesting that the use of more
simple operators negatively impacts downstream
performance. Feature transformation is inherently
an open-ended problem: there is no single optimal
solution, but rather multiple valid paths to effective
representations. Much like the notion that “there is
no absolute ranking in art,” the diversity of trans-
formation strategies reflects the creative space of
this task. This open-ended nature further bridges
feature transformation with natural language gen-
eration, making it particularly well-suited for solu-
tions based on large language models.

L4 Findings of Feature Selection

To assess whether the LLMs truly understand the
dataset and task—an essential factor for the validity
of previous results—we analyze the distribution
of feature usage in the generated transformation
sequences.

In the LLM prompt setup (Figure 7), both fea-
tures and operators are treated as tokens, making it
crucial to determine whether the LLMs recognize
their actual significance. We select an OpenML
dataset. The first five features are original, while
the next twenty are generated from them. We found
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strong feature selection characteristics, as shown
in Figure 10.

Features

Features
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Usage Count

(b) Student (Llama 3.2).

Usage Count

(a) Teacher (GPT-40).

Figure 10: Feature Usage Distribution. The bar charts
depict how frequently each feature appears in transfor-
mation sequences by different LLMs.

Figure 10a shows that GPT-4o0 has a clear pref-
erence for the first five original features, with a
steep drop in usage for the derived ones. The stu-
dent LLM (Figure 10b) exhibits an even stronger
preference toward these original features.

This suggests that the LLMs recognize the true
meaning of the tokenized features rather than treat-
ing them arbitrarily. Their implicit ability to prior-
itize key features over less relevant ones provides
insight into LLM-driven feature selection, poten-
tially reducing reliance on traditional methods.
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