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Abstract

Graph-structured data is ubiquitous throughout natural and social sciences, and
Graph Neural Networks (GNNs) have recently been shown to be effective at
solving prediction and inference problems on graph data. In this paper, we propose
and demonstrate that GNNs can be applied to solve Combinatorial Optimization
(CO) problems. CO concerns optimizing a function over a discrete solution space
that is often intractably large. To learn to solve CO problems, we formulate the
optimization process as a sequential decision making problem, where the return
is related to how close the candidate solution is to optimality. We use a GNN to
learn a policy to iteratively build increasingly promising candidate solutions. We
present preliminary evidence that GNNGs trained through Q-Learning can solve CO
problems with performance approaching state-of-the-art heuristic-based solvers,
using only a fraction of the parameters and training time.

1 Introduction

Many important real-world problems, from social networks to chemical systems, are naturally rep-
resented as graphs. Over the past five years, graph neural networks (GNNs) have emerged as a
powerful approach for machine learning on such structural data [1], [2] by combining the represen-
tation learning capabilities of deep networks with bespoke adaptation based on graph properties.
These approaches have been effective in node classification [3], relation prediction [4], and graph
classification [5]. More recently, the community has been exploring other applications [6] for GNNs
and analyzing their theoretical limitations and mathematical properties [7].

Many of these successes have focused on prediction or inference problems. In this work, we demon-
strate that GNNs can be applied to solve a different class of problems. Combinatorial Optimization
(CO) problems are often encountered across diverse fields and are difficult to solve exactly. CO
problems require optimizing a function over a combinatorial space, possibly subject to constraints;
examples include finding the minimum spanning tree (MST) in a graph or determining if there exists
a variable assignment that satisfies a given Boolean formula (k-SAT). The ubiquity of CO across
domains and applications led to the development of heuristic-based solvers in the early days of
computer engineering that remain state-of-the-art today [8].

Motivated by deep learning’s success at learning representations that outperform hand-engineered
features, we explore whether GNNs can learn to outperform heuristic-based CO solvers when trained
via reinforcement learning (RL). Our specific contributions are:
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1. Representing instances of combinatorial optimization problems as graphs and formulating
solving for an optimized solution as a Markov decision process (MDP). To the best of our
knowledge, this work is the first to solve FISP using a deep learning-based method.

2. Showing how GNNs can be used to solve CO problems and that our formulation generalizes
to a form of meta-learning.

3. Demonstrating empirically that we meet the performance of other algorithms and baseline
heuristics with a fraction of the parameters and training time.

2 Literature Review

The current research landscape in the field of graph based learning consist of theoretical improvements
to the architecture [9], [10], explorations of limitations [11], and applications to a variety of domains
through supervised learning.

Graph neural networks have only very recently transitioned into usage in the context of RL. However
rather than end-to-end, GNNs are employed in a modularized fashion: Li et al. [12] use a GNN for
inferring a graph given sequential data streams. Xiao et al. [13] employ a graph attention network
(GAT) in a multi-agent RL context, but for optimal reward balancing to speed up the learning process.
Liu et al. [14] is using a GNN for game abstraction to simplify complex multiplayer games. Ma et al.
[15] leverage the node update to mimic k-logit in a two-player zero-sum games.

Very few papers explore GNNs in the context of CO [16]. These works focus on solving the travelling
salesperson problem only, tailoring their implementation to fit this task specifically, and use GNNs as
a search heuristics to prune the solution space rather than training a solver directly.

3 Preliminaries

Combinatorial optimization (CO) refers to optimizing an objective function whose domain is
a discrete but combinatorially large configuration space, making the space of possible solutions
typically too large to search exhaustively. Examples of well-known combinatorial optimization
problems include the Travelling Salesman Problem (TSP), Minimum Spanning Tree (MST), and
Boolean Satisfiability (SAT). While some instances of CO problems can be solved exactly through
Branch-and-Bound, many are NP-Hard. We generally must resort to specialized heuristics that
rule out large parts of the search space or approximation algorithms. Formally, a combinatorial
optimization problem A is defined by the tuple (Z, f, m, g), where Z is a set of instances, x € 7 is
an instance, f(z) is the finite set of feasible solutions y, m(z, y) denotes the measure of y = f(z),
and g is the goal function, i.e. usually max or min. The goal is then to find for some instance  an
optimal solution, that is, a feasible solution y with

m(z,y) = g{m(z,y') |y € f(z)}. )]

In graph-based learning, a GNN layer can be viewed as a message-passing step [17], where each
node updates its state by aggregating messages flowing from its direct neighbors. A graph is a tuple of
nodes and edges G = (V, £). The one-hop neighborhood of node wis N, = {v € V | (v,u) € £}. A
node feature matrix X € RIVI** gives the k features of node u as z,,; we omit edge- and graph-level
features for clarity. A (message passing) GNN over this graph is then executed as:

hu - wAGG ({Qb(lﬂu, Zv)|U S Nu}) (2)

where 1): R¥ x R — RF is a message function, ¢: R*¥ — R* is a readout function, and AGG is
a permutation-invariant aggregation function (such as ¥ or max). Both ¢ and v can be realised as
MLPs, but many special cases exist, such as attentional GNNs [18].

Reinforcement Learning (RL) considers an agent learning how to select actions in an environment
to maximize their long-term cumulative rewards, i.e., the return, in a sequential decision-making
process [19]. The environment is modeled as a Markov Decision Process (MDP), defined by the
tuple (S, A, p, r, v) with § = {s} the set of states, A = {a} the set of actions, p(s’ | s, a) the state
transition distribution, r: A x S — R a bounded reward function, and ~ the discount factor. RL
aims to find a policy 7: S — A that maps a state s to an optimal action a. Optimality is defined as
maximizing the expected return.



Model-free RL refers to learning a policy or Q-function, though a form of trial-and-error, without
explicitly modeling the transition probability distribution p or the reward function r. Deep Q-learning
[20] is a simple algorithm but can suffer from overestimation bias and catastrophic forgetting. Several
other methods have been introduced to reduce overestimation bias. Weighted double Q-learning [21],
for example, uses a weighted combination of the double Q-learning estimate, which may lead to
underestimation bias.

4 Method

We frame combinatorial optimization problems as sequential decision making processes, where the
return is related to how close a candidate solution is to optimal. We use a GNN to learn a policy
that sequentially builds better and better candidate solutions. We aim to solve general classes of CO
problems, but in this work we focus on the flexible Job Shop Scheduling problem (FISP).

4.1 Problem Definition

The classical job-shop scheduling problem (JSSP) [22] defines n jobs that consist of sets of operations
o; of varying processing time each, which need to be processed in a specific order as specified by a
set of precedence constraints. Each operation is assigned to one of m machines and the goal is to find
a processing schedule that minimizes the makespan, i.e., the total length of the schedule from the
start of the first job to the end of the last. The FISP [23] is a generalization of the classical JSSP that
allows processing operations on one machine out of a set of alternative machines. The FISP is an
NP-hard problem consisting of two sub-problems, i.e., the assignment and the scheduling problems.
The scheduling problem by itself reduces to the classical JSSP. Viable solutions are evaluated in terms
of the makespan, which is defined as the time difference between start and finish of a sequence of
jobs or tasks.

In this paper, proposing a solution to an instance of the FISP is treated as a sequential decision-making
process, which iteratively takes a scheduling action to assign an operation to a compatible machine at
each state until all operations are scheduled. The proposed workflow is shown in Figure 1.
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Figure 1: Training cycle.

4.2 Combinatorial Optimization as MDPs

By reformulating FISP as a sequential decision making problem, more specifically a Markov Decision
Process (MDP), we can use traditional RL methods to find viable solutions to a given FJSP. The
initial state sg defines the problem setting, i.e., it defines how many machines are available, how
many operations will need to be processed, and in what sequence. At each time step ¢, an action a;
specifies the identity of an unassigned operation to be added to the end of the queue of a machine.
Consequently, a state s; defines the resource allocation and processing sequence. A sequence ends
when all operations of all jobs have been assigned to a machine, which will be the proposed solution
to the problem instance. If the agent assigns operations with upstream requirements first, these
operations can not be executed and render a machine idle until its requirements are met. Gridlock
defines the state where all machines are idle by assignment.



During a rollout, previously assigned jobs can start processing and the agent will receive positive unit
rewards for completed operations, which are then removed from the queue. To encourage solving for
a shorter makespan, a negative reward of —0.1 is accrued at each time step.

An action-value function Q(s¢, a;) maps the expected return of taking action a in state s;. This next
section defines the architecture of a heterogeneous graph neural network that we subsequently train
to learn Q.

4.3 Heterogeneous Graph Neural Networks

We employ a disjunctive graph G = {O, M, E;, E,,C} to model the current state of a FJSP. Here,
O is the set of operations independent of the job to which they belong, M is the set of available
machines, £; and &, are sets of directed edges that denote the sequence of operations within each job
and within each queue respectively, and C represents the set of conjunctive, undirected edges that
assign operations to machines.

Edges in C, represented by dashed edges in Figure 2a, specify operation-machine compatibility and
their assigned weights define a speed up or slow down of the default processing time. The feature
space of operations is composed of i) the time required to finish the operation, ii) its completion
percentage, iii) the number of downstream dependencies, iv) a one-hot encoding of the current state
of this operation, i.e., whether it is scheduled, being processed, or completed, and v) the remaining
time. The machine features comprise the number of queued operations and their minimal expected
run time.

To encode this state representation into a meaningful action-value function (), we use a heterogeneous
graph neural network composed of graph convolution layers [3], [24]. Our network architecture
consists of two fully connected layers to embed both node types into the same dimensionality,
followed by a set of convolutional layers, each for processing a different edge-type without weight
sharing. The resulting intermediate node embeddings are summed. By looping over this same
heterogeneous layer k times, each node embedding considers the state information of nodes within a
k step radius. A dot-product readout layer is then used for edge-prediction over C. The edge with
the highest score defines the new operation-to-machine assignment, shown by solid blue arrows in

Figure 2b.
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Figure 2: Graphical representation of a sample FISP instance at ¢ = 0 (a) and after 5 actions have
been taken, s;—s5 (b).

5 Experimental Results

5.1 Implementation details

Random FJSP samples are created by initializing m machines and n - 1, operation nodes, and then
queuing them randomly into n jobs. Here, n,, refers to the average number of operations per job. To
create C, we fully connect each machine to each operation, to indicate possible assignments, and then
randomly drop a fraction p. Their weights indicate the relative speedup or slowdown for endpoint
operations. Each operation is assigned a baseline runtime, which results in the actual runtime of
operation o; on machine w; when adjusted by the connected edge weights.



Loss

For the following experiments, we set the number of HGNN iterations to k& = 2 and dimensions
of machine and operation embeddings to 16. In each epoch, we sample 128 trajectories, which are
stored in a replay buffer of size 5000, and run 64 training iterations with a batch size of 32 state
transitions. The discount factor is set to v = 1.0 and the explorations constant to € = 0.1. The
network is updated using the Adam optimizer, with a learning rate of 8 x 1075,

5.2 Baselines

To evaluate our method, we benchmark against simulated annealing, a probabilistic approximation
method, and a state-of-the-art meta-heuristic introduced in Nouri et al. [25]. To the best of our
knowledge, this work is the first to solve FISP using a deep learning-based method. We also
benchmark our scheduling performance against recent deep learning methods designed for the
simpler scheduling problem [26], JSSP.

To compare performance across methods, we evaluate the optimality gap

C1min
C*

-1 3)

€ =

where C\,iy, is the makespan of a candidate solution and C* the optimal makespan. This metric can
also be referred to as relative error. Throughout these experiments, we use Google’s OR-tools solver
[27] to solve for C*.

5.3 Results

Figure 3 shows the learning curves for our Q-learner trained on sample problems of size 25 x 15.
Around epoch 150, we find sudden jumps in the success rate and training rewards. These jumps
happen when the learnt solver transitions from gridlocking itself to producing feasible solutions for
the specified problem instances. The optimality gap can only be evaluated for feasible solutions,
therefore the relative error curve starts around that same epoch and then decreases sharply as the
solver learns to improve on its general strategy.
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Figure 3: Training performance summary (25 x 15).

After the Q-learner has been trained, it can be used to solve problems of any size. As such, this
formulation can be interpreted as a type of meta-learning, enabled by using a graphical representation




of the problem space that is not limited to a fixed problem size. We ran the same solver on multiple
size problems and evaluated 128 samples in each case. Table 1 summarizes our results. We find that
the meta-heuristic is a strong baseline that solves optimally until the largest size problem 100 x 20,
while FIFO is not performing well from the beginning. The results reported for DQL are from the
same network, but evaluated on different sample sizes. 100 x 20 is an exception where the relative
error was 29% but after 100 epochs of fine-tuning on larger problems, the error was reduced to 6.2%.

For further reference, we also report optimality gaps for ScheduleNet [26], which is a similar deep
RL approach but for the classic scheduling problem JSSP. Our network architecture only defines 960
independent weights, while ScheduleNet defines 6022 for the actor alone. Because ScheduleNet
adopts PPO, it further requires a trained critic. Therefore, we find that we maintain equal or better
performance than an equivalent deep RL approach performs on a simpler problem, while using less
than a sixth of its parameters.

Table 1: Optimality gaps for different FISP sizes.
15x15 156x25 30x20 50x15 50x20 100 x 20

FIFO - 0.7647 0.69 0.857 - 1.235
Meta-Heuristic - 0.0 0.0 0.0 0.0 0.022
DQL 0.01 0.011 0.0 0.052 0.04 0.062
ScheduleNet 0.153 0.194 0.187 0.138 0.135 0.066

In Figure 4, we compare the runtime performance for different sizes of FISP. While the meta-heuristic
seems to increase in polynomial time, the runtime of DQL is nearly constant with problem size.
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Figure 4: Runtimes per sample for different FISP sizes.

6 Conclusion

In this work, we demonstrate how graph neural networks can be used to efficiently solve large,
complex combinatorial optimization problems. By framing the CO instances as graph sequences, we
can use reinforcement learning to find promising solutions. These solutions will be approximate, but
while keeping the relative error low, we find our method scales much better in runtime than a more
accurate meta-heuristic. We believe our results show promising initial results towards approaching
the performance of state-of-the-art heuristic-based solvers.
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