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ABSTRACT

Compositionality has long been considered a fundamental aspect of human cog-
nition - enabling the learning, manipulation, and generation of natural language.
Understanding how this concept applies to Large Language Models (LLMs) and
how it can be effectively evaluated remains a key challenge. In this work, we
explore the potential of formalizing cognitive notions from theory, such as com-
positionality, to develop more nuanced evaluation frameworks for LLMs. Using
a sheaf-theoretic approach, we define compositionality through four distinct con-
ditions that capture its multifaceted nature. This formalization offers a structured
perspective on evaluating LLMs, moving beyond surface-level assessments to un-
cover deeper insights into their behavior. Our findings suggest that theoretical
frameworks like this one can play a crucial role in advancing the understanding
and evaluation of LLMs, providing a foundation for more comprehensive and pre-
cise performance analyses.

1 INTRODUCTION

Compositionality has long been a key focus in the study of human cognition. Early work by Fodor
& Pylyshyn (1988) challenged the capability of non-symbolic neural network models to be com-
positional due to lack of symbolic representations but Smolensky (1987),Van Gelder (1990), and
Chalmers (1993) were instrumental in challenging the prevailing scepticism by asserting that the
networks’ intricate connection weights and activation patterns can lead to functional composition-
ality. However, as Aizawa & Aizawa (2003) points out, neither the symbolic nor the functional
view of compositionality succeeds in building compositionality as a core tenet of the theory that
can necessitate the development of compositional behaviour of a system without relying on ad-hoc
assumptions. Moreover, neither the symbolic nor functional theories provide any elucidation on
the processes involved in being compositional beyond a primarily concatenative lexicalist view of
combining tokens or lexemes.

Such issues become more pronounced when we talk of compositionality for systems like LLMs
where compositionality is not a core design feature but can emerge through the process of learning
and manipulating representations. Also, LLMs today are highly performant connectionist systems
and are increasingly seen as possible models of human language (Mahowald et al., 2024; Hu et al.,
2024) or cognition (Kauf et al., 2023; Hardy et al., 2023; Marjieh et al., 2023; Lamprinidis, 2023)
which makes it imperative for us to try and answer two important questions with respect to LLMs
and their compositional abilities:

• How do we define compositionality for LLMs?

• How do LLMs perform in compositionality tasks, i.e., can these tasks help us better under-
stand the capabilities of these models and provide insights into their overall performance?

To address the first question, we thus defer to a sheaf theoretic definition of compositionality for
LLMs that uses elements of categorical compositionality (Phillips & Wilson, 2010; 2016b) and
sheaf theoretic topology (Phillips, 2018; 2020) to define and delineate different aspects of com-
positionality. Such a way of defining compositionality has two distinct advantages: It allows us to
model compositionality as a learning process that goes beyond first-order systematicity (understand-
ing relations between entities) to the development of second-order systematicity (understanding the
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structure of such relations themselves) (Phillips & Wilson, 2016a; Davis et al., 2020). Moreover, it
also enables us to address compositionality not merely in terms of symbols – which neural networks
do not explicitly possess due to polysemanticity (Huben et al., 2023; Lecomte et al.) – or through the
direct composition of vectors – which is challenging due to non-linearity (Mikolov et al., 2013) – but
rather in terms of patterns governing the structure of form-meaning mappings that models must learn
and represent. Specifically, we model compositionality as a sheaf-theoretic phenomenon where sys-
tematic generalization capabilities arise from sheaving constructions performed on presheaves via
sheaf morphisms.

Using our definition of compositionality, we formalize the possible structure of tasks needed for
evaluating the different processes and aspects linked to developing compositionality. We also evalu-
ate a wide range of LLMs on our tasks and try to determine whether performance on compositional
tasks is capable of illuminating pitfalls and overall performance trends of different LLMs. Our
findings reveal that the tasks are capable of reaffirming some well-known performance trends, e.g.,
larger models are usually better, and detecting lesser known ones, e.g., instruction-tuned models can
be quite inconsistent across benchmarks. This suggests that the connection between composition-
ality and model performance might not be coincidental. Just as compositionality underpins human
cognition, it most likely is also a fundamental characteristic of LLMs.

2 RELATED WORK

The investigation of compositional abilities of LLMs is not a new area of work but one of the main
issues has been that most works do not adhere to a common notion of compositionality. Earlier
works focused on analyzing compositional abilities in trained artificial neural networks like Lake
& Baroni (2018) and Kim & Linzen (2020a) where compositionality is considered a process of
uncovering the underlying syntactical structure of phrases to generalize correctly. Hupkes et al.
(2020) proposes that compositionality is more than simple syntactic structure and breaks down the
notion of compositionality into four aspects (systematicity, productivity, substitutivity, localism and
overgeneralisation)- while this was the first work to address the complex nature of compositionality,
the primary assumptions still centred around syntactic structure recovery. Moreover, these works
focus on networks trained specifically for the task at hand and were before the rise of current LLMs
which are highlighted by their pretraining and finetuning regimes.

For LLMs, the question of defining compositionality becomes more complex- given pretraining
on a different tasks these models generalize extremely well on new tasks but how can we define
or understand this compositional generalization ability in such models? Most works that investi-
gate compositionality in LLMs adhere to the general notion of compositionality as building up of
complex expressions from simple ones (Lake & Baroni, 2018; Kim & Linzen, 2020b; Hupkes et al.,
2020; Lepori et al., 2023; Drozdov et al., 2022; SHAO et al., 2023; Zhou et al., 2023), none of which
provide us with a formalization of the notion of compositionality and give any insights into what
models need to learn to become compositional. Some recent works have considered compositional-
ity as the ability to perform multi-hop reasoning (Dziri et al., 2024; Xu et al., 2024; Okawa et al.,
2024) which is somewhat misleading as this notion of combining solutions to subproblems is far
removed from the concept of compositional generalization as discussed in language and cognition
sciences. Moreover, such notions of compositionality are overly symbolic and do not consider the
proclivities of neural networks which are capable of a different manifestation of functional composi-
tional abilities Smolensky (1987); Van Gelder (1990); Chalmers (1993). Defining compositionality
in a symbolic or functional framework is not only limiting in terms of understanding and defining the
processes that lead to compositionality, but it also restricts our interpretation of the term to learning
lower order relations as opposed to higher order relations and morphisms that enable generalization
in language.

In cognitive sciences, however, there has been some work in attempting a more formal understand-
ing of compositionality that goes beyond the typical symbolic notion of compositionality Rappe
(2022); Montemayor & Balci (2007) and focuses on LLM-like connectionist architectures Martin
& Doumas (2020); Elmoznino et al. (2024). The most significant of such work for our purposes
is the characterization of compositionality in terms of uncovering the underlying structure of data
by learning the mathematical structures that characterize the data Phillips & Wilson (2010; 2016b);
Phillips (2018; 2020)- such a notion of compositionality is not dependent on symbolic notions of
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combining symbols to build up complex expressions and also highlights what kinds of structures
models need to develop for compositional generalization, which makes this approach suitable to
analyzing systems like LLMs which are not symbolic in principle.

3 DEFINING COMPOSITIONALITY

We adopt a sheaf-theoretic approach to compositionality for LLMs, incorporating elements of cate-
gorial compositionality and sheaf-theoretic topology to define various aspects of it. This approach
offers two key benefits: it models compositionality as a learning process extending beyond first-order
systematicity (relations between entities) to second-order systematicity (relations between relations)
(Phillips & Wilson, 2016b;a). Additionally, it frames compositionality not merely in terms of sym-
bols or vector composition, but as patterns in form-meaning mappings that models must learn, using
sheaving constructions and morphisms to achieve systematic generalization (Phillips, 2018).

In general, a sheaf is defined in the following manner: Let X be a topological space. A sheaf F
on X is a functor from the category of open sets Open(X) to the category of sets, satisfying the
following conditions:

1. For every open set U ⊆ X , there is a set F(U), called the section of F over U .

2. If V ⊆ U , then there is a restriction map ρU,V : F(U) → F(V ).

3. Gluing condition: If {Ui} is an open cover of U and sections si ∈ F(Ui) agree on the
overlaps (i.e., si|Ui∩Uj = sj |Ui∩Uj ), then there exists a unique section s ∈ F(U) such that
s|Ui

= si for all i.

4. Locality condition: If s, t ∈ F(U) are sections such that for each i ∈ I , s|Ui = t|Ui ,
then s = t.

Another concept from sheaf theory that facilitates the preservation of local-to-global information, is
a natural transformation.

Natural Transformation: If F ,G are sheaves on a topological space X , viewed as functors from
the category of open sets of X (denoted by Open(X)) to the category of sets (or other suitable
categories), then a natural transformation between two sheaves F and G is a family of maps:

ηU : F(U) → G(U) for each open set U ⊆ X,

such that for every inclusion of open sets V ⊆ U , the following diagram commutes:

F(U)
resFU,V−−−−→ F(V )

↓ ηU ↓ ηV

G(U)
resGU,V−−−−→ G(V )

where resU,V denotes the restriction maps of the sheaves F and G.

In the linguistic topological space, the property of compositional generalization can thus be under-
stood as the structuring of sheaves from presheaves where gluing and locality conditions ensure
that the local data (meanings, transformations) are consistent when combined globally, which paral-
lels systematic compositionality in language – ensuring that local rules generalize across contexts.
Moreover, being compositional in a way as to appropriately arrive at global information from local
requires learning appropriate natural transformations, with commutating restrictions, for the pur-
poses of preserving the local-global structures in an appropriate manner. Thus, for a model to be
compositional, it must learn the following:

1. RESTRICTION MAPS: The ability to define proper restriction maps which ensures that data
assigned to larger sets can be consistently related to smaller sets across sections.

2. GLUING CONDITIONS: The ability to avoid violations of the gluing conditions i.e. dis-
cover appropriate overlaps while discovering global sections.
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3. LOCALITY CONDITIONS: The ability to avoid violations of the locality conditions i.e.
determine when the local sections of data come from a global section and when they do
not.

4. LEARNING NATURAL TRANSFORMATIONS:The ability to discover natural transforma-
tions that preserve the coherence of sheaves.

Now for each of the four aspects of being compositional, we define formalization of a task that can
test these properties and also come up with concrete language processing tasks or datasets which we
use to evaluate large language models.

3.1 EVALUATING RESTRICTION MAPS

Let X be a topological space, and let F be a sheaf over X . For any open set U ⊂ X , the sheaf
assigns a set of sections F (U) to U , representing data or objects over U .

For open sets V ⊆ U , there is a restriction map:

resU,V : F (U) → F (V ),

which maps sections over U to sections over V , ensuring consistency. For a section s ∈ F (U), the
restriction map ensures that:

resU,V (s) = sV where sV ∈ F (V ).

This maintains the consistency of data from larger sets to smaller sets. A violation occurs when the
section on U does not restrict consistently to V :

resU,V (s) ̸= sV ,

indicating that global data is inconsistent with local data. Consider open sets U1, U2 ⊂ U with
U1 ∩ U2 ̸= ∅. Sections s1 ∈ F (U1) and s2 ∈ F (U2) must agree on their overlap:

resU1∩U2,U1
(s1) = resU1∩U2,U2

(s2).

Failure to satisfy this gives:

resU1∩U2,U1(s1) ̸= resU1∩U2,U2(s2) =⇒ s ∈ F (U1 ∪ U2).

For U ⊂ X covered by open sets U1, U2, . . . , Un, restriction maps ensure that sections si ∈ F (Ui)
agree on overlaps:

resUi∩Uj ,Ui(si) = resUi∩Uj ,Uj (sj),

so that we can glue these sections to form a global section over U . A violation occurs when:

resUi∩Uj ,Ui(si) ̸= resUi∩Uj ,Uj (sj),

which prevents forming a consistent global section. The restriction map ensures that local and global
data are consistent. Failure of the restriction map prevents gluing local sections into a global section,
violating the sheaf’s core properties.

The SCAN dataset Lake & Baroni (2018) provides an appropriate task to test the understanding
of the formation of restriction maps in LLMs. It involves simple commands (”jump twice”) paired
with corresponding action sequences (”JUMP JUMP”). The model is expected to ensure that the
mappings for complex instructions can be restricted consistently to simpler components. For in-
stance, ”jump twice” should be restricted to ”jump” in a way that aligns with the learned mapping
for ”jump.” If the model fails to consistently apply the restriction, it violates the restriction map
property, indicating it cannot generalize compositionally across instructions. For more details on
the suitability of this dataset for this task, please refer to A.1.

3.2 EVALUATING GLUING CONDITIONS

Let X be a topological space and {Ui}i∈I be an open cover of X . For each open set Ui, a sheaf F
assigns sections (data) si ∈ F (Ui). A ∈ F (U1) is a section defined over an open set U1 ⊂ X and
CA ∈ F (U2) is a section defined over another open set U2 ⊂ X , where CA represents a compound
form of A. Let the sets U1 and U2 overlap, i.e., U1 ∩ U2 ̸= ∅.

4
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If the relation between A and CA is not properly determined, leading to:

s1(A)|U1∩U2 ̸= s2(CA)|U1∩U2 ,

then there is no unique global section s ∈ F (U1 ∪ U2) that can satisfy both:

s|U1
= s1(A) and s|U2

= s2(CA).

Thus, the failure to determine the relation between A and CA constitutes a violation of the gluing
condition. can be expressed as:

s1(A)|U1∩U2
̸= s2(CA)|U1∩U2

=⇒ s ∈ F (U1 ∪ U2).

LLMs should be able to understand the violations of gluing condition where present. To test this
in LLMs, we use our version of the AddOne Task Pavlick & Callison-Burch (2016) with the mini
Antails Dataset. For a given sentence with a noun (N) like The runner set a record, we
substitute N with an adjective – noun combination like The runner set a new record and test the
model to see whether it can understand the entailment pattern. The model here has to maintain its
understanding of entailment patterns with adjective substitution. Please refer to A.2 for more details
on the suitability of this task for testing this condition in LLMs.

3.3 EVALUATING LOCALITY CONDITIONS

Let U ⊆ X be a topological space and F be a sheaf on U , assigning sections si ∈ F (Ui) to open
sets Ui ⊂ U . Consider a task where we are given a triple (a, b, c), where a and b are semantically
related, but a and c are not. sab is the section over an open set U1 ⊂ U , capturing the semantic
relationship between a and b, sac is the section over an open set U2 ⊂ U , capturing the semantic
relationship between a and c. U1 ∩ U2 ̸= ∅ represents the overlap between the regions covered by
sab and sac.

If the sections sab and sac were to satisfy the locality condition, we would require:

sab|U1∩U2
= sac|U1∩U2

However, since a and c are not semantically related, the sections sab and sac should differ in the
overlap U1 ∩ U2. If the model fails to distinguish between sab and sac, this would violate the
locality condition because it would incorrectly equate the unrelated pair (a, c) with the related pair
(a, b), implying:

sab|U1∩U2 = sac|U1∩U2 (incorrect, as a and c are not related)

This failure results in: sab = sac which is a contradiction, since:

sab ̸= sac (as a and b are semantically related, but a and c are not).

Thus, this failure to distinguish between (a, b) and (a, c) constitutes a violation of the locality con-
dition in sheaf theory.

To evaluate LLMs on their ability to respect locality conditions, we propose the
COMPCOMB dataset- a new task type using a handcrafted toy dataset which is a novel contri-
bution of this work (more details on suitability of dataset for this task in A.3). Each data point
consists of a triple – a noun, an adjective that goes with the noun, and an exocentric compound
which contains the noun. For example, (coat, trenchcoat and turncoat) – when we take the word
“coat”, we know that “trenchcoat” ( a special type of coat) is closely related to it but the exocentric
compound “turncoat” (a betrayer) is not since it is semantically different. This tests the LLM’s
ability to distinguish between genuine compounds and combinations by avoiding generalization on
the basis of surface forms.
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3.4 LEARNING UNIVERSAL TRANSFORMATIONS

Let FA, FB , and FC be sheaves over a topological space X . We are given the following mappings:

ϕA,B : FA → FB ,

ϕA,C : FA → FC .

The task is to find a mapping:ϕA,BC : FA → FBC where FBC represents a combined sheaf con-
structed from FB and FC . The sheaf FBC combines the data from FB and FC in a way that respects
both the mappings ϕA,B and ϕA,C . A natural transformation η must respect the restriction maps of
the sheaves. If the task of finding ϕA,BC : FA → FBC fails, this indicates that we cannot construct
a natural transformation between the sheaves FA and FBC . Specifically, the failure occurs if the
mappings ϕA,B and ϕA,C are inconsistent with the desired mapping ϕA,BC . This would result in
the failure of the following commutative diagram:

FA
ϕA,BC−−−−→ FBC

↓ ϕA,B ↓
FB FC

If ϕA,B and ϕA,C do not align in a way that allows the construction of ϕA,BC , then there is no natural
transformation between FA and FBC , indicating a failure to establish the relationship between A,
B, and C. This indicates that the failure to relate FA → FBC stems from the inconsistency between
ϕA,B and ϕA,C , violating the conditions required for a natural transformation between the sheaves.

An LLM must be able to distinguish appropriately when the diagram commutes and when it doesn’t
i.e. between situations when the natural transformation exists and when it doesn’t. To test this in
LLMs, we use the PLANE Dataset Bertolini et al. (2022) that tests adjective – noun entailment
in a situation where the entailment pattern for an AN – N and AN – H (where AN is the adjective –
noun combination, N is the noun and H is a hypernym of N) combination is already given and the
model is tested on entailment of AN – AH combination. Please refer to A.4 for more details on the
suitability of this task for testing this condition in LLMs.

BASE

IFT

LARGE

0.6
1.0

SCAN

BASE

IFT

LARGE

0.6
1.0

ANTAILS

BASE

IFT

LARGE

0.6
1.0

PLANE

BASE

IFT

LARGE

0.6
1.0

COMPCOMB Falcon
LLama2
Codellama
Mistral

Figure 1: Radar plots comparing the accuracy of four models (Falcon, Llama, Codellama, Mistral)
across four datasets (SCAN, ANTAILS, PLANE, COMPCOMB) in the Log Probabilities setup.
Each plot shows the performance of the models for three types (BASE, IFT, LARGE). The radial
axis represents accuracy, scaled from 0 to 1.

4 EXPERIMENTS

4.1 MODELS

To evaluate compositionality across Large Language Models (LLMs), we selected four distinct
model families: Falcon (Almazrouei et al., 2023), Llama2 (Touvron et al., 2023), Codellama
(Roziere et al., 2023), and Mistral(Jiang et al., 2023). Each model family represents state-of-the-
art LLM architectures, making them suitable for analyzing compositional behaviour.

For each model family, we selected three models for testing:

• Base Model (Base): A 7 billion parameter model that serves as the foundational version of
each family.
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• Instruction – Finetuned Model (IFT): The same 7B base model, further fine-tuned with
instruction-tuning to enhance task performance.

• Scaled Model (Large): A model variant with a higher parameter count, ranging from 13B
to 70B, depending on availability within each family. These larger models allow us to
investigate how scaling affects compositional behavior.

The diversity in models ensures that our analysis captures how both model complexity and tuning
approaches impact compositionality. Refer to B.1 for more details on the models used.

4.2 EXPERIMENTAL SETUP

The four tasks and datasets utilized in this work can be broadly categorized into two distinct types:
behavioural and representational. This classification is based on the nature of the evaluation em-
ployed for each dataset.

Behavioural Analysis: These datasets evaluate the model based on its input – output behaviour,
i.e., the focus is on how the model behaves when presented with specific tasks or queries. The
behavioural datasets include:

• The SCAN Dataset, which tests a model’s ability to generalize simple instruction patterns
to more complex ones. We use 100 samples from the SCAN dataset.

• The Antails Dataset, which focuses on distinguishing between related and unrelated noun
– adjective – exocentric compound combinations. We adapt 70 samples from the original
AddOne dataset Pavlick & Callison-Burch (2016) and use it for our evaluation.

• The PLANE Dataset, which evaluates the model’s understanding of entailment relations
between adjective –noun pairs and their hypernyms. The PLANE dataset contains five
train-test splits and we use one test split consisting of 1500 samples.

Falcon Llama2 Codellama Mistral
0.0

0.2

0.4

0.6

0.8

Av
er

ag
e 

Ac
cu

ra
cy

SCAN_L Dataset

Falcon Llama2 Codellama Mistral

ANTAIL_L Dataset

Falcon Llama2 Codellama Mistral

PLANE_L Dataset

Falcon Llama2 Codellama Mistral

COMP Dataset
BASE
IFT
LARGE

Figure 2: Comparison of average across different model families (Falcon, Llama2, Codellama, Mis-
tral) and model types (BASE, IFT, LARGE) for four datasets (SCAN, Antails, Plane, CompComb).
Each bar represents the average accuracy across 2 prompt variations.

Each of these behavioural datasets is evaluated with a comparative log probability setup. The evalu-
ation involves computing the model’s log probabilities for two possible completions: one being the
correct option and the other the control (incorrect option). The model’s preference between the two
completions is determined by comparing their log probabilities and the setup focuses on the model’s
probabilistic confidence in its outputs. The completion with the higher log probability is consid-
ered indicative of the model’s judgement and we conduct experiments with two prompts to ensure
robustness for our results. For both the Antails Dataset and the PLANE Dataset, which
involve binary classification tasks, the two completions correspond to entailment and non-entailment
outcomes.

The prompt completions used in our evaluation are simple prompts. We choose not to use advanced
prompts like few-shot Wei et al. (2021) and chain of thought Wei et al. (2022c) to avoid giving
undue advantages to the instruct models since they are typically trained to show the best perfor-
mance with advanced instruction prompts Longpre et al. (2023). Moreover, we also choose the log
probability evaluation instead of prompt-output evaluation due to problems with prompted output
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evaluation. Recent research indicates that prompt outputs of LLMs are often misleading (Sclar et al.,
2024; Turpin et al., 2024; McCoy et al., 2023) with log-likelihood comparisons being better for un-
derstanding model competence on most tasks (Hu & Levy, 2023; Kauf et al., 2024), and we find
similar uncertainties and high variation across very similar prompts in prompting output evaluations
for our task (refer B.3 for more details), so we adopt the log probability setup for conducting our
evaluations.

Representational Analysis: This dataset type evaluates the model based on its internal representa-
tions, rather than its input – output behaviour. The Compcomb Dataset is specifically designed
to examine how well the model’s internal representations encode the relationships between related
and unrelated adjective – noun and exocentric compound pairs. It is a dataset with 50 samples.

To evaluate the model’s representations, we extract data from two key layers of the model:

• The embedding layer: This layer captures the model’s initial word representations before
any processing from the deeper layers.

• The final hidden layer: This layer captures the model’s most complex and abstracted repre-
sentations, which reflect its deep understanding of the input after all layers have processed
it.

For each layer, we get representations of the model for each word in the triple and the model is con-
sidered to be accurate if its representations for noun and adjective – noun combinations are closer
than the noun and semantically unrelated compound representations. By comparing the model’s
representations in these two layers, we can gain insights into how well the model captures seman-
tic relationships and distinctions between input items (such as distinguishing between a noun and
its related and unrelated compounds). This setup allows for an analysis of the model’s ability to
differentiate semantically related pairs from unrelated ones based purely on internal representation
quality.

Table 1: Results from our evaluation setup across 4 datasets and 4 model families comparing a base
model (7b), an instruction-tuned model (IFT) and a large model (above 7b). The variations recorded
are across two prompts in the setup. There are no variations for COMPCOMB since it is based on
analysing representations.

(a) SCAN

Model BASE IFT LARGE

Falcon 0.59±0.02 0.61±0.01 0.74±0.03
Llama 2 0.63±0.01 0.42±0.02 0.79±0.01
Codellama 0.82±0.05 0.42±0.03 0.75±0.00
Mistral 0.86±0.00 0.41±0.02 0.81±0.05

(b) ANTAILS

Model BASE IFT LARGE

Falcon 0.50±0.01 0.59±0.05 0.52±0.02
Llama 2 0.48±0.02 0.50±0.00 0.54±0.03
Codellama 0.50±0.01 0.41±0.06 0.55±0.02
Mistral 0.50±0.03 0.44±0.07 0.53±0.06

(c) PLANE

Model BASE IFT LARGE

Falcon 0.58±0.03 0.59±0.05 0.45±0.14
Llama 2 0.64±0.02 0.39±0.04 0.62±0.01
Codellama 0.61±0.04 0.36±0.15 0.68±0.02
Mistral 0.69±0.00 0.42±0.25 0.66±0.03

(d) COMPCOMB

Model BASE IFT LARGE

Falcon 0.41 0.47 0.55
Llama 2 0.54 0.58 0.61
Codellama 0.46 0.49 0.60
Mistral 0.39 0.51 0.59

4.3 RESULTS AND ANALYSIS

Our experiments evaluated compositionality in terms of learning different aspects of creating a sheaf
that leads to complete compositional generalization in a model. In 1 and 2 we compare the perfor-
mances of each model type (base, instruction following checkpoint, and larger model) where each
subplot indicates the results for a dataset/condition and in 1 we provide the actual accuracies of
model performance across each dataset.

Across the four model families tested, we present a brief overview of how they perform on each
aspect of compositionality:

Restriction Condition: For the SCAN Dataset, which tests the restriction conditions, we observe
in that while none of the models perfectly satisfy the restriction condition, within each model family
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the largest models get the highest accuracies showing an improved understanding in this aspect of
compositionality. This aligns with most LLM evaluation studies on the impacts of scaling (Wei
et al., 2022a; Ouyang et al., 2022; Chung et al., 2024). However, more surprisingly, we see that
instruction tuned models perform the worst for Llama2, Codellama, and Mistral – indicating
that instruction tuning likely leads to a loss in the development of restriction maps which could be
explained by the fact that while the model retains it’s most important generalizations, it loses some
local information to accommodate instruction tuning, leading to loss of restriction mapping. This
also echoes more recent research that investigates the negative impacts and knowledge degradation
of instruction tuned or aligned models (Ghosh et al., 2024; Sun et al., 2024).

Gluing Condition: The evaluation of the gluing condition with the Antails Dataset shows
a more variable pattern of behaviour across model families – while larger models are better for the
majority of model families, instruction tuning leads to better performance in Falcon and Llama2
while it leads to worse performance in the acquisition of gluing condition for both Codellama and
Mistral models. Such a variance across model types and families might be indicative of a higher
level of difficulty in acquiring the gluing conditions of compositionality, making it very specific to
different model training data and procedures.

Locality Condition: We evaluate the locality condition with our Compcomb Dataset and
observe more stable trends across all families of models (Falcon, Llama2,Codellama, and
Mistral) showing that instruction tuned models do better than base models while scaled models
still perform the best. This indicates that instruction tuning and scaling both contribute to improved
learning of the locality conditions and the learning process might be more stable across models,
as compared to the gluing condition. Compared with the restriction condition, we see that while
instruction tuning leads to loss of information on local sections of the topology and the ability to
distinguish when the global sections can be reconstructed and when they cannot, it still systemati-
cally retains information on the presence of a unique global section.

Natural Transformation: The PLANE Dataset is targeted at analysing the ability of models to
find the appropriate conditions for natural transformations between sheaves. The performance trends
here are more stable across model families where the larger models show uniform improvements in
their abilities to realize natural transformations inherent in the data. Also, models in the Llama2,
Codellama and Mistral family show similar patterns of learning as the restriction condition
where instruction tuned models show worsening abilities in recognizing the correct natural transfor-
mation. Another interesting pattern emerges here- exactly the same model families where instruc-
tion tuning harmed learning of the gluing condition also shows inverse scaling (Wei et al., 2022b;
Michaelov & Bergen, 2022; McKenzie et al., 2023; Gupta, 2023) for learning of natural transfor-
mations. This might be indicative of a subtly stronger interplay between learning restrictions and
finding natural transformations that gets reflected in the compositional abilities of the model.

5 DISCUSSION

Our work focuses on the development of a sheaf-theoretic interpretation of compositionality that
portrays compositional generalization as emerging from the ability to construct sheaves and natural
transformations between sheaves. Such an interpretation is not only advantageous from a cognitive
point of view, where it has been found to be relevant for understanding reasoning processes and
pitfalls in humans (Phillips, 2018) but also from the point of view of understanding and evaluating
capabilities of models of language like LLMs.

• Systematic Understanding of Compositionality: By breaking down the complex phe-
nomenon of compositionality into four testable conditions related to constructing proper
sheaves and morphisms, our approach allows for precise evaluation of this phenomenon in
models. These conditions provide the foundation for targeted understanding of specific as-
pects of compositionality, enabling a more structured and systematic evaluation framework
for LLMs. It allows us to break down the complex phenomenon of compositionality into
four aspects of building a proper sheaf/sheaf morphism.

• Nuanced Task-based Evaluation: We provide a suitable task paired with four different
conditions, which makes it easier to evaluate the compositional abilities of language mod-
els and analyse their performance in terms of each aspect. Our testable conditions allow
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us to identify four tasks that map to each condition and the focus here is to show that for-
malization should lead to testable conditions not to estbalish that the tasks we show are the
only or optimal tests of compositionality.

• Potential Downstream Applications: Compositionality has been considered a core fea-
ture of human language abilities which leads to their superior performance in tasks like
reasoning, generalization and quick learning from limited data. As models of language,
we can also expect that compositionality might be a core feature driving downstream per-
formance of models. The performance of LLMs in this small set of tasks already reveals
different behavioural trends that have been observed from different tasks and benchmarks-
both scaling and inverse scaling but also both improvement and worsening performance
of fine tuned models. This indicates that the aspects of compositionality delineated here
might have a causal impact on general reasoning capabilities in models and might even be
indicative of their overall performance trends.

• Dynamic View of Compositionality:The view of compositionality as a dynamic process
(instead of an ideal static arrangement of discrete symbols) is more amenable to inter-
pretability. By focusing on how local connections and transformations aggregate to form
global representations, we can analyse the development of different aspects of composi-
tionality in different model components to gain a clearer insight into the inner workings of
models, allowing us to identify how individual parts contribute to the whole. This, in turn,
can facilitate the debugging, refining, and optimizing of models by targeting specific local
processes that influence overall performance and consistency in such models.

In summary, our approach to compositionality offers a comprehensive framework that enriches both
cognitive and computational understanding of how complex structures are formed from simpler
components and enables a more structured evaluation of their reasoning abilities. This work is not
aimed at finding the best definition of compositionality or the ideal set of tasks to measure composi-
tionality in LLMs, but rather it aims to highlight that our current understanding of compositionality-
especially for connectionist systems like LLMs- is quite limited and that ultimately, this perspective
not only advances the theoretical understanding of compositionality but can also provide practical
tools for evaluating and improving the performance of complex systems like language models.

6 LIMITATIONS & FUTURE WORK

Our work is aimed at attempting a formal definition of compositionality, influenced by theories
from human cognition, and providing possible tasks that could be used to test LLMs under such
formal frameworks- however, we do not claim that our framework is the only one or even that the
tasks we choose to assess compositionality are the best- merely that compositionality is a complex
phenomenon that deserves a more nuanced formal definition in case of LLMs and that such formal-
ization can also help us choose tasks for better insightful evaluation in such models. We leave it up
to future works to develop similar formal notions of compositionality and develop more nuanced
evaluations for the same.

In terms of datasets and models, our collection is small i.e we use small dataset samples and few
models due to compute limitations. Moreover, some of our datasets are limited in size and they may
not be the perfect ones to capture each facet of compositionality and further research should focus
on large scale evaluation with larger datasets and developing even better datasets suited to testing
each condition in the framework.

The link between compositionality and overall model performance is suggested but not fully estab-
lished. It remains uncertain to what extent compositionality directly impacts general model capabil-
ities or whether other factors like model size or training data play a larger role.

An area of future work is the generalization and application of this framework to a wider range of
models. Currently, our work focuses on specific LLM types such as instruction tuned and scaled
models due to current compute limitations. However, it could be used to evaluate models with a
wider range of sizes and training or finetuning methods to explore how different processes of learn-
ing can impact compositionality in models. Moreover, the framework is general enough to allow
potential generalization to test composition and reasoning abilities in different types of emerging
language model architectures (Fu et al., 2023; Hasani et al., 2023).
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A APPENDIX A

A.1 SCAN FOR RESTRICTION CONDITION

In sheaf theory, for a topological space X and an open set U ⊂ X , a sheaf F assigns to U a set
of sections F (U), representing data or mappings over U . If V ⊂ U , the restriction map resU,V :
F (U) → F (V ) ensures that the data on V is the restriction of the data on U .

For a section s ∈ F (U), the restriction to the subset V is:

resU,V (s) = s|V ,

which guarantees that the local data F (V ) is consistent with the global data F (U).

The SCAN task consists of simple instructions (“turn left twice”) paired with target out-
puts(“LTURN LTURN”). Let X represent the set of all possible instructions, and let F be a sheaf
that assigns to each open set U ⊂ X the corresponding action mappings for the instructions in U .
For instance:

F (Usimple) = {action mappings for simple instructions},
F (Ucomplex) = {action mappings for complex instructions}.

For a complex instruction Ucomplex and a subset Usubcomplex ⊂ Ucomplex, the restriction condition
requires that the action mapping for the complex instruction scomplex ∈ F (Ucomplex) restricts consis-
tently to the simpler instruction in Usubcomplex. This is expressed as:

resUcomplex,Usubcomplex(scomplex) = ssubcomplex.

A violation occurs when the learned mapping for the complex instruction does not restrict consis-
tently to its subcomponents. Mathematically, this violation can be represented as:

resUcomplex,Usubcomplex(scomplex) ̸= ssubcomplex.

This failure indicates that the model’s mapping for the complex instruction does not align with its
simpler parts, which would violate the **restriction map** property in sheaf theory. Let us look at
a specific example:

Let Ujump represent the instruction ”jump” and Ujump twice represent the instruction ”jump twice.” The
restriction condition requires that the mapping for the complex instruction ”jump twice” reduces to
the simpler instruction ”jump”:

resUjump twice,Ujump(sjump twice) = sjump.

A failure occurs when:
resUjump twice,Ujump(sjump twice) ̸= sjump,

indicating that the model fails to restrict the mapping for the complex instruction correctly to the
simpler one. For any instruction α composed of subinstructions β and γ, the restriction conditions
require:

resUα,Uβ
(sα) = sβ , and resUα,Uγ (sα) = sγ .

A violation occurs when:

resUα,Uβ
(sα) ̸= sβ or resUα,Uγ (sα) ̸= sγ .

This shows that the model’s understanding of the complex instruction α does not correctly restrict
to its components β or γ, violating the sheaf’s restriction requirement. Thus, the SCAN task tests
the restriction map property in sheaf theory.

A.2 ANTAILS FOR GLUING CONDITION

The gluing condition ensures that if sections over different open sets agree on their overlaps, they can
be combined to form a global section over the union of those sets. In the context of LLMs, under-
standing how well the model glues together local information to form a correct global interpretation
is crucial. The Antails task naturally emerges as an ideal test for this, as it evaluates whether the
model can combine information from local contexts (substituting a noun with an adjective-noun
combination) into a global sentence-level entailment. For a given sentence with a noun (N) like
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“The runner set a record”, we substitute N with an adjective – noun combination like “The runner
set a new record” and test the model to see whether it can understand the entailment pattern. The
model here has to maintain it’s understanding of entailment patterns with adjective substitution.

It tests whether a model can identify violations of the gluing condition by evaluating its ability to
combine local modifications in a sentence into a globally consistent interpretation. Specifically, the
task examines whether the model can recognize whether the entailment patterns between a sentence
and its modified version remain consistent after a substitution.

Let X be a topological space representing the set of all sentences. Consider two open sets U1 ⊂ X
and U2 ⊂ X corresponding to two different forms of the same sentence: - U1 contains the original
sentence with a noun N , - U2 contains the sentence with an adjective-noun compound CA replacing
N .

Let:
A ∈ F (U1) and CA ∈ F (U2)

represent the sections (data) corresponding to the original sentence A and the modified sentence
CA, respectively.

The gluing condition requires that if the sections A and CA agree on the overlap U1 ∩ U2, i.e.,

s1(A)|U1∩U2 = s2(CA)|U1∩U2 ,

then there exists a global section s ∈ F (U1 ∪ U2) such that:

s|U1
= s1(A) and s|U2

= s2(CA).

The task examines whether the model can combine the local information from A and CA into a
globally consistent interpretation. Specifically, the model is tasked with determining whether the
global entailment pattern is preserved after the substitution of N with CA.

For example: Let A correspond to the sentence:A : The runner set a record. and let CA correspond
to the sentence: CA : The runner set a new record. The model must determine whether the global
entailment of A and CA remains consistent. If the model can correctly identify that the entailment
patterns agree, it satisfies the gluing condition. Otherwise, a failure to recognize the correct global
entailment pattern indicates a violation of the gluing condition.

Mathematically, if the model fails to glue the local information, we observe:

s1(A)|U1∩U2
̸= s2(CA)|U1∩U2

,

which implies that:

s ∈ F (U1 ∪ U2) such that s|U1 = s1(A) and s|U2 = s2(CA).

Thus, the task serves as a direct test of the gluing condition, by evaluating whether the model can
combine local changes (substituting N with CA) into a coherent global interpretation of the sen-
tence’s entailment pattern.

A.3 COMPCOMB FOR LOCALITY CONDITION

In sheaf theory, the locality condition ensures that if local sections (data) agree on overlapping
regions, they must arise from the same global section. The Compcomb Dataset is designed to
test whether a model can distinguish between semantically related pairs (coat and trenchcoat) and
unrelated pairs (coat and turncoat) , ensuring that the model does not overgeneralize by incorrectly
equating unrelated elements. This naturally aligns with the locality condition, as the task tests
whether the model can correctly handle cases where local sections should differ based on semantic
distinctions.

Let U ⊆ X be a topological space, and let F be a sheaf on U , assigning sections si ∈ F (Ui) to open
sets Ui ⊂ U . Consider a task where we are given a triple (a, b, c), where a and b are semantically
related, but a and c are not. sab ∈ F (U1) captures the semantic relationship between a and b, while
sac ∈ F (U2) captures the semantic relationship between a and c, where U1 ∩ U2 ̸= ∅.
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The locality condition requires that if sections agree on overlaps, they come from the same global
section:

sab|U1∩U2
= sac|U1∩U2

.

However, since a and c are not semantically related, the sections sab and sac should differ on U1∩U2.

If the model fails to distinguish between sab and sac, this results in:

sab|U1∩U2 = sac|U1∩U2 (incorrect),

which violates the locality condition, implying:

sab = sac (contradictory, as a and b are related, but a and c are not).

The Compcomb dataset is designed to evaluate whether models can respect the locality condition by
avoiding overgeneralization. For each data point, we define a noun a (e.g., ”coat”), an adjective-noun
combination b that is semantically related to a (e.g., ”trenchcoat”), and an exocentric compound c
that contains a but is semantically unrelated (e.g., ”turncoat”). Let sab ∈ F (U1) represent the
section capturing the semantic relationship between a and b, and let sac ∈ F (U2) represent the
section capturing the relationship between a and c, where U1 ∩ U2 ̸= ∅. The model should be able
to distinguish between these sections, satisfying:

sab ̸= sac.

The model is tested on whether it can differentiate between these semantically related and unrelated
pairs. A model failure occurs if it incorrectly generalizes the relationship between a and c based on
surface forms, treating it as semantically similar to the relationship between a and b. This can be
formalized as:

sab|U1∩U2
= sac|U1∩U2

.

Such an equation would imply that the model overgeneralizes by equating the unrelated pair (a, c)
with the related pair (a, b), thereby violating the locality condition. The correct behavior, respecting
the locality condition, requires:

sab|U1∩U2
̸= sac|U1∩U2

.

Thus, the failure to distinguish between (a, b) and (a, c) constitutes a violation of the locality condi-
tion, where the model wrongly generalizes the semantic relation between unrelated elements based
on surface similarity.

A.4 PLANE FOR NATURAL TRANSFORMATIONS

In sheaf theory, a natural transformation between two sheaves ensures that mappings between ob-
jects are consistent across different spaces, respecting the relationships between the mappings. The
PLANE dataset tests this ability by requiring the model to combine mappings for adjective – noun
(AN – Noun) and adjective – hypernym (AN – Hypernym) pairs into a consistent, global mapping
for AN – AH (adjective – hypernym combinations). If the model fails to maintain the consistency
required for a natural transformation, it indicates an inability to generalize the relationships between
these mappings, which the PLANE dataset is specifically designed to detect.

The PLANE Dataset evaluates whether models can construct the correct natural transformation when
combining adjective – noun (AN) entailments with their hypernyms. Specifically: ϕA,B corresponds
to the entailment mapping for the AN –Noun combination, while ϕA,C corresponds to the entailment
mapping for the AN – Hypernym combination. The task is to find ϕA,BC , which corresponds to
the combined entailment mapping for the AN – Hypernym combination (AN – AH). For example,
AN phrases containing intersective (I) adjectives (e.g., red, dead, and Finnish) describe a subset
of entities subsumed by the noun itself and also a subset of entities which all have that adjective
as a property. For example, a red car is both a car and a red thing. Thus, AN phrases containing
intersective adjectives satisfy all forms of inference types (IT):

red car |= car (IT 1), red car |= vehicle (IT 2), red car |= red vehicle (IT 3).

Subsective adjectives (small, intelligent, strong etc) only satisfy IT1 and IT2 while intensional ad-
jectives (fake, former, possible etc) only satisfy IT3.
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The dataset requires the model to: 1. Understand the relationship between ϕA,B (AN – Noun) and
ϕA,C (AN – Hypernym). 2. Combine these two mappings systematically to form ϕA,BC (AN –
AH), which must respect both the AN – N and AN – H mappings.

If the model fails to construct ϕA,BC correctly, it demonstrates that the model cannot construct a nat-
ural transformation between these entailments. The dataset requires that the commutative diagram
holds:

FA
ϕA,BC−−−−→ FBC

↓ ϕA,B ↓
FB FC

The model must ensure that the entailment patterns respect the relationships between the mappings.
A failure occurs when:

ϕA,B and ϕA,C are inconsistent, leading to no valid ϕA,BC .

Thus, the model fails to construct a natural transformation and does not properly generalize the
entailment pattern from the AN – Noun and AN – Hypernym combinations to the AN – AH combi-
nation.

It is ideal for testing the model’s ability to construct natural transformations. It requires the model to
combine multiple mappings (AN – N and AN – H entailments) and ensure consistency when moving
to the combined entailment pattern (AN – AH). If the model cannot ensure the commutative diagram
holds or fails to combine the mappings, it indicates a failure in learning the natural transformation
between these entailment patterns.

The Plane dataset was created by Bertolini et al. (2022) to test compositionality in language models
and inference with phrase-level adjective-noun entailment. There are three different adjective classes
in this dataset: intersective (I), subsective (S), and intensional (O).

The intersective adjectives (I) describe entities that can be categorized both by the noun and the
adjective. For example, a ”red car” is both a car and a red object. This satisfies all forms
of inference. For example, Redcar |= car and Redcar |= vehicle (hypernym of ”car”) and
Redcar |= redvehicle.

The subsective adjectives (S) describe entities that are part of the noun’s category but do not neces-
sarily share the property of the adjective. For example, a ”small elephant” is an elephant but not nec-
essarily a small entity in general. (e.g., smallelephant |= elephant; smallelephant |= animal),
but not (smallelephant ̸|= smallanimal).

The intensional adjectives (O) negate core properties of the noun. For example, a ”fake gun” is
not a real gun, so the first two types of inferences do not hold (fakegun ̸|= gun; fakegun ̸|=
weapon). However, the third inference holds (e.g., fakeGlock |= fakegun |= fakeweapon), as
the modification leads to a new subset of entities described by the hypernym of the noun.

In the main paper we present results averaged across these three categories. The different perfor-
mance for every adjective class averaged across prompts and setups, is shown in Figure 3.
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Figure 3: Average accuracy across prompts and setups for the three different adjective classes in this
dataset: intersective (I), subsective (S), and intensional (O).

B APPENDIX B

B.1 MODEL DETAILS

Table 2: Models used and corresponding Huggingface Hub Links

MODEL NAME MODEL LINK

FALCON-7B HTTPS://HUGGINGFACE.CO/TIIUAE/FALCON-7B
FALCON-7B-INSTRUCT HTTPS://HUGGINGFACE.CO/TIIUAE/FALCON-7B-INSTRUCT
FALCON-40B HTTPS://HUGGINGFACE.CO/TIIUAE/FALCON-40B
LLAMA-2-7B-HF HTTPS://HUGGINGFACE.CO/META-LLAMA/LLAMA-2-7B-HF
LLAMA-2-7B-CHAT-HF HTTPS://HUGGINGFACE.CO/META-LLAMA/LLAMA-2-7B-CHAT-HF
LLAMA-2-13B-HF HTTPS://HUGGINGFACE.CO/META-LLAMA/LLAMA-2-13B-HF
CODELLAMA-7B-HF HTTPS://HUGGINGFACE.CO/CODELLAMA/CODELLAMA-7B-HF
CODELLAMA-7B-INSTRUCT-HF HTTPS://HUGGINGFACE.CO/CODELLAMA/CODELLAMA-7B-INSTRUCT-HF
CODELLAMA-13B-HF HTTPS://HUGGINGFACE.CO/CODELLAMA/CODELLAMA-13B-HF
MISTRAL-7B-V0.1 HTTPS://HUGGINGFACE.CO/MISTRALAI/MISTRAL-7B-V0.1
MISTRAL-7B-INSTRUCT-V0.1 HTTPS://HUGGINGFACE.CO/MISTRALAI/MISTRAL-7B-INSTRUCT-V0.1
MIXTRAL-8X7B-V0.1 HTTPS://HUGGINGFACE.CO/MISTRALAI/MIXTRAL-8X7B-V0.1

B.2 EVALUATION SETUP DETAILS

We use an evaluation setup to extract the log probabilities where Setup 1 and Setup 2 use different
input prompts on which log probabilities are evaluated. 3 shows setup for SCAN, 4 shows setup for
Antails, and 5 shows setup for PLANE.

B.3 PROMPTING SETUP RESULTS

Here we provide results from prompting the models and evaluating their generated outputs of which
option they deem more suitable in the prompt where one option was correct and the other an incorrect
option . Since the model outputs were very sensitive to the different prompts and biased towards
predicting specific options and selections we decided to enlist in the Appendix, but not include the
results in the main paper.
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Table 6: Results from the prompt setup across 4 datasets and 4 model families comparing a base
model (7b), an instruction tuned model (IFT) and a large model (above 7b).

(a) SCAN

Model BASE IFT LARGE

Falcon 0.70±0.29 0.36±0.26 0.98±0.02
Llama 2 1.00±0.00 0.00±0.00 1.00±0.00
Codellama 0.75±0.25 0.00±0.00 1.00±0.00
Mistral 1.00±0.00 0.00±0.00 0.98±0.02

(b) ANTAILS

Model BASE IFT LARGE

Falcon 0.51±0.00 0.47±0.00 0.54±0.02
Llama 2 0.51±0.01 0.50±0.00 0.59±0.01
Codellama 0.50±0.00 0.00±0.00 0.53±0.03
Mistral 0.50±0.00 0.41±0.13 0.52±0.02

(c) PLANE

Model BASE IFT LARGE

Falcon 0.59±0.04 0.93±0.26 0.65±0.00
Llama 2 0.34±0.02 0.58±0.00 0.36±0.05
Codellama 0.62±0.01 0.00±0.00 0.38±0.02
Mistral 0.53±0.29 0.68±0.00 0.66±0.01

(d) COMPCOMB

Model BASE IFT LARGE

Falcon 0.41 0.47 0.55
Llama 2 0.54 0.58 0.61
Codellama 0.46 0.49 0.60
Mistral 0.39 0.51 0.59
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Figure 4: Comparison of average accuracies across different model families (Falcon, LLama, Codel-
lama, Mistral) and model types (BASE, IFT, LARGE) for four datasets (SCAN, Antails, Plane,
CompComb). Each bar represents the average accuracy across two prompts in the Prompt setup.
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Table 3: SCAN Templates across two setups to extract the comparative log probabilities.
SETUP 1

’’’The command "[command_example1]"
is written as "[action_sequence_example1]".

The command "[command_example2]"
is written as "[action_sequence_example2]".

The command "[command_example3]"
is written as "[action_sequence_example3]".

The command "[command_example4]"
is written as "[action_sequence_example4]".

The command "{command}" is written as
"{true_action}".’’’

’’’The command "[command_example1]"
is written as "[action_sequence_example1]".

The command "[command_example2]"
is written as "[action_sequence_example2]".

The command "[command_example3]"
is written as "[action_sequence_example3]".

The command "[command_example4]"
is written as "[action_sequence_example4]".

The command "{command}" is written as
"{control_action}".’’’

SETUP 2

’’’The command "[command_example1]" translates to
"[action_sequence_example1]".

The command "[command_example2]" translates to
"[action_sequence_example2]".

The command "[command_example3]" translates to
"[action_sequence_example3]".

The command "[command_example4]" translates to
"[action_sequence_example4]".

The command "{command}" can be translated to
"{true_action}".’’’

’’’The command "[command_example1]" translates to
"[action_sequence_example1]".

The command "[command_example2]" translates to
"[action_sequence_example2]".

The command "[command_example3]" translates to
"[action_sequence_example3]".

The command "[command_example4]" translates to
"[action_sequence_example4]".

The command "{command}" can be translated to
"{control_action}".’’’

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 4: Antails Templates across two setups to extract the comparative log probabilities.

SETUP 1

’’’Here is the premise and the hypothesis:
Premise: {p}.
Hypothesis: {h}.
Question: Determine the entailment relation between the
premise and the hypothesis.
Answer: The premise does entail the hypothesis’’’

’’’Here is the premise and the hypothesis:
Premise: {p}.
Hypothesis: {h}.
Question: Determine the entailment relation between the
premise and the hypothesis.
Answer: The premise does not entail the hypothesis’’’

SETUP 2

’’’"{p}" does entail "{h}"’’’

’’’"{p}" does not entail "{h}"’’’

Table 5: PLANE Templates across two setups to extract the comparative log probabilities.

SETUP 1

’’’"{seq_list[0]}" is {lab_list[0]}."{seq_list[1]}" is {lab_list[1]}.
It is the case that {seq_list[2]}’’’

’’’"{seq_list[0]}" is {lab_list[0]}."{seq_list[1]}" is {lab_list[1]}.
It is not the case that {seq_list[2]}’’’

SETUP 2

’’’"{seq_list[0]}" is {lab_list[0]}."{seq_list[1]}" is {lab_list[1]}.
It holds true that {seq_list[2]}’’’

’’"{seq_list[0]}" is {lab_list[0]}. "{seq_list[1]}" is {lab_list[1]}.
It does not hold true that {seq_list[2]}’’’
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