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Abstract. We investigate Controlled Query Evaluation (CQE) over on-
tologies, where information disclosure is regulated by epistemic depen-
dencies (EDs), a family of logical rules recently proposed for the CQE
framework. In particular, we combine EDs with the notion of optimal GA
censors, i.e. maximal sets of ground atoms that are entailed by the ontol-
ogy and can be safely revealed. We focus on answering Boolean unions of
conjunctive queries (BUCQs) with respect to the intersection of all opti-
mal GA censors—an approach that has been shown in other contexts to
ensure strong security guarantees with favorable computational behav-
ior. First, we characterize the security of this intersection-based approach
and identify a class of EDs (namely, full EDs) for which it remains safe.
Then, for a subclass of EDs and for DL-LiteR ontologies, we show that
answering BUCQs in the above CQE semantics is in AC0 in data com-
plexity by presenting a suitable, detailed first-order rewriting algorithm.
Finally, we report on experiments conducted in two different evaluation
scenarios, showing the practical feasibility of our rewriting function.
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1 Introduction

The ever-growing volume of structured and semantically rich data has created
new challenges for knowledge management and data security. Several modern ap-
plications in domains like healthcare and finance rely on ontologies to establish
shared vocabularies and formal semantics, facilitating effective data organiza-
tion and retrieval. While these tools provide sophisticated querying and infer-
ence, they also raise critical concerns about information disclosure: sensitive facts
may be unintentionally revealed through apparently harmless queries when the
underlying ontological axioms are taken into account. Controlled Query Evalua-
tion (CQE) [4,5,7,18] is a framework that addresses these concerns by mediating
access to data in such a way that only information compliant with a formal data
protection policy—expressed in logical terms—is accessible through queries.

This work applies CQE to ontologies based on Description Logics (DLs)1 [2], a
family of logics, many of which expressible in first-order (FO) logic, for which the
most important reasoning problems are usually decidable. In DLs, knowledge is
structured into a TBox, containing intensional axioms, and an ABox, containing
extensional facts. The pivotal notion in CQE is the one of censor, a set of logical
1 For an up-to-date overview of CQE in the context of DLs, we refer the reader to [6,13].
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formulas that are logically implied by the ontology and comply with the policy.
Specifically, we are interested in GA censors [15], which consist of ground atoms,
hence structurally resembling ABoxes or relational databases.

Usually, CQE policies are defined using denials, i.e. expressions of the form
(∃x γ(x)) → ⊥, where ∃x γ(x) is a Boolean conjunctive query (BCQ). Denials
are used to specify information that must remain undisclosed: the system must
prevent users from inferring that the formula ∃x γ(x) holds in the ontology. In
the recent work [12], the authors proposed an extension for such a language of
rules, called epistemic dependencies (EDs) [16], which are logical implications
between two (possibly open) conjunctive queries, each within the scope of a
modal operator K, though adopting a notion of censor that differs from the one
considered in the current paper.

Example 1. The policy of a company stipulates that all salaries of employees
must be kept confidential, except those of managers. In addition, the existence
of consensual personal relationships between managers and their employees must
remain undisclosed.

In logical terms, such a policy can be defined as the following set of EDs:

P = { ∀x, y (Ksalary(x, y) → Kmanager(x)),
K∃x, y (managerOf(x, y) ∧ consRel(x, y)) → K⊥}

where manager is a unary predicate indicating that an individual is a manager,
and salary, consRel and managerOf are binary predicates modelling, respectively,
the salary level of a person, the consensual relationship between two individuals
and the relationship where one individual manages another. In the second ED,
the usage of the existential quantifier indicates that, for every manager (resp.,
employee), the very existence of a consensual relationship with any employee
(resp., manager) of hers must not be revealed—not merely the identities of the
individual involved.

Moreover, suppose that the company ontology consists of:

– A TBox T = {∃managerOf ⊑ manager,manager ⊑ ∃respDept}, meaning that
everyone who manages another individual is a manager, and managers are
such only if they are responsible for some department.

– An ABox A = {managerOf(lucy, tom), consRel(lucy, tom), salary(lucy, 150k),
salary(tom, 75k)}, meaning that Lucy is Tom’s manager, they have a consen-
sual relationship, and their salary is $150,000 and $75,000, respectively.

A censor consisting only of ground atoms must remove at least one of the facts
managerOf(lucy, tom), consRel(lucy, tom) from A and, at the same time, must
remove the fact salary(tom, 75k) (because Tom is not a manager). By contrast,
any optimal GA censor can safely include the facts manager(lucy) and salary(lucy,
150k), because Lucy’s managerial status follows from the ontology and knowing
that she is a manager (and her salary) does not violate the policy.

Our main objective is to evaluate queries under a formal entailment semantics
that maximizes data disclosure while remaining compliant with the policy. Thus,
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we call optimal GA censors the GA censors that are maximal w.r.t. set inclusion,
and focus on the problem of checking whether a Boolean union of conjunctive
queries (BUCQ) is entailed by the TBox and the intersection of all the optimal
GA censors. This task, known as IGA-entailment, has been shown to be FO-
rewritable when the TBox is expressed in DL-LiteR and the policy consists of
denials [14]. That is, in the above setting, IGA-entailment of a BUCQ q can be
decided by rewriting q into a new FO query qr that only depends on the TBox
and the policy and, in a second moment, evaluating qr over the ABox. This
property guarantees a nice computational behaviour at a theoretical level, as
the task enjoying it has the same complexity as evaluating an SQL query over a
database. However, it still needs to be empirically validated through a practical
implementation. In the case based on denials, a working prototype was provided
in [11], within the ontology-based data access framework.

We aim to extend this scenario to accommodate policies defined using EDs
while preserving the FO-rewritability property. First, we prove that the class
of full EDs and linear EDs enjoy a desirable property related to security. We
exclude, however, the possibility that IGA-entailment remains FO-rewritable for
such classes of dependencies, by proving coNP- and NL-hardness results for the
related decision problem, respectively. We thus identify a condition for full EDs
for which we are able to prove the FO-rewritability. For two classes of EDs that
respect such a condition, namely the linear full and the acyclic full EDs, we finally
conducted experiments to test the practical feasibility of our rewriting algorithm.
Specifically, we implemented a tool that rewrites a SPARQL BUCQ into a new
query qr solely based on the given TBox and policy, and then evaluates qr over
an SQL database containing the ABox. Since our theoretical results are related
to the logic DL-LiteR, we adopted the OWL 2 QL ontology of the OWL2Bench
benchmark [24] as our testbed. Two distinct evaluation scenarios demonstrate
that our method is not only theoretically sound but also practically feasible,
with most rewritten queries running within acceptable time bounds.

The paper is structured as follows. Section 2 provides the necessary theoret-
ical background. Section 3 describes the framework and the problem studied.
Section 4 introduces a key property that helps identify interesting subclasses
of EDs. Section 5 presents lower bounds that exclude FO-rewritability in the
general case. Section 6 defines the subclass of EDs we target and presents a
detailed FO-rewriting algorithm. Section 7 reports our experimental findings.
Finally, Section 8 concludes the paper.

2 Preliminaries

In this paper, we refer to standard notions of function-free first-order (FO) logic
and Description Logics (DL). We use countably infinite sets of symbols ΣC , ΣR,
ΣI and ΣV , containing respectively unary predicates (called concepts), binary
predicates (called roles), constant symbols (also called individuals) and variables.
An atom is a formula of the form P (t), where P is a (either unary or binary)
predicate and t is a sequence of terms, i.e. variables or constants.
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Given a set of FO formulas Φ, we denote by vars(Φ) and pred(Φ), the sets
of variables and predicates occurring in Φ, respectively. Given any FO formula
ϕ, we use the notation ϕ(x) when we want to emphasize its free variables x,
and we overload vars(·) to work with FO formulas, with the same meaning. If
ϕ(x) is closed (that is, x is empty), then it is called a sentence; Furthermore, if
vars(ϕ) = ∅, then ϕ is said to be ground. In particular, ground atoms are also
called facts. If F is a set of facts, we say that an FO sentence ϕ evaluates to true
in F to actually mean that it is true in the Herbrand model of F .

In this work, we also refer to specific classes of domain-independent FO for-
mulas, such as the class of conjunctive queries (CQs), i.e. formulas of the form
∃x (γ), where x ⊆ vars(γ) and γ is a conjunction of atoms. A disjunction of CQs
sharing the same free variables is called union of conjunctive queries (UCQ),
which sometimes we also treat as a set of CQs. As customary, closed CQs and
UCQs are said to be Boolean and referred to as BCQs and BUCQs, respectively.
Given any CQ q, we indicate by QA(q) the set of atoms of q.

We call substitution any function σ : ΣV → ΣV ∪ ΣI . Given a CQ q and a
substitution σ of (a subset of) its variables, we write σ(q) to denote the result
of applying σ to q. A substitution of variables is said to be ground if its image
is contained in ΣI . Moreover, given a set of facts F , an instantiation for q in F
is a ground substitution σ of the variables of q such that QA(σ(q)) ⊆ F . If such
an instantiation σ exists, the set QA(σ(q)) is called image of q in F . Given a
UCQ q, an image of q in F is any image of q′ in F , for any q′ ∈ q.

We resort to DL ontologies as a formal way of representing structured knowl-
edge about a given domain. Ontologies are usually partitioned into two sets used,
respectively, for representing intensional and extensional knowledge. More for-
mally, given a DL LT , an LT ontology is a finite set T ∪ A, where T (called
LT TBox) is a set of axioms expressible in LT , and A (called ABox) is a set of
ground atoms. In particular, our complexity results hold for ontologies expressed
in DL-LiteR [10], which is the logic underpinning OWL 2 QL, one of the three
OWL 2 profiles [17,21] that is specifically designed for efficient query answering.
The axioms of a DL-LiteR TBox T take the following form:

B ⊑ B′, R ⊑ R′, B ⊑ ¬B′, R ⊑ ¬R′

where B and B′ (resp., R and R′) are of the form A, ∃S or ∃S− (resp., of the
form S or S−), with A ∈ ΣC , S ∈ ΣR and S− the inverse of S. The unqualified
existential restriction ∃S (resp., ∃S−) represents the set of individuals occurring
as the first (resp., second) argument of S.

Moreover, we denote with clT (A) the closure of A w.r.t. T , i.e. the set of
all the ground atoms that are logical consequences of T ∪ A. We also refer to
the rewriting function AtomRewr, for which the following property has been
demonstrated in [15, Lemma 6].

Proposition 1 ([15]). Let T ∪A be a consistent DL-LiteR ontology, and let ϕ be
an FO sentence. Then, ϕ evaluates to true in clT (A) if and only if AtomRewr(ϕ, T )
evaluates to true in A.
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Finally, Section 5 requires the reader to be familiar with basic notions of com-
putational complexity theory [22]. Indeed, decision problems solvable through
FO-rewriting are known to be in AC0 in data complexity [1], and we refer to the
complexity classes NL and coNP (both of which are known to be strict supersets
of AC0) for showing scenarios in which the studied problem is not FO-rewritable.

3 Framework

In the spirit of [12], we adopt as protection policy (or simply policy) a finite set of
epistemic dependencies, which are a special case of EQL-Lite(CQ) [9] sentences,
and are defined as follows.

Definition 1. An epistemic dependency (ED) is a sentence τ of the following-
form:

∀x1,x2 (Kqb(x1,x2) → Kqh(x2)) (1)

where qb(x1,x2) is a CQ with free variables x1 ∪ x2, qh(x2) is a CQ with free
variables x2, and K is a modal operator.

We say that a FO theory Φ satisfies an ED τ (in symbols Φ |=EQL τ) if, for every
ground substitution σ for the free variables of body(τ), if Φ |= σ(body(τ)) then
Φ |= σ(head(τ)). If all the EDs of a policy P are satisfied by Φ, then we say that
Φ satisfies P (in symbols Φ |=EQL P). Intuitively, EDs express the disclosure
rules that should govern the publication of data. For every ground substitution
σ of the universal variables of an ED τ , if the ontology entails σ(body(τ)), then
this information may only be disclosed if σ(head(τ)) can also be disclosed. In
the special case in which head(τ) = ⊥, the ED acts as a denial constraint, i.e.
its body must not be revealed under any instantiation of its free variables.

The input to our framework is a triple ⟨T ,P,A⟩, that we call CQE instance,
where T is a DL-LiteR TBox, P is a policy and A is an ABox. Given a CQE
instance ⟨T ,P,A⟩, it may be the case that T ∪ A ̸|=EQL P, i.e. the policy is not
satisfied by the ontology T ∪ A. For hiding the part of information that should
be protected, we rely on the following notion of GA censor [15].

Definition 2 (GA censor). Given a CQE instance E = ⟨T ,P,A⟩, a ground
atom censor (in short, GA censor) for E is any subset C of clT (A) such that
T ∪ C |=EQL P. A GA censor C of E is optimal if no other GA censor C′ of E
exists such that C′ ⊇ C.

Informally, an optimal GA censor is a maximal (w.r.t. set inclusion) portion of
clT (A) that can be safely disclosed without violating the given policy. Among
the possibly many GA censors for a CQE instance, we are particularly interested
in the information that is common to all optimal GA censors, which represents
the maximal amount of facts that can be safely revealed in every scenario where
policy satisfaction is preserved. Based on this idea, we now introduce the central
notion of IGA-entailment, which formalizes query answering under the intersec-
tion of all optimal GA censors.
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Definition 3 (IGA-entailment). Given a CQE instance E = ⟨T ,P,A⟩ and a
BUCQ q, we say that E IGA-entails q (in symbols E |=IGA q) if T ∪ CIGA |= q,
where CIGA is the intersection of all the optimal GA censors of E.

Example 2. Consider the CQE instance E = ⟨T ,P,A⟩, where T , P and A are
as in Example 1. In this case, we have only two optimal censors, i.e.:

C1 = {managerOf(lucy, tom),manager(lucy), salary(lucy, 150k)},
C2 = {consRel(lucy, tom),manager(lucy), salary(lucy, 150k)}.

Now, we have that a BCQ like q1 = ∃x, y consRel(x, y) is not IGA-entailed by
E , because the extension of consRel is empty in CIGA = C1 ∩ C2 and no relevant
conclusions can be drawn from the intensional axioms. Conversely, the BCQ
q2 = ∃x, y (respDept(x, y) ∧ salary(x, 150k)) is IGA-entailed by E , because the
facts manager(lucy) and salary(lucy, 150k) belong to the intersection CIGA.

It is worth noting that an alternative, more expressive kind of entailment
has been proposed in the literature, i.e., the skeptical entailment over all the
optimal GA censors. However, such an approach has already been shown to be
computationally intractable (specifically, coNP-hard in data complexity) even
for BCQs and for policies restricted to sets of denial constraints [15, Thm. 6].

Although the above definitions apply to any CQE instance, our complexity
analysis focuses on specific classes on EDs, which are defined below. First, bor-
rowing the terminology from the literature on both databases and existential
rules (see e.g. [3,8]), an ED τ is called full if no existential variable occurs in its
head, and is called linear if |QA(body(τ))| = 1. A policy is full (resp., linear) if
all its EDs are full (resp., linear). Then, following the paper [12] that introduced
EDs for CQE, we define the notion of acyclicity as follows. Given a policy P
and a TBox T , consider the graph G whose nodes are the predicates of T ∪ P,
and whose edges are of two kinds: T-edges, which connect two nodes A and B
of G if they occur, respectively, on the left- and right-hand side of a concept
inclusion of T ; analogously P-edges connect two nodes A and B of G if they
occur, respectively, in the body and head of an ED of P. Then, P is said to be
acyclic for T if G contains no cycle involving a P-edge.

We finally define IGA-Ent as the following decision problem.

Problem: IGA-Ent
Input: A DL-LiteR CQE instance E = ⟨T ,A,P⟩, a BUCQ q
Question: Does E |=IGA q?

4 Security of the Intersection of GA Censors

Before delving into the complexity analysis of the IGA-Ent problem, it is natu-
ral to ask whether the intersection of all optimal GA censors constitutes in turn
a valid censor, i.e. whether it satisfies the given policy.

Actually, the above property does not hold, in general, even in the case when
the TBox is empty, as shown by the following example.
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Example 3. Consider the CQE instance E = ⟨T ,P,A⟩, where T is empty and

P = { τ1 : K(B(1) ∧B(2)) → K⊥, A = {C(0), B(1), B(2) }.
τ2 : ∀x (KC(x) → K∃y B(y)) },

It is immediate to see that C1 = {C(0), B(1)} and C2 = {C(0), B(2)} are the
only two optimal GA censors for E , and so their intersection CIGA is {C(0)}. Now,
we observe that T ∪ CIGA ̸|=EQL τ2, which implies that CIGA is not a censor.

Notice that the policy employed in Example 3 is acyclic for the coupled
(empty) TBox. However, it is possible to demonstrate that it is safe to refer to
the intersection of the optimal GA censors when considering the classes of linear
EDs and full EDs, which we focus on in the next section.

Theorem 1. For every CQE instance E = ⟨T ,P,A⟩ such that P is either full
or linear, the set CIGA =

⋂
C∈optCens(E) C is a GA censor of E.

Proof. To be a GA censor of E , CIGA must be a subset of clT (A) and be such
that T ∪CIGA |=EQL P. The first condition always follows by construction of CIGA.
Then, for both the cases have just to prove the second one.

We first focus on full policies. To prove the thesis, let us consider any τ ∈ P
and any ground substitution σ of the universal variables of τ such that T ∪
CIGA |= σ(body(τ)), and let us show that T ∪ CIGA |= σ(head(τ)). If T ∪ CIGA |=
σ(body(τ)), then by monotonicity, it follows that T ∪ C |= σ(body(τ)) for every
C ∈ optCens(E). However, for every such C, since τ is full, then σ(head(τ)) is a
ground conjunction of atoms, and since C is optimal, then all such ground atoms
belong to it. Consequently, all the ground atoms of σ(head(τ)) belong to CIGA,
which immediately implies that T ∪ CIGA |= σ(head(τ)).

We now turn our attention to linear policies. Notice that, if every ED is linear,
then only one optimal GA censor C for E exists. Such a GA censor can indeed be
deterministically computed by iteratively (until a fixpoint is reached) checking
whether there exists an atom α ∈ C, an ED τ ∈ P and an assignment σ of the free
variables of body(τ) such that T ∪ {α} |= σ(body(τ)) but T ∪ {α} ̸|= σ(head(τ))
and, in such a case, remove α from C. Thus, the intersection coincides with such
a censor, i.e. CIGA = C, which implies T ∪ CIGA |=EQL P by Definition 2. ⊓⊔

5 Negative Results

As anticipated in the Introduction, we aim to find a class of dependencies for
which IGA-entailment is FO-rewritable. Starting from the results obtained in the
previous section, a natural first choice would be the classes of full and linear EDs.
The following property, however, excludes the possibility of FO-rewritability of
IGA-entailment for the class of linear epistemic dependencies.

Theorem 2. There exist an empty TBox, a policy consisting of linear EDs,
and a query consisting of only one atom for which IGA-Ent is NL-hard in data
complexity.
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w u

t v s

A = {reachableVia(u, s), CIGA = {reachableVia(u, s),
reachableVia(v, s), reachableVia(v, s),
reachableVia(v, u), reachableVia(v, u),
reachableVia(t, v), reachableVia(t, v),
reachableVia(s, s), reachableVia(s, s),
reachableVia(s, t), reachableVia(s, t) }
reachableVia(t, w) }

Fig. 1. A possible instance of the graph G and the corresponding sets A and CIGA, built
as in the proof of Theorem 2. The dashed edge only belongs to G′.

Proof. We prove the thesis by showing a logspace reduction from the restriction
of st-connectivity to directed acyclic graphs (DAGs)2, which is known to be NL-
hard. Given a DAG G = ⟨V,E⟩ and two nodes s, t ∈ V , such a problem consists
of checking whether there exists a path from s to t in G.

First, let us fix the policy as follows:

P = {∀u (K∃v reachableVia(v, u) → K∃w reachableVia(u,w))}.

Now, let G′ = ⟨V,E′⟩ be such that E′ = E ∪ {(t, s)}, i.e. the graph identical to
G except that it contains a further edge from t to s. Let also T = ∅ and

A = {reachableVia(v, u) | (u, v) ∈ E′} ∪ {reachableVia(s, s)}.

Note that A (we ignore the TBox, as it is empty) does not necessarily satisfy
the policy, but the set {reachableVia(s, s)} does. Intuitively, the policy P states
that, for every pair of nodes v, u ∈ V , v is reachable from s via u only if u is
reachable from s via another node w ∈ V . Also, the ABox states that every node
is reachable from s via all its predecessors in G′ (which is not necessarily true),
plus the fact that s is reachable via itself.

Notice also that, since the unique ED in P contains only one atom in its
body, then there exists exactly one optimal GA censor for E = ⟨T ,P,A⟩, which
then coincides with CIGA.

We can now prove that the following three statements are equivalent:

1. G contains a path from s to t;
2. there exists a directed cycle in G′;
3. the BCQ q = ∃u reachableVia(t, u) is IGA-entailed by E .

(1 ⇔ 2) Since G is a DAG, it is immediate to verify that G contains a path from
s to t iff G′ is cyclic.

(2 ⇒ 3) If a directed cycle exists in G′, then it involves s and t (otherwise G
would not be a DAG). In this case, A contains the following set of facts:

{ reachableVia(s, s), reachableVia(u1, s), reachableVia(u2, u1),
reachableVia(u3, u2), . . . , reachableVia(t, um), reachableVia(s, t) }

2 Such a problem is sometimes referred to as DAG-STCON or STCONDAG.
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which is contained in the unique optimal GA censor for E . Thus, we have that
E |=IGA q.

(3 ⇒ 1) Suppose that there is no path from s to t in G, i.e. every directed
path ending in t does not include s. Also, since G is a DAG, none of these paths
contains a cycle. Given this and the way A is constructed, it follows immediately
that no fact of the form reachableVia(t,_) can be part of the unique optimal
GA censor for E (which, as stated above, coincides with CIGA). Indeed, if any fact
reachableVia(t, u) were included in CIGA, the policy would require the inclusion
of another fact reachableVia(u,w), and so on, until one eventually reaches a fact
(corresponding to the final edge of a path ending at t) beyond which no further
fact can be added. Therefore, we have that E ̸|=IGA q. ⊓⊔

We now show that the scenario is even worse for full dependencies, as the
decision problem under consideration is even intractable in data complexity.

Theorem 3. There exist an empty TBox, a policy consisting of full EDs, and
a query consisting of a ground atom for which IGA-Ent is coNP-hard in data
complexity.

Proof. We prove the thesis by reduction from 3-CNF. We define the TBox T = ∅
and the following full policy:

∀i, j, p, v (K (S(i) ∧N(j, i) ∧ V1(i, p) ∧ P1(i, v) ∧ T (p, v)) → K S(j))
∀i, j, p, v (K (S(i) ∧N(j, i) ∧ V2(i, p) ∧ P2(i, v) ∧ T (p, v)) → K S(j))
∀i, j, p, v (K (S(i) ∧N(j, i) ∧ V3(i, p) ∧ P3(i, v) ∧ T (p, v)) → K S(j))

∀x (K (T (x, 0) ∧ T (x, 1)) → K U(0))

Now, given a 3-CNF formula φ with m clauses, we build the ABox A as the set
of the following:

– N(i−1, i) for every 1 ≤ i ≤ m, meaning that ci is the next clause of cj (note
that N(0, 1) is included);

– Vj(i, p) if p is the j-th propositional variable in the i-th clause;
– Pj(i, 0) (resp., Pj(i, 1)) if the polarity of the j-th literal in the i-th clause is

negative (resp., positive);
– T (p, 0) and T (p, 1) for every propositional variable p occurring in φ;
– S(1), S(2), . . . , S(m).

We prove that φ is unsatisfiable iff S(m) is IGA-entailed by E .
(⇐) Suppose φ is satisfiable. Let P be the set of propositional variables

occurring in φ, let I ⊆ P be an interpretation satisfying φ, and let A′ be the
following subset of A:

A′ = A \ ({T (p, 0) | p ∈ I} ∪
{T (p, 1) | p ∈ P \ I} ∪ {S(1), . . . , S(m)})

It is immediate to verify that T ∪ A′ |=EQL P, as it does not contain any S
fact and there does not exist any constant c such that {T (c, 0), T (c, 1)} ⊆ A′.



10

Algorithm 1: PolicyExp
input : A DL-LiteR TBox T , a policy P expandable w.r.t. T

1 P ′ ← ∅;
2 foreach τ ∈ P do
3 foreach q(x) ∈ UCQRew(body(τ), Σ(P, T )) do
4 P ′ ← P ′ ∪ {∀x(Kq(x)→ Khead(τ))};
5 return P ′

This implies that A′ is part of at least one optimal GA censor of E (as it is a GA
censor of E itself). Moreover, one can see that A′ ∪ {S(m)} is not part of any
optimal GA censors of E . This is proved by the fact that the addition of S(m)
creates a sequence of instantiations of the bodies of the first three EDs of P that
requires (to preserve the satisfaction of the policy) to add to A′ ∪ {S(m)} first
the fact S(m− 1), then S(m− 2), and so on until S(1): this would in turn imply
to also add S(0), which however, does not belong to clT (A).

Consequently, there exists an optimal GA censor C of E that does not contain
S(m). Thus, S(m) is not part of the intersection CIGA of the optimal GA censors,
and since the TBox T is empty, we directly have that T ∪ CIGA ̸|= S(m), i.e.
E ̸|=IGA S(m).

(⇒) Given a guess of the atoms of the T predicate satisfying the fourth de-
pendency and corresponding to an interpretation of the propositional variables
that does not satisfy φ, it is straightforward to verify that the sequence of in-
stantiations of the bodies of the first three EDs of P mentioned above (which has
previously lead to the need of adding S(0) to the set) results to be interrupted
due to the absence of some fact for T . This missing fact reflects a variable whose
truth value conflicts with the polarity of the corresponding literal. Then, there
exists a positive integer k ≤ m such that the atoms S(k), S(k+1), . . . , S(m) can
be added to all the optimal GA censors corresponding to such a guess of the T
atoms. Since this holds for every interpretation of φ (none of which satisfies the
propositional formula), then the unsatisfiability of φ implies that E |=IGA S(m).

⊓⊔

6 A FO-Rewritable Class of EDs

In this section, we identify a condition for full EDs such that it is possible to
solve IGA-entailment through a FO-rewriting technique in the case of DL-LiteR
TBoxes. We start by defining when a given set F of facts is disclosable. Intu-
itively, this happens when we can expose it via at least one optimal GA censor.

Definition 4 (Disclosability). Given a CQE instance E, we say that a set of
facts F is disclosable in E if there exists a subset F ′ of clT (A) such that F ⊆ F ′

and T ∪ F ′ |=EQL P.

For technical purposes, we make use of the notion of tuple-generating depen-
dency (TGD) [1], i.e. FO expressions of the form ∀x1,x2 (qb(x1,x2) → qh(x2)),
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where both qb(x1,x2) and qh(x2) are CQs. We say that a set Σ of TGDs is
UCQ-rewritable if, given any CQ q(x), there exists a UCQ UCQRew(q,Σ) such
that, for every set F of facts and for every ground substitution σ of the free
variables of q, Σ ∪ F |= σ(q) iff F |= σ(qr) for some qr(x) ∈ UCQRew(q,Σ)).
In this regard, we refer to [3], which establishes a sufficient condition for UCQ
rewritability (generalizing acyclicity and linearity), and to [20], which provides
a suitable rewriting algorithm.3

Now, given a policy P, let us denote by TGD(P) the following set of TGDs:

{∀x1,x2 (qb(x1,x2) → qh(x2)) | ∀x1,x2 (Kqb(x1,x2) → Kqh(x2)) ∈ P }.

Moreover, given a DL-LiteR TBox T , let us denote by TGD(T ) the set of TGDs
obtained from T in the natural way. More details are given in the Appendix.

UCQ-rewritability is a well-established property of DL-LiteR TBoxes [10],
i.e.:

Proposition 2. Let T be a DL-LiteR TBox. Then, TGD(T ) is UCQ-rewritable.

For the sake of readability, when referring to DL-LiteR TBoxes T , we write
UCQRew(q, T ) instead of UCQRew(q,TGD(T )).

Furthermore, let us indicate with P+ the policy containing every ED in P
whose head does not contain ⊥, and with Σ(P, T ) the set of TGDs TGD(P+)∪
TGD(T ). We say that P is expandable w.r.t. T if Σ(P, T ) is UCQ-rewritable.
Then, from the results in [20], we directly have what follows:

Proposition 3. Let T be a DL-LiteR TBox, and let P be a policy that is either
linear or acyclic for T . Then, P is expandable w.r.t. T .4

We can now introduce Algorithm 1, for which we prove the following property.

Lemma 1. Let E = ⟨T ,P,A⟩ be a DL-LiteR CQE instance such that P is full
and expandable w.r.t. T , and let F be a set of facts. Then, F is disclosable in E
iff:

(i) F ⊆ clT (A) and
(ii) for every τ ∈ PolicyExp(P, T ) and every ground substitution σ of the free

variables of body(τ), F |= σ(body(τ)) implies that T ∪ A |= σ(head(τ)).

Proof. (⇒) Suppose that F is disclosable in E . By Definition 4, this means that
there exists a subset F ′ of clT (A) such that F ⊆ F ′ and T ∪ F ′ |=EQL P. Then,
condition (i) directly follows from the fact that F ⊆ F ′ ⊆ clT (A).

Let us now consider any τ and σ as in condition (ii), and let F |= σ(body(τ)).
To prove the only-if direction of the thesis, it remains to show that T ∪ A |=
σ(head(τ)). First, by construction of PolicyExp(P, T ), there exists an ED τ ′ ∈ P
3 Actually, that paper focuses on BCQs. Anyway, as also stated by the authors, the

algorithm provided is easily extendable to open CQs.
4 It is not hard to see that this property is preserved in the case the policy also contains

denials. Thus, our technique applies to a generalization of the case of denials.
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such that body(τ) ∈ UCQRew(body(τ ′), Σ)) (where Σ is as in Algorithm 1) and
head(τ ′) = head(τ). Consequently, we have that F |= UCQRew(body(τ ′), Σ))
and, since Σ is UCQ-rewritable, that Σ ∪ F |= σ(body(τ ′)).

Now, by construction of F ′ and since P+ is full, for every BCQ q, we have that
T ∪ TGD(P+) ∪ F |= q only if T ∪ F ′ |= q. In particular, Σ ∪ F |= σ(body(τ ′))
implies that T ∪ F ′ |= σ(body(τ ′)). Consequently, since T ∪ F ′ |=EQL P, we
have that T ∪ F ′ |= σ(head(τ ′)). But since F ′ ⊆ clT (A), then by monotonicity
it follows that T ∪ clT (A) |= σ(head(τ ′)), which holds iff T ∪ A |= σ(head(τ ′)).
Finally, from the fact that head(τ ′) = head(τ), we have that T ∪A |= σ(head(τ)).

(⇐) Let now F be a set of facts satisfying conditions (i) and (ii).
Let us take the sequences of EDs τ1, . . . , τm, substitutions σ1, . . . , σm and

sets of facts F1, . . . ,Fm+1 (with F1 = F) such that, for every 1 ≤ i ≤ m:

– τi ∈ P;
– σi is a ground substitution of the free variables of body(τi) such that Fi |=

σi(body(τi));
– Fi+1 = Fi ∪ QA(σi(head(τi))).

Note that, since P is full, it is possible to choose m as a finite positive integer such
that Fm consists of all the facts that are logical consequences of TGD(P) ∪ F .
Let us then set m to this upper bound.

We now show by induction that Fi ⊆ clT (A) for every 1 ≤ i ≤ m. To this
aim, let P0 = ∅ and, for every 1 ≤ i ≤ m, let Pi be the set Pi−1 ∪ {τi}. Observe
that, by construction, we have that TGD(Pi−1) ∪ F |= σi(body(τi)) for every
1 ≤ i ≤ m.

♢ The base case is trivial, as F1 = F is contained in clT (A) by condition (i).
♢ For the inductive step, suppose that Fi−1 ⊆ clT (A). We first show that

τj ∈ P+ for every 1 ≤ j ≤ i. Towards a contradiction, let us consider the
lowest j for which τj is a denial (i.e. Pj−1 = P+

j−1). In this case, we would
have that TGD(P+

j−1) ∪ F |= σj(body(τj)), implying by monotonicity that
TGD(P+)∪F |= σj(body(τj)), and hence that Σ∪F |= σj(body(τj)) (where
Σ is as in Algorithm 1). Since Σ is UCQ-rewritable, then there would exist
a CQ q ∈ UCQRew(body(τj), Σ) having the same free variables of body(τj)
such that F |= σi(q). Moreover, by Algorithm 1, PolicyExp(P, T ) contains
the ED τ = ∀x (Kq(x) → Khead(τi)). Then, condition (ii) would imply that
T ∪A |= σj(head(τj)), i.e. T ∪A |= ⊥, which would contradict the hypothesis
that the ontology T ∪ A is consistent.
From the fact that τj ∈ P+ for every 1 ≤ j ≤ i it follows that TGD(P+) ∪
F |= σi(body(τi)). Thus, following the same reasoning as above, one can
conclude T ∪ A |= σi(headi) (i.e. σi(headi) ⊆ clT (A)), which, together with
the inductive hypothesis, implies that Fi ⊆ clT (A).

Finally, in order to prove that T ∪ Fm |=EQL P, let us take any ED τ ∈ P
and any ground substitution σ of the free variables of τ , and let us show that if
T ∪Fm |= σ(body(τ)) then T ∪Fm |= σ(head(τ)). Suppose then that T ∪Fm |=
σ(body(τ)), which by monotonicity holds only if Σ∪Fm |= σ(body(τ)). Since Σ is
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UCQ-rewritable, there exists a CQ q ∈ UCQRew(body(τ), Σ), with the same free
variables as body(τ), such that Fm |= σ(q). Notice that PolicyExp(P, T ) contains
the ED τ ′ = ∀x (Kq(x) → Khead(τ)). Then, by the construction of Fm, from
Fm |= σ(q) (that is, Fm |= σ(body(τ ′))) it follows that QA(σ(head(τ ′))) ⊆ Fm,
which in turn implies that T ∪Fm |= σ(head(τ ′)) and, since head(τ ′) = head(τ),
we conclude that T ∪ Fm |= σ(head(τ)).

Thus, Fm is the set that meets the two conditions of Definition 4, that is, F
is disclosable in E . ⊓⊔

In the following, given a CQ q and a set of atoms Z, we say that q is mappable
to Z via µ if there exists a substitution µ replacing the variables of Z and the free
variables of q with terms of Z and constants of q, in such a way that there exists
a substitution µ′ of the existential variables of q such that µ′(µ(QA(q))) ⊆ µ(Z).
We indicate as map(q,Z) the set of all the substitutions µ such that q is mappable
to Z via µ. E.g. if Z = {R(x, y), R(z, w)} and q(v, u) = ∃tR(v, 1)∧R(u, t), then
both {v 7→ x, y 7→ 1, u 7→ z} and {v 7→ z, w 7→ 1, u 7→ x} belong to map(q,Z).

Definition 5. Given a DL-LiteR TBox T , a policy P expandable w.r.t. T , and
a set Z of atoms (we assume w.l.o.g. that every x ∈ vars(Z) does not occur in
PolicyExp(P, T )), we define the formula isDiscl(Z, T ,P) as follows:

AtomRewr(conj(Z), T )∧
∧

τ∈PolicyExp(P,T ) ∧
µ∈map(body(τ),Z)

(
eq(µ,Z) → UCQRew(µ(head(τ)), T )

)

where:

– conj(Z) =
∧

α∈Z α, for every set Z of atoms;
– eq(µ,Z) =

∧
x 7→t∈µ ∧
x∈vars(Z)

x = t (with true in place of the empty conjunction).

Intuitively, for every ground substitution σ of its free variables, the FO sen-
tence σ(isDiscl(Z, T ,P)) encodes the two conditions of Lemma 1. This property
is formally established by the next statement.

Lemma 2. Let E = ⟨T ,P,A⟩ be a DL-LiteR CQE instance such that P is full
and expandable w.r.t. T . Then, for every set of atoms Z and for every ground
substitution σ of the variables of Z, σ(isDiscl(Z, T ,P)) evaluates to true in A
iff σ(Z) is disclosable in E.

Proof. (⇐) Let σ(Z) be disclosable in E . By Lemma 1, we have that:

(i) σ(Z) ⊆ clT (A) and
(ii) for every τ ∈ PolicyExp(P, T ) and every ground substitution σ′ of the free

variables of body(τ), σ(Z) |= σ′(body(τ)) implies that T ∪A |= σ′(head(τ)).

Clearly, from condition (i) it follows that σ(conj(Z)) evaluates to true in clT (A).
By Proposition 1, we then have that AtomRewr(σ(conj(Z)), T ) (which coincides
with σ(AtomRewr(conj(Z), T ))) evaluates to true in A.
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Now, let us consider any ED τ ∈ PolicyExp(P, T ) and any substitution
µ ∈ map(body(τ),Z). By definition, µ can be partitioned in two disjoint substi-
tutions, namely µ1 and µ2, such that:

– µ1 is a substitution of the free variables of body(τ) with terms of Z and
constants of body(τ) such that µ(body(τ)) = µ1(body(τ));

– µ2 is a substitution of the variables of Z with terms of Z and constants of
body(τ) such that µ(Z) = µ2(Z);

– there exists a substitution µ′ of the existential variables of body(τ) (i.e. the
ones of µ1(body(τ))) such that µ′(µ1(QA(body(τ)))) ⊆ µ2(Z).

Consider now the conjunction of atoms σ(eq(µ,Z)), which, by definition of
eq(·, ·), is equal to σ(eq(µ2,Z)). As it is ground, it can either be unsatisfiable or
valid (i.e. a conjunction of reflexive equalities on constants). In the first case, it
obviously evaluates to false in A. In the second case, instead, we have that by
applying σ to any variable x of Z or to the term which x is mapped to via µ2 one
obtains the same constant, which implies that σ(µ2(Z)) = σ(Z). Moreover, since
σ does not replace existential variables of µ1(QA(body(τ))), then by construction
of µ′ we have that µ′(σ(µ1(QA(body(τ))))) ⊆ σ(µ2(Z)), which holds only if
σ(Z) |= σ(µ1(body(τ))). Now, note that the substitution σ′ resulting by applying
first µ1 and then σ to body(τ) is a ground substitution of the free variables of
body(τ). Therefore, by condition (ii), it follows that T ∪A |= σ(µ1(head(τ))) (or
equivalently T ∪clT (A) |= σ(µ1(head(τ)))). Then, by Proposition 2, the sentence
σ(UCQRew(µ1(head(τ)), T )) (i.e. σ(UCQRew(µ(head(τ)), T ))) evaluates to true
in A.

Thus, for every τ ∈ PolicyExp(P, T ) and for every µ ∈ map(body(τ),Z),
either σ(eq(µ,Z)) evaluates to false in A or σ(UCQRew(µ(head(τ)), T )) evaluates
to true in A, from which the thesis immediately follows.

(⇒) Now, suppose that σ(isDiscl(Z, T ,P)) evaluates to true in A. Then:

(i) σ(AtomRewr(conj(Z), T )) evaluates to true in A, which by Proposition 1
implies that σ(conj(Z)) evaluates to true in clT (A) (i.e. σ(Z) ⊆ clT (A));

(ii) for every τ ∈ PolicyExp(P, T ) and for every µ ∈ map(body(τ),Z)), if the
(ground) conjunction σ(eq(µ,Z)) evaluates to true in A then also the BUCQ
σ(UCQRew(µ(head(τ)), T )) does.

Let us consider any ED τ ∈ PolicyExp(P, T ) and any ground substitution σ′

of the free variables of body(τ) such that σ(Z) |= σ′(body(τ)). For proving the
thesis, we have to show that T ∪ A |= σ′(head(τ)), which by Lemma 1 would
imply that σ(Z) is disclosable in E .

First, since σ′ replaces the free variables of body(τ) with constants of σ(Z),
then there exists a substitution µ1 of the free variables of body(τ) with terms of
σ(Z) such that σ′(body(τ)) = σ(µ1(body(τ)). Therefore, it holds that σ(Z) |=
σ(µ1(body(τ))), i.e. σ(Z) ⊇ µ′(σ(µ1(QA(body(τ))))) for some substitution µ′ of
the existential variables of σ(µ1(body(τ))) (i.e. of the ones of body(τ)). Then,
one can see that there exists a substitution µ2 of the variables of Z with
terms of Z and constants of body(τ) such that σ(Z) = σ(µ2(Z)) and µ2(Z) ⊇
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µ′(µ1(QA(body(τ)))). Intuitively, µ2 is a weakened version of σ that allows not
to apply σ on the right-hand side while preserving the homomorphic relationship
between the two sets.

Now, let µ1 and µ2 be two substitutions such that what above holds, and
observe that they replace distinct variables. Then, it is easy to see that the
combination µ of µ1 and µ2 belongs to map(body(τ),Z). Moreover, since σ(Z) =
σ(µ2(Z)), then we have that σ(eq(µ2,Z)) (which by construction is equivalent
to σ(eq(µ,Z))) is valid and, consequently, it evaluates to true in A. Therefore,
by condition (ii), we have that σ(µ(UCQRew(head(τ), T ))) evaluates to true in
A. By Proposition 2, this implies that T ∪A |= σ(µ(head(τ))). Then, the thesis
follows by observing that σ(µ(head(τ))) = σ(µ1(head(τ))) = σ′(head(τ)). ⊓⊔

Then, given a DL-LiteR TBox T , a policy P expandable w.r.t. T , a set Z
of atoms, and a CQ q(x) without existential variables (we assume w.l.o.g. that
x ∩ vars(Z) = ∅), we define the FO formula Clash(Z, q, T ,P) as follows:

Clash(Z, q, T ,P) = ∃y
(
isDiscl(Z, T ,P) ∧ ¬isDiscl(Z ∪ QA(q), T ,P)

)
,

where y is a tuple containing all the variables occurring in Z. Note that the vari-
ables of x are free. In words, by existentially closing the formula Clash(Z, q, T ,P)
and then evaluating it over an ABox A it is possible to check whether there ex-
ists a common instantiation σ for all the atoms of Z and q such that (i) the set
σ(Z) is disclosable (and thus it is part of some censor) and (ii) it is no longer
disclosable when we add the atoms of q. Intuitively, if there exists an instantia-
tion of the variables of q for which the above does not occur for any Z, then q
is entailed by E under the IGA semantics.

In order to obtain a proper FO-rewriting algorithm, it remains to show that
the size of Z can be upper-bounded by a certain integer k that is independent of
A. To this aim, given a set of predicates Π = {p1, . . . , pm} and a positive integer
k, we define the following set of atoms:

Atoms(Π, k) = {p(xi) | p ∈ Π and i ∈ {1, . . . , k}},

where each xi is a sequence of h fresh variables, if h is the arity of p.
We are now ready to provide the following FO-rewriting function.

Definition 6. Let T be a DL-LiteR TBox, let P be a policy expandable w.r.t.
T , and let q be a BUCQ. Then IGA-Ent(q, T ,P) is the sentence:

IGA-Ent(q, T ,P) =
∨

∃x γ(x)∈qr

∃x
(
γ ∧

∧
Z⊆Atoms(pred(P∪T ),k)

∧|Z|<k

¬Clash(Z, γ, T ,P)
)
.

where qr = UCQRew(q, T ) and k = max
τ∈PolicyExp(P,T )

|QA(body(τ))|.

It is possible to prove that, for every DL-LiteR CQE specification E =
⟨T ,P,A⟩, the sentence IGA-Ent(q, T ,P) evaluates to true in A iff E |=IGA q.
Such a FO-rewritability property implies the next theorem.
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Theorem 4. Let E = ⟨T ,P,A⟩ be DL-LiteR CQE instance such that P is full
and expandable w.r.t. T , and let q be a BUCQ. Deciding whether E IGA-entails
q is in AC0 w.r.t. data complexity.

Proof. Let A be any ABox, let qi = ∃x γ(x) be the BCQ such that γ occurs in
the i-th disjunct of IGA-Ent(q, T ,P), let Z be a set of atoms, and let σ be an
instantiation of qi in A. Then, it is immediate to verify that σ(Clash(Z, γ, T ,P))
evaluates to true in A iff there exists an instantiation σ′ of conj(Z) in A such that
isDiscl(σ′(Z), T ,P) and isDiscl(σ′(Z)∪σ(QA(qi)), T ,P) evaluate, respectively, to
true and false in A. Consequently, by Lemma 2, we have the following property:

(PR1): The sentence σ(Clash(Z, qi, T ,P)) evaluates to true in A iff there
exists an instantiation σ′ of conj(Z) in A such that σ′(Z) is disclosable
in E and σ′(Z) ∪ σ(QA(qi)) is not.

The next statement follows from the previous one and from the fact that, for
every set of facts F ⊆ A of size not greater than a given integer k′, there exists
a subset Z of Atoms(pred(P ∪ T ), k′) such that F is an image of conj(Z) in A.

(PR2): Let ϕ be the i-th disjunct of IGA-Ent(q,P, T ). Then ϕ evaluates
to true in A iff there exists an image M of qi in A such that, for every set
of facts F such that F ⊆ A and |F| < k (where k is as in Definition 6),
if F is disclosable in E then also F ∪M is.

Furthermore, the fact that P is expandable w.r.t. T implies that, if there exists a
set F of facts such that F is disclosable in E and F ∪M is not, then there exists
a set of facts F ′ such that F ′ is disclosable in E , F ′ ∪M is not and |F ′| < k.

This last property, along with (PR2), implies that qi evaluates to true in CIGA
iff the i-th disjunct of IGA-Ent(q, T ,P) evaluates to true in A. Note in fact that,
for every instantiation σ of qi in A, the above set F ′ of facts exists iff σ(QA(qi))
is not contained in at least one optimal GA censor for E (i.e. the one containing
F ′). Therefore, by Proposition 2 and since qi ∈ UCQRew(q, T ), we have that
T ∪ CIGA |= q (i.e. E |=IGA q) iff IGA-Ent(q, T ,P) evaluates to true in A, which
proves that BUCQ entailment under IGA semantics is FO-rewritable, and thus
in AC0 w.r.t. data complexity. ⊓⊔

Example 4. Recalling Example 2, let us verify that E ̸|=IGA q1 by rewriting it
and then evaluating it over the ABox. First, observe that UCQRew(q1, T ) =
q1, i.e. the TBox does not affect the entailment of q1 in this case, and that
the unique instantiation of q1 in A is σ = {x 7→ lucy, y 7→ tom}. In addition,
since k = 2, all sets Z of Definition 6 are singletons. In particular, for the
set Z = {managerOf(x′, y′)} one can see that, under the assignment σ′ = σ ∪
{x′ 7→ lucy, y′ 7→ tom}, the sentence σ′(Clash(Z, q1, T ,P)) evaluates to true in
A. Therefore, the whole sentence IGA-Ent(q1, T ,P) evaluates to false in A.

For q2, we have UCQRew(q2, T ) = {q2,∃x, z(managerOf(x, z)∧salary(x, 150k)),
∃x (manager(x)∧ salary(x, 150k))}. In particular, one can verify that for the last
BCQ there exists no set Z ′ analogous to the above set Z for query q1, which
implies that q2 is IGA-entailed by E .
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7 Experiments

In this section, we describe the experiments that we conducted to test the fea-
sibility of our approach. We evaluated our queries on a standard laptop with an
Intel i7-8565U @1.8 GHz processor and 16GB of RAM.

We refer to the OWL2Bench benchmark for OWL ontologies [24], which
models the university domain and includes a tool for generating ABoxes of cus-
tomizable size (measured as number of universities). For our experiments, we
tested all the ten SPARQL queries for OWL 2 QL against the o2b5 and o2b10
ABoxes, which store data about 5 and 10 universities (i.e. ∼325k and ∼710k
ABox assertions), respectively. We removed the data properties from the input
ontology (as they are not part of DL-LiteR), and added the definition of the
knows object property and the Woman class in the TBox for OWL 2 QL5, as
both such predicates occur in the generated ABoxes. The ABoxes were stored
in an SQL database, as the FO query produced by our rewriting algorithm can
be naturally translated into SQL. We were thus able to delegate the evaluation
of queries on the ABox to the SQL system.

As for the reasoner, we employed the tree-witness query rewriter for OWL2 QL
ontologies6 [19,23]. It can be used as an actual implementation of the UCQRew
abstract rewriting function when its second argument is a DL-LiteR TBox.

The two cases on which we focused our experiments are the ones in which
the policy is either full and linear or full and acyclic for the coupled TBox.
More precisely, for the first case we define a slightly more restricted language
of EDs (defined below), which we call binary EDs. The correspondence of such
dependencies with DL-LiteR axioms allows us to exploit the tree-witness rewriter
in place of UCQRew for rewriting the EDs’ bodies. For the case of acyclic policies,
instead, we implemented a specific version of UCQRew from scratch.

Although Theorem 4 constitutes a remarkable theoretical result, from a prac-
tical point of view, the size of the rewritten formula IGA-Ent may have a severe
impact on the evaluation time. For this reason, we made several intensional opti-
mizations in our implementation to obtain a simpler yet semantically equivalent
rewriting. The most important are the following ones.

– Instead of generating a Clash subformula for every possible Z set defined in
IGA-Ent, we can only consider those sets that, for a fixed q ∈ qr, can match
at least one body of the expanded policy.

– In the isDiscl subformula, the atoms of the query can be omitted from conj(Z)
(at this point of the evaluation, we know that their rewriting is satisfied).
Then, since the two AtomRewr(Z, T ) in Clash become syntactically equal,
they can only be evaluated once, that is, outside the two isDiscl.

– For its specific purpose, the output of the map function can be optimized
in terms of specificity of the substitutions. Specifically, we do not use a
substitution µ such that q is mappable to Z via µ if we also use a substitution
µ′ that is more generic than µ and such that q is mappable to Z via µ′.

5 https://github.com/kracr/owl2bench/blob/master/UNIV-BENCH-OWL2QL.owl
6 https://titan.dcs.bbk.ac.uk/~roman/tw-rewriting/

https://github.com/kracr/owl2bench/blob/master/UNIV-BENCH-OWL2QL.owl
https://titan.dcs.bbk.ac.uk/~roman/tw-rewriting/
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Our system’s source code can be downloaded from the url: https://github.
com/anonymous-iswc25/iga-ed-rewriter/blob/main/iga-ed-rewriter.zip.

7.1 Binary EDs

We now define the fragment of binary EDs, a subclass of linear EDs which has
a correspondence with DL-LiteR.

Definition 7. A binary ED is an ED of one of the following forms:

∀x (KB1 → KB2) (2)
∀x, y (KS1 → KS2) (3)

where B1 and B2 are expressions of one of the following forms:

{A(x), ∃y R(x, y), ∃y R(y, x)}

(where A is a concept name and R1, R2 are role names), and S1 and S2 are
expressions of one of the following forms:

{R(x, y), R(y, x)}

We now define the function DL(·) as follows:

DL(A(x)) = A DL(∃y R(y, x)) = ∃R− DL(R(x, y)) = R
DL(∃y R(x, y)) = ∃R DL(R(y, x)) = R−

Then, given a binary ED τ of the form (2), we define DL(τ) as the DL-LiteR
concept inclusion DL(B1) ⊑ DL(B2), and given a binary ED τ of the form (3),
we define DL(τ) as the DL-LiteR role inclusion DL(S1) ⊑ DL(S2). Finally, if P
is a set of binary EDs, we define DL(P) as the DL-LiteR TBox

⋃
τ∈P DL(τ).

As said above, this kind of policy enabled us not to re-implement a rewriting
function UCQRew of Algorithm 1 for linear EDs. Formally, when P is a binary
policy, instead of UCQRew(body(τ), Σ(P, T )), we computed UCQRew(body(τ),
DL(P+) ∪ T ) by exploiting the tree-witness rewriter also for this purpose.

One may wonder whether this restriction is sufficient to get back FO-rewritability.
However, the kind of policy used in the proof of Theorem 2 immediately rules
out this possibility. Hence, we restrict our attention to the case of full binary
EDs, which is FO-rewritable by Theorem 4.7

7 We recall that the restriction to a single atom in the head does not actually decrease
the expressiveness of full EDs (and thus of full binary EDs).

https://github.com/anonymous-iswc25/iga-ed-rewriter/blob/main/iga-ed-rewriter.zip
https://github.com/anonymous-iswc25/iga-ed-rewriter/blob/main/iga-ed-rewriter.zip
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7.2 Policy Definition

We ran our experiments using an acyclic policy Pa (consisting of 6 EDs) and
a binary policy Pb (consisting of 11 EDs), namely (we removed the universally
quantified variables for improving their readability):

{K ∃x isAdvisedBy(x, y)→ K Woman(y),
K ∃x (hasAlumnus(x, y) ∧ hasMasterDegreeFrom(y, x)→ K FullProfessor(y),
K (takesCourse(x, y) ∧ Student(x))→ K ⊥,
K (hasCollaborationWith(x, y) ∧ Student(x))→ K ⊥,
K isAdvisedBy(x, y) ∧ hasMasterDegreeFrom(x, z)→ K hasMajor(x,ComputerScience),
K (teachesCourse(x, y) ∧ FullProfessor(x))→ K hasDoctoralDegreeFrom(x,U2) },
{K isAffiliatedOrganizationOf(x, y), hasCollegeDiscipline(x,FineArts)→ K ⊥,
K Professor(x)→ K Woman(x),
K teachesCourse(x, y)→ K FullProfessor(x),
K isVisitingProfessorOf(x, y)→ K ⊥,
K takesCourse(x, y)→ K ElectiveCourse(y),
K Person(x)→ K Employee(x),
K hasAlumnus(x, y)→ K hasMasterDegreeFrom(y, x),
K hasCollaborationWith(x, y)→ K Professor(x),
K hasSameHomeTownWith(x, y)→ K Employee(x),
K knows(x, y)→ K Professor(x),
K knows(x, y)→ K Professor(y) }.

We also defined P -
a as a reduced version of Pa, containing its last 3 EDs, and

P -
b as a reduced version of Pb, containing its last 6 EDs.

7.3 Results

The results of our experiments are reported in Table 1. The symbol P∅ indicates
the absence of a policy: this is the configuration that we used as a baseline.

The main indications provided by these results are the following:

– In most cases, the evaluation time te is acceptable (it remains on the order
of seconds). The only critical query is the seventh one, which takes several
minutes to execute.

– The time tr necessary for computing the rewritten query is always less than
or equal to 3 seconds. As expected, for both o2b5 and o2b10, such rewriting
times are very close, as they do not depend on the ABox.

– For both acyclic and binary policies, the values of tr corresponding to smaller
and larger policies are of comparable magnitude.

– Observe that binary policies tend to remove more tuples than acyclic ones.
This could be explained by the fact that EDs with fewer atoms in their body
are more likely “activated” by the query.
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Query o2b5 o2b10

P∅ P -
a Pa P -

b Pb P∅ P -
a Pa P -

b Pb

q1
tr
te
#

460
513
9228

60
526
9228

58
547
9228

169
683
1367

193
958
334

690
822

19782

64
560

19782

87
964

19782

303
1394
2948

212
1085
730

q2
tr
te
#

50
81

18872

249
8688
18736

336
7335
14829

476
174
5957

511
206
5957

65
269

44190

243
39426
43889

386
51181
33193

873
876

13009

553
402

13009

q3
tr
te
#

25
4
34

41
8
34

42
6
34

40
2
34

109
4
28

38
8
75

32
5
75

43
9
75

62
5
75

112
6
64

q4
tr
te
#

21
6
0

40
7
0

35
2
0

52
4
0

133
3
0

33
7
0

33
5
0

49
7
0

68
5
0

97
3
0

q5
tr
te
#

21
17

3574

554
30699
2020

473
29679
2020

250
1823
952

319
1003
264

29
44

6564

482
110763
3676

917
124305
3676

451
5056
1696

334
1283
394

q6
tr
te
#

18
59

16236

114
60661
15834

115
28564
7811

161
81
0

116
230
0

25
235

35889

148
283020
35075

109
141173
17481

263
333
0

193
282
0

q7
tr
te
#

75
66

5489

2029
198641
5489

1976
187908
5091

1378
403
5489

1847
496
3292

88
334

11969

2205
993701
11969

2244
1119538
10971

2222
1343
11969

1801
812
7241

q8
tr
te
#

22
62

17904

52
75

17904

48
63

17904

257
615

14668

263
647

14668

21
186

39278

49
112

39278

44
143

39278

399
1548
32350

272
963

32350

q9
tr
te
#

135
31

1698

1711
1412
1539

2302
1313
1539

1765
137
0

3430
129
0

195
93

3434

1778
10230
3196

2290
10944
3196

2877
598
0

3144
332
0

q10

tr
te
#

22
78
642

1243
676
122

1220
3
0

184
110
642

337
159
144

32
297
1413

1351
4753
258

1433
3
0

380
478
1413

477
270
335

Table 1. All the evaluation results. Each entry reports the rewriting time (tr) and
evaluation time (te) expressed in milliseconds, plus the number of returned tuples (#).

8 Conclusions

In this work, we investigated CQE under policies expressed via epistemic depen-
dencies (EDs), focusing on the use of ground atom (GA) censors for safe infor-
mation disclosure. We investigated IGA-entailment, a semantic relation based
on the intersection of all optimal GA censors, and analyzed its data complexity
in the presence of ED-based policies when the TBox is expressed in DL-LiteR.
Our results show that the intersection remains safe for full EDs, a subclass of
particular interest. We established that IGA-entailment is not FO-rewritable in
general, which led us to the definition of the subclass of full and expandable
EDs for which FO-rewriting is feasible, and we introduced a rewriting algorithm
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that works for DL-LiteR ontologies. We validated our approach through a proto-
type implementation evaluated using the OWL2Bench benchmark, showing its
practical feasibility in diverse evaluation scenarios.

As for future work, we are currently working on the definition of practical
algorithms for some of the non-FO-rewritable cases of IGA-entailment analyzed
in the paper. Another interesting research direction is towards extending the
FO-rewritable cases identified by our analysis: in particular, we would like to
focus either on further subclasses of EDs, or on (subclasses of) policy languages
that go beyond the expressiveness of EDs. In addition, it would be interesting to
study the complexity of CQE under EDs for TBoxes expressed in DLs different
from DL-LiteR. Finally, it would be of practical importance to extend the present
approach to the framework of ontology-based data access (OBDA).
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