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Abstract

This paper is motivated by an interesting phenomenon: the performance of object
detection lags behind that of instance segmentation (i.e., performance imbalance)
when investigating the intermediate results from the beginning transformer decoder
layer of MaskDINO (i.e., the SOTA model for joint detection and segmentation).
This phenomenon inspires us to think about a question: will the performance
imbalance at the beginning layer of transformer decoder constrain the upper bound
of the final performance? With this question in mind, we further conduct qualitative
and quantitative pre-experiments, which validate the negative impact of detection-
segmentation imbalance issue on the model performance. To address this issue,
this paper proposes DI-MaskDINO model, the core idea of which is to improve
the final performance by alleviating the detection-segmentation imbalance. DI-
MaskDINO is implemented by configuring our proposed De-Imbalance (DI)
module and Balance-Aware Tokens Optimization (BATO) module to MaskDINO.
DI is responsible for generating balance-aware query, and BATO uses the balance-
aware query to guide the optimization of the initial feature tokens. The balance-
aware query and optimized feature tokens are respectively taken as the Query and
Key&Value of transformer decoder to perform joint object detection and instance
segmentation. DI-MaskDINO outperforms existing joint object detection and
instance segmentation models on COCO and BDD100K benchmarks, achieving
+1.2 AP box and +0.9 APmask improvements compared to SOTA joint detection
and segmentation model MaskDINO. In addition, DI-MaskDINO also obtains
+1.0 AP box improvement compared to SOTA object detection model DINO and
+3.0 APmask improvement compared to SOTA segmentation model Mask2Former.

1 Introduction

Object detection and instance segmentation are two fundamental tasks in the computer vision
community. Intuitively, the two tasks are closely-related and mutually-beneficial. However, in the
current time, specialized detection or segmentation gains more focuses, and the amount of works
studying the specialized task is significantly larger than that for joint tasks. One typical explanatory
is that the multi-task training even hurts the performance of the individual task.

Confronting current research situations, we think about whether there are some essential cruxes that
are ignored in previous works and these cruxes hinder the cooperation of object detection and instance
segmentation tasks, which further constrains the breakthrough of the performance upper bound. This
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Figure 1: Qualitatively, (a) shows that the detection bounding boxes predicted by the query/feature
at the first decoder layer of MaskDINO do not fit well with segmentation masks, and (b) exhibits
that the corresponding results of DI-MaskDINO are optimized and the detection bounding boxes
closely surround segmentation masks. Quantitatively, (c) displays that there exists a significant
performance gap between detection and segmentation at the first decoder layer of MaskDINO, and
(d) demonstrates DI-MaskDINO not only alleviates the performance imbalance at the first layer but
also improves the performance upper bound.

paper reveals one of cruxes is the imbalance of object detection and instance segmentation. As
shown in Fig. 1, when investigating the results at the first layer of transformer decoder of MaskDINO
model [25], an interesting phenomenon is found that there exists the performance imbalance between
object detection and instance segmentation, as qualitatively illustrated in Fig. 1a and quantitatively
illustrated in the first bar of Fig. 1c. After considering the imbalance issue, the performance gap at
the first layer is narrowed as illustrated in the first bar of Fig. 1d, and the final performance upper
bounds are improved (i.e., 28.1 to 29.5 for detection and 25.3 to 25.7 for segmentation) as illustrated
in the second bar of Fig. 1d. The qualitative results are also optimized, the detection bounding boxes
closely surround segmentation masks, as illustrated in Fig. 1b.

According to the above analysis, we can find the detection-segmentation imbalance at the beginning
layer is one of essential cruxes that hinders the cooperation of object detection and instance segmen-
tation. Therefore, we reviewed the previous works to investigate whether there are works that have
been aware of this issue. The idea of many classical and excellent methods [16, 2, 5, 11] is combining
two tasks by adding a segmentation branch to an object detector. These detect-then-segment methods
make the performance of segmentation task to be limited by the performance of the object detector.
Thanks to the thriving of transformer [44] and DETR [3], recent research attention has been geared
towards transformer-based methods, which make giant contributions to the community. For example,
[10, 50, 25] use the unified query representation for object detection and instance segmentation tasks
based on transformer architecture.

However, to our best knowledge, there is no existing work to solve the above mentioned detection-
segmentation imbalance issue. Factually, the imbalance issue naturally exists, which is determined
by the individual characteristics of detection and segmentation tasks and also derived from the
supervision manners for the two tasks. Firstly, segmentation is a pixel-level grouping and classifi-
cation task [16, 46], thus local detailed information is important for this task. In contrast, detection
is a region-level task to locate and regress the object bounding box [13, 38], which requires global
information focusing on the complete object. The query at the beginning decoder layer conveys
relatively local features, which is more beneficial for the segmentation task, thus the detection task
tends to achieve lower performance at the beginning layer. Secondly, supervision manners for
detection and segmentation are distinctly different. The segmentation is densely supervised by all
pixels of the GT mask, while detection is sparsely supervised by a 4D vector (i.e., x, y, w, and h) of
GT bounding box. The dense supervision provides richer and stronger information than the sparse
supervision during the optimization procedure. Therefore, the optimization speeds of the two tasks
are not synchronous, which will lead to the imbalance issue.

Based on two above-analyzed reasons for the detection-segmentation imbalance issue, it is straightfor-
ward that the performance of detection task will lag behind at the beginning layer. Considering existing
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methods share a unified query for detection and segmentation tasks, the performance of a task will
be negatively affected by another poorly-performed task, leading to that the multi-task joint training
even hurts the performance of the individual task. Therefore, addressing the detection-segmentation
imbalance issue is significant for designing a joint object detection and instance segmentation model.
To address the detection-segmentation imbalance issue, we propose DI-MaskDINO model, which is
implemented by configuring our proposed De-Imbalance (DI) module and Balance-Aware Tokens
Optimization (BATO) module to MaskDINO. DI module is responsible for generating balance-aware
query. Specifically, DI module strengthens the detection at the beginning decoder layer to balance the
performance of the two tasks, and the core of DI module is our proposed residual double-selection
mechanism. In this mechanism, the token interaction based double-selection structure learns the
global geometric, contextual, and semantic patch-to-patch relations to update initial feature tokens,
and high-confidence tokens are selected to benefit the detection task since the selected tokens have
learned global semantics during the token interaction procedure. In addition, this mechanism makes
use of initial feature tokens by the residual structure, which is the necessary compensation for the
information loss occurring during double-selection. Apart from DI module, we also design BATO
module, which uses the balance-aware query to guide the optimization of initial feature tokens. The
balance-aware query and optimized feature tokens are respectively taken as the Query and Key&Value
of transformer decoder to perform joint object detection and instance segmentation.

The contributions of this paper are as follows: i) to our best knowledge, this paper for the first time
focuses on the detection-segmentation imbalance issue and proposes DI module with the residual
double-selection mechanism to alleviate the imbalance; ii) DI-MaskDINO outperforms existing
SOTA joint object detection and instance segmentation model MaskDINO (+1.2 AP box and +0.9
APmask on COCO, using ResNet50 backbone with 12 training epochs), SOTA object detection
model DINO (+1.0 AP box on COCO), and SOTA segmentation model Mask2Former(+3.0 APmask

on COCO).

2 Related Work

Object Detection. Classical object detection methods [13, 38, 27, 37, 5, 43, 42] have achieved
significant success. In recent years, transformer-based methods such as DETR [3] make a giant
contribution to object detection by introducing the concept of object queries and the one-to-one
matching mechanism. The success of DETR has sparked a boom in query-based end-to-end detectors,
and numerous excellent variants are proposed [56, 33, 52, 28, 23, 6, 47, 51, 24, 32, 21, 54, 18].
Specifically, to enhance the convergence speed of DETR, Deformable DETR [56] proposes de-
formable attention mechanism that learns sparse feature sampling and aggregates multi-scale features
accelerating model convergence and improving performance. From the interpretability of object
queries, DAB-DETR [28] formulates the queries as 4D anchor boxes and dynamically updates them
in each decoder layer.

Instance Segmentation. CNN-based instance segmentation methods are categorized into top-down
and bottom-up paradigms. The top-down paradigm [16, 2, 11, 19, 7, 4, 1] firstly generates bounding
boxes by object detectors, and then segments the masks. The bottom-up paradigm [35, 9, 29, 12] treats
instance segmentation as a labeling-clustering problem, where pixels are firstly labeled as a class or
embedded into a feature space and then clustered into each object. Recently, many transformer-based
instance segmentation methods [8, 14, 20, 53, 17, 10, 50, 25] are proposed. The transformer-based
methods treat the instance segmentation task as a mask classification problem that associates the
instance categories with a set of predicted binary masks.

Joint Object Detection and Instance Segmentation. The goal of joint object detection and instance
segmentation is to carry out the two tasks simultaneously [45, 34, 41, 36]. The traditional joint object
detection and instance segmentation methods [16, 2, 5, 11] are usually implemented by adding a mask
branch to a strong object detector. For example, the classical model Mask RCNN [16] achieves joint
object detection and instance segmentation by adding a mask branch to Faster RCNN [39]. Recently,
the proposal of the transformer-based framework has promoted the development of joint object
detection and instance segmentation. Following DETR [3], SOLQ [10] proposes a unified query rep-
resentation for simultaneous detection and segmentation tasks. The recent MaskDINO [25] achieves
optimal performance with the unified query representation on both detection and segmentation tasks.
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Figure 2: The overview of DI-MaskDINO model based on MaskDINO (grey shaded), with the
extensions (green shaded) of De-Imbalance and Balance-Aware Tokens Optimization. For simplicity,
content token and position token are merged in De-Imbalance (i.e., Ti, Ts1, Ts2, and Qbal contain
both content and position token) in presentation. GTG is short for guiding token generation.

3 Proposed Method

In response to the naturally-existing but commonly-ignored imbalance issue between object detection
and instance segmentation, we propose DI-MaskDINO model, which is based on MaskDINO [25].
To better understand our proposed DI-MaskDINO, we firstly review MaskDINO (§ 3.1), and then
introduce DI-MaskDINO (§ 3.2).

3.1 Preliminaries: MaskDINO

MaskDINO is a unified object detection and segmentation framework, which adds a mask prediction
branch on the structure of DINO [52]. MaskDINO (grey shaded part in Fig. 2) is composed of
a backbone, a transformer encoder, a transformer decoder, and detection and segmentation heads
(i.e., “Prediction" in Fig. 2). Position embeddings and the flattened multi-scale features (extracted
by backbone) are inputted to the transformer encoder to generate the initial feature tokens (Ti).
Note that in MaskDINO, the top-ranked feature tokens selected from Ti directly serve as the Query
of transformer decoder, while we design De-Imbalance module with a residual double-selection
mechanism to firstly alleviate the detection-segmentation imbalance and then obtain the balance-aware
query Qbal to serve as the Query of transformer decoder. In addition, we design Balance-Aware
Tokens Optimization module to optimize Ti and generate the balance-aware feature tokens Tbal to
serve as the Key&Value of transformer decoder. Token and query are specialized terms, and their
explanations are provided in Appendix A.

3.2 Our Method: DI-MaskDINO

Fig. 2 illustrates the overview of DI-MaskDINO, which consists of four modules, including Feature
Tokens Extractor (FTE), De-Imbalance (DI), Balance-Aware Tokens Optimization (BATO), and
Transformer Decoder (TD). FTE extracts the initial feature tokens Ti from the input image using
backbone and MaskDINO encoder. The goal of DI is to generate the balance-aware query Qbal,
which is implemented by applying our proposed residual double-selection mechanism on the initial
feature tokens Ti. BATO utilizes Qbal to optimize Ti, generating the balance-aware feature tokens
Tbal. TD takes Tbal as the Key&Value and Qbal as the Query to perform joint object detection and
instance segmentation.
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3.2.1 Feature Tokens Extractor

Given an image I ∈ RH×W×3, the backbone (e.g., ResNet [15]) firstly extracts multi-scale features,
which are then flattened and concatenated to serve as the input of transformer encoder comprising six
multi-scale deformable attention layers [56], obtaining the initial feature tokens Ti that is composed
of

∑6
i=3 (

H
2i ×

W
2i ) tokens, where each token expresses the feature of the corresponding patch in I .

3.2.2 De-Imbalance

There exists the detection-segmentation imbalance at the beginning layer of transformer decoder,
which might constrain the upper bound of model performance. To handle this issue, we design DI
module to alleviate the imbalance, instead of directly providing Ti to the transformer decoder as
MaskDINO does. Specifically, detection-segmentation imbalance means that the performance of ob-
ject detection lags behind that of instance segmentation at the beginning layer of transformer decoder.
Therefore, we propose the residual double-selection mechanism to strengthen the performance of
object detection.

The double-selection consists of the first selection and the second selection. In the first selection, we
select top-k1 ranked feature tokens in Ti, based on their category classification scores:

Ts1 = S(Ti, k1), (1)
where Ts1 represents the firstly-selected feature tokens, S denotes the selection operator. The first
selection mainly filters out most of the tokens conveying background information, making Ts1 focus
on the objects.

Before the second selection, a token interaction network comprising two self-attention layers is
applied on Ts1:

T sa
s1 = MHSA(Ts1), (2)

where MHSA is Multi-Head Self-Attention and T sa
s1 indicates the feature tokens processed by MHSA.

The token interaction is the key point to make sure that the secondly-selected tokens are beneficial
for detection, we explain its rationality as follows. As we know, each token actually corresponds to
a patch (remarkably smaller than an object in most cases) in the image [55]. The bounding box of
an object is regressed by integrating the multiple patches (belonging to the same object) that have
global patch-to-patch spatial relations, thus it is really needed for the detection task to learn the
interaction relation between patches. In contrast, the dense all-pixel supervision for the segmentation
task mainly focuses on local pixel-level similarity with GT mask [25], hence the segmentation task
is not particularly depend on the patch-to-patch relation as the detection task. By self-attention
layers, different tokens representing the patches (belonging to the same object) can interact with
each other to learn the global geometric, contextual, and semantic patch-to-patch relations, benefiting
the perception of object bounding boxes. Therefore, executing token interaction before the second
selection makes DI module to be more beneficial for detection. In addition, verified by some studies
(e.g., [32]), the tokens with higher category scores correspond to higher IOU scores of object bounding
boxes. Therefore, the second selection further strengthens the object detection and alleviates the
detection-segmentation imbalance.

In the second selection, we select the top-k2 ranked feature tokens in T sa
s1 to obtain the secondly-

selected feature tokens Ts2:
Ts2 = S(T sa

s1 , k2). (3)

The residual double-selection is inspired by the residual idea in [15], and the residual is the necessary
compensation for double-selection since the information loss occurs in the selection procedures. The
formulation of this mechanism is combining Ti with Ts2 by the Multi-Head Cross-Attention network
(MHCA, a self-attention layer and a FFN layer are omitted here), generating Qbal:

Qbal = MHCA(Ts2,Ti). (4)

Qbal conveys the balance-aware information, thus it is named as balance-aware query. Subsequently,
Qbal is fed to BATO to guide the optimization of initial feature tokens Ti. It is noted that the tokens in
Qbal have become significantly different from the tokens in Ti. Through Eq. 1-4, the tokens in Qbal

have obtained larger receptive field and considered the interaction with other tokens, thus they are
better understood as object/instance candidates. Correspondingly, the denotation has been changed
from T to Q.
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3.2.3 Balance-Aware Tokens Optimization

In MaskDINO, initial feature tokens Ti directly serve as the Key&Value of TD. Instead, we design
BATO module that makes use of both balance-aware query Qbal and Ti to generate the Key&Value
of TD. Ti contains a large number (≈ 20k) of tokens conveying detailed local information for both
background and objects/instances, while Qbal consists of a small number (=300) of high-confidence
tokens mainly focusing on objects/instances. In addition, benefiting from the token interaction (i.e.,
Eq. 2), Qbal has learned rich semantic and contextual interaction relations. Therefore, Qbal is used
to guide the optimization of Ti. The optimized feature tokens (denoted as Tbal) is taken as the
Key&Value of TD.

Firstly, to provide guidance for both detection and segmentation, the mask network and box network
are separately applied on Qbal to generate mask guiding token Tmask

g and box guiding token T box
g :

Tmask
g = Nmask(Qbal), (5)

T box
g = Nbox(Qbal), (6)

where Nmask and Nbox indicate the mask network and box network, respectively. Both Nmask and
Nbox consist of a mlp network.

Then, the overall guiding token Tg is obtained by fusing Tmask
g and T box

g :

Tg = Tmask
g + T box

g . (7)

Finally, Tg guides the optimization of the initial feature tokens Ti through a Multi-Head Cross-
Attention. The motivation is straightforward. Same with Qbal, each token in Tg corresponds to an
object/instance candidate. When Ti interacts with Tg, the tokens (in Ti) that belong to the same
object/instance will be aggregated, enhancing the foreground information. For a better comprehension,
a token in Tg could be assumed as the center of a “cluster", and the tokens (in Ti) belonging to the
same object/instance could be assumed as the points in the “cluster". The points move towards the
“cluster" center, realizing the optimization of Ti. This procedure is formulated as follows:

Tbal = MHCA(Ti,Tg), (8)
generating balance-aware feature tokens Tbal (also called optimized feature tokens), which serve as
the Key&Value of TD.

3.2.4 Transformer Decoder

TD is responsible for the predictions of instance mask, object box, and class. TD consists of decoder
layers and each layer contains a self-attention, a cross-attention, and a FFN. The inputs of TD are
Tbal (in Eq. 8) and Qbal (in Eq. 4). Qbal interacts with Tbal in the decoder layers, continuously
refining the query:

Qref = Nde(Qbal,Tbal), (9)
where Qref is the refined query, and Nde denotes the transformer decoder network.

Subsequently, we follow the detection head and segmentation head structures of MaskDINO to
perform object detection and instance segmentation. For object detection, Qref is used to predict the
categories c and bounding boxes b:

{c, b} = Ndet(Qref ), (10)
where Ndet denotes the detection head network. For instance segmentation, Qref , Ti, and the 1/4
resolution CNN feature Fcnn are used to predict the instance masks m:

m = Nseg(Qref ,Ti,Fcnn), (11)
where Nseg denotes the segmentation head network.

4 Experiments

4.1 Settings

We conduct extensive experiments on COCO [26] and BDD100K [49] datasets using ResNet50 [15]
backbone pretrained on ImageNet-1k [40] as well as SwinL [30] backbone pretrained on ImageNet-
22k. NVIDIA RTX3090 GPUs are used when the backbone is ResNet50. Due to the large memory
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requirement of SwinL, NVIDIA RTX A6000 GPUs are used when the backbone is SwinL. More
implementation details are in Appendix B.

Table 1: Comparison with other methods on the COCO validation set.
Methods Epochs AP box AP box

S AP box
M AP box

L APmask APmask
S APmask

M APmask
L FPS

ResNet50 backbone

Mask RCNN [16] 36 41.0 24.9 43.9 53.3 37.2 18.6 39.5 53.3 21.0
HTC [5] 36 44.9 - - - 39.7 22.6 42.2 50.6 5.5

SOLQ [10] 50 48.5 30.1 51.6 64.8 40.1 20.9 43.7 59.4 7.0

DINO [52] 36 50.9 34.6 54.1 64.6 - - - - 6.8
Mask2Former [8] 50 - - - - 43.7 23.4 47.2 64.8 5.3

MaskDINO [25] 12 45.7 - - - 41.4 21.1 44.2 61.4 8.0
DI-MaskDINO (Ours) 12 46.9 (+1.2) 28.8 49.5 62.9 42.3 (+0.9) 22 44.8 62.8 7.7

MaskDINO [25] 24 48.4 - - - 44.2 23.9 47.0 64.0 8.0
DI-MaskDINO (Ours) 24 49.6 (+1.2) 31.7 52.6 65.3 44.8 (+0.6) 24.3 47.8 65.0 7.7

MaskDINO [25] 50 51.7 34.2 54.7 67.3 46.3 26.1 49.3 66.1 8.0
DI-MaskDINO (Ours) 50 51.9 (+0.2) 36.3 54.7 66.7 46.7 (+0.4) 27.5 49.8 66.2 7.7

SwinL backbone

MaskDINO [25] 12 52.2 34.8 55.6 69.9 47.2 26.3 50.3 69.1 3.4
DI-MaskDINO (Ours) 12 53.3 (+1.1) 36.7 56.7 70.4 47.9 (+0.7) 27.7 51.1 69.3 3.0

MaskDINO [25] 50 56.8 40.2 60.2 72.3 51.0 31.3 54.1 71.2 3.4
DI-MaskDINO (Ours) 50 57.8 (+1.0) 41.5 61.2 73.9 51.8 (+0.8) 31.8 55.1 72.2 3.0

Table 2: Comparison with other methods on the BDD100K validation set.
Methods Epochs AP box AP box

S AP box
M AP box

L APmask APmask
S APmask

M APmask
L FPS

ResNet50 backbone

Mask RCNN [16] 50 25.5 15.7 32.8 56.1 20.7 15.7 26.6 49.1 20.1
HTC [5] 50 26.9 15.7 35.4 55.3 21.1 11.0 26.7 46.4 4.8

SOLQ [10] 50 27.0 16.5 35.3 45.6 19.6 10.1 25.8 37.4 6.3

DINO [52] 36 28.9 18.0 37.0 48.1 - - - - 6.1
Mask2Former [8] 50 - - - - 19.6 8.4 25.9 41.0 4.7

MaskDINO [25] 68 28.1 17.4 36.1 47.9 25.3 14.2 31.8 48.1 6.7
DI-MaskDINO (Ours) 68 29.5 (+1.4) 18.0 37.4 50.4 25.7 (+0.4) 14.5 32.1 48.1 6.4

SwinL backbone

MaskDINO 68 30.2 19.0 37.5 48.6 27.0 15.4 32.6 50.5 3.2
DI-MaskDINO (Ours) 68 31.4 (+1.2) 19.4 40.4 48.7 27.9 (+0.9) 16.6 34.1 51.2 2.8

4.2 Comparison Experiments

MaskDINO is the SOTA model for joint object detection and instance segmentation, thus we mainly
compare our model with MaskDINO under different backbones (ResNet50 and SwinL). Additionally,
our model is compared with some classical (i.e., Mask RCNN [16]) and recently-proposed (i.e.,
HTC [5] and SOLQ [10]) joint object detection and instance segmentation models. Furthermore,
our model is compared with SOTA model that is specifically designed for object detection (i.e.,
DINO [52]) and instance segmentation (i.e., Mask2Former [8]). The comparison results on COCO
dataset are summarized in Tab. 1. It is noted that the experiments with the Swin-L backbone are
conducted on the A6000 GPUs with the batch size of 4 (the maximum bacth size that 4 A6000
GPUs supports). The batch size is smaller than that in MaskDINO paper (i.e., batch size = 16)
and the 4 A6000 GPUs present weaker computation power than 4 A100 GPUs, thus the results
we reproduced are lower than those in the original MaskDINO paper. We can observe that 1) our
model surpasses MaskDINO under different training conditions (epoch = 12, 24, and 50). Notably,
our model presents more significant advantage with the training condition of epoch = 12, which
potentially reveals that our model reaches the convergence with a faster speed; 2) under the Swin-L
backbone, DI-MaskDINO exhibits significant superiority over MaskDINO, further confirming the
effectiveness of our model; 3) the performance of our model on individual detection and segmentation
tasks is simultaneously higher than that of SOTA models specifically designed for detection (i.e.,
DINO) and segmentation (i.e., Mask2Former) when they are fully trained (epoch = 36 or 50), which
is really hard-won since the single-task model usually designs the specific module for the specific
task (e.g., DINO uses the tailored query formulation to improve the detection performance and
Mask2Former proposes tailored masked attention module to improve the segmentation performance).
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Existing joint detection and segmentation models like [5, 10, 50] only conduct the experiments
on COCO dataset. In this paper, to further verify the robustness and generalization of our model,
additional experiments are conducted on more complex traffic scene dataset BDD100K [49] using
ResNet50 and Swin-L backbones, and the results we reproduce are shown in Tab. 2. Due to the
complexity of traffic scenes, the overall performance is lower than the performance on COCO dataset,
and the model asks for more training epochs (epoch = 68) to reach the convergence. It can be
observed that our model still exhibits superiority over MaskDINO, DINO, and Mask2Former, which
presents the robustness and generalization of our model. It should be noted that the performance
of MaskDINO on detection task is lower than that of the specialized object detection model DINO,
indicating that DINO still exhibits the advantage in complex traffic scene datasets. In contrast, our
model improves DINO by 0.6 AP box, further demonstrating the effectiveness of our model.

4.3 Diagnostic Experiments

4.3.1 Imbalance Tolerance Test

There exists the natural imbalance between object detection and instance segmentation, and we are
interested in how will a model perform if the imbalance condition is worsened. Therefore, we conduct
the imbalance tolerance test by designing two severe imbalance conditions: 1) loss weight constraint,
which is implemented by constraining the weight of detection loss to 1/10 of the default value while
the weight of segmentation loss remains unchanged; 2) position token constraint, position token
conveys important cues of object locations, thus constraining position token will generate disturbing
location information to confuse detection task. The position token constraint is implemented by
randomly initializing position token of Qbal (composed of position token and content token) in
Eq. 4. DI module is mainly responsible for alleviating imbalance issue, thus the imbalance tolerance
test on DI-MaskDINO only enables DI module. The experiments are conducted on more complex
BDD100K dataset, because the results on the more complex dataset can better reflect the performance
of imbalance tolerance. Considering the imbalance issue is severe at the beginning decoder layer,
thus the experiments utilize models configured with 3 decoder layers.

Table 3: Imbalance tolerance test comparison of MaskDINO and DI-MaskDINO.

Imbalance conditions
MaskDINO DI-MaskDINO (Ours)

AP box APmask AP box APmask

standard 27.5 23.7 27.9 24.9
loss weight constraint 24.7 (-10.2%) 23 (-3.0%) 27.1 (-2.9%) 25.2 (+1.2%)

position token constraint 21.5 (-21.8%) 21.9 (-7.6%) 23.8 (-14.7%) 23.7 (-4.8%)

The results of imbalance tolerance test are summarized in Tab. 3, and the percentage of performance
drops (compared with standard condition) is highlighted in colors. We can observe that 1) the
imbalance between detection and segmentation has remarkable affect on the upper bound of model
performance, potentially indicating the significance of our work; 2) the effects of imbalance conditions
on detection task are larger than that on segmentation task, because the two imbalance conditions are
implemented to mainly constrain the detection task to simulate the natural detection-segmentation
imbalance; 3) even the performance of SOTA model MaskDINO is largely affected by the imbalance
conditions (e.g., -21.8% AP box degradation on the condition of position token constraint), which
potentially reflects that De-Imbalance deserves the research focus; 4) compared with MaskDINO,
the performance degradation of our model is slighter (i.e., -10.2% v.s. -2.9% and -21.8% v.s. -14.7%
on the AP box metric, -3.0% v.s. +1.2% and -7.6% v.s. -4.8% on the APmask metric), which
demonstrates the effectiveness of our model; 5) from a comprehensive perspective, we think the
standard condition is still a detection-segmentation imbalance condition (which is commonly treated
as a regular condition in previous works), and we claim the imbalance is one of the cruxes that limit
the upper bound of model performance, hence it should be further studied.

4.3.2 Diagnostic Experiments on Main Modules

To test the effects of main modules in our model (i.e., DI and BATO), we test the performance of
our model under four configurations: #1 exclusion of both DI and BATO; #2 exclusion of BATO; #3
exclusion of DI; #4 inclusion of both DI and BATO. To make the results solid, the experiments are
conducted on both BDD100K and COCO datasets, and the results are reported in Tab. 4.
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Table 4: The results of diagnostic experiments on main modules. The experiments are conducted on
the BDD100K dataset with 68 training epochs and on COCO dataset with 12 training epochs. The
results in Tab. 5 and Tab. 6 are also obtained under the same experiment settings.

ID DI BATO
BDD100K COCO

AP box APmask AP box APmask

#1 - - 27.8 24.4 45.6 41.2
#2 ✓ - 28.8 25.2 46.4 42.1
#3 - ✓ 28.3 24.9 46.2 41.8
#4 ✓ ✓ 29.5 25.7 46.9 42.3

In comparison with #1, the model under the configuration of #2 or #3 yields higher performance
on both datasets, and the optimum results are achieved when both DI and BATO are enabled (#4).
These results demonstrate the effectiveness of DI and BATO. The results are explainable. DI
module alleviates the imbalance between detection and segmentation, generating balance-aware query
Qbal, which is then fed to BATO to further make use of balance-aware information, contributing to
performance improvement.

4.3.3 Diagnostic Experiments on DI Module

The core of our model is DI, which improves the model performance by mitigating the imbalance
between detection and segmentation. DI is realized by applying the residual double-selection
mechanism on Ti, generating Ts1 (firstly-selected tokens), Ts2 (secondly-selected tokens), and Qbal

(balance-aware query). To analyze DI module, we design the fine-grained ablation experiments by
respectively using Ti, Ts1, Ts2, and Qbal as the guidance for BATO (i.e., gui. = Ti, gui. = Ts1,
gui. = Ts2, and gui. = Qbal) and examine the corresponding performance.

Table 5: The results of diagnostic exper-
iments on DI module. gui. denotes the
guidance in Fig. 2.

Guidance
BDD100K COCO

AP box APmask AP box APmask

gui. = Ti 28.3 24.9 46.2 41.8
gui. = Ts1 28.5 24.9 46.6 42.0
gui. = Ts2 28.9 25.6 46.7 42.2
gui. = Qbal 29.5 25.7 46.9 42.3

The experiment results on BDD100K and COCO
datasets are reported in Tab. 5. gui. = Ti actually
represents the situation when DI module is disabled,
which serves as the baseline for other situations. Firstly,
we can observe P(gui. = Ts2) > P(gui. = Ts1) >
P(gui. = Ti) where P(∗) denotes the performance of
the model under the configuration ∗, demonstrating our
double-selection mechanism is effective. The reason
is intuitive, by applying double-selection mechanism,
the tokens with high confidence are selected, and high-
confidence tokens indicate the location of objects more
clearly than other tokens, thus benefiting the object detection task (i.e., mitigating the imbalance be-
tween detection and segmentation). Secondly, the highest performance is achieved when gui. = Qbal,
validating the effectiveness of our residual double-selection mechanism. In DI module, apart from
the secondly-selected tokens Ts2, the initial feature tokens Ti is also used to compute Qbal, which
could be coarsely formulated as Qbal = Ti + S(Ti). This residual structure enables the model to
make use of the information in both the initial feature tokens and the selected feature tokens, hence
reaching the optimal performance.

4.3.4 Diagnostic Experiments on BATO Module

Table 6: The results of diagnostic experi-
ments on BATO module.

Configurations
BDD100K COCO

AP box APmask AP box APmask

w/o GTG 28.6 25.4 46.5 42.2
w/ GTG 29.5 25.7 46.9 42.3

BATO targets to use the balance-aware query Qbal to
guide the optimization of the initial feature tokens Ti.
The effectiveness of BATO has been validated in Tab. 4.
We further conduct experiments to validate the effect
of the proposed guiding token generation (GTG). The
GTG is designed to provide guidance for both detection
and segmentation, generating mask guiding token and
box guiding token that are closely related to mask in-
stances and object boxes through the mask network and
box network, respectively. These guiding tokens can provide more global and semantic guiding
information for the optimization of the initial feature tokens Ti. As shown in Tab. 6, the model with
GTG performs better, which demonstrates the effect of GTG.
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5 Conclusion

In this paper, we investigate the naturally-existing but commonly-ignore detection-segmentation
imbalance issue. The imbalance means that the performance of object detection lags behind that of
instance segmentation at the beginning layer of transformer decoder, which is one of cruxes that hurt
the cooperation of object detection and instance segmentation tasks and might constrain the break-
through of the performance upper bound. To address the issue, we propose DI-MaskDINO model
with the residual double-selection mechanism to alleviate the imbalance, achieving significant perfor-
mance improvements compared with SOTA joint object detection and instance segmentation model
MaskDINO, SOTA object detection model DINO, and SOTA segmentation model Mask2Former.

Limitations. This paper focuses on the task of joint object detection and instance segmentation, thus
the model is not applicable for other segmentation tasks such as semantic segmentation and panoptic
segmentation.
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Appendix
Due to the space limitation of the main text, we provide more results and discussions in the appendix,
which are organized as follows:

• Section A: Prior Knowledge.

• Section B: Experiment Settings.
– Section B.1: Datasets and Metrics.
– Section B.2: Implementation Details.

• Section C: Additional Diagnostic Experiments.
– Section C.1: Diagnostic Experiments on Token Selection.
– Section C.2: Diagnostic Experiments on the Number of Decoder Layer.

• Section D: Visualization Analysis.

A Prior Knowledge

Encoder and decoder of DETR-like models. MaskDINO is a type of DETR-like models [24, 54,
23, 47, 56, 51, 18]. A DETR-like model usually contains a backbone, an encoder, a decoder, and
multiple prediction heads. The encoder is composed of multiple transformer encoder layers, and
each encoder layer contains a multi-head self-attention and a FFN. The decoder consists of multiple
transformer decoder layers, and each decoder layer has an extra multi-head cross-attention compared
to the encoder layer.

Token and query. Both token and query are used to represent features. The concept of query comes
from the original DETR [3]. Commonly, it denotes the feature of the object/instance in the decoder
of DETR-like models. The token is a concept in the field of NLP (Natural Language Processing). In
the computer vision domain, a token corresponds to a patch in an image. Feature tokens in this paper
represent the features of image patches.

How to obtain the intermediate results from the beginning transformer decoder layer. The
transformer decoder in MaskDINO is composed of multiple decoder layers, and MaskDINO attaches
prediction heads after each decoder layer. Therefore, we can obtain prediction results from any
decoder layer, which are called intermediate results. The intermediate results from the beginning
transformer decoder layer are obtained by applying prediction heads on the 0-th decoder layer.

B Experiment Settings

B.1 Datasets and Metrics

COCO [26] is the most widely used dataset for the object detection and instance segmentation tasks,
and many well-known models such as [16, 5, 3, 52, 8, 25] are evaluated on the COCO dataset.
Following the common practice, we use the COCO train2017 split (118k images) for training and the
val2017 split (5k images) for validation. In addition, considering autonomous driving is a typical
and practical application of object detection and instance segmentation, the experiments are also
conducted on BDD100K [49] dataset, which is composed of 10k high-quality instance masks and
bounding boxes annotations for 8 classes. The training set and validation set are divided following
the standard in [49]. Consistent with previous researches [5, 10, 11, 50, 45, 25], we report the metrics
of AP box and APmask for performance evaluation.

B.2 Implementation Details

We implement DI-MaskDINO based on Detectron2 [48], using AdamW [31] optimizer with a
step learning rate schedule. The initial learning rate is set as 0.0001. Following MaskDINO, DI-
MaskDINO is trained for 50 epochs on COCO with the batch size of 16, decaying the initial learning
rate at fractions 0.9 and 0.95 of the total training iterations by a factor of 0.1. For BDD100K,
following the setting in [22], we train our model for 68 epochs with the batch size of 8 and the
learning rate drops at the 50-th epoch. The number of transformer encoder and decoder layers is 6.
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The token numbers of Ts1 and Ts2 are 600 and 300, respectively. Unless otherwise specified, the
feature channels in both encoder and decoder are set to 256, and the hidden dimension of FFN is
set to 2048. The mask network and box network in BATO are both three-layer mlp networks. We
use the same loss function as MaskDINO (i.e., L1 loss and GIOU loss for box loss, focal loss for
classification loss, and cross-entropy loss and dice loss for mask loss). Under ResNet50 pretrained on
ImageNet [40], our model is trained on NVIDIA RTX3090 GPUs. For Swin-L backbone, NVIDIA
RTX A6000 GPUs are used for training and validating.

C Additional Diagnostic Experiments

C.1 Diagnostic Experiments on Token Selection

Token selection is a crucial step in our proposed residual double-selection mechanism. The number
of token selection and the amount of selected tokens may affect the performance. We conduct
experiments to verify their impacts. The experimental results are summarized in Tab. 7 and Tab. 8.

The number of token selection. Single-selection actually represents the situation when disabling
DI module. Double-selection corresponds to our proposed method. Additionally, we add a token
selection on Ts2 for triple-selection. For fair comparison, we set the amount of lastly-selected tokens
to the same value (i.e., 300) for single-, double-, and triple-selection. From Tab. 7, we draw two
observations: 1) the results of single-selection are significantly lower than those in other situations,
indicating the crucial role of DI module; 2) our method achieves the optimal performance with double-
selection. The results are explainable. There exists information loss in each selection procedure.
Therefore, triple-selection introduces more information loss, leading to a lower performance than
double-selection.

The amount of selected tokens. Three k1 and k2 settings in the double-selection mechanism are
tested, and their maximum performance gap of AP box on BDD100K dataset is 0.4 (i.e., 29.5-29.1).
Similar results are exhibited on the metric of APmask. These results demonstrate that our method
is not sensitive to the hyper-parameters k1 and k2. Furthermore, the experiments on COCO dataset
also exhibit the similar results, indicating that our method is robust. At last, we explain that the
settings of k1 and k2 are infinite since they can be set as any value from 1 to 20k. SOTA models such
as [18, 25, 24, 14] take 300 as the query number of transformer decoder. In the experiments, k1 and
k2 are set as 300 or the multiple of 300 to align with the settings of the SOTA models.

Table 7: The results of diagnostic experiments on the number of token selection. Single-, double-,
and triple-selection are represented as sing., doub., and trip., respectively. ki, i ∈ [1, 2, 3] denotes the
amount of selected tokens.

Datasets Configurations AP box APmask

BDD100K
sing. k1=300 28.3 24.9
doub. k1=600,k2=300 29.5 25.7
trip. k1=600,k2=450,k3=300 29.3 25.5

COCO
sing. k1=300 46.2 41.8
doub. k1=600,k2=300 46.9 42.3
trip. k1=600,k2=450,k3=300 46.6 42.2

Table 8: The results of diagnostic experiments on the amount of selected tokens with our proposed
double-selection mechanism.

Datasets Configurations AP box APmask

BDD100K
k1=300,k2=300 29.1 25.5
k1=600,k2=600 29.3 25.3
k1=600,k2=300 29.5 25.7

COCO
k1=300,k2=300 46.6 42.3
k1=600,k2=600 46.8 42.4
k1=600,k2=300 46.9 42.3

C.2 Diagnostic Experiments on the Number of Decoder Layer

We study the effect of different decoder layer numbers for the model performance, and the results are
summarized in Tab. 9. We can observe the following: 1) increasing the number of decoder layers
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from 6 to 9 on BDD100K dataset results in the performance degradation, which can be explained by
the inconsistency between the complexity of the model and the dataset. The BDD100K dataset only
contains 7k training sets and 1k validation sets. The size of BDD100K is small and the model with 9
decoder layers is relatively more complex, leading to the overfitting of the training set; 2) increasing
the number of decoder layers will contribute to both detection and segmentation on COCO. However,
the model configured with 9 decoder layers only achieves a slight improvement and introduces more
computation cost. Therefore, we use 6 decoder layers in our model; 3) our model has achieved
comparable performance in the configuration with 3 decoder layers compared to MaskDINO with 9
decoder layers (e.g., 45.8 v.s. 45.7 on the AP box metric and 41.3 v.s. 41.4 on the APmask metric on
COCO), demonstrating that our model greatly improves the efficiency of the decoder.

Table 9: The results of diagnostic experiments on the number of decoder layer.

Decoder layer
BDD100K COCO

AP box APmask AP box APmask

3 28.7 25.3 45.8 41.3
6 29.5 25.7 46.9 42.3
9 28.9 25.6 46.9 42.5

D Visualization Analysis

We visualize the predictions of MaskDINO and DI-MaskDINO to show qualitative comparison on
BDD100K dataset. As shown in Fig. 3, MaskDINO produces boxes that do not tightly encompass the
objects (i.e., Fig. 3a) or do not fully surround the objects (i.e., Fig. 3b). Compared to MaskDINO,
our model produces perfectly-fitting boxes, demonstrating the effectiveness of DI-MaskDINO. In
addition, our model focuses attention on the foreground objects with high category scores through
the residual double-selection mechanism that avoids mispredicting the background as a foreground
object. Fig. 3c suggests that our proposed residual double-selection mechanism is effective.

(a) (b) (c)
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Figure 3: Qualitative comparison between MaskDINO and DI-MaskDINO on BDD100K dataset.
Suggest zooming in to view this figure for a clearer view of details.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s contributions and scope are accurately made in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper discusses the limitations of the work in § 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper provides a detailed description of our proposed DI- MaskDINO
model in § 3 and comprehensive implementation details in § 4.1 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: This paper presents a detailed description of our proposed DI-MaskDINO
model in § 3, along with comprehensive implementation details provided in Appendix B.
We will release the source code of our model at the following URL: https://github.
com/CQU-ADHRI-Lab/DI-MaskDINO.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper specifies all the training and test details in § 4 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive
and the previous researches in the field of object detection and instance segmentation did
not report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources needed to
reproduce the experiments in § 4 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research focuses only on improving the overall performance of joint
object detection and instance segmentation models. As such, it does not have direct societal
impacts beyond the scope of enhancing these technical capabilities.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release the source code of our model at the following URL: https:
//anonymous.4open.science/r/DI-MaskDINO-12E4.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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