
  

Abstract— The task of dynamically manipulating objects within 

a robotic hand presents ongoing challenges. In particular, friction 

and slip often dictate task success yet remain difficult to measure 

directly, quickly, and accurately; this includes both the detection 

of slip events and slip speed. Complex solutions exist that involve 

training a control policy using neural networks, with image-based 

sensors or external cameras, or when contact geometry can be 

inferred. Using only a capacitive sensor with a `nib`-patterned 

structure, we attempt to demonstrate the sensor’s ability to detect 

slip speed during uninterrupted contact where geometry cannot be 

inferred, while benefitting from faster sensing, cheaper 

construction, and smaller profile. We hope that by collecting 

vibration amplitude and frequency and applying supervised 

learning techniques to directly measure slip speed we can guide an 

implementation of manipulation controls without a priori 

assumptions about object properties, such as friction or geometry. 

 
Index Terms—Tactile Sensing, In-Hand Manipulation. 

I. INTRODUCTION 

Robotic within-hand manipulation [1] affords robot systems 

to manipulate objects in tight spaces and avoid gross arm 

movements, a particularly useful ability in cluttered or 

constrained environments. However, due to uncertainties in 

object properties, like friction, successful reorientations can 

prove to be a challenging task. Some approaches have used  

inverse kinematics with a highly constrained rigid hand and 

taking advantage of overcoming friction during sliding to 

reorient an object [2], while others have taken advantage of 

compliant or under-actuated systems [3]. However, controlling 

for object slip directly, without such models, can enable a much 

faster reorientations with unknown objects, an important 

feature in situations that necessitate faster response time such 

as in assembly lines or active disaster zones. 

Thus far, aggressive dynamic manipulation has been 

accomplished using learned control policies, whether exploring 

real-world object contacts [4] or in simulation [5]. However, 

using a nibbed capacitive tactile sensor developed by Huh et al. 

[6] (Fig. 1) we hope to demonstrate that dynamic manipulations 

can be performed using simple control policies by only training 

for object motion recognition, thus making the sensor more 

generalizable to different scenarios while reducing the need for 

complex computing. 

In this letter we explore the sensor’s ability to detect speed 
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of a slipping object as it slides across the sensor. While incipient 

slip has been demonstrated in various systems [7], [8], slip 

detection and regrasping can be leveraged to quickly reposition 

an object within the hand with minimal arm or finger movement 

[9], [10]. Meanwhile, steady-state slipping speed has only been 

demonstrated when objects are either much smaller than the 

sensor or not making contact with its entire surface [11], [12], 

so that the geometry or forces of an edge contact can be tracked 

over time. However, objects in a factory setting or during 

sorting are often fully flush and flat with the sensor and 

controlling the slip is necessary for dynamic manipulation. We 

hypothesize that the deflection of the sensor’s nib interface 

would undergo a stick-slip interaction yielding characteristic 

frequencies and deflection amplitudes unique to each 

combination of material and slip speed. 

II. METHODS 

To discover how the sensor detects slipping speed, we 

created a testbed that allowed us to test different slipping speeds 

and materials. The testbed was designed to maintain a constant 

distance between the sensor and a sliding object (Fig. 2); 

keeping the pressure constant was another consideration. Three 

rectangular objects made of different materials were tested: 

cherry, basswood, and acrylic with dimensions of 200x40x3 

mm. The objects were pulled 134 mm by a string attached to a 

UR-10 robotic arm. The objects were then pushed back to the 

starting point and pulled again while sensor data was recorded 
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Figure 1. On the left, the sensor can be seen mounted on the tip of a robotic 
finger. The tactile sensor is made up of a grid of nibs according to dimensions 

in (a), where the deflection of each nib is tracked in 4 directions. These 

deflections are used to track pressure (b), sheer (c), and vibrations (d) that can 
be used detect slipping. The conductive fabric that is embedded in the nibs and 

deflected changes the capacitive signal between itself and the electrodes. 

Figure images were borrowed from [6]. 



at 600 Hz. This push-pull cycle lasted for 2 minutes for each 

speed setting, and speeds were varied from 10-100 mm/s in 5 

mm/s increments. Since only the steady-state speed regime was 

of interest, the data from the acceleration and deceleration were 

spliced out. The termination of acceleration and initiation of 

deceleration were estimated to occur within the first 1/8th and 

the last 1/6th of the slipping period, respectively, with a 

conservative margin. 

A feature of the nibbed sensor is its Programmable System 

on Chip (PSoC) infrastructure that enables us to couple any 

desired set of electrodes that result in a faster signal at the cost 

of resolution. Because we constrained the slip to a single linear 

direction, the nib deflection only needed to be tracked along a 

single axis (Fig. 3). Using a fast Fourier transform (FFT) the 

signal was converted into the frequency spectrum. Linear 

regressions are used to create a model using both the amplitude 

signal and the frequency spectrum separately to discover a fit 

that could identify the speed and material properties from a new 

signal. To obtain the frequency spectrum, a 300-frame sliding 

window was used, with an overlap of 1 frame to maximize the 

amount of extracted data. 

Due to steady state slipping, the frequency responses were 

regarded as independent samples. Here, a frequency sample is 

a vector of length n, which corresponds to 300 (half the 

sampling rate) divided by the bin size, varied from 1 to 300, and 

where vector values correspond to their respective frequency 

amplitudes. Both the frequency response, as well as the raw 

signal amplitude, were averaged during each pull cycle; this 

meant that during the 2-minute data collection, the slower speed 

trials yielded fewer cycles and therefore less data. The data was 

used in building a regression and exploring classification and 

clustering methods. 

III. RESULTS 

An example of amplitude data during one of the trials is 

shown in figure 3. At the lowest speed, over the course of 2 

minutes, only 7 pull cycles were collected, while at the fastest 

speed, up to 44 cycles were collected over the course of the 

same period. The mean amplitude of each cycle is plotted in 

figure 4. The linear fit R2 values were 0.475, 0.280, and 0.399 

cherry, basswood, and acrylic objects, respectively. Although 

this corresponds to weak correlations, at speeds below 50 mm/s 

the correlation appears stronger. 

In the frequency domain, linear fits have weaker correlations 

still when looking at individual frequency bins. In figure 5, we 

explore the correlation between speed and frequency bands, 

which consisted of the signal across any number of frequency 

bins simultaneously; in the figure only the highest and lowest 

correlations are displayed. Only weak correlation persisted. 

IV. DISCUSSION 

In this work we observed that neither signal amplitude nor 

frequency responses yielded a strong correlation. Nevertheless, 

a negative correlation persisted, suggesting that there is an 

exploitable relationship which can be used to identify the speed 

at which an object is slipping. However, at speeds below 50 

mm/s, a stronger relationship can be seen, and therefore, this 

would likely be the region that should be explored further in 

future data collections. This was not an unexpected result, as 

the difference between speeds was likely to plateau above a 

critical speed; nibs experience shorter stick times with 

increasing substrate speed, likely leading to a saturation in the 

amplitude signal [13]. Additionally, it appears there are 

differences in the amplitude response between materials that we 

believe can be used to train a classifier. 

The results related to raw amplitude signal can be seen to 

have a sinusoidal feature over speeds. We suspect that this 

corresponds to a resonant frequency related to the testbed. 

Alternatively, this could be due to the nonlinearity of the robotic 

arm as it moves in a straight line. 

Although the raw amplitude signals display a correlation 

with speed, it is highly susceptible to changes in grasp force, a 

 
Figure 2. The left figure depicts the testbed that hosts the sensor and allows the 

object to slide through, rolling over a set of smooth bearings. On the right the 
robot arm can be seen to pull on the object by a string. The acrylic piece is 

placed on the end effect to push the object back into place. 

Figure 4.  The raw signal amplitude is plotted against the pull speed for each 

of the three materials. The average amplitude during each pull cycle is plotted 

as a single point. A linear regression fit is overlayed. 

 
Figure 3.  Example of a 2-minute push-pull cycle is shown for a single trial. Initiation and termination of the of the pull corresponds to the first green and the second 
red vertical line pairs. Accelerations and decelerations are spliced out, therefore only the region between second green and the first red vertical line pairs is 

considered (highlighted region is shown for the first two pull cycles). The filtered signal is displayed for reference only. A brief pause in motion can be seen 

immediately after the second vertical red line, then a brief high amplitude signal generated by the object being pushed back to its starting point (the highest amplitude 

signal), and finally followed by a prolonged pause corresponding to a re-tensioning of the string. 



factor that we deliberately accounted for by holding the distance 

constant. In an active controller, a sufficient grasp controller 

would need to be implement. However, frequency responses are 

less susceptible to grasp force, and the observation that certain 

frequency bands appear to find a correlation between the signal 

and sliding speed suggests that this would be a more reliable 

metric. Some short frequency bands appear to have very little 

correlations with speed, while others have a correlation. Out of 

all the tested frequency bins for the basswood and acrylic 

materials, 99.73% and 92.58%, respectively, exhibit a positive 

linear relationship between frequency bin amplitude and speed, 

while for the cherry material 100% of the tested frequency bins 

have a negative relationship. This suggests that material can 

likewise be determined by analyzing the frequency response. 

Follow up work will include implementing classifiers that are 

capable of precisely distinguishing between materials and 

slipping speeds using, likely, the frequency signals. Ultimately, 

we hope to build a model capable of interpolating the data and 

identifying the speed with higher precision. 
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Figure 5.  The maximum and minimum R2 value of the linear fit for each 
frequency band is displayed; these correspond to the highest and lowest 

correlations between specific frequency bands and slip speed. These values 

converge when the whole frequency spectrum is considered simultaneously, 

since there is only one frequency band. 


