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Abstract

Material discovery is a critical research area with profound implications for var-
ious industries. In this work, we introduce MatExpert, a novel framework that
leverages Large Language Models (LLMs) and contrastive learning to accelerate
the discovery and design of new materials. Inspired by the workflow of human
material experts, our approach integrates three key stages: retrieval, transition, and
generation. In the initial retrieval stage, MatExpert identifies an existing material
that closely matches the desired criteria. Subsequently, in the transition stage,
MatExpert outlines the necessary modifications to transform this material into
one that meets specific requirements. Finally, in the generation state, MatExpert
handles the detailed computations and structural generation. Our experimental re-
sults demonstrate that MatExpert outperforms state-of-the-art methods in material
generation tasks, achieving superior performance across various metrics including
validity, distribution, and stability. As such, MatExpert represents a meaningful
advancement in computational material discovery using modern machine learning.

1 Introduction

The discovery of new materials is fundamental to advancements in various industries, including
energy, automotive, aerospace, and others. Traditional material discovery methods often involve
labor-intensive experimental and computational procedures, making the process time-consuming and
costly [12]. The advent of artificial intelligence, particularly the development of Large Language
Models (LLMs), presents new opportunities to streamline and accelerate this process [11, 9].

In recent years, large language models (LLMs) such as GPT-4 [13] have demonstrated exceptional
capabilities in understanding and generating human language in various domains, including material
science [4, 5, 15]. In this work, we introduce MatExpert, a novel framework designed to emulate
the workflow of a material expert when discovering or designing new materials [20]. MatExpert
integrates three critical stages: retrieval, transition, and generation. During the retrieval stage, we
utilize contrastive learning to identify the most similar material from the material database based on
user-defined criteria. This stage ensures that the selected material serves as a robust reference point
for further modification. The transition stage leverages an LLM to generate detailed pathways for
modifying the retrieved material. This involves outlining specific structural or compositional changes
required to achieve the desired properties, effectively bridging the gap between the existing material
and the target material. In the final generation stage, MatExpert produces lattice vectors and atomic
coordinates, and a crystallographic information file (CIF) [7] for the designed material. This stage
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Figure 1: We utilize a contrastive learning framework to train the material retrieval model. For a
given sample material (e.g. Na3MnCoNiO6), we extract both its property description and structural
description. The model employs two T5-based encoders, which are trained to minimize the distance
between these two representations.

involves fine-tuning the LLM on multi-turn datasets, encompassing both the transition and generation
stages, to generate novel and stable materials.

We evaluate the performance of MatExpert through extensive experiments on benchmark datasets from
the Materials Project database [10]. Our results demonstrate that MatExpert significantly outperforms
existing state-of-the-art methods in material generation tasks, achieving superior performance across
various metrics, including validity, distribution, and stability.

2 Background

Large Language Models (LLMs) LLMs are deep learning models using Transformer architecture
[19] to process and generate human language. Trained on vast text data, they produce contextually
relevant responses from a prompt and instruction. Recent work has proposed diverse architectures
specialized to materials science, including BERT-based models [16] and billion-parameters LLMs for
materials science question-answering tasks [17, 22, 21], property prediction [2] and crystal structure
generation [6]. In this work, we created a multi-turn dataset with structured prompts for material
generation to train the specific MatExpert.

Contrastive Learning & LoRA Fine-Tuning Contrastive learning [3] is a self-supervised method
for learning representations by bringing positive pairs closer and pushing negative pairs apart in the
embedding space. We apply it to material retrieval by embedding material properties and structures
in a shared space, enabling efficient retrieval of materials that best match specific queries. LoRA [8]
reduces the computational overhead of fine-tuning LLMs by injecting trainable low-rank matrices
into each Transformer layer, keeping the original weights fixed. This approach accelerates fine-tuning
while adapting LLMs efficiently to material science tasks.

3 Methodology

Our framework addresses material discovery by imitating expert processes through three stages:
retrieval, transition, and generation, using a T5-based [14] contrastive learning framework and an
LLM for material retrieval and material design, respectively.

3.1 First Stage: Retrieval

The retrieval stage identifies the most similar material from the material database based on user
criteria, using contrastive learning. Two T5-based encoders [14] embed the property descriptions
and structure descriptions into a shared space. The objective is to minimize the distance between
the property embedding (qi) and the structure embedding (mi) while maximizing the distance from
other materials (mk) (See Figure 1). A contrastive loss function is applied:

L = − log
exp(sim(qi,mi)/τ)∑N

k=1 exp(sim(qi,mk)/τ)
. (1)
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Figure 2: Pipeline of MatExpert: Given a description of the desired material, MatExpert first retrieves
the most similar material from the database (e.g., Na3MnCoNiO6). Next, the LLM provides transition
pathways to modify the retrieved material into the desired material (e.g., replacing Na with Li). Finally,
the LLM generates the detailed structural information of the desired material (Li3MnCoNiO6).

This stage outputs the best matching material for further refinement.

3.2 Second Stage: Transition

The transition stage focuses on developing a detailed and viable method for modifying the retrieved
material to meet the desired properties, which bridges the gap between the existing material and
the target material by outlining specific structural or compositional changes required to achieve the
desired specifications.

Prompt Construction: To facilitate the generation of transition pathways, we construct a dataset
designed to simulate an interactive dialogue between a researcher and the model. This approach
ensures that the LLM can interpret and respond to complex queries regarding material modification.
See Figure 2 for example.

LLM-Guided Transition Pathways: To generate ground-truth outputs for fine-tuning the LLM,
we utilize GPT-4 by providing it with carefully crafted prompts. These prompts elicit detailed
explanations of the structural or compositional modifications necessary to achieve the desired material
properties. An example template of prompt is:

I have two materials: <formula_closest> and <formula_desired>. Based
on the descriptions and properties of the two materials below, can
you summarize the main reasons for the differences in properties when
transitioning from <formula_closest> to <formula_desired>? The description
of <formula_closest>: <description_closest>. The description of
<formula_desired>: <description_desired>.

3.3 Third Stage: Generation

In the final stage, the framework generates a language representation of the material, including lattice
vectors and atomic coordinates, which is then converted to CIF format [7]. The LLM is actually
fine-tuned with LoRA [8] on the multi-turn datasets, including both the second stage and the third
stage (See Figure 2).
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Table 1: MatExpert shows general outperformance compared to baseline methods for unconditional
generation on Materials Project based on various metrics like validity checks, coverage, property
distribution, and stability. The best results are in bold, while the second-best results are underlined.

Method Validity Check Coverage Distribution Metastable Stable
Struc↑ Comp↑ Rec↑ Prec↑ wdist(ρ)↓ wdist(Nel)↓ M3GNet↑ DFT↑

CDVAE 1.00 0.867 0.991 0.995 0.68 1.43 28.8% 5.4%
LM-CH 0.848 0.835 0.992 0.978 0.86 0.13 n/a n/a
LM-AC 0.958 0.889 0.996 0.985 0.69 0.09 n/a n/a
Crystal-LLM with LLaMA-2
7B (τ = 1.0) 0.918 0.879 0.969 0.960 3.85 0.96 35.1% 6.7%
7B (τ = 0.7) 0.964 0.933 0.911 0.949 3.61 1.06 35.0% 6.2%
70B (τ = 1.0) 0.965 0.863 0.968 0.983 1.72 0.55 35.4% 10.0%
70B (τ = 0.7) 0.996 0.954 0.858 0.989 0.81 0.44 49.8% 10.6%
MatExpert with LLaMA-2
7B (τ = 1.0) 0.920 0.908 0.984 0.994 0.49 0.11 37.5% 7.8%
7B (τ = 0.7) 0.946 0.943 0.952 0.986 0.51 0.13 36.2% 8.0%
70B (τ = 1.0) 0.968 0.878 0.982 0.986 0.23 0.06 50.2% 11.3%
70B (τ = 0.7) 0.998 0.959 0.969 0.993 0.23 0.07 50.9% 11.8%
MatExpert with LLaMA-3
8B (τ = 1.0) 0.933 0.910 0.992 0.995 0.36 0.07 39.1% 8.1%
8B (τ = 0.7) 0.975 0.959 0.988 0.990 0.38 0.10 39.5% 8.4%
70B (τ = 1.0) 0.970 0.880 0.980 0.988 0.21 0.05 50.5% 11.0%
70B (τ = 0.7) 0.998 0.961 0.986 0.991 0.18 0.04 51.0% 12.0%

4 Experiments

We perform comparison experiments to evaluate the effectiveness of the MatExpert framework in the
material generation task on benchmark datasets.

Datasets and Baselines We leverage datasets from the Materials Project database similar to prior
studies [20, 5]. The MP-20 dataset [20] for unconditional generation contains 45,231 stable materials,
filtered to exclude structures with over 30 atoms per unit cell for computational efficiency. Our
baseline include: Crystal-LLM [5]: A state-of-the-art approach fine-tuning large language models
(LLaMA-2 [18]) for generating stable inorganic materials. It excels in generating valid crystal
structures and serves as a primary baseline due to its pioneering use of LLMs for material generation.
CDVAE [20]: A Crystal Diffusion Variational Autoencoder tailored for periodic material generation.
It combines generative models within a continuous VAE latent space, widely used for generating
stable materials and considered a strong benchmark. LM-CH and LM-AC [4]: Two Transformer-
based models for 3D crystal structure generation. LM-CH uses character-level tokenization, while
LM-AC uses atom and coordinate-level tokens, both demonstrating strong performance in generating
valid and diverse crystal structures.

4.1 Comparison Results

The results for all baselines and MatExpert are shown in Table 1. As evident from the table,
MatExpert family with LLaMA-3 [1] outperforms all other methods across all metrics except metrics
of coverage. Traditional models such as CDVAE, LM-CH, and LM-AC excel in coverage and
structural validity. When compared to the state-of-the-art LLM-based model Crystal-LLM, our
MatExpert method consistently outperforms Crystal-LLM across all settings, including the same
model size and temperature as well as DFT-based stability. Notably, MatExpert achieves remarkable
results in distribution metrics, benefiting from the transition from an existing material in the database.

5 Conclusion

In this work, we introduced MatExpert, a novel framework leveraging LLMs and contrastive learning
for material discovery process. By emulating the workflow of a human materials science expert,
MatExpert integrates retrieval, transition, and generation stages to design new materials. Our
experiments show that MatExpert significantly outperforms state-of-the-art methods in material
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generation tasks, thereby exhibiting its potential to become scalable tool for accelerating material
discovery with higher quality crystal generation.
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