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ABSTRACT

Diffusion probabilistic models have become a cornerstone of modern generative
AI, yet the mechanisms underlying their generalization remain poorly understood.
In fact, if these models were perfectly minimizing their training loss, they would
just generate data belonging to their training set, i.e., memorize, as empirically
found in the overparameterized regime. We revisit this view by showing that,
in highly overparameterized diffusion models, generalization in natural data do-
mains is progressively achieved during training before the onset of memorization.
Our results, ranging from image to language diffusion models, systematically sup-
port the empirical law that memorization time is proportional to the dataset size.
Generalization vs. memorization is then best understood as a competition be-
tween time scales. We show that this phenomenology is recovered in diffusion
models learning a simple probabilistic context-free grammar with random rules,
where generalization corresponds to the hierarchical acquisition of deeper gram-
mar rules as training time grows, and the generalization cost of early stopping can
be characterized. We summarize these results in a phase diagram. Overall, our re-
sults support that a principled early-stopping criterion – scaling with dataset size –
can effectively optimize generalization while avoiding memorization, with direct
implications for hyperparameter transfer and privacy-sensitive applications.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have recently emerged as a transfor-
mative paradigm in generative AI, enabling the synthesis of high-quality data across a wide range of
modalities – images, videos, text, and complex 3D structures such as molecular conformations and
protein sequences. Their strength lies in their scalability in generating diverse, high-fidelity sam-
ples by reversing a progressive noise addition process, making them both versatile and robust across
domains. At the heart of this process is the estimation of a score function (Song & Ermon, 2019;
Song et al., 2020): a noise-dependent vector field that guides denoising by pointing in the direction
of increasing data likelihood. Since this function is learned from the empirical training distribution,
minimizing the training loss optimally leads the model to reproduce the training data itself – a phe-
nomenon known as memorization (Carlini et al., 2023; Somepalli et al., 2022). This phenomenon is
observed in practical settings and raises significant privacy and copyright concerns, as models trained
on sensitive or proprietary data may inadvertently regenerate such content, exposing private infor-
mation or violating intellectual property rights (Wu et al., 2022; Matsumoto et al., 2023; Hu & Pang,
2023). In contrast, generalization corresponds to the model producing novel samples that are consis-
tent with, but not identical to, the training data, thereby approximating the broader target distribution.

Despite the empirical success of diffusion models, the mechanisms underlying their ability to gen-
eralize remain poorly understood. A prevailing view – rooted in classical learning theory – is that
generalization depends on underparameterization (Yoon et al., 2023; Zhang et al., 2023; Kadkho-
daie et al., 2023): only models that lack the capacity to memorize their training data are expected
to generalize. In this work, we go beyond this view by demonstrating that even heavily overpa-
rameterized diffusion models exhibit generalization during training before they start memorizing
the training data. We systematically investigate this phenomenon, showing that generalization and
memorization are not mutually exclusive but unfold as distinct temporal phases of training. Our
main contributions are as follows:
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• We empirically demonstrate the transition from generalization to memorization during training in
a range of overparametrized diffusion models – including Improved DDPM (Nichol & Dhariwal,
2021), Stable Diffusion (Rombach et al., 2022), MD4 (Shi et al., 2024), and D3PM (Austin et al.,
2021) – on both images and text data. We measure memorization and generalization metrics and
systematically vary the training set size, showing that generalization improves gradually, before
the onset of memorization.

• In all settings, we find the empirical law that the onset of memorization requires a number of
training steps that is proportional to the training set size. In the appendix, we provide a theoretical
scaling argument for kernel methods – including kernels corresponding to infinite-width neural
networks – showing that a generic empirical score at fixed, low diffusion noise is learned with a
training time proportional to the training set size.

• We study a discrete diffusion model trained to learn a simple probabilistic context-free grammar,
where the number of training steps or samples required to generalize is known to be polynomial
in the sequence length (Favero et al., 2025). We show that for moderate training set sizes, the
diffusion model only learns the lowest levels of the hierarchical grammar rules – corresponding
to partial generalization – before starting to memorize. For larger training set sizes, the onset of
memorization appears after perfect total generalization is achieved. These results lead to a phase
diagram for memorization and generalization as a function of sample complexity and time.

On the theoretical level, these findings call for a revision of the view of generalization in diffusion
models as being solely determined by model capacity, showing that generalization arises dynam-
ically during training in overparameterized diffusion models. On the practical level, our results
suggest that early stopping and dataset-size-aware training protocols may be optimal strategies
for preserving generalization and avoiding memorization as the size of diffusion models is scaled
up. In fact, meeting privacy and copyright requirements with principled procedures is of utmost
importance for the deployment of generative AI, in contrast to heuristic procedures that lack
quantitative grounding (Dockhorn et al., 2022; Vyas et al., 2023; Chen et al., 2024).

2 DIFFUSION MODELS AND THE SCORE FUNCTION

Denoising diffusion models are generative models that sample from a data distribution q(x0) by
reversing a noise addition process (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon,
2019; Song et al., 2020). The forward process generates a sequence of increasingly noised data
{xt}1≤t≤T , with distribution q(x1, . . . , xT |x0) =

∏T
t=1 q(xt|xt−1), where t indicate the time step

in a sequence [0, . . . , T ]. At the final time T , xT corresponds to pure noise. The backward process
reverts the forward one by gradually removing noise and is obtained by learning the backward
transition kernels pθ(xt−1|xt) using a neural network with parameters θ. Learning these backward
kernels is equivalent to learning the score function, which is proportional to the conditional
expectation Eq(x0|xt) [x0]. To learn the score function, the training is performed by minimizing a
variational bound on the negative log likelihood of the data:

Eq(x0) [− log pθ(x0)] ≤ Eq(x0)

[
− log pθ(xT )−

T∑
t=1

log
pθ(xt−1|xt)
q(xt|xt−1)

]
:= L. (1)

The loss L to learn the score function requires an integral over the target data distribution q(x0).
In practice, this integral is estimated with a Monte Carlo sampling from P training examples
{x(i)0 }i∈[P ], associated with the empirical distribution q̂(x0) = P−1

∑P
i=1 δ(x0 − x

(i)
0 ), where δ

are Dirac deltas. Therefore, perfectly minimizing the empirical loss corresponds to learning the
empirical score function, which generates q̂(x0). As a result, diffusion models would only generate
data of the training set, corresponding to memorization. Their generalization abilities, therefore,
derive from not perfectly minimizing the empirical loss.

Diffusion processes For continuous data, like images, the forward process corresponds to time-
discretized Gaussian diffusion with q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), where N represents

the normal distribution and the sequence {βt}1≤t≤T is the variance schedule. For discrete data, sev-
eral noising processes have been considered (Hoogeboom et al., 2021; Austin et al., 2021). The most
popular for text is masked diffusion with an absorbing state, which progressively randomly masks
tokens in the forward process. Another common choice is uniform diffusion, where in the forward
process, tokens can flip to any other symbol with some probability depending on the noise level.
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Figure 1: Memorization dynamics in vision diffusion models. Left: Train loss, validation loss, and
fraction of copied images as a function of training steps τ for iDDPM models trained on CIFAR10
with varying training set sizes P . Both losses decrease initially, indicating generalization, but di-
verge at the onset of memorization (τmem), where the models start copying training data. Larger
training sets delay τmem, scaling approximately linearly with P (insets). Right: Samples generated
with early stopping at τmem with a model trained on 16, 384 images, achieving generalization and
low FID. Further examples are presented in Appendix D

3 NUMERICAL EXPERIMENTS

3.1 VISION DIFFUSION MODELS

Generalization before memorization We assess the generalization and memorization behaviors
of vision diffusion models by considering Improved Denoising Diffusion Probabilistic Models (iD-
DPMs) (Nichol & Dhariwal, 2021) with a U-Net architecture (Ronneberger et al., 2015; Salimans
et al., 2017), including attention blocks (Vaswani et al., 2017). Each model, comprising approxi-
mately 0.5B parameters, is trained on four distinct subsets of the CIFAR-10 dataset (Krishnan et al.,
2017), with training set sizes P ∈ {2048, 4096, 8192, 16384}. The models are trained for a total
of 262,144 training steps, with full training details in Appendix B.

We track model performance using the diffusion losses on the train set and a validation set of 1,024
images. At regular checkpoints, we generate 32,768 images using each model, and evaluate mem-
orization by calculating the fraction of generated images that are near-exact replicas of training
samples. Specifically, following Carlini et al. (2023); Yoon et al. (2023), for a generated image x,
we identify the two closest images x′ and x′′ in Euclidean distance from the training set, and classify
x as a copy if ∥x− x′∥2/∥x− x′′∥2 < 1/3. This threshold aligns with human perception of visual
similarity (Yoon et al., 2023).

Results and analysis Figure 1 (left panel) presents the results of this experiment. Our key findings
are as follows:

1. Generalization before memorization: Initially, both train and validation loss decrease, indi-
cating that the model is generalizing, i.e., approaching the population score. However, at some
critical time τmem, the two losses bifurcate, signalling the onset of memorization. After this
point, the number of copies among generated images steadily increases. By the end of training,
all models exhibit some degree of memorization, with copy rates ranging from 1% for the largest
training set to 100% for the smaller ones.

2. Memorization is delayed by larger training sets: The onset of memorization τmem scales
approximatively linearly with the training set size P , as indicated in the insets of Figure 1.
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Figure 2: Progressive generalization in vision diffusion models. Cosine similarity between im-
ages generated by two diffusion models trained on disjoint subsets of CelebA of size P = 2, 048,
as a function of training steps τ . Before memorization (τ < τmem), the models generate nearly
identical images, indicating they are learning the same score function, and thus generalizing. After
τmem, the models diverge, generating images increasingly similar to their own training sets.

These observations suggest that early stopping can effectively prevent the model from entering the
memorization phase. As a concrete example, the right panel of Figure 1 displays images generated
by a diffusion model trained on 16,384 images, with early stopping applied. The quality and di-
versity of these images are quantified using the Fréchet Inception Distance (FID), calculated using
Inception v3. The model achieves an FID score of 5.4, indicating – despite being strongly overpa-
rameterized – robust generalization, while the rate of copies is 0%. In Appendix C, we show the
same overfitting phenomenon in Stable Diffusion (Rombach et al., 2022) – a text-to-image latent
diffusion model – fine-tuned on a subset of the LAION dataset (Schuhmann et al., 2022).

Progressive generalization before memorization We extend our analysis by conducting a second
experiment inspired by Kadkhodaie et al. (2023). Specifically, we train two models on two non-
overlapping subsets D1 and D2 of 2, 048 images of CelebA (Liu et al., 2018), a dataset with faces
of celebrities, each using an iDDPM (details in Appendix B). Our setup goes beyond prior work by
dynamically tracking the evolution of the generated images throughout training, rather than statically
only at convergence. This approach provides a detailed view of how models first approach the
population score and then diverge after entering the memorization phase.

Results and analysis We generate samples from both models at multiple checkpoints during train-
ing, initializing the generations from the same Gaussian random noise and fixing the stochastic part
of the backward trajectories. Remarkably, initially, the images generated by the two models are
nearly identical, reflecting that the two models are learning the same score function, even though
they are trained on disjoint data subsets. However, at some time τmem, the models begin to diverge.
This divergence coincides with the onset of memorization, where the models start generating images
increasingly similar to the ones contained in their respective training sets.

We quantitatively assess this phenomenon using cosine similarity between whitened images gener-
ated by the two models and their nearest training images. As shown in Figure 2:

1. Before memorization (τ < τmem), the two models generate nearly identical images, indicating
that they are dynamically learning the same underlying distribution.

2. During memorization (τ > τmem), the similarity between the models’ generated images de-
creases monotonically, while the similarity between each model’s generated images and their
own training set increases. This reflects the transition from generalization to memorization.

Our findings extend those of Kadkhodaie et al. by revealing that the transition from generalization
to memorization is not only a matter of model capacity and final convergence but is dynamically
observable throughout training. In practice, this further supports the view that early stopping can
prevent the memorization phase and maintain generalization.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 LANGUAGE DIFFUSION MODELS

We further extend our analysis of generalization and memorization to language data, using MD4,
a masked diffusion model specifically designed for text (Shi et al., 2024). Our experiments are
conducted on the text8 dataset, a standard benchmark for language modeling based on Wikipedia,
with character-level tokenization. To the best of our knowledge, this is the first demonstration of
memorization in the language diffusion setting. We train MD4 from scratch using a standard GPT-
like transformer architecture with approximately 165M parameters. Following the masked diffusion
approach, the model is trained to predict masked tokens in noisy text sequences, effectively learning
a score function over text data. Full details are presented in Appendix B.
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Figure 3: Memorization dynamics in language
diffusion models. Train loss, validation loss, and
fraction of copied text as a function of training steps
for GPT-based MD4 models trained on text8 with
character-level tokenization and varying training set
sizes P . Both losses initially decrease, indicating
generalization, but diverge at the onset of mem-
orization (τmem), where the models start copying
training text. τmem grows linearly with P (insets).

We use training set sizes P ∈
{64, 128, 256, 512, 1024} ranging from
16,384 to 262,144 tokens. We track model
performance using the validation loss on
19,531 sentences, which provides a lower
bound to the negative log likelihood, and
monitor memorization by generating 1,024
text samples at regular training checkpoints.
Memorization is quantified by calculating the
Hamming distance between each generated
text sample and the closest training set text,
averaged over the generations and divided by
the sequence length. This metric captures the
fraction of exact token matches between the
generated and training text.

Results and analysis Figure 3 presents
the results of this experiment. As with
the vision diffusion models, MD4 initially
generalizes, improving the log-likelihood
on the validation corpus. However, after
τmem the model begins to produce exact or
near-exact copies of training text, signaling
the onset of memorization. Notably, τmem

scales linearly with the training set size P ,
consistent with our previous findings. The
transition to memorization is also marked
by a sudden increase in the validation loss, indicating that early stopping can effectively prevent
memorization also in this setting.

3.3 SUMMARY OF RESULTS

We have shown empirically that as they train, diffusion models generate higher and higher quality
data, which are novel. This is true up to an early stopping time τmem where memorization starts,
which we found to follow a remarkably universal empirical law:

τmem ∝ P. (2)

Theoretical support to the linear dependence In Appendix G, we provide a theoretical basis
for this scaling within the analytically tractable framework of kernel regression. We analyze the
gradient flow dynamics for fitting the empirical score of P training points in the low noise regime
with variance σ2, where the Gaussian modes centered at the training points are well separated.
Using an ansatz for the score modes, we show that the time to fit the empirical score scales as
τmem ∝ P/σν . The exponent ν is determined by the kernel’s expansion near the origin. This result
generalizes to any isotropic kernel the contemporaneous findings of Bonnaire et al. (2025), who
studied random features in the proportional regime (width proportional to input dimension) using a
Gaussian equivalence assumption. In particular, our results show that random features and neural
networks in the Neural Tangent Kernel (NTK) regime (Jacot et al., 2018) have different behaviors.
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We empirically validate these predictions with a one-hidden-layer network with lazy (NTK)
initialization, trained by gradient descent to fit the empirical score of Gaussian random points.
The observed τmem precisely follows the predicted scaling. Interestingly, the same scaling holds
under feature learning initialization, suggesting our theory captures a more general phenomenon
beyond its fixed-kernel assumption. Moreover, we show that τmem is insensitive to batch size –
from small-batch SGD to full-batch – indicating that memorization time is governed by the number
of optimization steps required to fit the empirical score, not by how often each example is revisited.

We will now study a controlled model of synthetic data that captures the phenomenology observed
for natural data. Most importantly, it will allow us to quantify in detail the inaccuracy of generations
of diffusion models with limited training, responsible for the inconsistent images in Figure 2.

4 GENERALIZATION VS. MEMORIZATION WITH A SIMPLE GRAMMAR

In this section, we consider diffusion models trained to generate sentences respecting the rules of a
simple formal grammar.

4.1 PROBABILISTIC GRAPHICAL MODELS

In theoretical linguistics, Probabilistic Context-Free Grammars (PCFG) have been proposed as a
framework to describe the hierarchical structure of the syntax of several languages (Chomsky, 1956;
Rozenberg & Salomaa, 1997; Pullum & Gazdar, 1982; Joshi, 1985; Manning & Schütze, 1999).
Moreover, they have been proposed for describing semantic aspects of images under the name of
Pattern Theory (Grenander, 1996; Jin & Geman, 2006; Siskind et al., 2007). PCFGs consist of a
vocabulary of latent (nonterminal) symbols and a vocabulary of visible (terminal) symbols, together
with probabilistic production rules establishing how one latent symbol generates tuples of symbols.

The Random Hierarchy Model (RHM) The RHM (Cagnetta et al., 2024) is a simple PCFG
introduced as a theoretical toy model describing hierarchy and compositionality in data. With respect
to generic PCFGs, it is built with some simplifying assumptions:

• Symbols are organized in a regular-tree topology of depth L and branching factor s. The bottom
layer, indexed as ℓ = 0, corresponds to the leaves of the tree, which are the visible (terminal)
symbols. The upper part of the tree, with layers ℓ = 1, . . . , L, corresponds to latent (nonterminal)
symbols in the data structure.

• Nonterminal symbols are taken from L finite vocabularies (Vℓ)ℓ=1,...,L of size v for each layer
ℓ = 1, . . . , L. Terminal symbols belong to the vocabulary V ≡ V0 of size v.

• The production rules transform one symbol in a node at level ℓ+1 into a string of s symbols in its
children nodes at level ℓ. For each non-terminal symbol, there are m rules with equal probability,
which are unambiguous, i.e., two distinct symbols cannot generate the same s-string. Rules are
sampled randomly without replacement and frozen for a given instance of the RHM. Them strings
generated by the same latent symbol are referred to as synonyms.

The fixed tree topology ensures that visible data at the leaves are strings of fixed length d = sL. In
analogy with language modeling, we call visible symbols tokens.

The number of possible data generated by this model is vm
d−1
s−1 , which is exponential in the data

dimension. Because of the random production rules, the tokens of the RHM data have non-trivial
correlations reflecting the latent hierarchical structure (Cagnetta & Wyart, 2024).

4.2 DIFFUSION ON THE RANDOM HIERARCHY MODEL

The exact score function of the RHM Because of its correlations, the probability distribution
of the RHM data and its corresponding score function are highly non-trivial. Nevertheless, if the
production rules are known, thanks to the latent tree structure, the score function for any noise level
can be computed exactly using the Belief Propagation (BP) algorithm. (Mezard & Montanari, 2009).

Sample complexity Favero et al. (2025) studied the sample complexity for diffusion models based
on deep neural networks trained on finite RHM data. Their main findings are the following.
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• The sample complexity to learn to generate valid data depends on the parameters of the model
as P ∗ ∼ vmL+1, which is polynomial in the dimension, i.e., P ∗ ∼ vmdlogm/ log s. This scale
can be theoretically predicted by comparing the size of the correlations between tokens and latent
features, used in deep architectures for denoising, with their sampling noise.

• For P < P ∗, there are regimes of partial generalization where the generated data are consistent
with the rules up to layer ℓ. The sample complexity to learn the rules at layer ℓ scales as P ∗

ℓ ∼
vmℓ+1.

• When P > P ∗
ℓ , the number of training steps τ∗ℓ required to learn the rules at layer ℓ is proportional

to P ∗
ℓ , therefore having the same polynomial scaling with the dimension. Complete generalization

is therefore achieved with τ∗ ∝ P ∗ = P ∗
L number of training steps.

Notice that the sample complexity depends on the underlying distribution, e.g., the parameters of
the grammar, and not on the specific number of available training samples.

4.3 GENERALIZATION VS. MEMORIZATION
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Figure 4: Memorization vs. generalization on
the RHM. For training set size P = 256, the dif-
fusion model generates valid data only when it is
memorizing For P = 16,384, instead, the model
generalizes, approximately at τ∗, before starting
to memorize. The memorization time scales lin-
early in P (insets). Data for RHM parameters
v = 16, m = 4, L = 3, s = 2.

We consider an instantiation of the RHM with
a given set of parameters (depth L, branch-
ing factor s, vocabulary size v, and number of
synonyms m). We generate P distinct strings
from this grammar, which constitute the train-
ing set. Each token is one-hot encoded, and
we train a Discrete Denoising Diffusion Prob-
abilistic Model (D3PM) (Austin et al., 2021)
with uniform transition probabilities (Hooge-
boom et al., 2021). The architecture of the
diffusion model is made of a convolutional U-
Net (Ronneberger et al., 2015) with 2L layers
in total – L in the encoder and L in the de-
coder. We consider highly overparameterized
networks with 8,192 channels per layer, with
a total number of parameters varying between
0.4B for L = 3 and 0.7B for L = 5. We use the
maximal-update (µP) initialization to ensure
feature learning (Yang & Hu, 2020). We train
the neural network using Adam to optimize
the training loss of discrete diffusion (Austin
et al., 2021), derived from a variational bound
on the negative log-likelihood (Sohl-Dickstein
et al., 2015). Further experimental details are
reported in Appendix B.

We study the evolution of the models during
training. For checkpoints at different training
times, we track the training loss and the val-
idation loss on 2,048 held-out data. In addi-
tion, we generate 1,024 data points with the dif-
fusion model and measure their Hamming dis-
tance with the training data, determining if they
are copies or not. We also check if the generated data are compatible with all the rules of the RHM,
determining if they are valid strings of the grammar or not.

Results and analysis Figure 4 shows the evolution of a diffusion model during training with RHM
parameters v = 16, m = 4, L = 3, s = 2. For these parameters, the sample complexity to learn
all the rules of the grammar is P ∗ ≈ 4,096. Varying the training set size P , we observe that the
validation and training losses start decreasing at the same time and follow the same behavior until
separating later in training, at a time depending on P . Comparing these losses with the fraction of
copies between the generated data and the training ones, we observe that the increase of the valida-
tion loss corresponds to the onset of memorization. As observed for real data in section 3, we find
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Figure 5: Diffusion models achieve partial generalization in the RHM before memorizing. (a)
The diffusion model learns progressively deeper RHM rules during training. However, the rules
at the deepest level L = 5 are never learned, and the corresponding error decreases only when
memorization occurs, since P = 1,024 is smaller than the sample complexity P ∗

L ∼ 104. (b) Two
diffusion models trained on disjoint training sets learn the same score function before the onset of
memorization at τmem. Data for RHM parameters v = 16, m = 3, L = 5, s = 2.

empirically that the onset of memorization requires a number of training steps τmem proportional to
P (insets of Figure 4). The fraction of errors measures how many of the generated data are not com-
patible with the RHM rules. We observe that for P < 4,096, the fraction of errors decreases only in
correspondence with memorization: the generated data are valid according to the grammar rules, but
they are copies of the training set. For P > 4,096, instead, the fraction of errors decreases before
the onset of memorization: the diffusion model is generating valid data that do not belong to the
training set, and it is therefore generalizing. In Appendix F, we show that the generated data respect
the correct statistics of the RHM rules, therefore learning the true data distribution. As a reference,
Figure 4 reports the time τ∗ = P ∗ as a vertical dashed line. We observe that the generalizing mod-
els (P = 4,096 and P = 16,384) achieve a fraction of errors < 15% for τ > τ∗. Therefore, these
models present a dynamical phase τ∗ < τ < τmem where they achieve nearly perfect generalization
before starting to memorize. This phase becomes longer with increasing P .

4.4 PARTIAL GENERALIZATION

For P < P ∗, the diffusion model does not have enough training data to learn the deeper levels of
the rules. However, it can still learn the lower levels of the rules up to layer ℓ̃, with P > P ∗

ℓ̃
, as

the sample complexity P ∗
ℓ increases with ℓ. In this case, the model achieves partial generalization,

corresponding to learning to generate data with some local coherence but lacking a global one,
consistent with observations of Figure 2.

In Figure 5(a), a diffusion model is trained with P = 1,024 training points of an RHM with depth
L = 5, while the sample complexity to learn all the rules is P ∗ = P ∗

L ≃ 104. During training, we
generate data with the diffusion model and measure if they are compatible with the RHM rules at
layer ℓ, measuring the corresponding fraction of errors. The figure shows that the errors at the layers
ℓ ≤ 3 decrease at training times depending on ℓ, in accordance with τℓ ∝ P ∗

ℓ (Favero et al., 2025).
However, for ℓ > 3, the fractions of errors reach small values only at the onset of memorization
τmem, when the fraction of copies of the training set goes up. This behavior implies that the model
never learns the rules at the deeper levels ℓ = 4, 5 since the number of training data is smaller than
the sample complexity, and generates data with global consistency only when it starts memorizing.

Even when partially generalizing, diffusion models learn the same score function Even
without achieving perfect generalization, diffusion models gradually improve their generalization
during training – before memorizing – by capturing some structure of the underlying data distri-
bution. In the RHM case, this corresponds to the lowest levels of the grammar. As a consequence,
the score function that is learned during training before memorization is the same independently of
the sampling of the training set. In Figure 5(b), we train two diffusion models in the same setting

8
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as Figure 5(a) but with two disjoint training sets. We measure the difference in their outputs –
i.e., the components of the learned score – during training by computing their Hellinger distance
averaged over the tokens and the sampling of the diffusion trajectories from 1,024 test data. We
observe that the distance between the output functions of the two models, i.e., the learned scores –
which determine the generative process – remains stable during training and only jumps to higher
values when the models start memorizing their respective training sets. Therefore, the two diffusion
models learn very similar score functions when their generalization is gradually improving, before
they overfit their respective empirical scores.

5 RELATED WORK

Memorization in diffusion models Several works have documented the tendency of diffusion
models to memorize the training data (Carlini et al., 2023; Somepalli et al., 2022; 2023; Wang et al.,
2024). Dockhorn et al. (2022) proposes a mitigation strategy based on differentially private stochas-
tic gradient descent, while Chen et al. (2024) introduces an anti-memorization guidance. Yoon
et al. (2023); Kadkhodaie et al. (2023); Gu et al. (2025) interpret memorization as an overfitting
phenomenon driven by the large capacity of overparameterized neural networks. Kadkhodaie et al.
(2023) shows that underparameterized models trained on disjoint training sets learn the same score
function, therefore generalizing by sampling the same target distribution; in contrast, overparameter-
ized models memorize. Li et al. (2024); Wang & Vastola (2024) find that during their initial training
phases, overparameterized diffusion models have an inductive bias towards learning a Gaussian ap-
proximation of data. This process achieves a primitive form of partial generalization by capturing
some data’s low-dimensional structure before the model begins to fully memorize the training points.
Our results extend this viewpoint to later training stages and higher-order data statistics. Addition-
ally, we quantify the timescale at which models transition from generalizing to memorizing.

log P1 log P2 log PL

training set size P

log 1

log 2

log L

tra
in

in
g 

tim
e 

Memorization Generalization

Partial Generalization = 2

Partial Generalization = 1

mem P

Figure 6: Phase diagram of generaliza-
tion vs. memorization indicating different
regimes as a function of training time τ and
sample complexity P : partial generalization,
(full) generalization and memorization. Note
that in the RHM, learning proceeds through
well-defined steps, while it is smoother for
natural data.

Overfitting in supervised learning vs. diffusion
models Although the dynamics of first gener-
alizing and then overfitting to the training data is
observed also in some supervised learning settings
(Advani et al., 2020; Nakkiran et al., 2021) –
where recent theoretical progress has been made
(Montanari & Urbani, 2025) – these problems have
fundamental differences with memorization in dif-
fusion models, i.e., learning the empirical score. For
instance, in a typical regression task, a model fits a
target function whose observations are assumed to
be corrupted by external, unstructured noise. In the
diffusion context, instead, the empirical score at low
noise levels significantly differs from the population
one: the corresponding “noise”, i.e., the difference
between the two functions, is inherent to the training
set, structured, and defined over the entire domain of
the inputs xt. An overparameterized model converg-
ing to the empirical target, therefore, memorizes the
training set and cannot generalize. This contrasts
with noisy regression, where overparameterization
can surprisingly be beneficial, leading to double
descent (Spigler et al., 2019; Belkin et al., 2019)
and benign overfitting (Bartlett et al., 2020).

6 CONCLUSION

We have argued that the learning dynamics in diffusion models is best understood as a competition
between time scales, as summarized in Figure 6. A larger training set implies a larger memorization
time, thus opening a larger time window to generate more coherent data. These results open new
avenues for fine control of copyright issues, using early stopping to avoid memorization and building
backward flows that are nearly independent of the training set, as we demonstrated.

9
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rization and generalization in generative diffusion under the manifold hypothesis. arXiv preprint
arXiv:2502.09578, 2025.

Madhu S. Advani, Andrew M. Saxe, and Haim Sompolinsky. High-dimensional dynamics of gen-
eralization error in neural networks. Neural Networks, September 2020. ISSN 0893-6080. doi:
10.1016/j.neunet.2020.08.022.

Luca Ambrogioni. The statistical thermodynamics of generative diffusion models. arXiv preprint
arXiv:2310.17467, 2023.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.
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A FURTHER RELATED WORK

Theory of diffusion Under mild assumptions on the data distribution, diffusion models achieve
a sample complexity scaling exponentially with data dimension (Block et al., 2020; Oko et al.,
2023). The sampling and memorization process has been studied for Gaussian mixtures and linear
manifolds using the empirical score function (Biroli et al., 2024; Ambrogioni, 2023; Achilli et al.,
2024; 2025; Li & Chen, 2024). Learning the empirical score function was studied in (Cui et al.,
2023; Shah et al., 2023; Han et al., 2024). The memorization-generalization trade-off in terms of
model capacity with random features was studied in George et al. (2025). Generalization bounds
for early-stopped random features learning simple score functions were derived in Li et al. (2023).
(Biroli & Mézard, 2023; Ambrogioni, 2023; Biroli et al., 2024) show for Gaussian mixtures the
existence of a characteristic noise level during the diffusion process where the single modes merge
into one. In Biroli et al. (2024), another noise scale is identified, corresponding to short diffusion
times, where the backward process collapses into the single training data points, associated with
memorization. Kamb & Ganguli (2024) studies generalization in vision diffusion models through
the inductive bias of translational equivariance and locality.

Diffusion models for hierarchical data For hierarchically structured data, Sclocchi et al.
(2024b;a) show that the reconstruction of high-level features undergoes a phase transition in the
diffusion process, while low-level features vary smoothly around the same noise scale. For the same
data model, Favero et al. (2025) shows that U-Net diffusion models learn to generate these data by
sequentially learning different levels of the grammatical rules, with a sample complexity polyno-
mial in data dimension. Sclocchi et al. (2024b) shows that the Bayes-optimal denoising algorithm
for hierarchical data corresponds to belief propagation; Mei (2024) shows that U-Net architectures
are able to efficiently approximate this algorithm. Moreover, Garnier-Brun et al. (2024) shows that
transformers can implement the same algorithm.

B EXPERIMENTAL DETAILS

B.1 VISION DIFFUSION MODELS

iDDPM In our experiments, we utilize Improved Denoising Diffusion Probabilistic Models
(iDDPMs) for image generation on the CIFAR-10 and CelebA datasets, following the code-
base of Improved DDPMs (Nichol & Dhariwal, 2021): https://github.com/openai/
improved-diffusion. Specifically, we train iDDPMs with 256 and 128 channels for CIFAR-
10 and CelebA, respectively. Our models are implemented using a U-Net architecture with attention
layers and 3 resolution blocks. We use 4, 000 diffusion steps, a cosine noise schedule, a learning
rate of 10−4, and a batch size of 128. Training is performed for 262,144 steps using a hybrid
objective (Nichol & Dhariwal, 2021) and the Adam optimizer with dropout of 0.3.

Stable Diffusion We fine-tune Stable Diffusion v2.11 using the codebase https://github.
com/somepago/DCR from Somepalli et al. (2022; 2023). The model is pre-trained on LAION-
2B (Schuhmann et al., 2022) and consists of a latent diffusion U-Net architecture with frozen text
and autoencoder components. We fine-tune the U-Net for 262,144 steps on 8,192 images from the
LAION-10k dataset at resolution 256×256, using a batch size of 16. We employ a constant learning
rate of 5× 10−6 with 5,000 warm-up steps and use a single image-caption pair per datapoint.

B.2 LANGUAGE DIFFUSION MODELS

MD4 Our experiments leverage the codebase of MD4 (Shi et al., 2024), available at https://
github.com/google-deepmind/md4. MD4 is a masked diffusion model that progressively
transforms tokens into a special [MASK] token as training proceeds. Specifically, at each timestep
t, each non-masked token has a probability βt of being replaced by [MASK]. The forward transition
process for this model can be formally described using a one-hot encoding of the |V| + 1 states,
where the transition matrix is defined as:

Qt = (1− βt)I+ βt1e
⊤
M . (3)

1https://huggingface.co/stabilityai/stable-diffusion-2-1
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Here I the identity matrix, 1 a vector of ones and eM the one-hot-encoding vector corresponding to
the [MASK] symbol. The entries [Qt]ij of Qt indicate the probability of the token xk transitioning
from state i to state j, i.e., [Qt]ij = q(xk,t = j|xk,t−1 = i). At the final timestep T , all tokens are
fully masked, i.e., xk,T = [MASK] for every k ∈ [dim(x)]. For our experiments, we train MD4
using a batch size of 64 and a context size of 256. All other hyperparameters are kept consistent
with the original MD4 implementation.

B.3 RANDOM HIERARCHY MODEL

D3PM For our experiments on the Random Hierarchy Model, we employ convolutional U-Net-
based Discrete Denoising Diffusion Probabilistic Models (D3PMs) (Austin et al., 2021). These
models are tasked to predict the conditional expectation E(x0|xt), which parameterizes the reverse
diffusion process. In particular, we consider a uniform diffusion process (Hoogeboom et al., 2021;
Austin et al., 2021), where, at each timestep t, tokens can either stay unchanged or, with probability
βt, can transition to some other symbol in the vocabulary. One-hot encoding the |V| states, the
forward transition matrix formally reads:

Qt = (1− βt)I+
βt
|V|

11⊤. (4)

Here I is the identity and 1 is a vector of all ones. At the final time T , the stationary distribu-
tion is uniform over the vocabulary. The convolutional U-Net has L resolution blocks in both the
encoder and decoder parts. Each block features the following specification: filter size s, stride s,
8,192 channels per layer, GeLU non-linearity, skip connections linking encoder and decoder blocks
of matching resolution to preserve multi-scale feature information. We include embedding and un-
embedding layers implemented as convolutional layers with a filter size of 1. This architecture is
specifically aligned with the RHM’s hierarchical structure, where the filter size and stride of s in the
convolutional layers mirror the branching factor of the RHM tree. While this design provides prac-
tical benefits in terms of training efficiency, it should not alter the fundamental sample complexity
of the problem, as long as the network is sufficiently deep and expressive (Cagnetta et al., 2024).
The networks are initialized with the maximal-update (µP) parameterization (Yang & Hu, 2020),
ensuring stable feature learning even in the large-width regime. We train with Adam with a learning
rate of 0.1 and a batch size of 32. For the diffusion process, we adopt a linear schedule with 1,000
noise levels.

B.4 HARDWARE

All experiments are run on a single NVIDIA H100 SXM5 GPU with 94GB of RAM.

C EXPERIMENTS ON STABLE DIFFUSION

We consider Stable Diffusion v2.1 (Ronneberger et al., 2015), a text-to-image latent diffusion model
pre-trained on the LAION-2B dataset (Schuhmann et al., 2022). We fine-tune this model for 262,144
steps on 8, 192 samples from the LAION-10k dataset (Somepalli et al., 2023), using a resolution of
256 × 256. During fine-tuning, the text encoder and encoder-decoder components are kept frozen.
We use a held-out validation set of 1,024 image-text pairs to monitor the validation loss. Full training
details are provided in Appendix B.

To quantify memorization, we follow the protocol of Somepalli et al. (2022) and compute a simi-
larity score for each generated image based on the cosine similarity of SSCD (Self-Supervised De-
scriptor for Image Copy Detection) (Pizzi et al., 2022) features, extracted from a ResNet-50 model.
Each score is defined as the similarity between a generated image and its nearest neighbor in the
training set.

Figure 7(a) plots the training and validation losses as a function of the training step τ . As observed
in the main text, initially, both losses decrease, indicating generalization: the model output aligns
increasingly with the population score. At a critical time τmem ∝ P , the validation loss diverges
from the training loss, marking the onset of memorization. Early stopping at this point can prevent
the model from entering the memorization phase.
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(a) Generalization-memorization dynamics.

8,192 262,144
training step 

0.0

0.1

0.2

0.3

0.4

0.5

sim
ila

rit
y 

sc
or

e

LAION-10k

(b) Similarity scores.

Figure 7: Memorization dynamics in Stable Diffusion. (a) Training and validation losses as a
function of training step τ for Stable Diffusion fine-tuned on different subset of LAION-10k with
P training points. Both losses initially decrease, indicating generalization, and diverge at the mem-
orization onset time τmem. The memorization time τmem is linear in the training set size P . (b)
Cosine similarity scores between SSCD ResNet embedding for generated images and their nearest
training neighbor at early stopping (τ = 8,192) and final training (τ = 262,144). The dashed line
indicates the mean similarity score between the closest LAION-10k samples. The sharp increase at
late training signals memorization.

Figure 8: Replicates generated by Stable Diffusion. Example generations (left) from the final
training checkpoint (τ = 262,144) with similarity score > 0.5 to their nearest neighbor in the
training set (right), confirming memorization.
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(a) iDDPM on CIFAR-10.
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(b) MD4 on text8.

Figure 9: Scaling of memorization time with dataset size. For each dataset size P , we linearly
interpolate the train and validation losses as a function of the training step τ (on a logarithmic
grid) and define the memorization time τmem as the first step at which the interpolated loss gap
Lval(τ)−Ltrain(τ) exceeds a fixed threshold (different colors). We then plot τmem as a function of
P for (a) iDDPMs trained on CIFAR-10 and (b) MD4 language diffusion models trained on text8. In
both cases, the data are well described by a power-law fit τmem ∝ P β (dashed lines) with exponents
β close to one, indicating an approximately linear growth of memorization time with dataset size
across modalities.

In Figure 7(b), we report the similarity scores for 200 generated images at two checkpoints: early
stopping (τ = 8,192) and the final training step (τ = 262,144). For reference, we also show the
similarity score for real images from the full LAION-10k dataset (black dashed line). At the early
stopping time, the generated images exhibit diversity similar to that of the dataset. In contrast, by
the end of training, the similarity score increases by a factor of two, indicating memorization.

Finally, in Figure 8, we show representative examples of replicated samples (similarity score > 0.5)
from the final checkpoint, confirming that Stable Diffusion memorized part of its training set.

D FURTHER RESULTS ON IDDPMS

Scaling of memorization time To further quantify how memorization time scales with dataset
size, we estimate a memorization onset time τmem(P ) for each number of training examples P . For
every setting of P , we record the training and validation losses as a function of the training step
τ and linearly interpolate them in τ on a logarithmic grid to obtain dense loss curves. We then
consider the difference between validation and training loss and define τmem(P ) as the first training
time at which this loss gap exceeds a fixed threshold value. The resulting τmem values for iDDPMs
on CIFAR-10 are shown in 9(a), where they are well described by a power-law fit τmem ∝ P β with
β ≈ 1, indicating an approximately linear growth of memorization time with dataset size.

FID dynamics Figure 10 reports the Fréchet Inception Distance (FID) as a function of the training
step τ for a DDPM trained on 16,384 CIFAR-10 images, consistent with the setup in Figure 1. At
each checkpoint, we generate 32,768 samples and compute the FID against the union of CIFAR-
10 standard train and test splits. The FID captures both the quality and diversity of the generated
images. As training progresses, the FID decreases monotonically until the memorization onset time
τmem, after which it gradually increases – reflecting a loss in sample diversity as the model begins
replicating its training data.

Further examples of generations Figure 11 presents further images sampled from the early
stopped iDDPM trained on 16,384 CIFAR-10 images.

Examples of copies Figure 12 shows examples of generated samples (top row) and their nearest
neighbors in the training set (bottom row) for the iDDPM trained on 8,192 CIFAR-10 images. These
examples are taken from the end of training, within the memorization phase, where the model begins
to replicate its training data.
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Figure 10: FID dynamics. Fréchet Inception Distance (FID) as a function of training step τ for
a DDPM trained on 16,384 CIFAR-10 images. The FID initially decreases, reflecting improved
generation quality and diversity, but begins to rise past τmem as the model starts copying training
examples.

Figure 11: CIFAR-10 samples generated with early-stopped model. Additional samples from the
iDDPM trained on 16,384 CIFAR-10 images, generated at the early stopping point before memo-
rization. The model produces diverse and high-quality images without replicating the training data.
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Figure 12: Examples of copies on CIFAR-10. Top: samples generated by the iDDPM trained on
8,192 CIFAR-10 images at the end of training. Bottom: nearest neighbors from the training set. The
model reproduces specific training examples, indicating memorization.

Generated sample 1
on french anarchism reemerged
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groups and trade unions from
this movement the conf d ration
g n rale du travail general
confederation of work cgt was
formed in one eight nine flve as
the first major

Nearest training sequence
on french anarchism reemerged
influencing the bourses de
travails of autonomous workers
groups and trade unions from
this movement the conf d ration
g n rale du travail general
confederation of work cgt was
formed in one eight nine five as
the first major

Generated sample 2
erpetual covenant of wareagayndt
every people tribe and state
ocning a foot of land between
here and tierra dul fuego beeause
opposition to slavery expansion
was the key issue uniting the
redublican patty at the time
lincol is sometimes critic zed
for put

Nearest training sequence
erpetual covenant of war against
every people tribe and state
owning a foot of land between
here and tierra del fuego because
opposition to slavery expansion
was the key issue uniting the
republican party at the time
lincoln is sometimes criticized
for put

Generated sample 3
s with a hagh levul tf
intellectual function ne have
aspirger s autasm or taat both
lypes are merely g eks with a
medical label attacied also
ausicm has evolved in the
public understantingpbot the
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cas

Nearest training sequence
s with a high level of
intellectual functioning have
asperger s autism or that both
types are merely geeks with a
medical label attached also
autism has evolved in the
public understanding but the
popular identification of
autism with relatively severe
cas

Figure 13: Examples of copies on text8. Left: Diffusion-generated text with MD4 trained on 1, 024
training sequences of the text8 dataset for 524, 288 SGD steps. Right: the corresponding nearest
training sequences. The generated samples are copies of the training set, up to a few character-level
mistakes.
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Figure 14: Sampling of RHM production rules. Mean occurrence (left) and centered covariance
(right) of the production rules sampled by a diffusion model trained on P = 16,384 strings (v = 16,
m = 4, L = 3, s = 2). The model, trained with early stopping (τ = 32,768), samples all RHM
rules with a mean occurrence that is approximately uniform (up to sampling noise). Likewise, the
correlations between the cooccurrence of sampled rules show that they are sampled approximately
independently.

E FURTHER RESULTS ON MD4

Scaling of memorization time Similarly to DDPMs, in Figure 9(b) we study how the memoriza-
tion time scales with the number of training examples P for GPT-based MD4 models trained on
text8. The resulting τmem values exhibit a clear power-law dependence on P , τmem ∝ P β , with
an exponent β close to one, mirroring the behavior observed for iDDPMs and indicating a similar
linear growth of memorization time with dataset size in the language setting.

Examples of copies Figure 13 shows examples of generated samples and their nearest neighbors
in the training set for the MD4 trained on 1,024 text8 sequences. These examples are taken from
the end of training, within the memorization phase, where the model begins to replicate its training
data. In particular, the generated samples are copies of the training set, up to a few character-level
mistakes.

F FURTHER RESULTS ON THE RHM

Production rules sampling Figure 14 shows the mean occurrence and centered covariance of
the production rules sampled by a diffusion model trained on P = 16,384 strings (v = 16, m =
4, L = 3, s = 2). The model, trained with early stopping (τ = 32,768), samples all RHM
rules with a mean occurrence that is approximately uniform (up to sampling noise); likewise, the
correlations between the cooccurrence of sampled rules show that they are sampled approximately
independently. Therefore, the generated data reproduces the correct data distribution of the RHM,
corresponding to generalization.

Robustness to optimizer choice To test robustness to the optimization dynamics, we repeated the
RHM experiments with L = 3, s = 3, v = 24, m = 12 using the same D3PM architecture and
training protocol as in the main text, varying only the optimizer between Adam and SGD. For each
optimizer, we set the learning rate to its maximal stable learning rate, defined as the largest value for
which the training loss reliably converges. Figure 15 confirms the robustness of τmem to the choice
of optimizer in this setting.
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Figure 15: Effect of the optimizer on the onset of memorization in the RHM. Fraction of copies
as a function of training step for a D3PM trained on P = 2, 048 sequences sampled from an RHM
with L = 3, s = 3, v = 24, m = 12, using Adam and SGD, each with its maximal stable
learning rate (largest learning rate yielding convergent training loss). The curves nearly coincide,
and the onset of memorization occurs at approximately the same number of training steps for both
optimizers.

G SCALING ARGUMENT FOR THE MEMORIZATION TIME OF KERNEL
METHODS

In this section, we analyze the training time τmem required for a kernel to learn the score of P well-
separated training points in the low-noise limit for a fixed noise level. This timescale corresponds to
the one for diffusion models to memorize the training data.

Setting We assume the empirical data distribution is the Gaussian mixture

pσ(x) =
1

P

P∑
j=1

N (x|xj , σ2Id), (5)

where the xj ∈ Rd are P distinct training points. We work in a low-noise limit, where the
noise standard deviation σ is much smaller than the typical distance between data points, i.e.,
σ ≪ minj ̸=i ∥xi − xj∥. This ensures that the Gaussian components have negligible overlap, so
pσ is approximately supported on P disjoint neighborhoods.

We consider learning the score ∇x log pσ(x) at fixed σ with kernel regression. The dynamics of
learning is governed by the spectral properties of the integral operator of the kernel K, defined as

(Kf)(x) =

∫
K(x, y)f(y)dpσ(y), (6)

with respect to the measure pσ . The learning time for a specific mode (eigenfunction) of the data
scales inversely with the corresponding eigenvalue of this operator.

We assume that the kernel K(x, y) can be expanded for small distances r = ∥x− y∥ as

K(x, y) = κ(r) = 1− C(d) rν +O(rν+1) as r → 0, (7)

with C(d) a coefficient that depends on the choice of the kernel and the input dimension d. For
instance, the Neural Tangent Kernel (NTK) (Jacot et al., 2018) of neural networks with ReLU acti-
vations corresponds to ν = 1, while their Random Feature Kernel (RFK) corresponds to ν = 2.

Local eigenfunctions In the low-noise limit, the score in the vicinity of a data point xi is domi-
nated by the i-th Gaussian component:

∇x log pσ(x) ≃ ∇x log

[
1

P
N (x|xi, σ2Id)

]
= −x− xi

σ2
. (8)

This shows that the target function is locally linear and motivates our ansatz of approximate eigen-
functions to probe the spectrum of K. In particular, we construct a set of vector-valued functions
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{ψi}i∈[P ] centered at each data point xi:

ψi(x) = (x− xi)R

(
∥x− xi∥

σ

)
, (9)

where R : [0,∞) → R is a smooth cutoff function (e.g., R(r) = e−r) that decays rapidly for
r ≳ 1. The support of ψi is thus concentrated in the ballBσ(xi). These functions are asymptotically
orthogonal in L2(pσ): ⟨ψi, ψj⟩L2(pσ) = O(e−c/σ2

) for i ̸= j.

Eigenvalues and memorization time We compute the eigenvalue λi associated with each ψi:

λi =
⟨ψi,Kψi⟩L2(pσ)

∥ψi∥2L2(pσ)

. (10)

The squared norm is dominated by the integral over the i-th component of the mixture:

∥ψi∥2L2(pσ)
=

∫
∥ψi(x)∥2pσ(x)ddx ≃ 1

P

∫
∥x−xi∥2R2

(
∥x− xi∥

σ

)
N (x|xi, σ2Id)ddx. (11)

Changing to local coordinates u = x−xi

σ :

∥ψi∥2L2(pσ)
≃ σ2

P

∫
∥u∥2R2(∥u∥)N (u|0, Id)ddu (12)

:= γd(R)
σ2

P
, (13)

where
γd(R) =

∫
∥u∥2R2(∥u∥)N (u|0, Id) ddu (14)

is a dimension-dependent constant (for fixed R) that does not depend on σ or P .

The numerator is given by the quadratic form

⟨ψi,Kψi⟩L2(pσ) =

∫∫
ψi(x) · ψi(y)K(x, y)pσ(x)pσ(y) d

dx ddy. (15)

Given the localized support of ψi and the non-overlapping assumption for the Gaussians, the integral
is non-negligible only when both x and y are near xi:

⟨ψi,Kψi⟩L2(pσ) ≃
1

P 2

∫∫
ψi(x) · ψi(y)K(x, y)N (x|xi, σ2Id)N (y|xi, σ2Id) ddx ddy. (16)

We now substitute the expansion of the kernel near the origin:

⟨ψi,Kψi⟩L2(pσ) ≃
1

P 2

[∫
ψi(x)N (x|xi, σ2Id)ddx

]
·
[∫

ψi(y)N (y|xi, σ2Id)ddy
]

(17)

− C(d)

P 2

∫∫
ψi(x) · ψi(y)∥x− y∥νN (x|xi, σ2Id)N (y|xi, σ2Id) ddx ddy.

The first term vanishes because ψi(x) is an odd function with respect to the center xi, while
N (x|xi, σ2Id) is even. The integral is therefore zero. The leading contribution comes from the
second term. We again change variables to u = (x− xi)/σ and v = (y − xi)/σ obtaining

⟨ψi,Kψi⟩L2(pσ) ≃ −C(d)
P 2

∫∫ [
σuR(∥u∥)

]
·
[
σvR(∥v∥)

] (
σ∥u− v∥

)ν N (u|0, Id)N (v|0, Id) ddu ddv

(18)

= −C(d) σ
2+ν

P 2

∫∫
(u · v)R(∥u∥)R(∥v∥) ∥u− v∥ν N (u|0, Id)N (v|0, Id) ddu ddv.

(19)

We denote the remaining integral by

βd(R, ν) :=

∫∫
(u · v)R(∥u∥)R(∥v∥) ∥u− v∥ν N (u|0, Id)N (v|0, Id) ddu ddv, (20)
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so that

⟨ψi,Kψi⟩L2(pσ) ≃ −C(d)βd(R, ν)
σ2+ν

P 2
. (21)

Collecting everything, the eigenvalue is

λi =
⟨ψi,Kψi⟩L2(pσ)

∥ψi∥2L2(pσ)

≃ −C(d) βd(R, ν)
γd(R)

σ2+ν/P 2

σ2/P
= −C(d) βd(R, ν)

γd(R)

σν

P
. (22)

Thus, up to a dimension- and kernel-dependent prefactor −C(d)βd(R, ν)/γd(R), we obtain

λi ∝
σν

P
. (23)

The training time required to learn these localized eigenfunction scales as the inverse of the eigen-
value. This defines the memorization timescale

τmem ∼ λ−1
i ∼ P

σν
. (24)

Dimension dependence of γd and βd. The constants γd(R) and βd(R, ν) depend only on d, ν,
and the choice of cutoff R. To make their d-dependence explicit, it is convenient to specialize to the
simplest case R ≡ 1. This simplification is justified because the factors N (u|0, Id) and N (v|0, Id)
already suppress the integrand exponentially for ∥u∥ ≫ 1 or ∥v∥ ≫ 1.

In that case,

γd(R ≡ 1) =

∫
∥u∥2 N (u | 0, Id) ddu = E[∥u∥2] = d, (25)

so
γd(1) = d. (26)

For the numerator constant,

βd(1, ν) =

∫∫
(u · v) ∥u− v∥ν N (u | 0, Id)N (v | 0, Id) ddu ddv = E

[
u · v ∥u− v∥ν

]
, (27)

with u, v i.i.d.∼ N (0, Id). Introducing the variables

a =
u+ v√

2
, b =

u− v√
2
, (28)

we have a, b ∼ N (0, Id) independent, and

u · v =
1

2

(
∥a∥2 − ∥b∥2

)
, ∥u− v∥ =

√
2 ∥b∥. (29)

Therefore

βd(1, ν) = E
[
u · v ∥u− v∥ν

]
= E

[
1

2

(
∥a∥2 − ∥b∥2

)
(
√
2∥b∥)ν

]
. (30)

Using the independence of a and b and the solution for the radial moments of isotropic Gaussians,

βd(1, ν) =
1

2

(
E[∥a∥2]E[(

√
2∥b∥)ν ]− E

[
∥b∥2(

√
2∥b∥)ν

])
(31)

=
1

2

(
d 2ν

Γ
(
d+ν
2

)
Γ
(
d
2

) − 2ν+1 Γ
(
d+ν+2

2

)
Γ
(
d
2

) )
(32)

=
1

2
2ν

1

Γ
(
d
2

) (dΓ(d+ν
2

)
− 2Γ

(
d+ν+2

2

))
(33)

= −ν
2
2ν

Γ
(
d+ν
2

)
Γ
(
d
2

) . (34)
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Thus, for R ≡ 1 the ratio appearing in the eigenvalue is

βd(1, ν)

γd(1)
= −ν

2
2ν

1

d

Γ
(
d+ν
2

)
Γ
(
d
2

) . (35)

Using the large-d asymptotics of the Gamma function,

Γ
(
d+ν
2

)
Γ
(
d
2

) ∼
(
d

2

)ν/2

, d→ ∞, (36)

we obtain
βd(1, ν)

γd(1)
∼ −2ν/2−1ν dν/2−1. (37)

Plugging this into the eigenvalue expression

λi ≃ −C(d) βd(1, ν)
γd(1)

σν

P
∼ 2ν/2−1 ν C(d) dν/2−1 σ

ν

P
. (38)

Consequently, the memorization time scales as

τmem ∼ λ−1
i ∼ C(d)−1 d1−ν/2 P

σν
. (39)

Remarks Notice that this result is distribution-agnostic as it simply uses the fact that training
points are isolated. Moreover, as long as diffusion happens in the ambient space, the same argument
applies to data supported on a manifold of lower dimension deff , so the intrinsic dimension of the
data does not affect our results, i.e., Equation 39 depends on d only and not on deff .

All in all, this argument extends the results from contemporaneous work on random features in
the proportional regime (number of neurons proportional to the input dimension) (Bonnaire et al.,
2025) to any isotropic kernels. Our derivation relies only on the local behavior of the kernel and
shows that random features and neural networks in the NTK limit have different behaviors.

Numerical experiments We confirm our theoretical scaling numerically in Figure 16 for a one-
hidden-layer fully-connected network in the lazy (NTK) regime (Chizat et al., 2019). Notably, the
same experimental setting under a mean-field (feature learning) initialization (Mei et al., 2018) also
exhibits a memorization time consistent with our NTK-based prediction.

Furthermore, Figure 18 investigates the effect of batch size B. For both lazy and feature learning
regimes, the timescale to fit the empirical score appears independent of B, from small-batch SGD
(B = 8) to full-batch gradient descent (B = P ). This observation implies that the memorization
time only depends on the size of the training set and not on the number of times a training point is
observed.
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Figure 16: Neural Tangent Kernel (NTK) initialization: one-hidden layer ReLU neural net-
work (width 8192) learning the empirical score at fixed diffusion noise variance σ2, trained
with full-batch gradient descent. Training points sampled from a Gaussian distribution in d = 64
dimensions. Left: at fixed training set size P = 128, training and test loss diverge at a timescale
(τmem) depending on σ (inset), which scales as σ−1 (main). Right: at fixed σ2 = 3.2 · 10−2, τmem

increases with P (inset), consistently with the scaling τmem ∝ P (main).
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Figure 17: Feature learning (mean-field) initialization, same setting as Figure 16. Also in this
case, τmem is compatible with the scaling τmem ∼ σ−1 at fixed P (left), and τmem ∝ P at fixed σ
(right).
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Figure 18: Effect of changing batch sizeB, same setting as Figs. 16 and 17 (fixed σ2 = 3.2·10−2,
P = 128). Varying the batch sizeB of training, both with the NTK (left) and feature learning (right)
initialization, does not affect τmem.
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Figure 19: Optimizer dependence. Training loss as a function of training step for a one-hidden-
layer ReLU neural network (NTK initialization) trained with Adam and SGD at multiple dataset
sizes P . For each optimizer, we choose its maximal stable learning rate, defined as the largest learn-
ing rate for which the training loss reliably converges. For both optimizers, the curves at different P
start decaying at the same point when plotted against τ/P , indicating the same linear scaling of the
characteristic training time with P . Adam and SGD differ only by a horizontal shift, corresponding
to an OP (1) change in the constant of proportionality. The overall scaling and decay of the loss
remain essentially identical. The inset shows the same data as a function of the unscaled training
step τ .
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