
Published as a conference paper at ICLR 2022

NEURAL PARAMETER ALLOCATION SEARCH

Bryan A. Plummer*†, Nikoli Dryden*‡, Julius Frost†, Torsten Hoefler‡, Kate Saenko†§
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ABSTRACT

Training neural networks requires increasing amounts of memory. Parameter
sharing can reduce memory and communication costs, but existing methods assume
networks have many identical layers and utilize hand-crafted sharing strategies
that fail to generalize. We introduce Neural Parameter Allocation Search (NPAS),
a novel task where the goal is to train a neural network given an arbitrary, fixed
parameter budget. NPAS covers both low-budget regimes, which produce compact
networks, as well as a novel high-budget regime, where additional capacity can
be added to boost performance without increasing inference FLOPs. To address
NPAS, we introduce Shapeshifter Networks (SSNs), which automatically learn
where and how to share parameters in a network to support any parameter budget
without requiring any changes to the architecture or loss function. NPAS and
SSNs provide a complete framework for addressing generalized parameter sharing,
and can also be combined with prior work for additional performance gains. We
demonstrate the effectiveness of our approach using nine network architectures
across four diverse tasks, including ImageNet classification and transformers.

1 INTRODUCTION

Training neural networks requires ever more computational resources, with GPU memory being a
significant limitation (Rajbhandari et al., 2021). Method such as checkpointing (e.g., Chen et al., 2016;
Gomez et al., 2017; Jain et al., 2020) and out-of-core algorithms (e.g., Ren et al., 2021) have been
developed to reduce memory from activations and improve training efficiency. Yet even with such
techniques, Rajbhandari et al. (2021) find that model parameters require significantly greater memory
bandwidth than activations during training, indicating parameters are a key limit on future growth.
One solution is cross-layer parameter sharing, which reduces the memory needed to store parameters,
which can also reduce the cost of communicating model updates in distributed training (Lan et al.,
2020; Jaegle et al., 2021) and federated learning (Konečný et al., 2016; McMahan et al., 2017), as
the model is smaller, and can help avoid overfitting (Jaegle et al., 2021). However, prior work in
parameter sharing (e.g., Dehghani et al., 2019; Savarese & Maire, 2019; Lan et al., 2020; Jaegle
et al., 2021) has two significant limitations. First, they rely on suboptimal hand-crafted techniques for
deciding where and how sharing occurs. Second, they rely on models having many identical layers.
This limits the network architectures they apply to (e.g., DenseNets (Huang et al., 2017) have few
such layers) and their parameter savings is only proportional to the number of identical layers.

To move beyond these limits, we introduce Neural Parameter Allocation Search (NPAS), a novel
task which generalizes existing parameter sharing approaches. In NPAS, the goal is to identify where
and how to distribute parameters in a neural network to produce a high-performing model using
an arbitrary, fixed parameter budget and no architectural assumptions. Searching for good sharing
strategies is challenging in many neural networks due to different layers requiring different numbers
of parameters or weight dimensionalities, multiple layer types (e.g., convolutional, fully-connected,
recurrent), and/or multiple modalities (e.g., text and images). Hand-crafted sharing approaches, as
in prior work, can be seen as one implementation of NPAS, but they can be complicated to create
for complex networks and have no guarantee that the sharing strategy is good. Trying all possible
permutations of sharing across layers is computationally infeasible even for small networks. To our
knowledge, we are the first to consider automatically searching for good parameter sharing strategies.

*indicates equal contribution

1



Published as a conference paper at ICLR 2022

Prior work in Cross-
Layer Parameter Sharing Knowledge DistillationNeural Parameter 

Allocation Search (ours)
Pruning/Quantizing 

Networks

makes training more efficient þ þ ý ý

supports any parameter budget (low and high) þ ý ý ý

generalizes to any architecture þ ý þ þ

focuses on improving task performance þ ý þ ý

Figure 1: Comparison of related tasks. Neural Parameter Allocation Search (NPAS) is a novel
task where the goal is to train a neural network given a fixed parameter budget. This generalizes
prior work, which supports only a subset of NPAS’s settings. E.g., pruning can decrease network
parameters, but starts from a full network, and many cross-layer parameter sharing works rely on
hand-crafted strategies that work for only a limited set of architectures. See Section 2 for discussion.

By supporting arbitrary parameter budgets, NPAS explores two novel regimes. First, while prior work
considered using sharing to reduce the number of parameters (which we refer to as low-budget NPAS,
LB-NPAS), we can also increase the number of parameters beyond what an architecture typically
uses (high-budget NPAS, HB-NPAS). HB-NPAS can be thought of as adding capacity to the network
in order to improve its performance without changing its architecture (e.g., without increasing the
number of channels that would also increase computational time). Second, we consider cases where
there are fewer parameters available to a layer than needed to implement the layer’s operations. For
such low-budget cases, we investigate parameter upsampling methods to generate the layer’s weights.

A vast array of other techniques, including pruning (Hoefler et al., 2021), quantization (Gholami
et al., 2021), knowledge distillation (Gou et al., 2021), and low-rank approximations (e.g., Wu, 2019;
Phan et al., 2020) are used to reduce memory and/or FLOP requirements for a model. However, such
methods typically only apply at test/inference time, and actually are more expensive to train due to
requiring a fully-trained large network, in contrast to NPAS. Nevertheless, these are also orthogonal
to NPAS and can be applied jointly. Indeed, we show that NPAS can be combined with pruning or
distillation to produce improved networks. Figure 1 compares NPAS to closely related tasks.

To implement NPAS, we propose Shapeshifter Networks (SSNs), which can morph a given parameter
budget to fit any architecture by learning where and how to share parameters. SSNs begin by learning
which layers can effectively share parameters using a short pretraining step, where all layers are
generated from a single shared set of parameters. Layers that use parameters in a similar way are then
good candidates for sharing during the main training step. When training, SSNs generate weights for
each layer by down- or upsampling the associated parameters as needed.

We demonstrate SSN’s effectiveness in high- and low-budget NPAS on a variety of networks, including
vision, text, and vision-language tasks. E.g., a LB-NPAS SSN implements a WRN-50-2 (Zagoruyko
& Komodakis, 2016) using 19M parameters (69M in the original) and achieves an Error@5 on
ImageNet (Deng et al., 2009) 3% lower than a WRN with the same budget. Similarity, we achieve a
1% boost to SQuAD v2.0 (Rajpurkar et al., 2016) with 18M parameters (334M in the original) over
ALBERT (Lan et al., 2020), prior work for parameter sharing in Transformers (Vaswani et al., 2017).
For HB-NPAS, we achieve a 1–1.5% improvement in Error@1 on CIFAR (Krizhevsky, 2009) by
adding capacity to a traditional network. In summary, our key contributions are:

• We introduce Neural Parameter Allocation Search (NPAS), a novel task in which the goal is to
implement a given network architecture using any parameter budget.

• To solve NPAS, we propose Shapeshifter Networks (SSNs), which automate parameter sharing.
To our knowledge, SSNs are the first approach to automatically learn where and how to share
parameters and to share parameters between layers of different sizes or types.

• We benchmark SSNs for LB- and HB-NPAS and show they create high-performing networks when
either using few parameters or adding network capacity.

• We also show that SSNs can be combined with knowledge distillation and parameter pruning to
boost performance over such methods alone.

2 NEURAL PARAMETER ALLOCATION SEARCH (NPAS)

In NPAS, the goal is to implement a neural network given a fixed parameter budget. More formally:
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Neural Parameter Allocation Search (NPAS): Given a neural network architecture with layers
`1, . . . , `L, which each require weights w1, . . . , wL, and a fixed parameter budget θ, train a
high-performing neural network using the given architecture and parameter budget.

Any general solution to NPAS (i.e., that works for arbitrary θ or network) must solve two subtasks:

1. Parameter mapping: Assign to each layer `i a subset of the available parameters.
2. Weight generation: Generate `i’s weights wi from its assigned parameters, which may be any size.

Prior work, such as Savarese & Maire (2019) and Ha et al. (2016), are examples of weight generation
methods, but in limited cases, e.g., Savarese & Maire (2019) does not support there being fewer
parameters than weights. To our knowledge, no prior work has automated parameter mapping,
instead relying on hand-crafted heuristics that do not generalize to many architectures. Note weight
generation must be differentiable so gradients can be backpropagated to the underlying parameters.

NPAS naturally decomposes into two different regimes based on the parameter budget relative to
what would be required by a traditional neural network (i.e.,

∑
L
i |wi| versus |θ|):

• Low-budget (LB-NPAS), with fewer parameters than standard networks (
∑

L
i |wi| < |θ|). This

regime has traditionally been the goal of cross-layer parameter sharing, and reduces memory at
training and test time, and consequentially reduces communication for distributed training.

• High-budget (HB-NPAS), with more parameters than standard networks (
∑

L
i |wi| > |θ|). This is,

to our knowledge, a novel regime, and can be thought of as adding capacity to a network without
changing the underlying architecture by allowing a layer to access more parameters.

Note, in both cases, the FLOPs required of the network do not significantly increase. Thus, HB-NPAS
can significantly reduce FLOP overhead compared to larger networks.

The closest work to ours are Shared WideResNets (SWRN) (Savarese & Maire, 2019), Hypernetworks
(HN) (Ha et al., 2016), and Lookup-based Convolutional Networks (LCNN) (Bagherinezhad et al.,
2017). Each method demonstrated improved low-budget performance, with LCNN and SWRN
focused on improving sharing across layers and HN learning to directly generate parameters. However,
all require adaptation for new networks and make architectural assumptions. E.g., LCNN was
designed specifically for convolutional networks, while HN and SWRN’s benefits are proportional to
the number of identical layers (see Figure 3). Thus, each method supports limited architectures and
parameter budgets, making them unsuited for NPAS. LCNN and HN also both come with significant
computational overhead. E.g., the CNN used by Ha et al. requires 26.7M FLOPs for a forward pass on
a 32×32 image, but weight generation with HN requires an additional 108.5M FLOPs (135.2M total).
In contrast, our SSNs require 0.8M extra FLOPs (27.5M total, 5× fewer than HN). Across networks
we consider, SSN overhead for a single image is typically 0.5–2% of total FLOPs. Note both methods
generate weights once per forward pass, amortizing overhead across a batch (e.g., SSN overhead
is reduced to 0.008–0.03% for batch size 64). HB-NPAS is also reminiscent of mixture-of-experts
(e.g., Shazeer et al., 2017); both increase capacity without significantly increasing FLOPs, but NPAS
allows this overparameterization to be learned without architectural changes required by prior work.

NPAS can be thought of as searching for efficient and effective underlying representations for a
neural network. Methods have been developed for other tasks that focus on directly searching for
more effective architectures (as opposed to their underlying representations). These include neural
architecture search (e.g., Bashivan et al., 2019; Dong & Yang, 2019; Tan et al., 2019; Xiong et al.,
2019; Zoph & Le, 2017) and modular/self-assembling networks (e.g., Alet et al., 2019; Ferran Alet,
2018; Devin et al., 2017). While these tasks create computationally efficient architectures, they do
not reduce the number of parameters in a network during training like NPAS (i.e., they cannot be
used to train very large networks or for federated or distributed learning applications), and indeed
are computationally expensive. NPAS methods can also provide additional flexibility to architecture
search by enabling them to train larger and/or deeper architectures while keeping within a fixed
parameter budget. In addition, the performance of any architectures these methods create could be
improved by leveraging the added capacity from excess parameters when addressing HB-NPAS.
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Figure 2: Overview of Shapeshifter Networks (SSNs). To train a SSN we begin by learning a
mapping of layers to parameter groups (Section 3.2). Only layers within the same group share
parameters. Then, during the forward pass each layer uses its shared parameters to generate the
weights it needs for its operation (Section 3.1). Note that SSNs do not change a network’s architecture
or loss function, and automates the creation of a parameter sharing strategy for a network.

3 SHAPESHIFTER NETWORKS FOR NPAS

We now present Shapeshifter Networks (SSNs), a framework for addressing NPAS using generalized
parameter sharing to implement a neural network with an arbitrary, fixed parameter budget. Figure 2
provides an overview and example of SSNs, and we detail each aspect below. An SSN consists of
a provided network architecture with layers `1,...,L, and a fixed budget of parameters θ, which are
partitioned into P parameter groups (both hyperparameters) containing parameters θ1,...,P . Each
layer is associated with a single parameter group, which will provide the parameters used to implement
it. This mapping is learned in a preliminary training step by training a specialized SSN and clustering
its layer representations (Section 3.2). To implement each layer, an SSN morphs the parameters
in its associated group to generate the necessary weights; this uses downsampling (Section 3.1.1)
when the group has more parameters than needed, or upsampling (Section 3.1.2) when the group
has fewer parameters than needed. SSNs allow any number of parameters to “shapeshift” into a
network without necessitating changes to the model’s loss, architecture, or hyperparameters, and the
process can be applied automatically. Finally, we note that SSNs are simply one approach to NPAS.
Appendices B-D contain ablation studies and discussion of variants we found to be less successful.

3.1 WEIGHT GENERATION

Weight generation implements a layer `i, which requires weights wi, using the fixed set of parameters
in its associated parameter group θj . (We assume the mapping between layers and parameter groups
has already been established; see Section 3.2.) There are three cases to handle:

1. |wi| = |θj | (exactly enough parameters): The parameters are used as-is.
2. |wi| < |θj | (excess parameters): We perform parameter downsampling (Section 3.1.1).
3. |wi| > |θj | (insufficient parameters): We perform parameter upsampling (Section 3.1.2).

We emphasize that, depending on how layers are mapped to parameter groups, both down- and
upsampling may be required in an LB- or HB-NPAS model.

3.1.1 PARAMETER DOWNSAMPLING

When a parameter group θj provides more parameters than needed to implement a layer `i, we
perform template-based downsampling to generate wi. To do this, we first split θj into up to K
(a hyperparameter) templates T 1,...,K

i , where each template T k
i is the same dimension as wi. If θj

does not evenly divide into templates, we ignore excess parameters. To avoid uneven sharing of
parameters between layers, the templates for each layer are constructed from θj in a round-robin
fashion. These templates are then combined to produce wi; if only one template can be produced
we instead use it directly. We present two different methods of learning to combine templates. To
simplify presentation, we will assume there are exactly K templates used.

WAvg (Savarese & Maire, 2019) This learns a vector αi ∈ RK which is used to produce a weighted
average of the templates: wi =

∑
K
k=1α

k
i T

k
i . The αi are initialized orthogonally to the αs of all other
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layers in the same parameter group. While efficient, this only implicitly learns similarities between
layers. Empirically, we find that different layers often converge to similar αs, limiting sharing.

Emb To address this, we can instead more directly learn a representation of the layer using a layer
embedding. We use a learnable vector φi ∈ RE , where E is the size of the layer representation; we
useE = 24 throughout, as we found it to work well. A linear layer, which is shared between all layers
in the parameter group and parameterized by Wj ∈ RK×E and bj ∈ RK , is then used to construct
an αi for the layer, which is used as in WAvg. That is, αi =Wjφi + bj and wi =

∑
K
k=1α

k
i T

k
i . We

considered more complex methods (e.g., MLPs, nonlinearities), but they did not improve performance.

While both methods require additional parameters, this is quite small in practice. WAvg requires
K additional parameters per layer. Emb requires E = 24 additional parameters per layer and
KE +K = 24K +K parameters per parameter group.

3.1.2 PARAMETER UPSAMPLING

If instead a parameter group θj provides fewer parameters than needed to implement a layer `i, we
upsample θj to be the same size as wi. As a layer will use all of the parameters in θj , we do not use
templates. We consider two methods for upsampling below.

Inter As a naı̈ve baseline, we use bilinear interpolation to directly upsample θj . However, this could
alter the patterns captured by parameters, as it effectively stretches the receptive field. In practice,
we found fully-connected and recurrent layers could compensate for this warping, but it degraded
convolutional layers compared to simpler approaches such as tiling θj .

Mask To address this, and avoid redundancies created by directly repeating parameters, we propose
instead to use a learned mask to modify repeated parameters. For this, we first use n = d|wi|/|θj |e
tiles of θj to be the same size as wi (discarding excess in the last tile). We then apply a separate
learned mask to each tile after the first (i.e., there are n− 1 masks). All masks are a fixed “window”
size, which we take to be 9 by default (to match the size of commonly-used 3× 3 kernels in CNNs),
and are shared within each parameter group. To apply, masks are multiplied element-wise over
sequential windows of their respective tile. While the number of additional parameters depends on
the amount of upsampling required, as the masks are small, this is negligible.

3.2 MAPPING LAYERS TO PARAMETER GROUPS

We now discuss how SSNs can automatically learn to assign layers to parameter groups in such a
way that parameters can be efficiently shared. This is in contrast to prior work on parameter sharing
(e.g., Ha et al., 2016; Savarese & Maire, 2019; Jaegle et al., 2021), which required layers to be
manually assigned to parameter groups. Finding an optimal mapping of layers to parameter groups
is challenging, and a brute-force approach is computationally infeasible. We rely instead on SSNs
learning a representation for each layer as part of the template-based parameter downsampling process,
and then use this representation to identify similar layers which can effectively share parameters.

To do this, we perform a short preliminary training step in which we train a small (i.e., low parameter
budget) SSN version of the model using a single parameter group and a modified means of generating
templates for parameter downsampling. Specifically, for a layer `i, we split θ into K ′ evenly-sized
templates T 1,...,K′

i . Since we wish to use downsampling-based weight generation, each T k′

i is then
resized with bilinear interpolation to be the same size as wi. Next, we train the SSN as usual,
using WAvg or Emb downsampling with the modified templates for weight generation (there is no
upsampling). By using a small parameter budget and template-based weight generation where each
template comes from the same underlying parameters, we encourage significant sharing between
layers so we can measure the effectiveness of sharing. We found that using a budget equal to the
number of weights of the largest single layer in the network to work well. Further, this preliminary
training step is short, and requires only 10–15% of the typical network training time.

Finally, we construct the parameter groups by clustering the learned layer representations into P
groups. As the layer representation, we take the αi or φi learned for each layer by WAvg or Emb
downsampling (resp.). We then use k-means clustering to group these representations into P groups,
which become the parameter groups used by the full SSN.
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4 EXPERIMENTS

Our experiments include a wide variety of tasks and networks in order to demonstrate the broad
applicability of NPAS and SSNs. We adapt code and data splits made available by the authors and
report the average of five runs for all comparisons except ImageNet and ALBERT, which average three
runs. A more detailed discussion on SSN hyperparameter settings can be found in Appendices B-D.
In our paper we primarily evaluate methods based on task performance, but we demonstrate that
SSNs improve reduce training time and memory in distributed learning settings in Appendix G.

Compared Tasks. We briefly describe each task, datasets, and evaluation metrics. For each model,
we use the authors’ implementation and hyperparameters, unless noted (more details in Appendix A).

Image Classification. For image classification the goal is to recognize if an object is present in
an image. This is evaluated using Error@k, i.e., the portion of times that the correct category
does not appear in the top k most likely objects. We evaluate SSNs on CIFAR-10 and CIFAR-
100 (Krizhevsky, 2009), which are composed of 60K images of 10 and 100 categories, respectively,
and ImageNet (Deng et al., 2009), which is composed of 1.2M images containing 1,000 categories.
We report Error@1 on CIFAR and Error@5 for ImageNet.

Image-Sentence Retrieval. In image-sentence retrieval the goal is match across modalities (sen-
tences and images). This task is evaluated using Recall@K={1, 5, 10} for both cross-modal directions
(six numbers), which we average for simplicity. We benchmark on Flickr30K (Young et al., 2014)
which contains 30K/1K/1K images for training/testing/validation, and COCO (Lin et al., 2014),
which contains 123K/1K/1K images for training/testing/validation. For both datasets each image has
about five descriptive captions. We evaluate SSNs using EmbNet (Wang et al., 2016) and ADAPT-
T2I (Wehrmann et al., 2020). Note that ADAPT-T2I has identical parallel layers (i.e., they need
different outputs despite having the same input), which makes sharing parameters challenging.

Phrase Grounding. Given a phrase the task is to find its associated image region. Performance is
measured by how often the predicted box for a phrase has at least 0.5 intersection over union with
its ground truth box. We evaluate on Flickr30K Entities (Plummer et al., 2017) which augments
Flickr30K with 276K bounding boxes for phrases in image captions, and ReferIt (Kazemzadeh et al.,
2014), which contains 20K images that are evenly split between training/testing and 120K region
descriptions. We evaluate our SSNs with SimNet (Wang et al., 2018) using the implementation from
Plummer et al. (2020) that reports state-of-the-art results on this task.

Question Answering. For this task the goal is to answer a question about a textual passage. We
use SQuAD v1.1 (Rajpurkar et al., 2016), which has 100K+ question/answer pairs on 500+ articles,
and SQuAD v2.0 (Rajpurkar et al., 2018), which adds 50K unanswerable questions. We report F1
and EM scores on the development split. We compare our SSNs with ALBERT (Lan et al., 2020), a
recent transformer architecture that incorporates extensive, manually-designed parameter sharing.

4.1 RESULTS

We begin our evaluation in low-budget (LB-NPAS) settings. Figure 3 reports results on image
classification, including WRNs (Zagoruyko & Komodakis, 2016), DenseNets (Huang et al., 2017),
and EfficientNets (Tan & Le, 2019); Table 1 contains results on image-sentence retrieval and phrase
grounding. For each task and architecture we compare SSNs to same parameter-sized networks
without sharing. In image classification, we also report results for SWRN (Savarese & Maire, 2019)
sharing; but note it cannot train a WRN-28-10 or WRN-50-2 with fewer than 12M or 40M parameters,
resp. We show that SSNs can create high-performing models with fewer parameters than SWRN is
capable of, and actually outperform it using 25% and 60% fewer parameters on C-100 and ImageNet,
resp. Table 1 demonstrates that these benefits generalize to vision-language tasks. In Table 2 we also
compare SSNs with ALBERT (Lan et al., 2020), which applies manually-designed parameter sharing
to BERT (Devlin et al., 2019), and find that SSN’s learned parameter sharing outperforms ALBERT.
This demonstrates that SSNs can implement large networks with lower memory requirements than is
possible with current methods by effectively sharing parameters.

We discuss the runtime and memory performance implications of SSNs extensively in Appendix G.
In short, by reducing parameter counts, SSNs reduce communication costs and memory. For example,
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Figure 3: Comparison of reducing the parameter parameters by adjusting layer sizes vs. our SSNs us-
ing the same number of parameters. We also compare to prior work in parameter sharing, specifically
SWRN (Savarese & Maire, 2019). Note that due to architecture assumptions made by SWRN, it
cannot reduce the number of parameters of a WRN-28-10 by more than than 33% of the original and
58% of the parameters of a WRN-50-2. In contrast, we can not only use far fewer parameters that
perform better than SWRN, but we can also implement even larger networks (WRN-76-12) without
having to increase our parameter usage. See text for additional discussion.

Table 1: SSNs vs. similar size traditional networks on image-sentence retrieval and phrase grounding.

Dataset Method Performance
Image-Sentence Retrieval % orig params 6.9% 13.9% 100%

F30K EmbNet 56.5 70.2 74.1
SSN-EmbNet 67.9 71.6 74.4

COCO EmbNet 74.2 77.3 81.4
SSN-EmbNet 76.7 78.2 82.1

% orig params 34.7% 70.9% 100%

F30K ADAPT-T2I 76.6 80.6 83.3
SSN-ADAPT-T2I 81.2 81.7 82.9

COCO ADAPT-T2I 83.8 85.2 86.8
SSN-ADAPT-T2I 85.3 86.2 87.0

Phrase Grounding % orig params 7.8% 15.6% 100%

F30K Ent SimNet 70.6 71.0 71.7
SSN-SimNet 71.9 72.1 72.4

ReferIt SimNet 58.5 59.2 61.1
SSN-SimNet 59.5 59.9 61.0

our SSN-ALBERT-Large trains about 1.4× faster using 128 GPUs than BERT-Large (in line with
results for ALBERT), and reduces memory requirements by about 5 GB (1/3 of total).

As mentioned before, knowledge distillation and parameter pruning can help create more efficient
models at test time, although they cannot reduce memory requirements during training like SSNs.
Tables 3 and 4 show our approach can be used to accomplish a similar goal as these tasks. Comparing
our LB-NPAS results in Table 4 and the lowest parameter setting of HRank, we report a 1.5% gain
over pruning methods even when using less than half the parameters. We note that one can think of
our SSNs in the high budget setting (HP-NPAS) as mixing together a set of random initializations
of a network by learning to combine the different templates. This setting’s benefit is illustrated in
Table 3 and Table 4, where our HB-NPAS models report a 1-1.5% gain over training a traditional
network. As a reminder, in this setting we precompute the weights of each layer once training is
complete so they require no additional overhead at test time. That said, best performance on both
tasks comes from combining our SSNs with prior work on both tasks.

4.2 ANALYSIS OF SHAPESHIFTER NETWORKS

In this section we present ablations of the primary components of our approach. A complete ablation
study, including, but not limited to comparing the number of parameter groups (Section 3.2) and
number of templates (K in Section 3.1.1) can be found in Appendices B-D.

Table 5 compares the strategies generating weights from templates described in Section 3.1.1 when
using a single parameter group. In these experiments we set the number of parameters as the amount
required to implement the largest layer in a network. For example, the ADAPT-T2I model requires
14M parameters, but its bidirectional GRU accounts for 10M of those parameters, so all SSN variants
in this experiment allocate 10M parameters. Comparing to the baseline, which involves modifying
the original model’s number and/or size of filters so they have the same number of parameters as our

7



Published as a conference paper at ICLR 2022

Table 2: Comparison of ALBERT-base and
-large (Lan et al., 2020) vs SSNs usingP =
4 learned parameter groups. Scores are F1
and EM on dev sets.

Network SQuAD v1.1 SQuAD v2.0
Base 12M params (11% of orig)
ALBERT 89.2/82.1 79.8/76.9
LB-SSN 90.1/83.0 80.7/78.0
Large 18M params (5% of orig)
ALBERT 90.5/83.7 82.1/79.3
LB-SSN 91.1/84.4 83.0/80.1

Table 3: Knowledge distillation experiments on CIFAR-
100 using OFD (Heo et al., 2019) and SRR (Yang et al.,
2021). HB-SSN’s budget is 4× the student’s size. For
all settings using our SSNs improve performance over
distillation alone.

Teacher Error@1 Student Baseline OFD SRR

WRN-40-4 20.50 WRN-16-2 27.30 24.43 24.03
HB-SSN 26.53 23.99 23.42

ResNet-34 27.95 ResNet-10 31.58 31.06 30.09
HB-SSN 30.88 30.41 29.63

Table 4: Parameter pruning experiments with
HRank (Lin et al., 2020). HB-SSN’s budget is 4×
the model’s size during pretraining, then we generate
the final weights for pruning. In all settings using our
SSNs improve performance over pruning alone.

Method C-10 Error@1 % original % original
ResNet-56 HB-SSN test FLOPs test params

Base 6.74 5.21 100.0 100.0
HRank 6.48 5.86 70.7 83.2
HRank 10.75 9.94 20.3 28.4
LB-SSN 9.26 – 100.6 12.2

Table 5: Parameter downsampling com-
parison (Section 3.1.1) using WRN-28-10
and WRN-50-2 for C-10/100 and ImageNet,
resp. Baseline adjusts the number and/or
size of filters rather than share parameters.
See Appendix B for additional details.

Dataset % orig Reduced SSNs (ours)
params Baseline WAvg Emb

C-10 11.3% 4.22 4.00 3.84
C-100 22.34 21.78 21.92
ImageNet 27.5% 10.08 7.38 6.69

SSNs, we see that the variants of our SSNs perform better, especially on ImageNet where we reduce
Error@5 by 3%. Generally we see a slight boost to performance using Emb over WAvg. Also note
that prior work in parameter sharing, e.g., SWRN (Savarese & Maire, 2019), can not be applied to
the settings in Table 5, since they require parameter sharing between layers of different types and
different operations, or have too few parameters. E.g., the WRN-28-10 results use just under 4M
parameters, but, as shown in Figure 3(a), SWRN requires a minimum of 12M parameters.

In Table 6 we investigate one of the new challenges in this work: how to upsample parameters so a
large layer operation can be implemented with relatively few parameters (Section 3.1.2). For example,
our SSN-WRN-28-10 results use about 0.5M parameters, but the largest layer defined in the network
requires just under 4M weights. We find using our simple learned Mask upsampling method performs
well in most settings, especially when using convolutional networks. For example, on CIFAR-100
it improves Error@1 by 2.5% over the baseline, and 1.5% over using bilinear interpolation (inter).
While more complex methods of upsampling may seem like they would improve performance
(e.g., using an MLP, or learning combinations of basis filters), we found such approaches had two
significant drawbacks. First, they can slow down training time significantly due to their complexity,
so only a limited number of settings are viable. Second, in our experiments we found many had
numerical stability issues for some datasets/tasks. We believe this may be due to trying to learn the
local parameter patterns and the weights to combine them concurrently. Related work suggests this
can be resolved by leveraging prior knowledge about what these local parameter patterns should
represent (Denil et al., 2013), i.e., you define and freeze what they represent. However, prior
knowledge is not available in the general case, and data-driven methods of training these local filter
patterns often rely on pretraining steps of the fully-parameterized network (e.g., Denil et al., 2013).
Thus, they are not suited for NPAS since they can not training large networks with low memory
requirements, but addressing this issue would be a good direction for future work.

Table 7 compares approaches for mapping layers to parameter groups using the same number of
parameters as the original model. We see a small, but largely consistent improvement over using
a traditional (baseline) network using SSNs. Notably, our automatically learned mappings (auto)
perform on par with manual groups. This demonstrates that our automated approach can be used
without loss in performance, while being applicable to any architecture, making them more flexible
than hand-crafted methods. This flexibility does come with a computational cost, as our preliminary
step that learns to map layers to parameter groups resulted in a 10-15% longer training time for
equivalent epochs. That said, parameter sharing methods have demonstrated an ability to converge
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with the manual assignments of Savarese & Maire, 2019)

Figure 4: Qualitative comparison of the (a) generated weights for a WRN-16-2 and (b) the parameter
groups for a WRN-28-10 model trained on C-100. See Section 4.2 for discussion.

Table 6: Parameter upsampling comparison
(Section 3.1.2). “Reduced Baseline” adjusts
the number and/or size of filters rather than
share parameters. See Appendix B for the
original models’ performance.

% orig Reduced SSNs (ours)
Dataset params Baseline Inter Mask
C-10 1.4% 6.35 6.05 5.07
C-100 28.35 26.84 25.20
ImageNet 2.2% 15.20 14.83 14.19

Table 7: Compares methods of creating parameter
groups (Section 3.2). These results demonstrate
that our automatically learned mappings (auto) pro-
vide more flexibility without reducing performance
compared to manual mappings.

SSNs (ours)
Dataset Baseline Single Random Manual Auto
C-10 3.57 3.71 3.63 3.38 3.42
C-100 19.44 19.99 20.36 19.29 19.24
ImageNet 5.84 6.18 5.91 5.82 5.86

faster (Bagherinezhad et al., 2017; Lan et al., 2020). Thus, exploring more efficient training strategies
using NPAS methods like SSNs will be a good direction for future work.

Figure 4(a) compares the 3× 3 kernel filters at the early, middle, and final convolutional layers of
a WRN-16-2 of a traditional neural network (no parameter sharing) and our SSNs where all layers
belong to the same parameter group. We observe a correspondence between filters in the early layers,
but this diverges in deeper layers. This suggests that sharing becomes more difficult in the final layers,
which is consistent with two observations we made about Figure 4(b), which visualizes parameter
groups used for SSN-WRN-28-10 to create 14 parameter group mappings. First, we found the learned
parameter group mappings tended to share parameters between layers early in the network, opting for
later layers to share no parameters. Second, the early layers tended to group layers into 3–4 parameter
stores across different runs, with the remaining 10–11 parameter stores each containing a single layer.
Note that these observations were consistent across different random initializations.

5 CONCLUSION

We propose NPAS, a novel task in which the goal is to implement a given, arbitrary network
architecture given a fixed parameter budget. This involves identifying how to assign parameters to
layers and implementing layers with their assigned parameters (which may be of any size). To address
NPAS, we introduce SSNs, which automatically learn how to share parameters. SSNs benefit from
parameter sharing in the low-budget regime—reducing memory and communication requirements
when training—and enable a novel high-budget regime that can improve model performance. We
show that SSNs boost results on ImageNet by 3% improvement in Error@5 over a same-sized
network without parameter sharing. Surprisingly, we also find that parameters can be shared among
very different layers. Further, we show that SSNs can be combined with knowledge distillation and
parameter pruning to achieve state-of-the-art results that also reduce FLOPs at test time. One could
think of SSNs as spreading the same number of parameters across more layers, increasing effective
depth, which benefits generalization (Telgarsky, 2016), although this requires further exploration.
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particular, this could allow potentially harmful applications to be cheaply and widely deployed (e.g.,
facial recognition, surveillance) where it would otherwise be technically or economically infeasible.
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NPAS is a task which can be implemented in many different ways; we define it formally in Section 2.
SSNs, our proposed solution to NPAS, are presented in detail in Section 3, and Figure 2 provides
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discussion of the implementation details. To further aid reproducibility, we publicly release our SSN
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A DESCRIPTION OF COMPARED TASKS

A.1 IMAGE-SENTENCE RETRIEVAL

In bidirectional image-sentence retrieval when a model is provided with an image the goal is to
retrieve a relevant sentence and vice versa. This task is evaluated using Recall@K={1, 5, 10} for
both directions (resulting in 6 numbers), which we average for simplicity. We benchmark methods
on two common datasets: Flickr30K (Young et al., 2014) which contains 30K/1K/1K images for
training/testing/validation, each with five descriptive captions, and MSCOCO (Lin et al., 2014),
which contains 123K/1K/1K images for training/testing/validation, each image having roughly five
descriptive captions.

EmbNet (Wang et al., 2016). This network learns to embed visual features for each image computed
using a 152-layer Deep Residual Network (ResNet) (He et al., 2016) that has been trained on
ImageNet (Deng et al., 2009) and the average of MT GrOVLE (Burns et al., 2019) language features
representing each word into a shared semantic space using a triplet loss. The network consists of
two branches, one for each modality, and each branch contains two fully connected layers (for a
total of four layers). We adapted the implementation of Burns et al. (Burns et al., 2019)1, and left all
hyperparameters at the default settings. Specifically, we train using a batch size of 500 with an initial
learning rate of 1e-4 which we decay exponentially with a gamma of 0.794 and use weight decay of
0.001. The model is trained until it has not improved performance on the validation set over the last
10 epochs. This architectures provides a simple baseline for parameter sharing with our Shapeshifter
Networks (SSNs), where layers operate on two different modalities.

ADAPT-T2I (Wehrmann et al., 2020). In this approach word embeddings are aggregated using a
bidirectional GRU (Cho et al., 2014) and its hidden state at each timestep is averaged to obtain a full-
sentence representation. Images are represented using 36 bottom-up image region features (Anderson
et al., 2018) that are passed through a fully connected layer. Then, each sentence calculates scaling
and shifting parameters for the image regions using a pair of fully connected layers that both take
the full-sentence representation as input. The image regions are then averaged, and a similarity
score is computed between the sentence-adapted image features and the fully sentence representation.
Thus, there are four layers total (3 fully connected, 1 GRU) that can share parameters, including the
two parallel fully connected layers (i.e., they both take the full sentence features as input, but are
expected to have different outputs). We adapted the author’s implementation and kept the default
hyperparameters2. Specifically, we use a latent dimension of 1024 for our features and train with
a batch size of 105 using a learning rate of 0.001. This method was selected since it achieves high
performance and also included fully connected and recurrent layers, as well as having a set of parallel
layers that make effectively performing cross-layer parameter sharing more challenging.

A.2 PHRASE GROUNDING

Given a phrase the goal of a phrase grounding model is to identify the image region described by
the phrase. Success is achieved if the predicted box has at least 0.5 intersection over union with
the ground truth box. Performance is measured using the percent of the time a phrase is accurately
localized. We evaluate on two datasets: Flickr30K Entities (Plummer et al., 2017) which augments
the Flickr30K dataset with 276K bounding boxes associated with phrases in the descriptive captions,
and ReferIt (Kazemzadeh et al., 2014) which contains 20K images that are evenly split between
training/testing and 120K region descriptions.

SimNet (Wang et al., 2018). This network contains three branches that each operate on different
types of features. One branch passes image regions features computed with a 101-layer ResNet
that have been fine-tuned for phrase grounding using two fully connected layers. A second branch
passes MT GrOVLE features through two fully connected layers. Then, a joint representation is
computed for all region-phrase pairs using an elementwise product. Finally, the third branch passes
these joint features through three fully connected layers (7 total), where the final layer acts as a
classifier indicating the likelihood that phrase is present in the image region. We adapt the code

1https://github.com/BryanPlummer/Two_branch_network
2https://github.com/jwehrmann/retrieval.pytorch
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from Plummer et al. (2020)3 and keep all hyperameters at their default settings. Specifically, we use
a pretrained Faster R-CNN model (Ren et al., 2015) fine-tuned for phrase grounding by Plummer
et al. (2020) on each dataset to extract region features. Then we encode each phrase by averaging
MT GrOVLE features (Burns et al., 2019) and provide the image and phrase features as input to our
model. We train our model using a learning rate of 5e-5 and a final embedding dimension of 256 until
it no longer improves on the validation set for 5 epochs (typically resulting in training times of 15-20
epochs). Performing experiments on this model enables us to test how well our SSNs generalize to
another task and how well it can adapt to sharing parameters with layers operating on three types of
features (just vision, just language, and a joint representation).

A.3 IMAGE CLASSIFICATION

For image classification the goal is to be able to recognize if an object is present in an image. Typically
this task is evaluated using Error@K, or the portion of times that the correct category doesn’t appear
in the top k most likely objects. We evaluate our Shapeshifter Networks on three datasets: CIFAR-10
and CIFAR-100 (Krizhevsky, 2009), which are comprised of 60K images of 10 and 100 categories,
respectively, and ImageNet (Deng et al., 2009), which is comprised of 1.2M images containing
1,000 categories. We report Error@1 for both CIFAR datasets and Error@5 for ImageNet. In these
appendices, we also report Error@1 for ImageNet.

Wide Residual Network (WRN) (Zagoruyko & Komodakis, 2016). WRN modified the traditional
ResNets by increasing the width k of each layer while also decreasing the depth d, which they found
improved performance. Different variants are identified using WRN-d-k. Following Savarese et
al. (Savarese & Maire, 2019), we evaluate our Shapeshifter Networks using WRN-28-10 for CIFAR
and WRN-50-2 for ImageNet. We adapt the implementation of Savarese et al.4 and use cutout (De-
Vries & Taylor, 2017) for data augmentation. Specifically, on CIFAR we train our model using a
batch size of 128 for 200 epochs with weight decay set at 5e-4 and an initial learning rate of 0.1
which we decay using a gamma of 0.2 at 60, 120, and 160 epochs. Unlike the vision-language models
discussed earlier, these architecture include convolutional layers in addition to a fully connected layer
used to implement a classifier, and also have many more layers than the shallow vision-language
models.

DenseNet (Huang et al., 2017). Unlike traditional neural networks where each layer in the network
is computed in sequence, every layer in a DenseNet using feature maps from every layer which came
before it. We adapt PyTorch’s official implementation5 using the hyperparameters as set in Huang et
al. (Huang et al., 2017). Specifically, on CIFAR we train our model using a batch size of 96 for
300 epochs with weight decay set at 1e-4 and an initial learning rate of 0.1 which we decay using a
gamma of 0.1 at 150 and 225. These networks provide insight into the effect depth has on learning
SSNs, as we use a 190-layer DenseNet-BC configuration for CIFAR. However, due to their high
computational cost we provide limited results testing only some settings.

EfficientNet (Tan & Le, 2019). EfficientNets are a class of model designed to balance depth, width,
and input resolution in order to produce very parameter-efficient models. For ImageNet, we adapt
an existing PyTorch implementation and its hyperparameters6, which are derived from the official
TensorFlow version. We use the EfficientNet-B0 architecture to illustrate the impact of SSNs on very
parameter-efficient, state-of-the-art models. On CIFAR-100 we use an EfficientNet with Network
Deconvolution (ND) (Ye et al., 2020), which results in improved results with similar numbers of
epochs for training. We use the author’s implementation7, and train each model for 100 epochs (their
best performing setting). Note that our best error running different configurations of their model
(35.88) is better than those in their paper (37.63), so despite the relatively low performance it is
comparable to results from their paper.

3https://github.com/BryanPlummer/phrase_detection
4https://github.com/lolemacs/soft-sharing
5https://pytorch.org/hub/pytorch_vision_densenet/
6https://rwightman.github.io/pytorch-image-models/
7https://github.com/yechengxi/deconvolution
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A.4 QUESTION ANSWERING

In question answering, a model is given a question and an associated textual passage which may
contain the answer, and the goal is to predict the span of text in the passage that contains the answer.
We use two versions of the Stanford Question Answering Dataset (SQuAD), SQuAD v1.1 (Rajpurkar
et al., 2016), which contains 100K+ question/answer pairs on 500+ Wikipedia particles, and SQuAD
v2.0, which augments SQuAD v1.1 with 50K unanswerable questions designed adversarially to be
similar to standard SQuAD questions. For both datasets, we report both the F1 score, which captures
the precision and recall of the chosen text span, and the Exact Match (EM) score.

ALBERT (Lan et al., 2020) ALBERT is a version of the BERT (Devlin et al., 2019) transformer
architecture that applies cross-layer parameter sharing. Specifically, the parameters for all components
of a transformer layer are shared among all the transformer layers in the network. ALBERT also
includes a factorized embedding to further reduce parameters. We follow the methodology of BERT
and ALBERT for reporting results on SQuAD, and our baseline ALBERT scores closely match
those reported in the original work. This illustrates the ability of NPAS and SSNs to develop better
parameter sharing methods than manually-designed systems for extremely large models.

B EXTENDED RESULTS WITH ADDITIONAL BASELINES

Below we provide additional results with more baseline methods for the three components of our
SSNs: weight generator (Section B.1), parameter upsampling (Section B.4), and mapping layers
to parameter groups (Section B.3). We provide ablations on the number of parameter groups and
templates used by our SSNs in Section C and Section D, respectively.

B.1 ADDITIONAL METHODS THAT GENERATE LAYER WEIGHTS FROM TEMPLATES

Parameter downsampling uses the selected templates T k
i for a layer `i to produce its weights wi. In

Section 3.1.1 of the paper we discuss two methods of learning a combination of the T k
i to generate

wi. Below in Section B.2 we provide two simple baseline methods that directly use the candidates.
Table 8 compares the baselines to the methods in the main paper that learn weighted combinations of
templates, where the learned methods typically perform better than the baselines.

B.2 DIRECT TEMPLATE COMBINATION

Here we describe the strategies we employ that require no parameters to be learned by weight
generator, i.e., they operate directly on the templates T k

i .

Round Robin (RR) reuses parameters of each template set as few times as possible. The scheme
simply returns the weights at index k mod K in the (ordered) template set Ti at the kth query of a
parameter group.

Candidate averaging (Avg) averages all candidates in Ti to provide a naive baseline for using
multiple candidates. A significant drawback of this approach is that, if K is large, this can result in
reusing parameters (across combiners) many times with no way to adapt to a specific layer, especially
when the size of the parameter group is small.

B.3 ADDITIONAL PARAMETER MAPPING RESULTS

Table 9 compares approaches that map layers to parameter groups using the same number of pa-
rameters as the original model. We see a small, but largely consistent improvement over using a
traditional (baseline) network. Notably, our learned grouping methods (WAvg, Emb) perform on
par, and sometimes better than using manual mappings. However, our approach can be applied to
any architecture to create a selected number of parameter groups, making them more flexible than
hand-crafted methods. For example, in Table 10, we see using two groups often helps to improve
performance when using very few parameters, but it is not clear how to effectively create two groups
by hand for many networks.
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Table 8: Weight generation method comparison. See Section B.1 for a description of the baseline
methods (RR, Avg), and Section 3.1.1 of the paper for the learned candidates (WAvg, Emb). All
models in the same row use the same (reduced) number of parameters. “Reduced Baseline” uses
no parameter sharing, but adjusts the number and/or size of filters so they have the same number of
parameters as our SSNs. The original model’s performance is reported in the first column of results
in Table 9.

Orig Num % of Params Reduced SSN Variants (ours)
Method Params (M) Used Dataset Baseline RR Avg WAvg Emb
Image-Sentence Retrieval (↑ better)

EmbNet 7 57.1% F30K 72.8 74.1 73.5 74.0 74.3
COCO 80.9 80.8 80.9 81.2 81.5

ADAPT-T2I 14 70.9% F30K 80.6 81.2 80.5 81.6 81.7
COCO 85.2 85.6 85.8 86.2 85.9

Phrase Grounding (↑ better)

SimNet 6 33.1% F30K Entities 71.1 72.3 72.1 72.3 72.5
ReferIt 59.4 60.5 60.2 60.5 60.4

Image Classification (↓ better)

WRN-28-10 36 11.3% C-10 4.22 4.09 4.19 4.00 3.84
C-100 22.34 21.91 22.78 21.78 21.92

WRN-50-2 69 27.5% ImageNet E@5 10.08 6.69 7.61 7.38 6.69
ImageNet E@1 28.68 23.32 25.11 24.15 23.25

Table 9: Parameter mapping comparison (described in Section 3.2 of the paper). Each method
uses the same number of parameters and the baseline represents no parameter sharing. Notably, these
results demonstrate how our automatically learned groups can provide greater flexibility when sharing
parameters while performing on par or better than manually created groups (which are illustrated in
Figure 5).

SSN Variants (ours)
Method #Groups Dataset Baseline Single Random Manual WAvg Emb
Image-Sentence Retrieval (↑ better)

EmbNet 2 F30K 74.1 74.4 74.0 74.3 74.2 74.3
COCO 81.4 82.1 81.5 81.7 81.7 81.9

ADAPT-T2I 2 F30K 83.3 82.1 81.9 82.0 82.6 82.9
COCO 86.8 86.1 86.3 86.1 86.4 87.0

Phrase Grounding (↑ better)

SimNet 3 F30K Entities 71.7 71.4 71.8 72.4 72.2 72.1
ReferIt 61.1 60.9 60.0 60.2 61.0 60.5

Image Classification (↓ better)

WRN-28-10 14 C-10 3.57 3.71 3.63 3.38 3.51 3.42
C-100 19.44 19.99 20.36 19.29 19.47 19.24

WRN-50-2 32 ImageNet E@5 5.84 6.18 5.91 5.82 5.86 5.96
ImageNet E@1 21.50 22.09 21.54 21.43 21.59 21.61

B.4 EXTENDED PARAMETER UPSAMPLING

In Table 10 we provide extended results comparing the parameter upsamping methods. We addi-
tionally compare with a further naı̈ve baseline of simply repeating parameters until they are the
appropriate size. We find that Mask upsampling is always competitive, and typically moreso when
two parameter groups are used.

B.5 COMPARISON WITH HYPERNETWORKS

In Table 11 we compare our SSNs on Wide ResNets (Ha et al., 2016) to the same networks imple-
mented using Hypernetworks (Ha et al., 2016) for CIFAR-10, using the results reported in their paper.
We can see that, for the same parameter budget, SSNs outperform Hypernetworks.
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Figure 5: Examples of architectures used to evaluate SSNs. Fully connected (FC) and bidirectional
GRU (Bi-GRU) layers give their in× out dimensions; convolutional layers (conv) give the number
of layers, kernel size, and number of filters. Same colored boxes show “manual” (Table 9) sharing,
except for green boxes in WRN, whose layers share no parameters. Layers without parameters
omitted.

Table 10: Parameter upsampling comparison. Most methods are described in Section 3.1.2 of
the paper, except the method “repeat” that simply duplicates weights when upsampling. “Reduced
Baseline” uses no parameter sharing, but adjusts the number and/or size of filters so they have the
same number of parameters as our SSNs. The original model’s performance is reported in the first
column of results in Table 9.

Orig Num % of Params Reduced SSN Variants (ours)
Method Params (M) Used Dataset Baseline Repeat Inter Mask 2 Groups+Mask
Image-Sentence Retrieval (↑ better)

EmbNet 6 6.9% F30K 56.5 64.8 67.5 67.3 67.9
COCO 74.2 75.5 76.1 76.2 76.7

ADAPT-T2I 14 34.7% F30K 76.6 79.0 80.9 80.3 81.2
COCO 83.8 84.9 85.3 84.6 84.9

Phrase Grounding (↑ better)

SimNet 6 7.8% F30K Entities 70.6 71.1 71.8 71.5 71.9
ReferIt 58.5 58.9 59.3 59.2 59.5

Image Classification (↓ better)

WRN-28-10 36 1.4% C-10 6.35 5.43 6.05 5.18 5.07
C-100 28.35 27.08 26.84 25.71 25.20

WRN-50-2 69 2.2% ImageNet E@5 15.20 14.16 14.83 14.19 14.58
ImageNet E@1 37.05 35.48 36.60 35.72 36.01

C EFFECT OF THE NUMBER OF PARAMETER GROUPS P

A significant advantage of using learned mappings of layers to parameter groups, described in
Section 3.2, is that our approach can support any number of parameter groups, unlike prior work that
required manual grouping and/or heuristics to determine which layers shared parameters (e.g., Lan
et al., 2020; Savarese & Maire, 2019). In this section we explore how the number of parameter groups

Table 11: Comparison of SSNs to Hypernetworks (Ha et al., 2016) on CIFAR-10.

Method Error@1 #Params (M)
Wide ResNet 40-1 6.73 0.563
Hyper Wide ResNet 8.02 0.097
SSN (ours) 7.22 0.097
Wide ResNet 40-2 5.66 2.236
Hyper Wide ResNet 7.23 0.148
SSN (ours) 6.56 0.148
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Table 12: Effect the number of learned parameter groups P has on performance for a SSN-WRN-28-
10 model when training on C-100 using the Emb strategy. See Section C for discussion.

#Groups 1 2 4 8 12 14 16
4M Params 21.92 ± 0.30 21.47 ± 0.23 21.31 ± 0.13 22.01 ± 0.26 22.43 ± 0.37 23.88 ± 0.40 24.99 ± 0.39
36M Params 19.99 ± 0.22 19.80 ± 0.38 19.75 ± 0.29 19.69 ± 0.28 19.27 ± 0.10 19.24 ± 0.29 19.40 ± 0.14

Table 13: Effect the number of templates K has on performance. Share type is set using the best
results from the main paper for each method. Due to the computational cost, we set the number of
candidates for ImageNet experiments in our paper using CIFAR results. See Section D for discussion

Method #Candidates 2 4 6 8 10
Image-Sentence Retrieval

EmbNet F30K 73.7 ± 0.55 74.3 ± 0.25 73.9 ± 0.18 74.3 ± 0.14 74.1 ± 0.16
COCO 81.7 ± 0.26 81.9 ± 0.30 81.6 ± 0.23 81.7 ± 0.16 81.5 ± 0.19

Phrase Grounding

SimNet F30K Entities 72.1 ± 0.18 72.2 ± 0.34 72.0 ± 0.33 71.6 ± 0.29 71.8 ± 0.25
ReferIt 60.7 ± 0.37 61.0 ± 0.43 60.8 ± 0.39 60.4 ± 0.45 60.5 ± 0.43

Image Classification
WRN-28-10 C-100 19.66 ± 0.23 19.59 ± 0.21 19.48 ± 0.24 19.24 ± 0.29 19.32 ± 0.27

effects performance on the image classification task. We do not benchmark bidirectional retrieval and
phrase grounding since networks addressing these tasks have few layers, so parameter groups are less
important (as shown in Table 7).

Table 12 reports the performance of our SSNs when using different numbers P parameter groups. We
find that when training with few parameters (first line) low numbers of parameter groups work best,
while when more parameters are available larger numbers of groups work better (second line). In fact,
there is a significant drop in performance going from 4 to 8 groups when training with few parameters
as seen in the first line of Table 12. This is due to the fact that starting at 8 groups some parameter
groups had too few weights to implement their layers, resulting in extensive parameter upsampling.
This suggests that we may be able to further improve performance when there are few parameters by
developing better methods of implementing layers when too few parameters are available.

D EFFECT OF THE NUMBER OF TEMPLATES K

Table 13 reports the results using different numbers of templates. We find that varying the number of
templates only has a minor impact on performance most of the time. We note that more templstes
tends to lead to reduced variability between runs, making results more stable. As a reminder, however,
the number of templates does not guarantee that each layer will have enough parameters to construct
them. Thus, parameter groups only use this hyperparameter when many weights are available to it
(i.e., it can form multiple templates for the layers it implements). This occurs for the phrase grounding
and bidirectional retrieval results at the higher maximum numbers of templates.

E SCALING SSNS TO LARGER NETWORKS

Table 14 demonstrates the ability of our SSNs to significantly reduce the parameters required, and
thus the memory required to implement large Wide ResNets so they fall within specific bounds. For
example, Table 14(b) shows larger and deeper configurations continue to improve performance even
when the number of parameters remains largely constant. Comparing the first line of Table 14(a) and
the last line of Table 14(c) we see that SSN-WRN-76-12 outperforms the fully-parameterized WRN-
28-10 network by 0.6% on CIFAR-100 while only using just over half the parameters, and comes
within 0.5% of WRN-76-12 while only using 13.0% of its parameters. We do note that using a SSN
does not reduce the number of floating point operations, so although our SSN-WRN-76-12 model
uses fewer parameters than the WRN-28-10, it is still slower at both test and train time. However, our
results help demonstrate that SSNs can be used to implement very large networks with lower memory
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Table 14: Comparison of different Wide Resnet (Zagoruyko & Komodakis, 2016) configurations
under different Shapeshifter Network settings on the image classification task. (a) contains baseline
results without parameter sharing, while (b) demonstrates that using SSNs enable us to improve
performance by increasing the architecture width or depth without also increasing memory consumed,
and (c) shows that the gap between SSNs with few model weights and fully-parameterized baselines
in (a) gets smaller as the networks get larger. Note that the number of parameters in (c) was set by
summing together the number of parameters required to implement the largest layer in the learned
parameter group mappings for each network (e.g., four parameter groups would result in summing
four numbers). See Section E for discussion.

Orig Num #Params % of Orig % of WRN-28-10 CIFAR-100
Method Params (M) Used (M) Params Params Error@1

(a) WRN-28-10 36 36 100.0 100.0 19.44 ± 0.21
WRN-40-10 56 56 100.0 153.1 18.73 ± 0.34
WRN-52-10 75 75 100.0 206.2 18.85 ± 0.31
WRN-76-12 164 164 100.0 449.6 18.31 ± 0.22

(b) SSN-WRN-28-10 36 4 11.3 11.3 21.71 ± 0.13
SSN-WRN-40-10 56 4 6.8 10.3 21.06 ± 0.11
SSN-WRN-52-10 75 4 5.0 10.4 20.93 ± 0.25
SSN-WRN-76-12 164 5 3.3 14.9 20.37 ± 0.21

(c) SSN-WRN-28-10 36 4 10.3 10.3 21.78 ± 0.16
SSN-WRN-40-10 56 7 13.4 20.4 20.17 ± 0.32
SSN-WRN-52-10 75 15 19.7 40.7 19.50 ± 0.21
SSN-WRN-76-12 164 21 13.0 58.6 18.83 ± 0.19

Table 15: Performance of SSNs vs. traditional networks of a comparable size on image classification
on CIFAR-100 (from Figure 3 of the main paper). See Section 4.1 for discussion.

Method Performance
% orig params 1.4% 4.1% 5.5% 16.4% 24.6%
WRN (Huang et al., 2017) 28.35 24.50 23.45 21.36 21.05
SSN-WRN-28-10 25.75 23.08 22.19 20.54 20.11
% orig params 32.8% 46.5% – – –
SWRN-28-10 (Savarese & Maire, 2019) 20.48 20.04 – – –
% orig params 5.5% – – – –
SSN-WRN-76-12-9M 19.16 – – – –
% orig params 1.9% 3.8% 7.7% – –
DenseNet-BC (Huang et al., 2017) 24.85 22.27 21.79 – –
SSN-DenseNet-BC-190-40 22.97 21.03 19.65 – –
% orig params 9.7% 17.9% 50.0% 75.1% –
EfficientNet-ND (Ye et al., 2020) 44.17 42.00 36.80 35.88 –
SSN-EfficientNet-ND 35.72 35.75 35.57 34.99 –

requirements by effectively sharing parameters. This enables us to train larger, better-performing
networks than is possible with traditional neural networks on comparable computational resources.

F IMAGE CLASSIFICATION NUMBERS

We provide raw numbers for the results in Figure 3 in Table 15 (CIFAR-100) and Table 16 (ImageNet).

G PERFORMANCE IMPLICATIONS OF NPAS AND SSNS

Our SSNs can offer several performance benefits by reducing parameter counts; notably, they can
reduce memory requirements storing a model and can reduce communication costs for distributed
training. We emphasize that LB-NPAS does not reduce FLOPs, as the same layer operations are
implemented using fewer parameters. Should fewer FLOPs also be desired, SSNs can be combined
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Table 16: Performance of SSNs vs. traditional networks of a comparable size on image classification
on ImageNet (from Figure 3 of the main paper). See Section 4.1 for discussion.

Method Performance E@5 (E@1)
% orig params 5.0% 9.4% 15.2% 22.6%
WRN 11.60 (31.81) 10.02 (29.22) 9.08 (27.58) 8.44 (26.30)
SSN-WRN-50-2 11.07 (30.58) 9.02 (27.46) 8.10 (25.64) 7.42 (24.28)
% orig params 4.2% 14.8% 23.9% –
EfficientNet 10.84 (33.68) 7.98 (28.47) 7.53 (27.61) –
SSN-EfficientNet-B0 10.21 (32.42) 6.82 (26.52) 6.44 (25.18) –

with other techniques, such as pruning. Additionally, we note that our implementation has not
been extensively optimized, and further performance improvements could likely be achieved with
additional engineering.

G.1 COMMUNICATION COSTS FOR DISTRIBUTED TRAINING

Communication for distributed data-parallel training is typically bandwidth-bound, and thus employs
bandwidth-optimal allreduces, which are linear in message length (Chan et al., 2007). Thus, we expect
communication time to be reduced by a factor proportional to the parameter savings achieved by
NPAS, all else being equal. However, frameworks will typically execute allreduces layer-wise as soon
as gradient buffers are ready to promote communication/computation overlap in backpropagation;
reducing communication that is already fully overlapped is of little benefit. Performance benefits are
thus sensitive to the model, implementation details, and the system being used for training.

For CNNs, we indeed observe minor performance improvements, as the number of parameters is
typically small. When using 64 V100 GPUs for training WRN-50-2 on ImageNet, we see a 1.04×
performance improvement in runtime per epoch when using SSNs with 10.5M parameters (15% of
the original model). This is limited because most communication is overlapped. We also observe
small performance improvements in some cases because we launch fewer allreduces, resulting in less
demand for SMs and memory bandwidth on the GPU. These performance results are in line with
prior work on communication compression for CNNs (e.g., Renggli et al., 2019).

For large transformers, however, we observe more significant performance improvements. The
SSN-ALBERT-Large is about 1.4× faster using 128 GPUs than the corresponding BERT-Large
model. This is in line with the original ALBERT work (Lan et al., 2020), which reported that training
ALBERT-Large was 1.7× faster than BERT-Large when using 128 TPUs. Note that due to the
differences in the systems for these results, they are not directly comparable.

We would also reiterate that for some applications where communication is more costly, say, for
federated learning applications (e.g. McMahan et al. (2017); Konečný et al. (2016)), our approach
would be even more beneficial due to the decreased message length.

G.2 MEMORY SAVINGS

LB-NPAS and SSNs reduce the number of parameters, which consequentially reduces the size of the
gradients and optimizer state (e.g., momentum) by the same amount. It does not reduce the storage
requirements for activations, but note there is much work on recomputation to address this (e.g.,
Chen et al., 2016; Jain et al., 2020). Thus, the memory savings from SSNs is independent of batch
size. For SSN-ALBERT-Large, we use 18M parameters (5% of BERT-Large, which contains 334M
parameters). Assuming FP32 is used to store data, we save about 5 GB of memory in this case (about
1/3 of the memory used)
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