

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BIGGER ISN'T ALWAYS MEMORIZING: EARLY STOPPING OVERPARAMETERIZED DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion probabilistic models have become a cornerstone of modern generative AI, yet the mechanisms underlying their generalization remain poorly understood. In fact, if these models were perfectly minimizing their training loss, they would just generate data belonging to their training set, i.e., memorize, as empirically found in the overparameterized regime. We revisit this view by showing that, in highly overparameterized diffusion models, generalization in natural data domains is progressively achieved during training *before* the onset of memorization. Our results, ranging from image to language diffusion models, systematically support the empirical law that memorization time is proportional to the dataset size. Generalization vs. memorization is then best understood as a competition between time scales. We show that this phenomenology is recovered in diffusion models learning a simple probabilistic context-free grammar with random rules, where generalization corresponds to the hierarchical acquisition of deeper grammar rules as training time grows, and the generalization cost of early stopping can be characterized. We summarize these results in a phase diagram. Overall, our results support that a principled early-stopping criterion – scaling with dataset size – can effectively optimize generalization while avoiding memorization, with direct implications for hyperparameter transfer and privacy-sensitive applications.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have recently emerged as a transformative paradigm in generative AI, enabling the synthesis of high-quality data across a wide range of modalities – images, videos, text, and complex 3D structures such as molecular conformations and protein sequences. Their strength lies in their scalability in generating diverse, high-fidelity samples by reversing a progressive noise addition process, making them both versatile and robust across domains. At the heart of this process is the estimation of a *score function* (Song & Ermon, 2019; Song et al., 2020): a noise-dependent vector field that guides denoising by pointing in the direction of increasing data likelihood. Since this function is learned from the empirical training distribution, minimizing the training loss optimally leads the model to reproduce the training data itself – a phenomenon known as *memorization* (Carlini et al., 2023; Somepalli et al., 2022). This phenomenon is observed in practical settings and raises significant privacy and copyright concerns, as models trained on sensitive or proprietary data may inadvertently regenerate such content, exposing private information or violating intellectual property rights (Wu et al., 2022; Matsumoto et al., 2023; Hu & Pang, 2023). In contrast, *generalization* corresponds to the model producing novel samples that are consistent with, but not identical to, the training data, thereby approximating the broader target distribution.

Despite the empirical success of diffusion models, the mechanisms underlying their ability to generalize remain poorly understood. A prevailing view – rooted in classical learning theory – is that generalization depends on *underparameterization* (Yoon et al., 2023; Zhang et al., 2023; Kadkhodaei et al., 2023): only models that lack the capacity to memorize their training data are expected to generalize. In this work, we go beyond this view by demonstrating that even heavily overparameterized diffusion models exhibit generalization during training *before* they start memorizing the training data. We systematically investigate this phenomenon, showing that generalization and memorization are not mutually exclusive but unfold as distinct temporal phases of training. Our main contributions are as follows:

- We empirically demonstrate the transition from generalization to memorization during training in a range of overparametrized diffusion models – including Improved DDPM (Nichol & Dhariwal, 2021), Stable Diffusion (Rombach et al., 2022), MD4 (Shi et al., 2024), and D3PM (Austin et al., 2021) – on both images and text data. We measure memorization and generalization metrics and systematically vary the training set size, showing that generalization improves gradually, before the onset of memorization.
- In all settings, we find the empirical law that the onset of memorization requires a number of training steps that is proportional to the training set size. In the appendix, we provide a theoretical scaling argument for kernel methods – including kernels corresponding to infinite-width neural networks – showing that a generic empirical score at fixed, low diffusion noise is learned with a training time proportional to the training set size.
- We study a discrete diffusion model trained to learn a simple *probabilistic context-free grammar*, where the number of training steps or samples required to generalize is known to be polynomial in the sequence length (Favero et al., 2025). We show that for moderate training set sizes, the diffusion model only learns the lowest levels of the hierarchical grammar rules – corresponding to partial generalization – before starting to memorize. For larger training set sizes, the onset of memorization appears after perfect total generalization is achieved. These results lead to a phase diagram for memorization and generalization as a function of sample complexity and time.

On the theoretical level, these findings call for a revision of the view of generalization in diffusion models as being solely determined by model capacity, showing that generalization arises *dynamically during training* in overparameterized diffusion models. On the practical level, our results suggest that early stopping and dataset-size-aware training protocols may be optimal strategies for preserving generalization and avoiding memorization as the size of diffusion models is scaled up. In fact, meeting privacy and copyright requirements with principled procedures is of utmost importance for the deployment of generative AI, in contrast to heuristic procedures that lack quantitative grounding (Dockhorn et al., 2022; Vyas et al., 2023; Chen et al., 2024).

2 DIFFUSION MODELS AND THE SCORE FUNCTION

Denoising diffusion models are generative models that sample from a data distribution $q(x_0)$ by reversing a noise addition process (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019; Song et al., 2020). The *forward process* generates a sequence of increasingly noised data $\{x_t\}_{1 \leq t \leq T}$, with distribution $q(x_1, \dots, x_T | x_0) = \prod_{t=1}^T q(x_t | x_{t-1})$, where t indicate the time step in a sequence $[0, \dots, T]$. At the final time T , x_T corresponds to pure noise. The *backward process* reverts the forward one by gradually removing noise and is obtained by learning the backward transition kernels $p_\theta(x_{t-1} | x_t)$ using a neural network with parameters θ . Learning these backward kernels is equivalent to learning the *score function*, which is proportional to the conditional expectation $\mathbb{E}_{q(x_0 | x_t)} [x_0]$. To learn the score function, the training is performed by minimizing a variational bound on the negative log likelihood of the data:

$$\mathbb{E}_{q(x_0)} [-\log p_\theta(x_0)] \leq \mathbb{E}_{q(x_0)} \left[-\log p_\theta(x_T) - \sum_{t=1}^T \log \frac{p_\theta(x_{t-1} | x_t)}{q(x_t | x_{t-1})} \right] := \mathcal{L}. \quad (1)$$

The loss \mathcal{L} to learn the score function requires an integral over the target data distribution $q(x_0)$. In practice, this integral is estimated with a Monte Carlo sampling from P training examples $\{x_0^{(i)}\}_{i \in [P]}$, associated with the empirical distribution $\hat{q}(x_0) = P^{-1} \sum_{i=1}^P \delta(x_0 - x_0^{(i)})$, where δ are Dirac deltas. Therefore, perfectly minimizing the empirical loss corresponds to learning the empirical score function, which generates $\hat{q}(x_0)$. As a result, diffusion models would only generate data of the training set, corresponding to *memorization*. Their generalization abilities, therefore, derive from not perfectly minimizing the empirical loss.

Diffusion processes For continuous data, like images, the forward process corresponds to time-discretized Gaussian diffusion with $q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbb{I})$, where \mathcal{N} represents the normal distribution and the sequence $\{\beta_t\}_{1 \leq t \leq T}$ is the variance schedule. For discrete data, several noising processes have been considered (Hoogeboom et al., 2021; Austin et al., 2021). The most popular for text is *masked diffusion with an absorbing state*, which progressively randomly masks tokens in the forward process. Another common choice is uniform diffusion, where in the forward process, tokens can flip to any other symbol with some probability depending on the noise level.

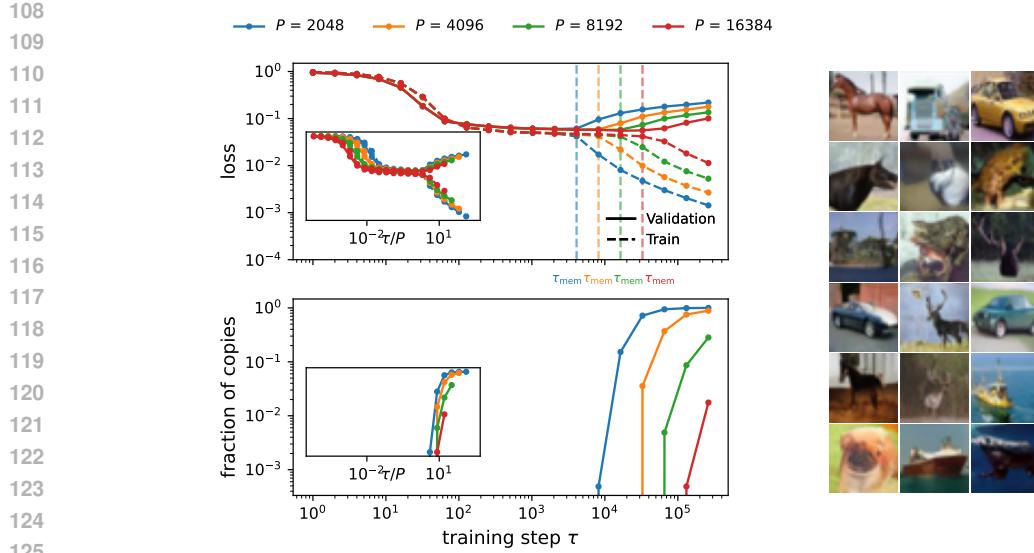


Figure 1: **Memorization dynamics in vision diffusion models.** *Left:* Train loss, validation loss, and fraction of copied images as a function of training steps τ for iDDPM models trained on CIFAR10 with varying training set sizes P . Both losses decrease initially, indicating generalization, but diverge at the onset of memorization (τ_{mem}), where the models start copying training data. Larger training sets delay τ_{mem} , scaling approximately linearly with P (insets). *Right:* Samples generated with early stopping at τ_{mem} with a model trained on 16,384 images, achieving generalization and low FID. Further examples are presented in Appendix D

3 NUMERICAL EXPERIMENTS

3.1 VISION DIFFUSION MODELS

Generalization before memorization We assess the generalization and memorization behaviors of vision diffusion models by considering Improved Denoising Diffusion Probabilistic Models (iDDPMs) (Nichol & Dhariwal, 2021) with a U-Net architecture (Ronneberger et al., 2015; Salimans et al., 2017), including attention blocks (Vaswani et al., 2017). Each model, comprising approximately 0.5B parameters, is trained on four distinct subsets of the CIFAR-10 dataset (Krishnan et al., 2017), with training set sizes $P \in \{2048, 4096, 8192, 16384\}$. The models are trained for a total of 262,144 training steps, with full training details in Appendix B.

We track model performance using the diffusion losses on the train set and a validation set of 1,024 images. At regular checkpoints, we generate 32,768 images using each model, and evaluate memorization by calculating the fraction of generated images that are near-exact replicas of training samples. Specifically, following Carlini et al. (2023); Yoon et al. (2023), for a generated image x , we identify the two closest images x' and x'' in Euclidean distance from the training set, and classify x as a copy if $\|x - x'\|_2 / \|x - x''\|_2 < 1/3$. This threshold aligns with human perception of visual similarity (Yoon et al., 2023).

Results and analysis Figure 1 (left panel) presents the results of this experiment. Our key findings are as follows:

- 1. Generalization before memorization:** Initially, both train and validation loss decrease, indicating that the model is generalizing, i.e., approaching the population score. However, at some critical time τ_{mem} , the two losses bifurcate, signalling the onset of memorization. After this point, the number of copies among generated images steadily increases. By the end of training, all models exhibit some degree of memorization, with copy rates ranging from 1% for the largest training set to 100% for the smaller ones.
- 2. Memorization is delayed by larger training sets:** The onset of memorization τ_{mem} scales approximatively linearly with the training set size P , as indicated in the insets of Figure 1.

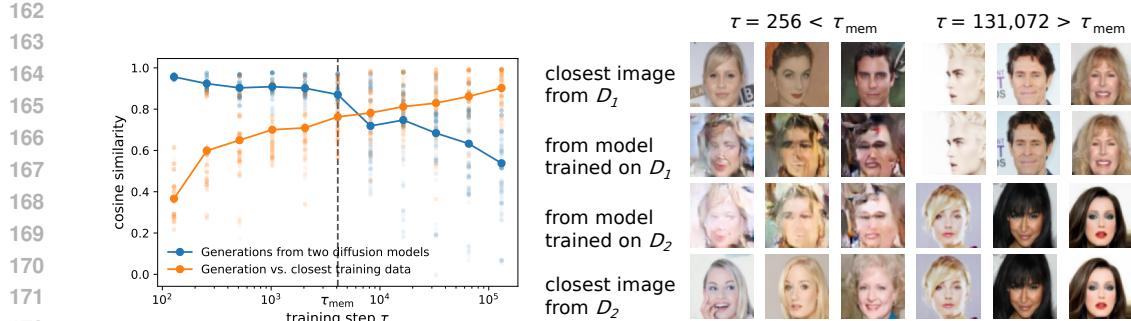


Figure 2: **Progressive generalization in vision diffusion models.** Cosine similarity between images generated by two diffusion models trained on disjoint subsets of CelebA of size $P = 2,048$, as a function of training steps τ . Before memorization ($\tau < \tau_{\text{mem}}$), the models generate nearly identical images, indicating they are learning the same score function, and thus generalizing. After τ_{mem} , the models diverge, generating images increasingly similar to their own training sets.

These observations suggest that early stopping can effectively prevent the model from entering the memorization phase. As a concrete example, the right panel of Figure 1 displays images generated by a diffusion model trained on 16,384 images, with early stopping applied. The quality and diversity of these images are quantified using the Fréchet Inception Distance (FID), calculated using Inception v3. The model achieves an FID score of 5.4, indicating – despite being strongly overparameterized – robust generalization, while the rate of copies is 0%. In Appendix C, we show the same overfitting phenomenon in Stable Diffusion (Rombach et al., 2022) – a text-to-image latent diffusion model – fine-tuned on a subset of the LAION dataset (Schuhmann et al., 2022).

Progressive generalization before memorization We extend our analysis by conducting a second experiment inspired by Kadkhodaie et al. (2023). Specifically, we train two models on two non-overlapping subsets \mathcal{D}_1 and \mathcal{D}_2 of 2,048 images of CelebA (Liu et al., 2018), a dataset with faces of celebrities, each using an iDDPM (details in Appendix B). Our setup goes beyond prior work by dynamically tracking the evolution of the generated images throughout training, rather than statically only at convergence. This approach provides a detailed view of how models first approach the population score and then diverge after entering the memorization phase.

Results and analysis We generate samples from both models at multiple checkpoints during training, initializing the generations from the same Gaussian random noise and fixing the stochastic part of the backward trajectories. Remarkably, initially, the images generated by the two models are nearly identical, reflecting that the two models are learning the same score function, even though they are trained on disjoint data subsets. However, at some time τ_{mem} , the models begin to diverge. This divergence coincides with the onset of memorization, where the models start generating images increasingly similar to the ones contained in their respective training sets.

We quantitatively assess this phenomenon using cosine similarity between whitened images generated by the two models and their nearest training images. As shown in Figure 2:

1. **Before memorization** ($\tau < \tau_{\text{mem}}$), the two models generate nearly identical images, indicating that they are dynamically learning the same underlying distribution.
2. **During memorization** ($\tau > \tau_{\text{mem}}$), the similarity between the models’ generated images decreases monotonically, while the similarity between each model’s generated images and their own training set increases. This reflects the transition from generalization to memorization.

Our findings extend those of Kadkhodaie et al. by revealing that the transition from generalization to memorization is not only a matter of model capacity and final convergence but is dynamically observable throughout training. In practice, this further supports the view that early stopping can prevent the memorization phase and maintain generalization.

216 3.2 LANGUAGE DIFFUSION MODELS
217

218 We further extend our analysis of generalization and memorization to language data, using MD4,
219 a masked diffusion model specifically designed for text (Shi et al., 2024). Our experiments are
220 conducted on the text8 dataset, a standard benchmark for language modeling based on Wikipedia,
221 with character-level tokenization. To the best of our knowledge, this is the first demonstration of
222 memorization in the language diffusion setting. We train MD4 from scratch using a standard GPT-
223 like transformer architecture with approximately 165M parameters. Following the masked diffusion
224 approach, the model is trained to predict masked tokens in noisy text sequences, effectively learning
225 a score function over text data. Full details are presented in Appendix B.

226 We use training set sizes $P \in \{64, 128, 256, 512, 1024\}$ ranging from
227 16,384 to 262,144 tokens. We track model
228 performance using the validation loss on
229 19,531 sentences, which provides a lower
230 bound to the negative log likelihood, and
231 monitor memorization by generating 1,024
232 text samples at regular training checkpoints.
233 Memorization is quantified by calculating the
234 Hamming distance between each generated
235 text sample and the closest training set text,
236 averaged over the generations and divided by
237 the sequence length. This metric captures the
238 fraction of exact token matches between the
239 generated and training text.

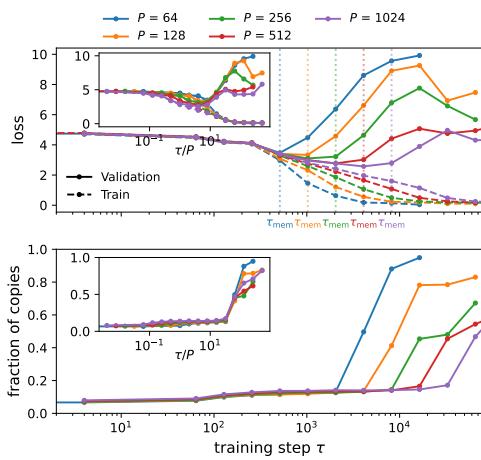
240 **Results and analysis** Figure 3 presents
241 the results of this experiment. As with
242 the vision diffusion models, MD4 initially
243 generalizes, improving the log-likelihood
244 on the validation corpus. However, after
245 τ_{mem} the model begins to produce exact or
246 near-exact copies of training text, signaling
247 the onset of memorization. Notably, τ_{mem}
248 scales linearly with the training set size P ,
249 consistent with our previous findings. The
250 transition to memorization is also marked
251 by a sudden increase in the validation loss,
252 indicating that early stopping can effectively prevent
253 memorization also in this setting.

254 3.3 SUMMARY OF RESULTS
255

256 We have shown empirically that as they train, diffusion models generate higher and higher quality
257 data, which are novel. This is true up to an early stopping time τ_{mem} where memorization starts,
258 which we found to follow a remarkably universal empirical law:

$$\tau_{\text{mem}} \propto P. \quad (2)$$

259 **Theoretical support to the linear dependence** In Appendix G, we provide a theoretical basis
260 for this scaling within the analytically tractable framework of kernel regression. We analyze the
261 gradient flow dynamics for fitting the empirical score of P training points in the low noise regime
262 with variance σ^2 , where the Gaussian modes centered at the training points are well separated.
263 Using an ansatz for the score modes, we show that the time to fit the empirical score scales as
264 $\tau_{\text{mem}} \propto P/\sigma^\nu$. The exponent ν is determined by the kernel’s expansion near the origin. This result
265 generalizes to any isotropic kernel the contemporaneous findings of Bonnaire et al. (2025), who
266 studied random features in the proportional regime (width proportional to input dimension) using a
267 Gaussian equivalence assumption. In particular, our results show that random features and neural
268 networks in the Neural Tangent Kernel (NTK) regime (Jacot et al., 2018) have different behaviors.



269 **Figure 3: Memorization dynamics in language**
270 **diffusion models.** Train loss, validation loss, and
271 fraction of copied text as a function of training steps
272 for GPT-based MD4 models trained on text8 with
273 character-level tokenization and varying training set
274 sizes P . Both losses initially decrease, indicating
275 generalization, but diverge at the onset of mem-
276 orization (τ_{mem}), where the models start copy-
277 ing training text. τ_{mem} grows linearly with P (insets).

278 indicating that early stopping can effectively prevent
279 memorization also in this setting.

We empirically validate these predictions with a one-hidden-layer network with lazy (NTK) initialization, trained by gradient descent to fit the empirical score of Gaussian random points. The observed τ_{mem} precisely follows the predicted scaling. Interestingly, the same scaling holds under feature learning initialization, suggesting our theory captures a more general phenomenon beyond its fixed-kernel assumption. Moreover, we show that τ_{mem} is insensitive to batch size – from small-batch SGD to full-batch – indicating that memorization time is governed by the number of optimization steps required to fit the empirical score, not by how often each example is revisited.

We will now study a controlled model of synthetic data that captures the phenomenology observed for natural data. Most importantly, it will allow us to quantify in detail the inaccuracy of generations of diffusion models with limited training, responsible for the inconsistent images in Figure 2.

4 GENERALIZATION VS. MEMORIZATION WITH A SIMPLE GRAMMAR

In this section, we consider diffusion models trained to generate sentences respecting the rules of a simple formal grammar.

4.1 PROBABILISTIC GRAPHICAL MODELS

In theoretical linguistics, *Probabilistic Context-Free Grammars* (PCFG) have been proposed as a framework to describe the hierarchical structure of the syntax of several languages (Chomsky, 1956; Rozenberg & Salomaa, 1997; Pullum & Gazdar, 1982; Joshi, 1985; Manning & Schütze, 1999). Moreover, they have been proposed for describing semantic aspects of images under the name of *Pattern Theory* (Grenander, 1996; Jin & Geman, 2006; Siskind et al., 2007). PCFGs consist of a vocabulary of latent (*nonterminal*) symbols and a vocabulary of visible (*terminal*) symbols, together with probabilistic *production rules* establishing how one latent symbol generates tuples of symbols.

The Random Hierarchy Model (RHM) The RHM (Cagnetta et al., 2024) is a simple PCFG introduced as a theoretical toy model describing hierarchy and compositionality in data. With respect to generic PCFGs, it is built with some simplifying assumptions:

- Symbols are organized in a regular-tree topology of depth L and branching factor s . The bottom layer, indexed as $\ell = 0$, corresponds to the leaves of the tree, which are the visible (*terminal*) symbols. The upper part of the tree, with layers $\ell = 1, \dots, L$, corresponds to latent (*nonterminal*) symbols in the data structure.
- Nonterminal symbols are taken from L finite vocabularies $(\mathcal{V}_\ell)_{\ell=1, \dots, L}$ of size v for each layer $\ell = 1, \dots, L$. Terminal symbols belong to the vocabulary $\mathcal{V} \equiv \mathcal{V}_0$ of size v .
- The production rules transform one symbol in a node at level $\ell + 1$ into a string of s symbols in its children nodes at level ℓ . For each non-terminal symbol, there are m rules with equal probability, which are *unambiguous*, i.e., two distinct symbols cannot generate the same s -string. Rules are sampled randomly without replacement and frozen for a given instance of the RHM. The m strings generated by the same latent symbol are referred to as *synonyms*.

The fixed tree topology ensures that visible data at the leaves are strings of fixed length $d = s^L$. In analogy with language modeling, we call visible symbols *tokens*.

The number of possible data generated by this model is $vm^{\frac{d-1}{s-1}}$, which is exponential in the data dimension. Because of the random production rules, the tokens of the RHM data have non-trivial correlations reflecting the latent hierarchical structure (Cagnetta & Wyart, 2024).

4.2 DIFFUSION ON THE RANDOM HIERARCHY MODEL

The exact score function of the RHM Because of its correlations, the probability distribution of the RHM data and its corresponding score function are highly non-trivial. Nevertheless, if the production rules are known, thanks to the latent tree structure, the score function for any noise level can be computed exactly using the Belief Propagation (BP) algorithm. (Mezard & Montanari, 2009).

Sample complexity Favero et al. (2025) studied the sample complexity for diffusion models based on deep neural networks trained on finite RHM data. Their main findings are the following.

- 324 • The sample complexity to learn to generate valid data depends on the parameters of the model
325 as $P^* \sim vm^{L+1}$, which is polynomial in the dimension, i.e., $P^* \sim vmd^{\log m / \log s}$. This scale
326 can be theoretically predicted by comparing the size of the correlations between tokens and latent
327 features, used in deep architectures for denoising, with their sampling noise.
- 328 • For $P < P^*$, there are regimes of partial generalization where the generated data are consistent
329 with the rules up to layer ℓ . The sample complexity to learn the rules at layer ℓ scales as $P_\ell^* \sim$
330 $vm^{\ell+1}$.
- 331 • When $P > P^*$, the number of training steps τ_ℓ^* required to learn the rules at layer ℓ is proportional
332 to P_ℓ^* , therefore having the same polynomial scaling with the dimension. Complete generalization
333 is therefore achieved with $\tau^* \propto P^* = P_L^*$ number of training steps.

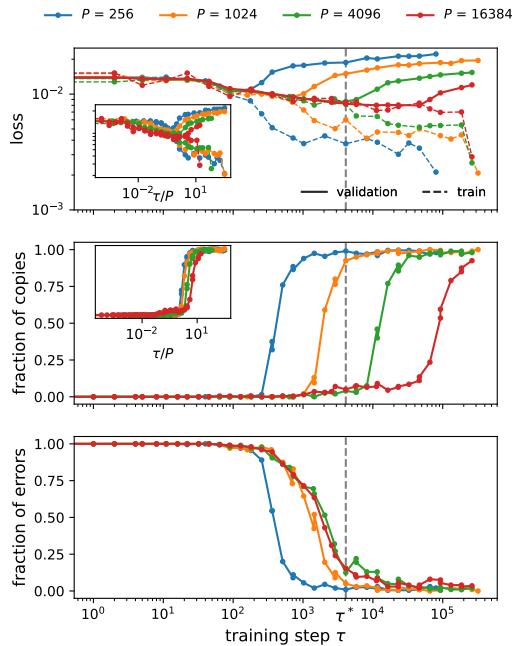
335 Notice that the sample complexity depends on the underlying distribution, e.g., the parameters of
336 the grammar, and not on the specific number of available training samples.

337 4.3 GENERALIZATION VS. MEMORIZATION

339 We consider an instantiation of the RHM with
340 a given set of parameters (depth L , branching
341 factor s , vocabulary size v , and number of
342 synonyms m). We generate P distinct strings
343 from this grammar, which constitute the training
344 set. Each token is one-hot encoded, and
345 we train a *Discrete Denoising Diffusion Probabilistic Model* (D3PM) (Austin et al., 2021)
346 with uniform transition probabilities (Hoogendoorn et al., 2021). The architecture of the
347 diffusion model is made of a convolutional U-
348 Net (Ronneberger et al., 2015) with $2L$ layers
349 in total – L in the encoder and L in the de-
350 coder. We consider highly overparameterized
351 networks with 8,192 channels per layer, with
352 a total number of parameters varying between
353 0.4B for $L = 3$ and 0.7B for $L = 5$. We use the
354 maximal-update (μ P) initialization to ensure
355 feature learning (Yang & Hu, 2020). We train
356 the neural network using Adam to optimize
357 the training loss of discrete diffusion (Austin
358 et al., 2021), derived from a variational bound
359 on the negative log-likelihood (Sohl-Dickstein
360 et al., 2015). Further experimental details are
361 reported in Appendix B.

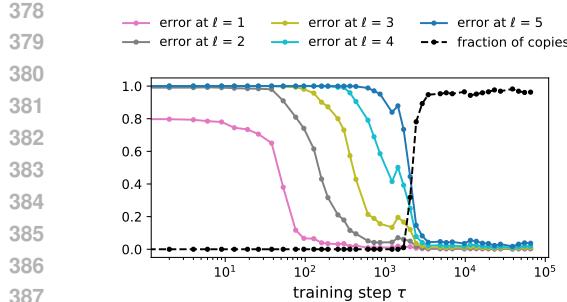
363 We study the evolution of the models during
364 training. For checkpoints at different training
365 times, we track the training loss and the vali-
366 dation loss on 2,048 held-out data. In addi-
367 tion, we generate 1,024 data points with the dif-
368 fusion model and measure their Hamming dis-
369 tance with the training data, determining if they
370 are copies or not. We also check if the generated
371 data are compatible with all the rules of the RHM,
372 determining if they are valid strings of the grammar or not.

373 **Results and analysis** Figure 4 shows the evolution of a diffusion model during training with RHM
374 parameters $v = 16$, $m = 4$, $L = 3$, $s = 2$. For these parameters, the sample complexity to learn
375 all the rules of the grammar is $P^* \approx 4,096$. Varying the training set size P , we observe that the
376 validation and training losses start decreasing at the same time and follow the same behavior until
377 separating later in training, at a time depending on P . Comparing these losses with the fraction of
378 copies between the generated data and the training ones, we observe that the increase of the vali-
379 dation loss corresponds to the onset of memorization. As observed for real data in section 3, we find

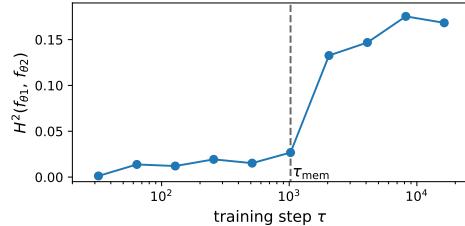


380 **Figure 4: Memorization vs. generalization on**
381 **the RHM.** For training set size $P = 256$, the dif-
382 fusion model generates valid data only when it is
383 memorizing. For $P = 16,384$, instead, the model
384 generalizes, approximately at τ^* , before starting
385 to memorize. The memorization time scales lin-
386 early in P (insets). Data for RHM parameters
387 $v = 16$, $m = 4$, $L = 3$, $s = 2$.

388 7



(a) Layer-wise learning in the RHM before memorization.



(b) Distance between the outputs of two diffusion models trained on disjoint training sets.

Figure 5: **Diffusion models achieve partial generalization in the RHM before memorizing.** (a) The diffusion model learns progressively deeper RHM rules during training. However, the rules at the deepest level $L = 5$ are never learned, and the corresponding error decreases only when memorization occurs, since $P = 1,024$ is smaller than the sample complexity $P_L^* \sim 10^4$. (b) Two diffusion models trained on disjoint training sets learn the same score function before the onset of memorization at τ_{mem} . Data for RHM parameters $v = 16, m = 3, L = 5, s = 2$.

empirically that the onset of memorization requires a number of training steps τ_{mem} proportional to P (insets of Figure 4). The fraction of errors measures how many of the generated data are not compatible with the RHM rules. We observe that for $P < 4,096$, the fraction of errors decreases only in correspondence with memorization: the generated data are valid according to the grammar rules, but they are copies of the training set. For $P > 4,096$, instead, the fraction of errors decreases *before* the onset of memorization: the diffusion model is generating valid data that do not belong to the training set, and it is therefore generalizing. In Appendix F, we show that the generated data respect the correct statistics of the RHM rules, therefore learning the true data distribution. As a reference, Figure 4 reports the time $\tau^* = P^*$ as a vertical dashed line. We observe that the generalizing models ($P = 4,096$ and $P = 16,384$) achieve a fraction of errors $< 15\%$ for $\tau > \tau^*$. Therefore, these models present a dynamical phase $\tau^* < \tau < \tau_{mem}$ where they achieve nearly perfect generalization before starting to memorize. This phase becomes longer with increasing P .

4.4 PARTIAL GENERALIZATION

For $P < P^*$, the diffusion model does not have enough training data to learn the deeper levels of the rules. However, it can still learn the lower levels of the rules up to layer $\tilde{\ell}$, with $P > P_{\tilde{\ell}}^*$, as the sample complexity P_{ℓ}^* increases with ℓ . In this case, the model achieves *partial generalization*, corresponding to learning to generate data with some local coherence but lacking a global one, consistent with observations of Figure 2.

In Figure 5(a), a diffusion model is trained with $P = 1,024$ training points of an RHM with depth $L = 5$, while the sample complexity to learn all the rules is $P^* = P_L^* \simeq 10^4$. During training, we generate data with the diffusion model and measure if they are compatible with the RHM rules at layer ℓ , measuring the corresponding fraction of errors. The figure shows that the errors at the layers $\ell \leq 3$ decrease at training times depending on ℓ , in accordance with $\tau_{\ell} \propto P_{\ell}^*$ (Favero et al., 2025). However, for $\ell > 3$, the fractions of errors reach small values only at the onset of memorization τ_{mem} , when the fraction of copies of the training set goes up. This behavior implies that the model never learns the rules at the deeper levels $\ell = 4, 5$ since the number of training data is smaller than the sample complexity, and generates data with global consistency only when it starts memorizing.

Even when partially generalizing, diffusion models learn the same score function Even without achieving perfect generalization, diffusion models gradually improve their generalization during training – before memorizing – by capturing some structure of the underlying data distribution. In the RHM case, this corresponds to the lowest levels of the grammar. As a consequence, the score function that is learned during training *before memorization* is the same *independently* of the sampling of the training set. In Figure 5(b), we train two diffusion models in the same setting

432 as Figure 5(a) but with two disjoint training sets. We measure the difference in their outputs –
 433 i.e., the components of the learned score – during training by computing their Hellinger distance
 434 averaged over the tokens and the sampling of the diffusion trajectories from 1,024 test data. We
 435 observe that the distance between the output functions of the two models, i.e., the learned scores –
 436 which determine the generative process – remains stable during training and only jumps to higher
 437 values when the models start memorizing their respective training sets. Therefore, the two diffusion
 438 models learn very similar score functions when their generalization is gradually improving, before
 439 they overfit their respective empirical scores.

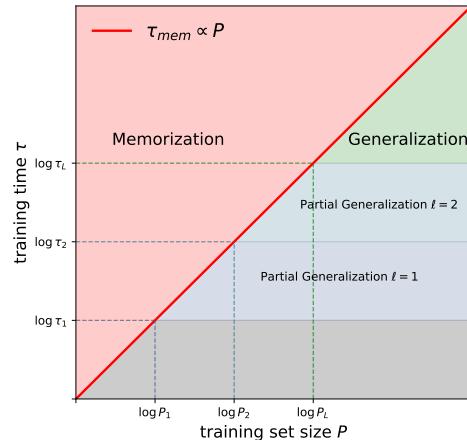
440 5 RELATED WORK

441 **Memorization in diffusion models** Several works have documented the tendency of diffusion
 442 models to memorize the training data (Carlini et al., 2023; Somepalli et al., 2022; 2023; Wang et al.,
 443 2024). Dockhorn et al. (2022) proposes a mitigation strategy based on differentially private stochastic
 444 gradient descent, while Chen et al. (2024) introduces an anti-memorization guidance. Yoon et al.
 445 (2023); Kadkhodaie et al. (2023); Gu et al. (2025) interpret memorization as an overfitting
 446 phenomenon driven by the large capacity of overparameterized neural networks. Kadkhodaie et al.
 447 (2023) shows that underparameterized models trained on disjoint training sets learn the same score
 448 function, therefore generalizing by sampling the same target distribution; in contrast, overparameterized
 449 models memorize. Li et al. (2024); Wang & Vastola (2024) find that during their initial training
 450 phases, overparameterized diffusion models have an inductive bias towards learning a Gaussian ap-
 451 proximation of data. This process achieves a primitive form of partial generalization by capturing
 452 some data’s low-dimensional structure before the model begins to fully memorize the training points.
 453 Our results extend this viewpoint to later training stages and higher-order data statistics. Addition-
 454 ally, we quantify the timescale at which models transition from generalizing to memorizing.
 455

456 **Overfitting in supervised learning vs. diffusion**
 457 **models** Although the dynamics of first gener-
 458 alizing and then overfitting to the training data is
 459 observed also in some supervised learning settings
 460 (Advani et al., 2020; Nakkiran et al., 2021) –
 461 where recent theoretical progress has been made
 462 (Montanari & Urbani, 2025) – these problems have
 463 fundamental differences with memorization in dif-
 464 fusion models, i.e., learning the empirical score. For
 465 instance, in a typical regression task, a model fits a
 466 target function whose observations are assumed to
 467 be corrupted by external, unstructured noise. In the
 468 diffusion context, instead, the empirical score at low
 469 noise levels significantly differs from the population
 470 one: the corresponding “noise”, i.e., the difference
 471 between the two functions, is inherent to the training
 472 set, structured, and defined over the entire domain of
 473 the inputs x_t . An overparameterized model converg-
 474 ing to the empirical target, therefore, memorizes the
 475 training set and cannot generalize. This contrasts
 476 with noisy regression, where overparameterization
 477 can surprisingly be beneficial, leading to *double*
 478 *descent* (Spigler et al., 2019; Belkin et al., 2019)
 479 and *benign overfitting* (Bartlett et al., 2020).

480 6 CONCLUSION

481 We have argued that the learning dynamics in diffusion models is best understood as a competition
 482 between time scales, as summarized in Figure 6. A larger training set implies a larger memorization
 483 time, thus opening a larger time window to generate more coherent data. These results open new
 484 avenues for fine control of copyright issues, using early stopping to avoid memorization and building
 485 backward flows that are nearly independent of the training set, as we demonstrated.



486 **Figure 6: Phase diagram of generaliza-
 487 tion vs. memorization** indicating different
 488 regimes as a function of training time τ and
 489 sample complexity P : partial generalization,
 490 (full) generalization and memorization. Note
 491 that in the RHM, learning proceeds through
 492 well-defined steps, while it is smoother for
 493 natural data.

486 REFERENCES
487

488 Beatrice Achilli, Enrico Ventura, Gianluigi Silvestri, Bao Pham, Gabriel Raya, Dmitry Krotov, Carlo
489 Lucibello, and Luca Ambrogioni. Losing dimensions: Geometric memorization in generative
490 diffusion. *arXiv preprint arXiv:2410.08727*, 2024.

491 Beatrice Achilli, Luca Ambrogioni, Carlo Lucibello, Marc Mézard, and Enrico Ventura. Memo-
492 rization and generalization in generative diffusion under the manifold hypothesis. *arXiv preprint*
493 *arXiv:2502.09578*, 2025.

494

495 Madhu S. Advani, Andrew M. Saxe, and Haim Sompolinsky. High-dimensional dynamics of gen-
496 eralization error in neural networks. *Neural Networks*, September 2020. ISSN 0893-6080. doi:
497 10.1016/j.neunet.2020.08.022.

498 Luca Ambrogioni. The statistical thermodynamics of generative diffusion models. *arXiv preprint*
499 *arXiv:2310.17467*, 2023.

500

501 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
502 denoising diffusion models in discrete state-spaces. *Advances in Neural Information Processing*
503 *Systems*, 34:17981–17993, 2021.

504 Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
505 regression. *Proceedings of the National Academy of Sciences*, 117(48):30063–30070, 2020.

506

507 Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
508 learning practice and the classical bias–variance trade-off. *Proceedings of the National Academy*
509 *of Sciences*, 116(32):15849–15854, 2019.

510

511 Giulio Biroli and Marc Mézard. Generative diffusion in very large dimensions. *arXiv preprint*
512 *arXiv:2306.03518*, 2023.

513

514 Giulio Biroli, Tony Bonnaire, Valentin de Bortoli, and Marc Mézard. Dynamical regimes of diffu-
515 sion models, 2024.

516

517 Adam Block, Youssef Mroueh, and Alexander Rakhlin. Generative modeling with denoising auto-
518 encoders and langevin sampling. *arXiv preprint arXiv:2002.00107*, 2020.

519

520 Tony Bonnaire, Raphaël Urfin, Giulio Biroli, and Marc Mézard. Why diffusion models don’t mem-
521 orize: The role of implicit dynamical regularization in training. *arXiv preprint arXiv:2505.17638*,
522 2025.

523

524 Francesco Cagnetta and Matthieu Wyart. Towards a theory of how the structure of language is
525 acquired by deep neural networks. In *The Thirty-eighth Annual Conference on Neural Information*
526 *Processing Systems*, 2024.

527

528 Francesco Cagnetta, Leonardo Petrini, Umberto M. Tomasini, Alessandro Favero, and Matthieu
529 Wyart. How deep neural networks learn compositional data: The random hierarchy model. *Phys.*
530 *Rev. X*, 14:031001, Jul 2024. doi: 10.1103/PhysRevX.14.031001.

531

532 Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja
533 Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In *32nd*
534 *USENIX Security Symposium (USENIX Security 23)*, pp. 5253–5270, 2023.

535

536 Chen Chen, Daochang Liu, and Chang Xu. Towards memorization-free diffusion models. In *Pro-
537 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8425–
538 8434, 2024.

539 Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
In *Advances in Neural Information Processing Systems*, pp. 2937–2947, 2019.

Noam Chomsky. Three models for the description of language. *IRE Transactions on information*
theory, 2(3):113–124, 1956.

540 Hugo Cui, Florent Krzakala, Eric Vanden-Eijnden, and Lenka Zdeborová. Analysis of learning a
 541 flow-based generative model from limited sample complexity. *arXiv preprint arXiv:2310.03575*,
 542 2023.

543 Tim Dockhorn, Tianshi Cao, Arash Vahdat, and Karsten Kreis. Differentially private diffusion
 544 models. *arXiv preprint arXiv:2210.09929*, 2022.

545 Alessandro Favero, Antonio Sclocchi, Francesco Cagnetta, Pascal Frossard, and Matthieu Wyart.
 546 How compositional generalization and creativity improve as diffusion models are trained. *arXiv
 547 preprint arXiv:2502.12089*, 2025.

548 Jérôme Garnier-Brun, Marc Mézard, Emanuele Moscato, and Luca Saglietti. How transformers
 549 learn structured data: insights from hierarchical filtering. *arXiv preprint arXiv:2408.15138*, 2024.

550 Anand Jerry George, Rodrigo Veiga, and Nicolas Macris. Denoising score matching with ran-
 551 dom features: Insights on diffusion models from precise learning curves. *arXiv preprint
 552 arXiv:2502.00336*, 2025.

553 Ulf Grenander. *Elements of pattern theory*. JHU Press, 1996.

554 Xiangming Gu, Chao Du, Tianyu Pang, Chongxuan Li, Min Lin, and Ye Wang. On memorization
 555 in diffusion models. *Transactions on Machine Learning Research*, 2025. ISSN 2835-8856.

556 Yinbin Han, Meisam Razaviyayn, and Renyuan Xu. Neural network-based score estimation in
 557 diffusion models: Optimization and generalization. *arXiv preprint arXiv:2401.15604*, 2024.

558 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 559 neural information processing systems*, 33:6840–6851, 2020.

560 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
 561 and multinomial diffusion: Learning categorical distributions. *Advances in Neural Information
 562 Processing Systems*, 34:12454–12465, 2021.

563 Hailong Hu and Jun Pang. Membership inference of diffusion models. *arXiv preprint
 564 arXiv:2301.09956*, 2023.

565 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gener-
 566 alization in neural networks. *Advances in Neural Information Processing Systems*, 31:8580–8589,
 567 2018.

568 Ya Jin and Stuart Geman. Context and hierarchy in a probabilistic image model. In *2006 IEEE
 569 computer society conference on computer vision and pattern recognition (CVPR'06)*, volume 2,
 570 pp. 2145–2152. IEEE, 2006.

571 Aravind K. Joshi. Tree adjoining grammars: How much context-sensitivity is required to provide
 572 reasonable structural descriptions? In David R. Dowty, Lauri Karttunen, and Arnold M. Zwicky
 573 (eds.), *Natural Language Parsing: Psychological, Computational, and Theoretical Perspectives*,
 574 pp. 206–250. Cambridge Univ. Press, Cambridge, UK, 1985.

575 Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization
 576 in diffusion models arises from geometry-adaptive harmonic representations. *arXiv preprint
 577 arXiv:2310.02557*, 2023.

578 Mason Kamb and Surya Ganguli. An analytic theory of creativity in convolutional diffusion models.
 579 *arXiv preprint arXiv:2412.20292*, 2024.

580 Shankar Krishnan, Ying Xiao, and Rif A Saurous. Neumann optimizer: A practical optimization
 581 algorithm for deep neural networks. *arXiv preprint arXiv:1712.03298*, 2017.

582 Marvin Li and Sitan Chen. Critical windows: non-asymptotic theory for feature emergence in
 583 diffusion models. In *International Conference on Machine Learning*, pp. 27474–27498. PMLR,
 584 2024.

585 Puheng Li, Zhong Li, Huishuai Zhang, and Jiang Bian. On the generalization properties of diffusion
 586 models. *Advances in Neural Information Processing Systems*, 36:2097–2127, 2023.

594 Xiang Li, Yixiang Dai, and Qing Qu. Understanding generalizability of diffusion models requires
 595 rethinking the hidden gaussian structure. *Advances in neural information processing systems*, 37:
 596 57499–57538, 2024.

597 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes (celeba)
 598 dataset. *Retrieved August*, 15(2018):11, 2018.

600 Christopher D. Manning and Hinrich Schütze. *Foundations of Statistical Natural Language Pro-
 601 cessing*. MIT Press, Cambridge, MA, 1999. doi: 10.7551/mitpress/10438.001.0001.

602 Tomoya Matsumoto, Takayuki Miura, and Naoto Yanai. Membership inference attacks against
 603 diffusion models. In *2023 IEEE Security and Privacy Workshops (SPW)*, pp. 77–83. IEEE, 2023.

605 Song Mei. U-nets as belief propagation: Efficient classification, denoising, and diffusion in genera-
 606 tive hierarchical models. *arXiv preprint arXiv:2404.18444*, 2024.

607 Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
 608 layer neural networks. *Proceedings of the National Academy of Sciences*, 115(33):E7665–E7671,
 609 August 2018. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1806579115. Publisher: National
 610 Academy of Sciences Section: PNAS Plus.

611 Marc Mezard and Andrea Montanari. *Information, physics, and computation*. Oxford University
 612 Press, 2009.

614 Andrea Montanari and Pierfrancesco Urbani. Dynamical decoupling of generalization and overfit-
 615 ting in large two-layer networks. *arXiv preprint arXiv:2502.21269*, 2025.

617 Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
 618 double descent: Where bigger models and more data hurt. *Journal of Statistical Mechanics: The-
 619 ory and Experiment*, 2021(12):124003, 2021.

620 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 621 In *International Conference on Machine Learning*, pp. 8162–8171. PMLR, 2021.

622 Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distribu-
 623 tion estimators. *arXiv preprint arXiv:2303.01861*, 2023.

625 Ed Pizzi, Sreya Dutta Roy, Sugosh Nagavara Ravindra, Priya Goyal, and Matthijs Douze. A self-
 626 supervised descriptor for image copy detection. In *Proceedings of the IEEE/CVF Conference on
 627 Computer Vision and Pattern Recognition*, pp. 14532–14542, 2022.

628 Geoffrey K. Pullum and Gerald Gazdar. Natural languages and context-free languages. *Linguist.
 629 Philos.*, 4(4):471–504, 1982. doi: 10.1007/BF00360802.

631 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 632 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 633 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

635 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 636 image segmentation. In *Medical image computing and computer-assisted intervention–
 637 MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
 638 ings, part III 18*, pp. 234–241. Springer, 2015.

639 Grzegorz Rozenberg and Arto Salomaa. *Handbook of Formal Languages*. Springer, January 1997.
 640 doi: 10.1007/978-3-642-59126-6.

641 Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the
 642 pixelcnn with discretized logistic mixture likelihood and other modifications. *arXiv preprint
 643 arXiv:1701.05517*, 2017.

645 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 646 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 647 open large-scale dataset for training next generation image-text models. *Advances in neural in-
 648 formation processing systems*, 35:25278–25294, 2022.

648 Antonio Sclocchi, Alessandro Favero, Noam Itzhak Levi, and Matthieu Wyart. Probing the latent
 649 hierarchical structure of data via diffusion models. *arXiv preprint arXiv:2410.13770*, 2024a.
 650

651 Antonio Sclocchi, Alessandro Favero, and Matthieu Wyart. A phase transition in diffusion models
 652 reveals the hierarchical nature of data. *arXiv preprint arXiv:2402.16991*, 2024b.
 653

654 Kulin Shah, Sitan Chen, and Adam Klivans. Learning mixtures of gaussians using the ddpm objec-
 655 tive. *Advances in Neural Information Processing Systems*, 36:19636–19649, 2023.
 656

657 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and gener-
 658 alized masked diffusion for discrete data. *arXiv preprint arXiv:2406.04329*, 2024.
 659

660 Jeffrey Mark Siskind, J Sherman, Ilya Pollak, Mary P Harper, and Charles A Bouman. Spatial
 661 random tree grammars for modeling hierachal structure in images with regions of arbitrary shape.
 662 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(9):1504–1519, 2007.
 663

664 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 665 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 666 ing*, pp. 2256–2265. PMLR, 2015.
 667

668 G Somepalli, V Singla, M Goldblum, J Geiping, and T Goldstein. Diffusion art or digital forgery.
 669 *Investigating Data Replication in Diffusion Models*, 2022.
 670

671 Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Under-
 672 standing and mitigating copying in diffusion models. *Advances in Neural Information Processing
 673 Systems*, 36:47783–47803, 2023.
 674

675 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 676 *Advances in neural information processing systems*, 32, 2019.
 677

678 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 679 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 680 arXiv:2011.13456*, 2020.
 681

682 S. Spigler, M. Geiger, S. d’Ascoli, L. Sagun, G. Biroli, and M. Wyart. A jamming transition from
 683 under- to over-parametrization affects generalization in deep learning. *Journal of Physics A:
 684 Mathematical and Theoretical*, 52(47):474001, October 2019. ISSN 1751-8121. doi: 10.1088/
 685 1751-8121/ab4c8b. Publisher: IOP Publishing.
 686

687 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 688 Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In *Advances in Neural Infor-
 689 mation Processing Systems*, volume 30. Curran Associates, Inc., 2017.
 690

691 Nikhil Vyas, Sham M Kakade, and Boaz Barak. On provable copyright protection for generative
 692 models. In *International conference on machine learning*, pp. 35277–35299. PMLR, 2023.
 693

694 Binxu Wang and John J Vastola. The unreasonable effectiveness of gaussian score approximation
 695 for diffusion models and its applications. *arXiv preprint arXiv:2412.09726*, 2024.
 696

697 Wenhao Wang, Yifan Sun, Zongxin Yang, Zhengdong Hu, Zhentao Tan, and Yi Yang. Replication
 698 in visual diffusion models: A survey and outlook. *CoRR*, 2024.
 699

700 Yixin Wu, Ning Yu, Zheng Li, Michael Backes, and Yang Zhang. Membership inference attacks
 701 against text-to-image generation models. *arXiv preprint arXiv:2210.00968*, 2022.
 702

703 Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. *arXiv preprint
 704 arXiv:2011.14522*, 2020.
 705

706 TaeHo Yoon, Joo Young Choi, Sehyun Kwon, and Ernest K Ryu. Diffusion probabilistic models
 707 generalize when they fail to memorize. In *ICML 2023 Workshop on Structured Probabilistic
 708 Inference & Generative Modeling*, 2023.
 709

710 Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Peng Wang, Liyue Shen, and Qing Qu.
 711 The emergence of reproducibility and generalizability in diffusion models. *arXiv preprint
 712 arXiv:2310.05264*, 2023.
 713

702 A FURTHER RELATED WORK
703

704 **Theory of diffusion** Under mild assumptions on the data distribution, diffusion models achieve
705 a sample complexity scaling exponentially with data dimension (Block et al., 2020; Oko et al.,
706 2023). The sampling and memorization process has been studied for Gaussian mixtures and linear
707 manifolds using the empirical score function (Biroli et al., 2024; Ambrogioni, 2023; Achilli et al.,
708 2024; 2025; Li & Chen, 2024). Learning the empirical score function was studied in (Cui et al.,
709 2023; Shah et al., 2023; Han et al., 2024). The memorization-generalization trade-off in terms of
710 model capacity with random features was studied in George et al. (2025). Generalization bounds
711 for early-stopped random features learning simple score functions were derived in Li et al. (2023).
712 (Biroli & Mézard, 2023; Ambrogioni, 2023; Biroli et al., 2024) show for Gaussian mixtures the
713 existence of a characteristic noise level during the diffusion process where the single modes merge
714 into one. In Biroli et al. (2024), another noise scale is identified, corresponding to short diffusion
715 times, where the backward process collapses into the single training data points, associated with
716 memorization. Kamb & Ganguli (2024) studies generalization in vision diffusion models through
717 the inductive bias of translational equivariance and locality.

718 **Diffusion models for hierarchical data** For hierarchically structured data, Sclocchi et al.
719 (2024b;a) show that the reconstruction of high-level features undergoes a phase transition in the
720 diffusion process, while low-level features vary smoothly around the same noise scale. For the same
721 data model, Favero et al. (2025) shows that U-Net diffusion models learn to generate these data by
722 sequentially learning different levels of the grammatical rules, with a sample complexity polynomial
723 in data dimension. Sclocchi et al. (2024b) shows that the Bayes-optimal denoising algorithm
724 for hierarchical data corresponds to belief propagation; Mei (2024) shows that U-Net architectures
725 are able to efficiently approximate this algorithm. Moreover, Garnier-Brun et al. (2024) shows that
726 transformers can implement the same algorithm.

727 B EXPERIMENTAL DETAILS
728729 B.1 VISION DIFFUSION MODELS
730

731 **iDDPM** In our experiments, we utilize Improved Denoising Diffusion Probabilistic Models
732 (iDDPMs) for image generation on the CIFAR-10 and CelebA datasets, following the code-
733 base of Improved DDPMs (Nichol & Dhariwal, 2021): <https://github.com/openai/improved-diffusion>. Specifically, we train iDDPMs with 256 and 128 channels for CIFAR-
734 10 and CelebA, respectively. Our models are implemented using a U-Net architecture with attention
735 layers and 3 resolution blocks. We use 4,000 diffusion steps, a cosine noise schedule, a learning
736 rate of 10^{-4} , and a batch size of 128. Training is performed for 262,144 steps using a *hybrid objective*
737 (Nichol & Dhariwal, 2021) and the Adam optimizer with dropout of 0.3.

738 **Stable Diffusion** We fine-tune Stable Diffusion v2.1¹ using the codebase <https://github.com/somepago/DCR> from Somepalli et al. (2022; 2023). The model is pre-trained on LAION-
739 2B (Schuhmann et al., 2022) and consists of a latent diffusion U-Net architecture with frozen text
740 and autoencoder components. We fine-tune the U-Net for 262,144 steps on 8,192 images from the
741 LAION-10k dataset at resolution 256×256 , using a batch size of 16. We employ a constant learning
742 rate of 5×10^{-6} with 5,000 warm-up steps and use a single image-caption pair per datapoint.

743 B.2 LANGUAGE DIFFUSION MODELS
744

745 **MD4** Our experiments leverage the codebase of MD4 (Shi et al., 2024), available at <https://github.com/google-deepmind/md4>. MD4 is a masked diffusion model that progressively
746 transforms tokens into a special [MASK] token as training proceeds. Specifically, at each timestep
747 t , each non-masked token has a probability β_t of being replaced by [MASK]. The forward transition
748 process for this model can be formally described using a one-hot encoding of the $|\mathcal{V}| + 1$ states,
749 where the transition matrix is defined as:

$$Q_t = (1 - \beta_t)\mathbb{I} + \beta_t \mathbf{1}\mathbf{e}_M^\top. \quad (3)$$

¹<https://huggingface.co/stabilityai/stable-diffusion-2-1>

756 Here \mathbb{I} the identity matrix, $\mathbf{1}$ a vector of ones and \mathbf{e}_M the one-hot-encoding vector corresponding to
 757 the [MASK] symbol. The entries $[Q_t]_{ij}$ of Q_t indicate the probability of the token x_k transitioning
 758 from state i to state j , i.e., $[Q_t]_{ij} = q(x_{k,t} = j | x_{k,t-1} = i)$. At the final timestep T , all tokens are
 759 fully masked, i.e., $x_{k,T} = \text{[MASK]}$ for every $k \in [\dim(x)]$. For our experiments, we train MD4
 760 using a batch size of 64 and a context size of 256. All other hyperparameters are kept consistent
 761 with the original MD4 implementation.

762 B.3 RANDOM HIERARCHY MODEL

763 **D3PM** For our experiments on the Random Hierarchy Model, we employ convolutional U-Net-
 764 based Discrete Denoising Probabilistic Models (D3PMs) (Austin et al., 2021). These
 765 models are tasked to predict the conditional expectation $\mathbb{E}(x_0 | x_t)$, which parameterizes the reverse
 766 diffusion process. In particular, we consider a uniform diffusion process (Hoogeboom et al., 2021;
 767 Austin et al., 2021), where, at each timestep t , tokens can either stay unchanged or, with probability
 768 β_t , can transition to some other symbol in the vocabulary. One-hot encoding the $|\mathcal{V}|$ states, the
 769 forward transition matrix formally reads:

$$772 \quad Q_t = (1 - \beta_t)\mathbb{I} + \frac{\beta_t}{|\mathcal{V}|} \mathbf{1}\mathbf{1}^\top. \quad (4)$$

773 Here \mathbb{I} is the identity and $\mathbf{1}$ is a vector of all ones. At the final time T , the stationary distribution
 774 is uniform over the vocabulary. The convolutional U-Net has L resolution blocks in both the
 775 encoder and decoder parts. Each block features the following specification: filter size s , stride s ,
 776 8,192 channels per layer, GeLU non-linearity, skip connections linking encoder and decoder blocks
 777 of matching resolution to preserve multi-scale feature information. We include embedding and un-
 778 embedding layers implemented as convolutional layers with a filter size of 1. This architecture is
 779 specifically aligned with the RHM’s hierarchical structure, where the filter size and stride of s in the
 780 convolutional layers mirror the branching factor of the RHM tree. While this design provides prac-
 781 tical benefits in terms of training efficiency, it should not alter the fundamental sample complexity
 782 of the problem, as long as the network is sufficiently deep and expressive (Cagnotta et al., 2024).
 783 The networks are initialized with the maximal-update (μ P) parameterization (Yang & Hu, 2020),
 784 ensuring stable feature learning even in the large-width regime. We train with Adam with a learning
 785 rate of 0.1 and a batch size of 32. For the diffusion process, we adopt a linear schedule with 1,000
 786 noise levels.

787 B.4 HARDWARE

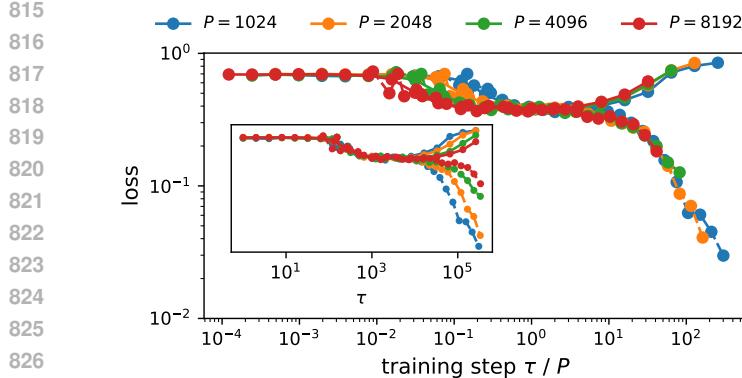
788 All experiments are run on a single NVIDIA H100 SXM5 GPU with 94GB of RAM.

793 C EXPERIMENTS ON STABLE DIFFUSION

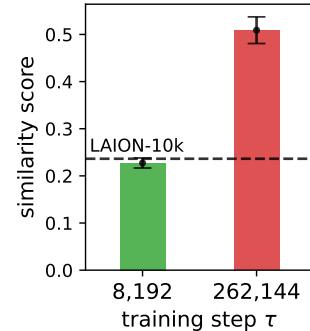
794 We consider Stable Diffusion v2.1 (Ronneberger et al., 2015), a text-to-image latent diffusion model
 795 pre-trained on the LAION-2B dataset (Schuhmann et al., 2022). We fine-tune this model for 262,144
 796 steps on 8,192 samples from the LAION-10k dataset (Somepalli et al., 2023), using a resolution of
 797 256×256 . During fine-tuning, the text encoder and encoder-decoder components are kept frozen.
 798 We use a held-out validation set of 1,024 image-text pairs to monitor the validation loss. Full training
 799 details are provided in Appendix B.

800 To quantify memorization, we follow the protocol of Somepalli et al. (2022) and compute a simi-
 801 larity score for each generated image based on the cosine similarity of SSCD (Self-Supervised De-
 802 scriptor for Image Copy Detection) (Pizzi et al., 2022) features, extracted from a ResNet-50 model.
 803 Each score is defined as the similarity between a generated image and its nearest neighbor in the
 804 training set.

805 Figure 7(a) plots the training and validation losses as a function of the training step τ . As observed
 806 in the main text, initially, both losses decrease, indicating generalization: the model output aligns
 807 increasingly with the population score. At a critical time $\tau_{\text{mem}} \propto P$, the validation loss diverges
 808 from the training loss, marking the onset of memorization. Early stopping at this point can prevent
 809 the model from entering the memorization phase.

810
811
812
813
814

(a) Generalization-memorization dynamics.

825
826
827

(b) Similarity scores.

828
829

Figure 7: **Memorization dynamics in Stable Diffusion.** (a) Training and validation losses as a function of training step τ for Stable Diffusion fine-tuned on different subset of LAION-10k with P training points. Both losses initially decrease, indicating generalization, and diverge at the memorization onset time τ_{mem} . The memorization time τ_{mem} is linear in the training set size P . (b) Cosine similarity scores between SSCD ResNet embedding for generated images and their nearest training neighbor at early stopping ($\tau = 8,192$) and final training ($\tau = 262,144$). The dashed line indicates the mean similarity score between the closest LAION-10k samples. The sharp increase at late training signals memorization.

830

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846855
856

Figure 8: **Replicates generated by Stable Diffusion.** Example generations (left) from the final training checkpoint ($\tau = 262,144$) with similarity score > 0.5 to their nearest neighbor in the training set (right), confirming memorization.

860
861
862
863

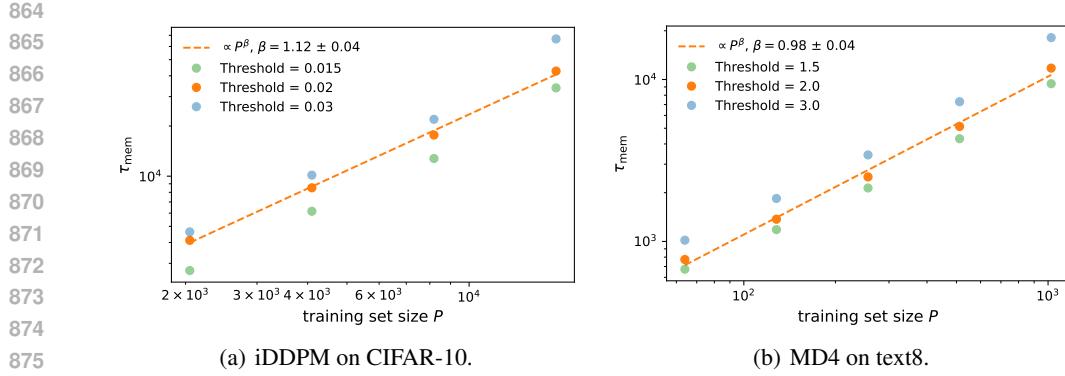


Figure 9: **Scaling of memorization time with dataset size.** For each dataset size P , we linearly interpolate the train and validation losses as a function of the training step τ (on a logarithmic grid) and define the memorization time τ_{mem} as the first step at which the interpolated loss gap $L_{\text{val}}(\tau) - L_{\text{train}}(\tau)$ exceeds a fixed threshold (different colors). We then plot τ_{mem} as a function of P for (a) iDDPMs trained on CIFAR-10 and (b) MD4 language diffusion models trained on text8. In both cases, the data are well described by a power-law fit $\tau_{\text{mem}} \propto P^\beta$ (dashed lines) with exponents β close to one, indicating an approximately linear growth of memorization time with dataset size across modalities.

In Figure 7(b), we report the similarity scores for 200 generated images at two checkpoints: early stopping ($\tau = 8,192$) and the final training step ($\tau = 262,144$). For reference, we also show the similarity score for real images from the full LAION-10k dataset (black dashed line). At the early stopping time, the generated images exhibit diversity similar to that of the dataset. In contrast, by the end of training, the similarity score increases by a factor of two, indicating memorization.

Finally, in Figure 8, we show representative examples of replicated samples (similarity score > 0.5) from the final checkpoint, confirming that Stable Diffusion memorized part of its training set.

D FURTHER RESULTS ON IDDPMS

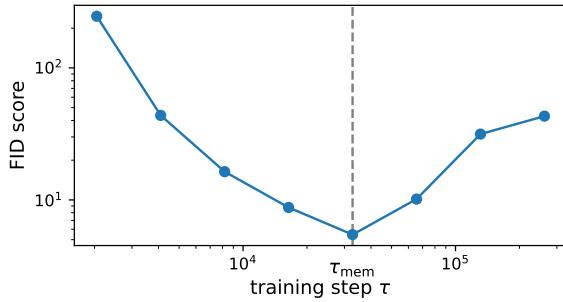
Scaling of memorization time To further quantify how memorization time scales with dataset size, we estimate a memorization onset time $\tau_{\text{mem}}(P)$ for each number of training examples P . For every setting of P , we record the training and validation losses as a function of the training step τ and linearly interpolate them in τ on a logarithmic grid to obtain dense loss curves. We then consider the difference between validation and training loss and define $\tau_{\text{mem}}(P)$ as the first training time at which this loss gap exceeds a fixed threshold value. The resulting τ_{mem} values for iDDPMs on CIFAR-10 are shown in 9(a), where they are well described by a power-law fit $\tau_{\text{mem}} \propto P^\beta$ with $\beta \approx 1$, indicating an approximately linear growth of memorization time with dataset size.

FID dynamics Figure 10 reports the Fréchet Inception Distance (FID) as a function of the training step τ for a DDPM trained on 16,384 CIFAR-10 images, consistent with the setup in Figure 1. At each checkpoint, we generate 32,768 samples and compute the FID against the union of CIFAR-10 standard train and test splits. The FID captures both the quality and diversity of the generated images. As training progresses, the FID decreases monotonically until the memorization onset time τ_{mem} , after which it gradually increases – reflecting a loss in sample diversity as the model begins replicating its training data.

Further examples of generations Figure 11 presents further images sampled from the early stopped iDDPM trained on 16,384 CIFAR-10 images.

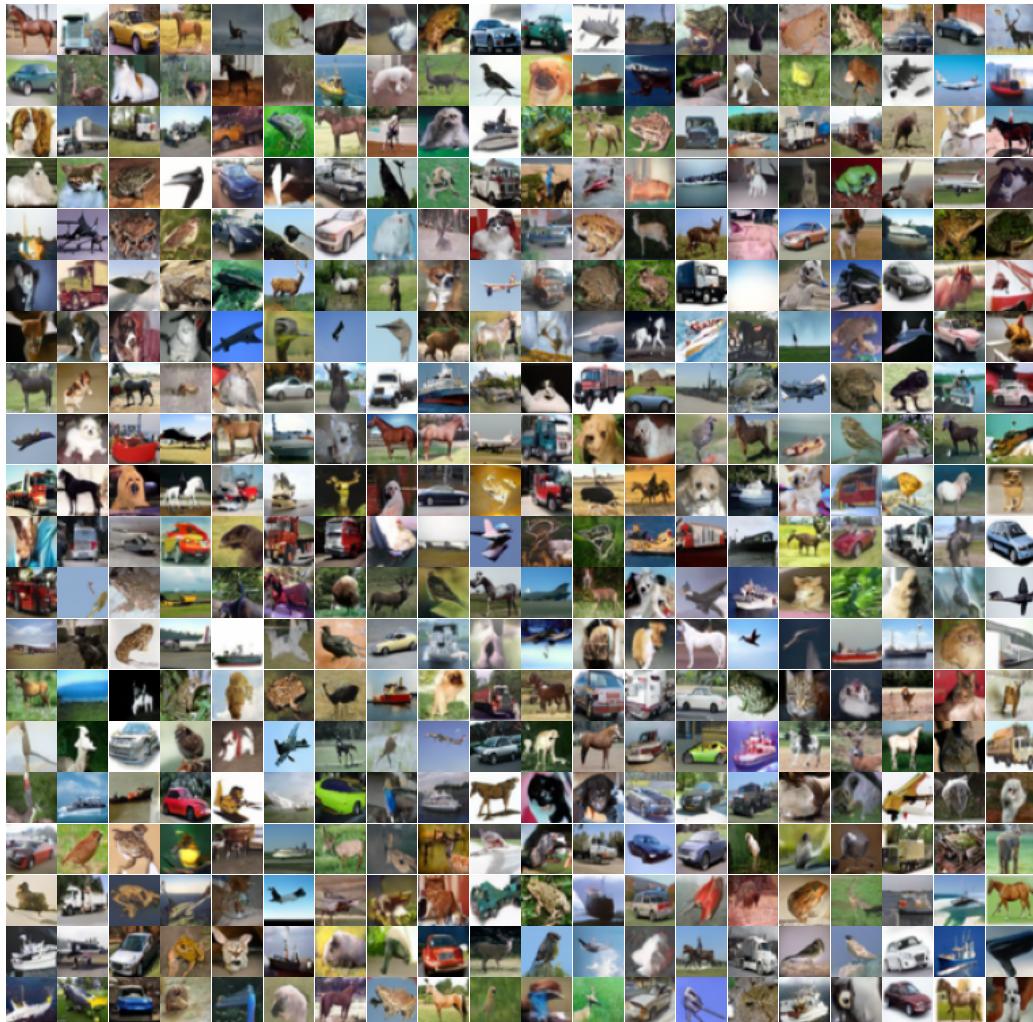
Examples of copies Figure 12 shows examples of generated samples (top row) and their nearest neighbors in the training set (bottom row) for the iDDPM trained on 8,192 CIFAR-10 images. These examples are taken from the end of training, within the memorization phase, where the model begins to replicate its training data.

918
919
920
921
922
923
924
925
926
927
928
929



930 Figure 10: **FID dynamics.** Fréchet Inception Distance (FID) as a function of training step τ for
931 a DDPM trained on 16,384 CIFAR-10 images. The FID initially decreases, reflecting improved
932 generation quality and diversity, but begins to rise past τ_{mem} as the model starts copying training
933 examples.

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968



969 Figure 11: **CIFAR-10 samples generated with early-stopped model.** Additional samples from the
970 iDDPM trained on 16,384 CIFAR-10 images, generated at the early stopping point before memo-
971 rization. The model produces diverse and high-quality images without replicating the training data.

972
973
974
975
976
977

978
979
980
981
982
983
984 **Generated sample 1**
985 on french anarchism reemerged
986 influencing the bourses de
987 travails af autonomous workers
988 groups and trade unions from
989 this movement the conf d ration
990 g n rale du travail general
991 confederation of work cgt was
992 formed in one eight nine five as
993 the first major
994
995
996 **Generated sample 2**
997 erpetual covenant of wareagayndt
998 every people tribe and state
999 ocning a foot of land between
1000 here and tierra dul fuego bbeause
1001 opposition to slavery expansion
1002 was the key issue uniting the
1003 redublican patty at the time
1004 lincol is sometimes critic zed
1005 for put
1006
1007
1008
1009 **Generated sample 3**
1010 s with a hagh levul tf
1011 intellectual function ne have
1012 aspirger s autism or taat both
1013 lypes are merely g eks with a
1014 medical label attacied also
1015 ausicm has evolved in the
1016 public understandingpbot the
1017 populariidentication of
1018 autism with relatinely severe
1019 cas
1020
1021
1022
1023
1024
1025

Nearest training sequence

on french anarchism reemerged
influencing the bourses de
travails of autonomous workers
groups and trade unions from
this movement the conf d ration
g n rale du travail general
confederation of work cgt was
formed in one eight nine five as
the first major

Nearest training sequence

erpetual covenant of war against
every people tribe and state
owning a foot of land between
here and tierra del fuego because
opposition to slavery expansion
was the key issue uniting the
republican party at the time
lincoln is sometimes criticized
for put

Nearest training sequence

s with a high level of
intellectual functioning have
asperger s autism or that both
types are merely geeks with a
medical label attached also
autism has evolved in the
public understanding but the
popular identification of
autism with relatively severe
cas

Figure 13: **Examples of copies on text8.** Left: Diffusion-generated text with MD4 trained on 1,024 training sequences of the text8 dataset for 524,288 SGD steps. Right: the corresponding nearest training sequences. The generated samples are copies of the training set, up to a few character-level mistakes.

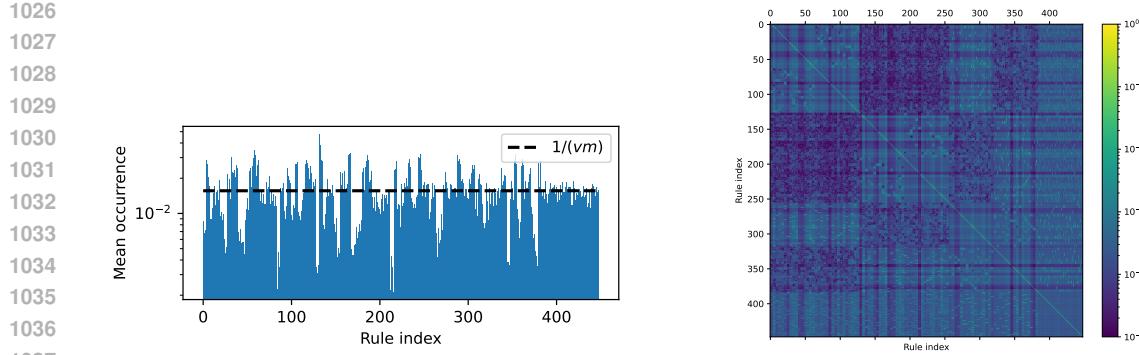


Figure 14: **Sampling of RHM production rules.** Mean occurrence (left) and centered covariance (right) of the production rules sampled by a diffusion model trained on $P = 16,384$ strings ($v = 16$, $m = 4$, $L = 3$, $s = 2$). The model, trained with early stopping ($\tau = 32,768$), samples all RHM rules with a mean occurrence that is approximately uniform (up to sampling noise). Likewise, the correlations between the cooccurrence of sampled rules show that they are sampled approximately independently.

E FURTHER RESULTS ON MD4

Scaling of memorization time Similarly to DDPMs, in Figure 9(b) we study how the memorization time scales with the number of training examples P for GPT-based MD4 models trained on text8. The resulting τ_{mem} values exhibit a clear power-law dependence on P , $\tau_{\text{mem}} \propto P^\beta$, with an exponent β close to one, mirroring the behavior observed for iDDPMs and indicating a similar linear growth of memorization time with dataset size in the language setting.

Examples of copies Figure 13 shows examples of generated samples and their nearest neighbors in the training set for the MD4 trained on 1,024 text8 sequences. These examples are taken from the end of training, within the memorization phase, where the model begins to replicate its training data. In particular, the generated samples are copies of the training set, up to a few character-level mistakes.

F FURTHER RESULTS ON THE RHM

Production rules sampling Figure 14 shows the mean occurrence and centered covariance of the production rules sampled by a diffusion model trained on $P = 16,384$ strings ($v = 16$, $m = 4$, $L = 3$, $s = 2$). The model, trained with early stopping ($\tau = 32,768$), samples all RHM rules with a mean occurrence that is approximately uniform (up to sampling noise); likewise, the correlations between the cooccurrence of sampled rules show that they are sampled approximately independently. Therefore, the generated data reproduces the correct data distribution of the RHM, corresponding to generalization.

Robustness to optimizer choice To test robustness to the optimization dynamics, we repeated the RHM experiments with $L = 3$, $s = 3$, $v = 24$, $m = 12$ using the same D3PM architecture and training protocol as in the main text, varying only the optimizer between Adam and SGD. For each optimizer, we set the learning rate to its *maximal stable* learning rate, defined as the largest value for which the training loss reliably converges. Figure 15 confirms the robustness of τ_{mem} to the choice of optimizer in this setting.

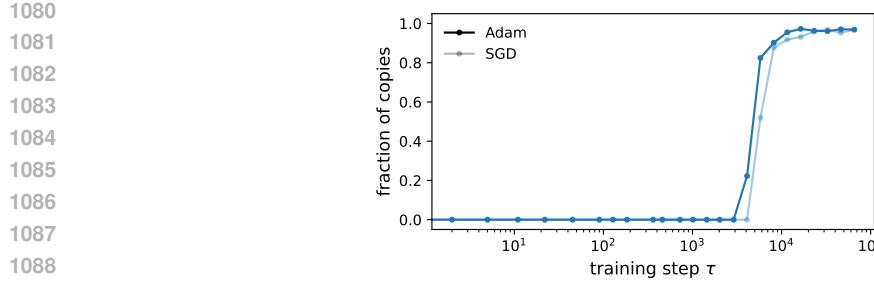


Figure 15: **Effect of the optimizer on the onset of memorization in the RHM.** Fraction of copies as a function of training step for a D3PM trained on $P = 2,048$ sequences sampled from an RHM with $L = 3$, $s = 3$, $v = 24$, $m = 12$, using Adam and SGD, each with its maximal stable learning rate (largest learning rate yielding convergent training loss). The curves nearly coincide, and the onset of memorization occurs at approximately the same number of training steps for both optimizers.

G SCALING ARGUMENT FOR THE MEMORIZATION TIME OF KERNEL METHODS

In this section, we analyze the training time τ_{mem} required for a kernel to learn the score of P well-separated training points in the low-noise limit for a fixed noise level. This timescale corresponds to the one for diffusion models to memorize the training data.

Setting We assume the empirical data distribution is the Gaussian mixture

$$p_\sigma(x) = \frac{1}{P} \sum_{j=1}^P \mathcal{N}(x|x_j, \sigma^2 \mathbb{I}_d), \quad (5)$$

where the $x_j \in \mathbb{R}^d$ are P distinct training points. We work in a low-noise limit, where the noise standard deviation σ is much smaller than the typical distance between data points, i.e., $\sigma \ll \min_{j \neq i} \|x_i - x_j\|$. This ensures that the Gaussian components have negligible overlap, so p_σ is approximately supported on P disjoint neighborhoods.

We consider learning the score $\nabla_x \log p_\sigma(x)$ at fixed σ with kernel regression. The dynamics of learning is governed by the spectral properties of the integral operator of the kernel K , defined as

$$(Kf)(x) = \int K(x, y) f(y) dp_\sigma(y), \quad (6)$$

with respect to the measure p_σ . The learning time for a specific mode (eigenfunction) of the data scales inversely with the corresponding eigenvalue of this operator.

We assume that the kernel $K(x, y)$ can be expanded for small distances $r = \|x - y\|$ as

$$K(x, y) = \kappa(r) = 1 - C(d) r^\nu + \mathcal{O}(r^{\nu+1}) \quad \text{as } r \rightarrow 0, \quad (7)$$

with $C(d)$ a coefficient that depends on the choice of the kernel and the input dimension d . For instance, the Neural Tangent Kernel (NTK) (Jacot et al., 2018) of neural networks with ReLU activations corresponds to $\nu = 1$, while their Random Feature Kernel (RFK) corresponds to $\nu = 2$.

Local eigenfunctions In the low-noise limit, the score in the vicinity of a data point x_i is dominated by the i -th Gaussian component:

$$\nabla_x \log p_\sigma(x) \simeq \nabla_x \log \left[\frac{1}{P} \mathcal{N}(x|x_i, \sigma^2 \mathbb{I}_d) \right] = -\frac{x - x_i}{\sigma^2}. \quad (8)$$

This shows that the target function is locally linear and motivates our ansatz of approximate eigenfunctions to probe the spectrum of K . In particular, we construct a set of vector-valued functions

1134 $\{\psi_i\}_{i \in [P]}$ centered at each data point x_i :
 1135

$$1136 \quad \psi_i(x) = (x - x_i) R\left(\frac{\|x - x_i\|}{\sigma}\right), \quad (9)$$

1138 where $R : [0, \infty) \rightarrow \mathbb{R}$ is a smooth cutoff function (e.g., $R(r) = e^{-r}$) that decays rapidly for
 1139 $r \gtrsim 1$. The support of ψ_i is thus concentrated in the ball $B_\sigma(x_i)$. These functions are asymptotically
 1140 orthogonal in $L_2(p_\sigma)$: $\langle \psi_i, \psi_j \rangle_{L_2(p_\sigma)} = \mathcal{O}(e^{-c/\sigma^2})$ for $i \neq j$.
 1141

1142 **Eigenvalues and memorization time** We compute the eigenvalue λ_i associated with each ψ_i :
 1143

$$1144 \quad \lambda_i = \frac{\langle \psi_i, K\psi_i \rangle_{L_2(p_\sigma)}}{\|\psi_i\|_{L_2(p_\sigma)}^2}. \quad (10)$$

1146 The squared norm is dominated by the integral over the i -th component of the mixture:
 1147

$$1148 \quad \|\psi_i\|_{L_2(p_\sigma)}^2 = \int \|\psi_i(x)\|^2 p_\sigma(x) d^d x \simeq \frac{1}{P} \int \|x - x_i\|^2 R^2\left(\frac{\|x - x_i\|}{\sigma}\right) \mathcal{N}(x|x_i, \sigma^2 \mathbb{I}_d) d^d x. \quad (11)$$

1150 Changing to local coordinates $u = \frac{x - x_i}{\sigma}$:

$$1152 \quad \|\psi_i\|_{L_2(p_\sigma)}^2 \simeq \frac{\sigma^2}{P} \int \|u\|^2 R^2(\|u\|) \mathcal{N}(u|0, \mathbb{I}_d) d^d u \quad (12)$$

$$1154 \quad := \gamma_d(R) \frac{\sigma^2}{P}, \quad (13)$$

1156 where

$$1158 \quad \gamma_d(R) = \int \|u\|^2 R^2(\|u\|) \mathcal{N}(u|0, \mathbb{I}_d) d^d u \quad (14)$$

1159 is a dimension-dependent constant (for fixed R) that does not depend on σ or P .
 1160

1161 The numerator is given by the quadratic form

$$1163 \quad \langle \psi_i, K\psi_i \rangle_{L_2(p_\sigma)} = \iint \psi_i(x) \cdot \psi_i(y) K(x, y) p_\sigma(x) p_\sigma(y) d^d x d^d y. \quad (15)$$

1165 Given the localized support of ψ_i and the non-overlapping assumption for the Gaussians, the integral
 1166 is non-negligible only when both x and y are near x_i :

$$1167 \quad \langle \psi_i, K\psi_i \rangle_{L_2(p_\sigma)} \simeq \frac{1}{P^2} \iint \psi_i(x) \cdot \psi_i(y) K(x, y) \mathcal{N}(x|x_i, \sigma^2 \mathbb{I}_d) \mathcal{N}(y|x_i, \sigma^2 \mathbb{I}_d) d^d x d^d y. \quad (16)$$

1169 We now substitute the expansion of the kernel near the origin:
 1170

$$1171 \quad \langle \psi_i, K\psi_i \rangle_{L_2(p_\sigma)} \simeq \frac{1}{P^2} \left[\int \psi_i(x) \mathcal{N}(x|x_i, \sigma^2 \mathbb{I}_d) d^d x \right] \cdot \left[\int \psi_i(y) \mathcal{N}(y|x_i, \sigma^2 \mathbb{I}_d) d^d y \right] \quad (17)$$

$$1173 \quad - \frac{C(d)}{P^2} \iint \psi_i(x) \cdot \psi_i(y) \|x - y\|^\nu \mathcal{N}(x|x_i, \sigma^2 \mathbb{I}_d) \mathcal{N}(y|x_i, \sigma^2 \mathbb{I}_d) d^d x d^d y.$$

1175 The first term vanishes because $\psi_i(x)$ is an odd function with respect to the center x_i , while
 1176 $\mathcal{N}(x|x_i, \sigma^2 \mathbb{I}_d)$ is even. The integral is therefore zero. The leading contribution comes from the
 1177 second term. We again change variables to $u = (x - x_i)/\sigma$ and $v = (y - x_i)/\sigma$ obtaining
 1178

$$1179 \quad \langle \psi_i, K\psi_i \rangle_{L_2(p_\sigma)} \simeq -\frac{C(d)}{P^2} \iint [\sigma u R(\|u\|)] \cdot [\sigma v R(\|v\|)] (\sigma \|u - v\|)^\nu \mathcal{N}(u|0, \mathbb{I}_d) \mathcal{N}(v|0, \mathbb{I}_d) d^d u d^d v \quad (18)$$

$$1182 \quad = -C(d) \frac{\sigma^{2+\nu}}{P^2} \iint (u \cdot v) R(\|u\|) R(\|v\|) \|u - v\|^\nu \mathcal{N}(u|0, \mathbb{I}_d) \mathcal{N}(v|0, \mathbb{I}_d) d^d u d^d v. \quad (19)$$

1185 We denote the remaining integral by

$$1187 \quad \beta_d(R, \nu) := \iint (u \cdot v) R(\|u\|) R(\|v\|) \|u - v\|^\nu \mathcal{N}(u|0, \mathbb{I}_d) \mathcal{N}(v|0, \mathbb{I}_d) d^d u d^d v, \quad (20)$$

1188 so that

$$1189 \langle \psi_i, K\psi_i \rangle_{L_2(p_\sigma)} \simeq -C(d) \beta_d(R, \nu) \frac{\sigma^{2+\nu}}{P^2}. \quad (21)$$

1190

1191 Collecting everything, the eigenvalue is

$$1192 \lambda_i = \frac{\langle \psi_i, K\psi_i \rangle_{L_2(p_\sigma)}}{\|\psi_i\|_{L_2(p_\sigma)}^2} \simeq -C(d) \frac{\beta_d(R, \nu)}{\gamma_d(R)} \frac{\sigma^{2+\nu}/P^2}{\sigma^2/P} = -C(d) \frac{\beta_d(R, \nu)}{\gamma_d(R)} \frac{\sigma^\nu}{P}. \quad (22)$$

1193 Thus, up to a dimension- and kernel-dependent prefactor $-C(d) \beta_d(R, \nu)/\gamma_d(R)$, we obtain

1194

$$1195 \lambda_i \propto \frac{\sigma^\nu}{P}. \quad (23)$$

1196

1197 The training time required to learn these localized eigenfunction scales as the inverse of the eigenvalue. This defines the memorization timescale

1198

$$1199 \tau_{\text{mem}} \sim \lambda_i^{-1} \sim \frac{P}{\sigma^\nu}. \quad (24)$$

1200

1201 **Dimension dependence of γ_d and β_d .** The constants $\gamma_d(R)$ and $\beta_d(R, \nu)$ depend only on d , ν ,
1202 and the choice of cutoff R . To make their d -dependence explicit, it is convenient to specialize to the
1203 simplest case $R \equiv 1$. This simplification is justified because the factors $\mathcal{N}(u|0, \mathbb{I}_d)$ and $\mathcal{N}(v|0, \mathbb{I}_d)$
1204 already suppress the integrand exponentially for $\|u\| \gg 1$ or $\|v\| \gg 1$.

1205

1206 In that case,

1207

$$1208 \gamma_d(R \equiv 1) = \int \|u\|^2 \mathcal{N}(u | 0, \mathbb{I}_d) d^d u = \mathbb{E}[\|u\|^2] = d, \quad (25)$$

1209

1210 so

1211

$$1212 \gamma_d(1) = d. \quad (26)$$

1213

1214 For the numerator constant,

1215

1216

$$1217 \beta_d(1, \nu) = \iint (u \cdot v) \|u - v\|^\nu \mathcal{N}(u | 0, \mathbb{I}_d) \mathcal{N}(v | 0, \mathbb{I}_d) d^d u d^d v = \mathbb{E}[u \cdot v \|u - v\|^\nu], \quad (27)$$

1218

1219

1220

1221 with $u, v \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \mathbb{I}_d)$. Introducing the variables

1222

1223

$$1224 a = \frac{u + v}{\sqrt{2}}, \quad b = \frac{u - v}{\sqrt{2}}, \quad (28)$$

1225

1226 we have $a, b \sim \mathcal{N}(0, \mathbb{I}_d)$ independent, and

1227

$$1228 u \cdot v = \frac{1}{2} (\|a\|^2 - \|b\|^2), \quad \|u - v\| = \sqrt{2} \|b\|. \quad (29)$$

1229

1230 Therefore

1231

$$1232 \beta_d(1, \nu) = \mathbb{E}[u \cdot v \|u - v\|^\nu] = \mathbb{E}\left[\frac{1}{2} (\|a\|^2 - \|b\|^2) (\sqrt{2} \|b\|)^\nu\right]. \quad (30)$$

1233

1234 Using the independence of a and b and the solution for the radial moments of isotropic Gaussians,

1235

1236

1237

1238

1239

1240

1241

$$1242 \beta_d(1, \nu) = \frac{1}{2} \left(\mathbb{E}[\|a\|^2] \mathbb{E}[(\sqrt{2} \|b\|)^\nu] - \mathbb{E}[\|b\|^2 (\sqrt{2} \|b\|)^\nu] \right) \quad (31)$$

1243

1244

1245

1246

1247

1248

1249

1250

$$1251 = \frac{1}{2} \left(d 2^\nu \frac{\Gamma(\frac{d+\nu}{2})}{\Gamma(\frac{d}{2})} - 2^{\nu+1} \frac{\Gamma(\frac{d+\nu+2}{2})}{\Gamma(\frac{d}{2})} \right) \quad (32)$$

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1242 Thus, for $R \equiv 1$ the ratio appearing in the eigenvalue is
 1243

$$1244 \frac{\beta_d(1, \nu)}{\gamma_d(1)} = -\frac{\nu}{2} 2^\nu \frac{1}{d} \frac{\Gamma(\frac{d+\nu}{2})}{\Gamma(\frac{d}{2})}. \quad (35)$$

1246 Using the large- d asymptotics of the Gamma function,
 1247

$$1248 \frac{\Gamma(\frac{d+\nu}{2})}{\Gamma(\frac{d}{2})} \sim \left(\frac{d}{2}\right)^{\nu/2}, \quad d \rightarrow \infty, \quad (36)$$

1251 we obtain

$$1252 \frac{\beta_d(1, \nu)}{\gamma_d(1)} \sim -2^{\nu/2-1} \nu d^{\nu/2-1}. \quad (37)$$

1254 Plugging this into the eigenvalue expression
 1255

$$1256 \lambda_i \simeq -C(d) \frac{\beta_d(1, \nu)}{\gamma_d(1)} \frac{\sigma^\nu}{P} \sim 2^{\nu/2-1} \nu C(d) d^{\nu/2-1} \frac{\sigma^\nu}{P}. \quad (38)$$

1259 Consequently, the memorization time scales as
 1260

$$1261 \tau_{\text{mem}} \sim \lambda_i^{-1} \sim C(d)^{-1} d^{1-\nu/2} \frac{P}{\sigma^\nu}. \quad (39)$$

1263 **Remarks** Notice that this result is distribution-agnostic as it simply uses the fact that training
 1264 points are isolated. Moreover, as long as diffusion happens in the ambient space, the same argument
 1265 applies to data supported on a manifold of lower dimension d_{eff} , so the intrinsic dimension of the
 1266 data does not affect our results, i.e., Equation 39 depends on d only and not on d_{eff} .
 1267

1268 All in all, this argument extends the results from contemporaneous work on random features in
 1269 the proportional regime (number of neurons proportional to the input dimension) (Bonnaire et al.,
 1270 2025) to any isotropic kernels. Our derivation relies only on the local behavior of the kernel and
 1271 shows that random features and neural networks in the NTK limit have different behaviors.

1272 **Numerical experiments** We confirm our theoretical scaling numerically in Figure 16 for a one-
 1273 hidden-layer fully-connected network in the lazy (NTK) regime (Chizat et al., 2019). Notably, the
 1274 same experimental setting under a mean-field (feature learning) initialization (Mei et al., 2018) also
 1275 exhibits a memorization time consistent with our NTK-based prediction.
 1276

1277 Furthermore, Figure 18 investigates the effect of batch size B . For both lazy and feature learning
 1278 regimes, the timescale to fit the empirical score appears independent of B , from small-batch SGD
 1279 ($B = 8$) to full-batch gradient descent ($B = P$). This observation implies that the memorization
 1280 time only depends on the size of the training set and not on the number of times a training point is
 1281 observed.
 1282

1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

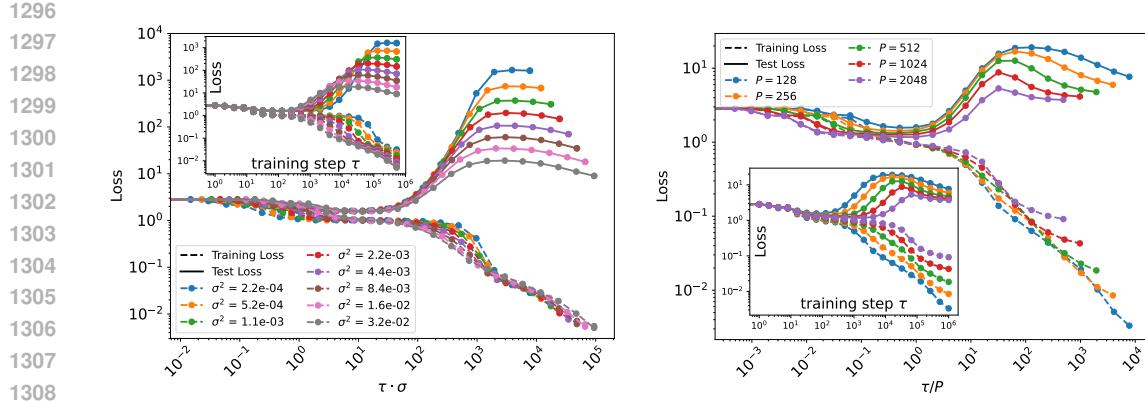


Figure 16: **Neural Tangent Kernel (NTK) initialization: one-hidden layer ReLU neural network (width 8192) learning the empirical score at fixed diffusion noise variance σ^2 , trained with full-batch gradient descent.** Training points sampled from a Gaussian distribution in $d = 64$ dimensions. *Left:* at fixed training set size $P = 128$, training and test loss diverge at a timescale (τ_{mem}) depending on σ (inset), which scales as σ^{-1} (main). *Right:* at fixed $\sigma^2 = 3.2 \cdot 10^{-2}$, τ_{mem} increases with P (inset), consistently with the scaling $\tau_{\text{mem}} \propto P$ (main).

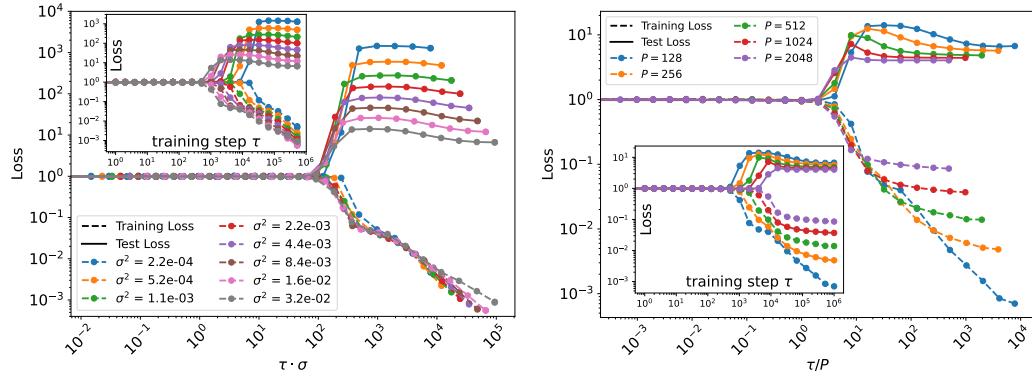


Figure 17: **Feature learning (mean-field) initialization, same setting as Figure 16.** Also in this case, τ_{mem} is compatible with the scaling $\tau_{\text{mem}} \sim \sigma^{-1}$ at fixed P (*left*), and $\tau_{\text{mem}} \propto P$ at fixed σ (*right*).

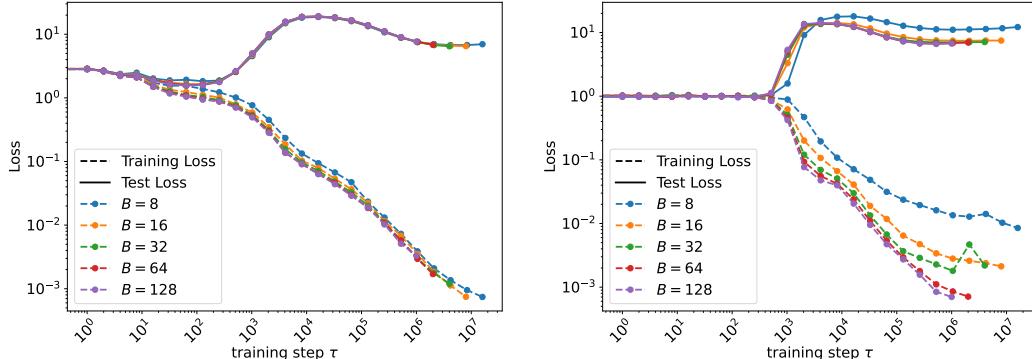


Figure 18: **Effect of changing batch size B , same setting as Figs. 16 and 17 (fixed $\sigma^2 = 3.2 \cdot 10^{-2}$, $P = 128$).** Varying the batch size B of training, both with the NTK (*left*) and feature learning (*right*) initialization, does not affect τ_{mem} .

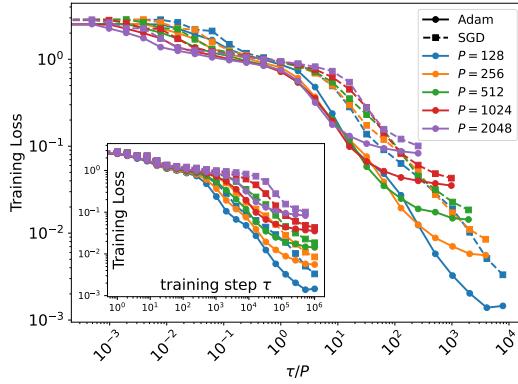


Figure 19: **Optimizer dependence.** Training loss as a function of training step for a one-hidden-layer ReLU neural network (NTK initialization) trained with Adam and SGD at multiple dataset sizes P . For each optimizer, we choose its maximal stable learning rate, defined as the largest learning rate for which the training loss reliably converges. For both optimizers, the curves at different P start decaying at the same point when plotted against τ/P , indicating the same linear scaling of the characteristic training time with P . Adam and SGD differ only by a horizontal shift, corresponding to an $\mathcal{O}_P(1)$ change in the constant of proportionality. The overall scaling and decay of the loss remain essentially identical. The inset shows the same data as a function of the unscaled training step τ .