

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS HIGH DATA EFFICIENCY IN REINFORCEMENT LEARNING WITH VERIFIABLE REWARD

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have utilized reinforcement learning with verifiable rewards (RLVR) to improve reasoning capabilities. However, scaling these methods typically requires massive data and extensive rollout computations, leading to high training costs and low data efficiency. To mitigate this issue, we propose **DEPO**, a Data-Efficient Policy Optimization approach that combines optimized strategies for both offline and online data selection. In the offline phase, we curate a high-quality subset of training data based on multiple objectives, including diversity, influence, and difficulty. During online RLVR training, we propose a sample-level explorability metric to dynamically filter out samples with low exploration potential, thereby reducing substantial rollout computational costs. Additionally, we employ a replay mechanism for under-explored samples to ensure sufficient training, which enhances the final convergence performance. Experiments on five reasoning benchmarks show that **DEPO** consistently outperforms existing methods in both offline and online data selection scenarios. Notably, using only **20%** of the training data, our approach achieves a **1.85 ×** speed-up on AIME24 and a **1.66 ×** speed-up on AIME25 compared to GRPO trained on the full dataset. The code is available at <https://anonymous.4open.science/r/DEPO-4E30>.

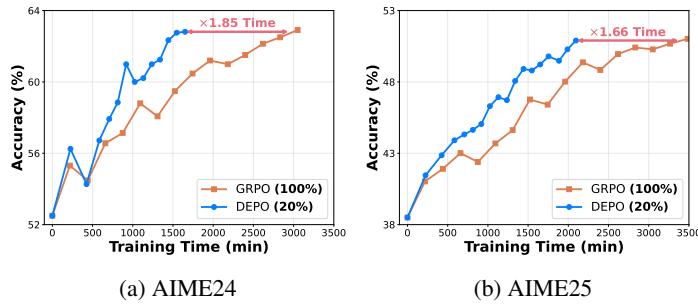


Figure 1: Training Accuracy of GRPO and **DEPO**. **DEPO** uses only 20% of the training data and reduces training time by at least 1.6 × while achieving comparable performance to GRPO.

1 INTRODUCTION

Recently, reinforcement learning with verifiable rewards (RLVR) (Ouyang et al., 2022; Shao et al., 2024) has emerged as a prominent technique to unlock the reasoning capabilities of large language models (LLMs) (Jaech et al., 2024; Team et al., 2025). In RLVR training, LLMs are required to explore multiple reasoning trajectories (*i.e.*, rollouts), and receive binary rewards based on the correctness of the final answer. This process enables LLMs to iteratively refine their reasoning strategies. A common way to enhance RLVR is to scale the amount of training data and the number of rollouts, which allows LLMs to discover more diverse reasoning paths and improve performance. Despite its effectiveness, this scaling strategy introduces significant drawbacks, that is, *it substantially increases training cost and results in low data efficiency*.

To mitigate this problem, prior work has explored ways to improve data efficiency through both offline and online data selection strategies. In offline settings, existing methods often rely on a single metric like reward trends (Li et al., 2025b), reward variance (Wang et al., 2025b), and gradient alignment (Li et al., 2025a) to

select data, which fails to fully capture the complex characteristics of the training data. Furthermore, these approaches often require prior training to compute the metrics, which incurs high computational costs. On the other hand, online data selection methods aim to improve the rollout efficiency, which is the major bottleneck in RLVR. Zheng et al. (2025b) employs a probabilistic filter to exclude samples with historical zero reward variance. Although this method reduces rollout costs, it treats all historical non-zero variance samples equally and lacks a finer-grained metric to evaluate their exploration potential. Additionally, all existing methods enhance data efficiency from either the offline or the online perspective, resulting in suboptimal data efficiency.

In this work, we are the first to introduce a **Data-Efficient Policy Optimization** approach that integrates optimized strategies for both offline and online data selection for RLVR, namely **DEPO**. Table 1 presents a comparison of our method with others. During the offline phase, we apply a multi-objective high-quality data selection strategy. Specifically, to overcome the redundancy of training data, we propose a PageRank-weighted determinantal point process method to prune the dataset and preserve diverse and influential samples. Besides, to better align the difficulty of the dataset with the model’s current capabilities, we perform offline rollouts on this pruned subset and select samples whose difficulty scores approximate a normal distribution. In the online RLVR training process, we tackle the computational inefficiency of exploring low-potential samples by proposing a sample-level explorability metric. This metric dynamically quantifies a sample’s exploration potential based on its historical training dynamics, which allows us to strategically skip rollouts for low-explorability samples and allocate computational resources to samples with higher exploration potential for rollouts and policy updates. Moreover, to ensure all samples are adequately trained, we employ dynamic replay for under-explored samples to further improve the final convergence performance.

To validate the effectiveness and efficiency of our approach, we conduct experiments on five reasoning benchmarks. Experimental results show that **DEPO** outperforms several competitive baselines in both offline and online data selection settings. In particular, when using only **20%** of the training data, **DEPO** achieves a **1.85** times speed-up on AIME24 and a **1.66** times speed-up on AIME25 with DeepSeek-R1-Distill-Qwen-7B compared to GRPO trained on the full dataset. Our main contributions are summarized as follows:

- To the best of our knowledge, we are the first to integrate both offline and online data selection strategies to enhance data efficiency in RLVR training.
- In the offline phase, we employ a multi-dimensional data curation strategy based on diversity, influence, and difficulty. Then, during online training, we dynamically filter samples by their explorability and replay under-explored samples to further improve training efficiency.
- Extensive experiments across five reasoning datasets and three LLMs demonstrate the effectiveness and efficiency of our proposed method under both offline and online data selection scenarios.

2 RELATED WORK

Our work is related to Reinforcement Learning with Verifiable Reward (RLVR) and data efficiency. More detailed related work is presented in Appendix H.

Reinforcement Learning with Verifiable Reward. Reinforcement learning with verifiable reward (RLVR) effectively improves reasoning in LLMs, particularly for mathematics and code generation. It uses simple verification to provide binary rewards, eliminating the need for learned reward models. DeepSeek-R1 (DeepSeek-AI et al., 2025) first proposed the GRPO algorithm within this framework. Building on GRPO, subsequent work have further advanced RLVR by refining various aspects,

Table 1: Comparison of RLVR data selection methods.

Method	Offline	Offline Method	Online	Online Method
LIMR	✓	Reward trends	✗	—
One-shot RLVR	✓	Reward variance	✗	—
Learnalign	✓	Gradient alignment	✗	—
Polaris	✓	Difficulty-based	✗	—
GRESO	✗	—	✓	History reward variance
DEPO (Ours)	✓	Multi-dimension	✓	Explorability-guided



Figure 2: Overview of our approach **DEPO**. (a) Our approach improves the data efficiency in RLVR training via an end-to-end offline and online data selection strategy. (b) In the offline phase, we first construct a sample graph based on the representations, then apply PageRank-weighted Determinantal Point Process to select a diverse and influential subset, and finally sample from this subset with difficulty following a normal distribution. (c) In the online phase, we evaluate the explorability of each sample based on its historical training dynamics and retain high-explorability ones for rollout, and actively replay under-explored samples to ensure sufficient training of all samples.

including loss functions (Liu et al., 2025a; Yu et al., 2025; Zheng et al., 2025a; Chen et al., 2025), token-level entropy (Wang et al., 2025a; Hao et al., 2025), advantage estimation (Cheng et al., 2025), and hyperparameter (Liu et al., 2025b; An et al., 2025; Xi et al., 2025). In this work, we focus on improving the data efficiency of RLVR to reduce computational costs while maintaining performance.

Data Efficiency for RLVR. Improving data efficiency in RLVR requires strategic selection of high-quality samples, incorporating offline and online data selection methods. Offline data selection methods focus on identifying a high-quality subset of data prior to training. Some studies select samples based on model reward trends (Li et al., 2025b), reward variance (Wang et al., 2025b), and gradient alignment (Li et al., 2025a). While effective, these methods require training the dataset for several epochs for selection. On the other hand, online data selection methods dynamically filter samples during the training process. GRESO (Zheng et al., 2025b) excludes samples with historical zero reward variance, but it lacks a finer-grained distinction among non-zero variance samples. In this paper, we integrate optimized offline and online selection to improve data efficiency for RLVR.

3 METHODOLOGY

In this section, we present **DEPO**, a method to enhance data efficiency in reinforcement learning with verifiable reward (RLVR). We first define the problem formulation, then describe a two-stage data selection process: (a) offline curation based on diversity, influence, and difficulty, and (b) online rollout pruning guided by explorability. Finally, we discuss the effectiveness and efficiency of our approach. The overall framework of **DEPO** is illustrated in Figure 2.

162 3.1 PROBLEM FORMULATION
163

164 In this work, we focus on a large language model (LLM) parameterized by $\theta \in \mathbb{R}^N$, which has
165 been pretrained on large-scale corpora and will be further trained on an RLVR dataset $\mathcal{D} = \{x_i\}_{i=1}^{|\mathcal{D}|}$
166 to enhance its reasoning abilities. A key challenge in this process is the high computational cost
167 associated with RLVR training, which typically requires extensive rollouts and policy updates over
168 large datasets. To accelerate reasoning improvement, our goal is to optimize **data efficiency** (*i.e.*,
169 achieve comparable performance with less training data and fewer rollouts) by leveraging \mathcal{D} more
170 efficiently without modification or augmentation. To achieve this, we first reduce data redundancy by
171 selecting a high-quality subset offline. Then, to further speed up RLVR training, we select samples
172 with high exploration potential during training. The two stages are detailed below.
173

174 3.2 MULTI-DIMENSIONAL OFFLINE DATA CURATION
175

176 In this part, we present an offline data curation method to select a high-quality subset of RLVR
177 data based on three criteria: diversity, influence, and difficulty. First, we construct a sample graph
178 based on the representations. Next, we prune redundant samples by applying a PageRank-weighted
179 Determinantal Point Process to retain a diverse and influential subset. Finally, we further refine this
180 subset by selecting samples whose difficulty levels follow a normal distribution.
181

182 3.2.1 DIVERSITY AND INFLUENCE-AWARE DATA SELECTION
183

184 **Representation-augmented Sample Graph Construction.** The first step of our approach is to model
185 the relationships among samples using a graph. Previous studies (Hendel et al., 2023; Stolfo et al.,
186 2025) demonstrate that internal model representations can effectively capture sample characteristics.
187 Inspired by this, we follow Liu et al. (2024) and use the last token embedding from the final layer as
188 the sample representation, as it aggregates the entire model information and input semantics. Based
189 on these representations, we construct a sample graph $\mathcal{G} = (\mathbf{V}, \mathbf{E}, \mathbf{P})$, where each vertex $v_i \in \mathbf{V}$
190 denotes a sample, an edge $e(i, j) \in \mathbf{E}$ connects node v_i and v_j , and edge weight matrix \mathbf{P} encodes the
191 pairwise similarities between their embeddings. This representation-augmented graph is subsequently
192 used for our offline data selection process.
193

194 **Pagerank-weighted Determinantal Point Process Data Pruning.** We prune redundant data from the
195 dataset by considering two properties: diversity and influence. Diversity ensures broad information
196 coverage, while influence reflects the importance of samples in the graph. To promote diversity,
197 we use Determinantal Point Process (DPP) (Kulesza & Taskar, 2012a) to identify a subset that
198 maximizes the determinant of the corresponding similarity submatrix: $\max_{Y \subseteq \mathbf{P}} \det(Y)$, where Y is
199 the submatrix of the full similarity matrix \mathbf{P} , and $\det(\cdot)$ represents its determinant value. This refers
200 to selecting samples that form a larger volume in the feature space, with a larger volume indicating
201 greater diversity. To measure sample influence, we use PageRank (Brin & Page, 1998) to assign
202 a weight $w_i \in \mathbf{w}$ to each sample, reflecting its representativeness. Our goal is to maximize the
203 influence of the selected samples: $\max_{Y \subseteq \mathbf{P}} \prod_{i \in Y} w_i$. To unify both objectives, we combine diversity
204 and influence into a single kernel matrix L_Y and maximize its determinant:
205

$$\max_{Y \subseteq \mathbf{P}} \left(\det(Y) \cdot \prod_{i \in Y} w_i \right) = \max_{Y \subseteq \mathbf{P}} \det \left(\underbrace{\text{diag}(\mathbf{w}_Y^{1/2}) \cdot Y \cdot \text{diag}(\mathbf{w}_Y^{1/2})}_{L_Y} \right), \quad (1)$$

206 where L_Y denotes the kernel matrix that integrates both diversity and influence of the selected subset.
207 We provide detailed theoretical proof of this optimization objective in Appendix D.
208

209 Since the optimization problem is NP-hard, we follow Kulesza & Taskar (2012b) and employ a
210 greedy algorithm to approximate the result. The algorithm iteratively selects samples based on a
211 dynamically updated probability distribution and updates the probabilities of the remaining samples
212 via Gram-Schmidt orthogonalization. The pseudo-code of this algorithm is presented in Algorithm 1.
213 This process effectively reduces redundancy while retaining influential and diverse samples.
214

216 3.2.2 DIFFICULTY-AWARE NORMAL DISTRIBUTION DATA SAMPLING
217

218 After pruning data via PageRank-weighted DPP, we obtain a representative and diverse subset Y .
219 However, in RLVR training, samples that are too easy or too hard provide limited learning signals
220 and contribute little to policy optimization. To better align the difficulty of training data with the
221 current model’s capability, we propose a difficulty-aware sampling strategy that prioritizes samples
222 of moderate difficulty. Specifically, for each sample i in pruned subset Y , we generate G offline
223 trajectories using the current policy model π_θ and compute its accuracy score Acc_i :

$$224 \quad \text{Acc}_i = \mathbb{E}_{\{o_j\}_{j=1}^G \sim \pi_\theta} [\mathcal{V}(o_j, a_i)]. \quad (2)$$

225 Here, $\{o_j\}_{j=1}^G \sim \pi_\theta$ are G responses generated by π_θ for question i , and $\mathcal{V}(o_j, a_i)$ denotes a verifier
226 that evaluates whether model output o_j matches the ground-truth answer a_i .

227 Using accuracy score as a measure of difficulty, we sample from Y according to a normal distribution
228 $\mathcal{N}(\mu, \sigma^2)$, where μ and σ are the mean and standard deviation of the accuracies in the final selected
229 subset D^{sub} . Thus, the sampling probability for each sample is proportional to the standard normal
230 density function, which assigns higher probabilities to samples near the mean difficulty:

$$232 \quad p_i = \frac{\phi\left(\frac{\text{Acc}_i - \mu}{\sigma}\right)}{\sum_{k \in Y} \phi\left(\frac{\text{Acc}_k - \mu}{\sigma}\right)}, \quad \text{where } \phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \quad (3)$$

233 The final RL training subset D^{sub} is constructed by sampling from Y according to the probability
234 distribution $\mathcal{P} = \{p_i\}_{i \in Y}$, which is subsequently used for RLVR training.

235 3.3 EXPLORABILITY-GUIDED ONLINE ROLLOUT PRUNING
236

237 In RLVR training, rollout generation is computationally expensive and becomes the main bottleneck
238 for training speed. To further improve data efficiency, we propose an explorability metric to quantify
239 the exploration potential of samples. Using this metric, we select high explorability samples for
240 rollout generation and policy gradient updates and selectively skip unnecessary rollouts. Additionally,
241 to avoid missing under-explored samples that may become valuable, we implement a dynamic replay
242 mechanism to reuse them in the training process. The pseudo-code is presented in Algorithm 2.

243 3.3.1 SAMPLE-LEVEL EXPLORABILITY MEASUREMENT
244

245 In RLVR training, high-entropy samples encourage exploration, and low-entropy samples may lead
246 to overfitting. Leveraging this effect, we define the explorability of a sample as the average entropy
247 of its rollouts over a sliding window of recent epochs to evaluate its exploration potential. However,
248 although high-entropy samples generally promote exploration, certain negative samples with exces-
249 sively high entropy (*i.e.*, pathological trajectories) can introduce noise and destabilize training. To
250 mitigate this, we apply a threshold λ to exclude them. Specifically, we define the filtering function as:

$$251 \quad I(q, a, o_i^t) = \mathbb{I} \left[\mathcal{V}(o_i^t, a) = 1 \vee \left(\mathcal{V}(o_i^t, a) = 0 \wedge e(o_i^t) \leq \lambda e(\bar{o}_i^{t+}) \right) \right], \quad (4)$$

252 where \mathbb{I} denotes the indicator function, (q, a) is the question-answer pair, and o_i^t is the i -th rollout
253 in epoch t . The verification function \mathcal{V} returns 1 if o_i^t matches the ground truth a , and 0 otherwise.
254 $e(o_i^t)$ is the average entropy across tokens, $e(\bar{o}_i^{t+})$ is the mean entropy of positive rollouts, and λ
255 serves as the threshold to filter high-entropy negative rollouts. We then compute the explorability of
256 a single rollout o_i^t by weighting its entropy by the absolute advantage $|\hat{A}_i|$ and the filtering indicator
257 $I(q, a, o_i^t)$:

$$258 \quad E(q, a, o_i^t) = |\hat{A}_i| \cdot e(o_i^t) \cdot I(q, a, o_i^t), \quad (5)$$

259 where $\hat{A}_i = \frac{r_i - \text{mean}(\{r_i\}_{i=1}^G)}{\text{std}(\{r_i\}_{i=1}^G)}$ is the advantage. This explorability metric prioritizes samples of
260 moderate difficulty, which tend to maximize the sum of absolute advantages $\sum_{i=1}^G |\hat{A}_i|$. In contrast,
261 samples with all rollouts either entirely correct or entirely incorrect yield zero advantage. Therefore,
262 our explorability metric effectively captures both the **exploration potential** (entropy) and the **diffi-**
263 **culty** (absolute advantage) of each sample. Finally, to evaluate a sample’s exploration potential over

270 time, we aggregate the explorability scores across the group over a sliding window of recent epochs
 271 to obtain the sample-level explorability \mathcal{E} .
 272

$$273 \quad \mathcal{E}(q, a, \{O^t\}_{t=e-s+1}^e) = \frac{1}{s} \sum_{t=e-s+1}^e \frac{1}{G} \sum_{i=1}^G E(q, a, o_i^t), \quad (6)$$

$$274$$

$$275$$

276 where $\{O^t\} = \{o_i^t\}_{i=1}^G$ are the rollouts in epoch t , and s is the sliding window size of recent epochs.
 277

278 3.3.2 DYNAMIC REPLAY OF UNDER-EXPLORED SAMPLES

280 During training, samples with consistently low explorability may be overlooked, even if they become
 281 valuable in later stages. To mitigate this, we introduce a dynamic replay mechanism that proactively
 282 reintroduces under-explored samples. Specifically, each pruned batch $\mathcal{B}^{\text{Pruned}}$ consists of two types
 283 of samples: (1) the top $\alpha_e\%$ of samples from \mathcal{B} ranked by their explorability \mathcal{E} , and (2) the bottom
 284 $\rho\%$ of samples from \mathcal{B} ranked by their historical exploration frequency (*i.e.*, those selected the least
 285 number of times up to the current epoch e) Thus, the optimization objective for **DEPO** is:

$$286 \quad \mathcal{J}_{\text{DEPO}}(\theta) = \mathbb{E}_{\mathcal{B} \sim \mathcal{D}^{\text{sub}}, (q, a) \sim \mathcal{B}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q)} \left[\mathbb{I}\left[q, a, \{O^t\}_{t=e-s+1}^e\right] \frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \right. \\ 287 \quad \left. \left(\min\left(r_{i,t}(\theta) \hat{A}_i, \text{clip}\left(r_{i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon\right) \hat{A}_i\right) - \beta D_{\text{KL}}(\pi_{\theta} || \pi_{\text{ref}}) \right) \right], \quad (7)$$

$$288$$

$$289$$

$$290$$

$$291$$

292 where

$$293 \quad \mathbb{I}\left[q, a, \{O^t\}_{t=e-s+1}^e\right] = \begin{cases} 1 & \mathcal{E}(q, a, \{O^t\}_{t=e-s+1}^e) \text{ is top-}\alpha_e\% \\ 294 & |\{O^t\}_{t=1}^e| \text{ is bottom-}\rho\% \\ 295 & 0 \text{ else,} \end{cases}$$

$$296$$

$$297 \quad r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t} | q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | q, o_{i,<t})}, \quad \text{and} \quad \alpha_e = \alpha_0 - d \cdot e. \quad (8)$$

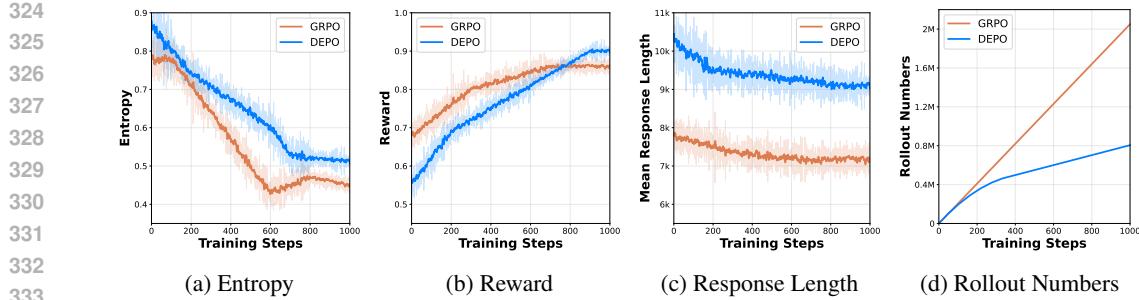
$$298$$

299 To adaptively shift the training focus from broad exploration in the early stages to specialized
 300 refinement in later phases, we dynamically reduce the proportion of high-explorability samples per
 301 epoch using a linear decay rate d . Here, \mathcal{B} is the samples in a training batch from the offline selected
 302 subset \mathcal{D}^{sub} , α_0 denotes the initial sampling rate, d is the decay rate, and e is the current epoch. The
 303 online rollout pruning strategy optimizes computational resource allocation by focusing on samples
 304 with high exploration potential and strategically replaying under-explored samples to ensure all
 305 samples are sufficiently trained, significantly improving training efficiency.

306 3.4 DISCUSSION

309 **Effectiveness of DEPO.** **DEPO** enhances the data efficiency of RLVR via both offline and online data
 310 selection methods. During the offline phase, **DEPO** selects high-quality subsets by jointly optimizing
 311 three criteria: diversity, influence, and difficulty, which overcome the problem of prior methods
 312 that rely on single metrics such as reward trends (Li et al., 2025b), reward variance (Wang et al.,
 313 2025b), and gradient alignment (Li et al., 2025a). Besides, these metrics rely only on early-stage
 314 training dynamics, which limits their effectiveness in later training phases. In the online phase,
 315 **DEPO** dynamically prioritizes samples based on their explorability, which is a fine-grained measure
 316 of exploration potential. In contrast, GRESO (Zheng et al., 2025b) probabilistically removes samples
 317 with historical zero-variance rewards, which treats all historical non-zero variance samples equally
 318 and underperforms when zero variance samples are scarce.

319 **Efficiency of DEPO.** **DEPO** improves data efficiency by jointly optimizing offline and on-
 320 line data selection, thereby reducing both the amount of training data and the rollout numbers.
 321 In contrast, existing methods typically address data efficiency from only one per-
 322 spective (*i.e.*, either offline or online). In the offline phase, **DEPO** employs a two-
 323 step strategy to minimize computational overhead, which first prunes the dataset using a
 PageRank-weighted DPP, and then performs offline rollouts only on this reduced subset.

Figure 3: The RLVR training dynamics of GRPO and **DEPO**.

This method is more efficient than performing rollouts over the full dataset (An et al., 2025), as the DPP-based filtering significantly reduces the dataset size, thereby lowering the cost of offline rollouts. As shown in Table 2, difficulty sampling accounts for a significantly larger portion of the total time compared to other components. Moreover, unlike offline methods that require multiple epochs of training on the original or a warm-up dataset to guide selection (Li et al., 2025b; Wang et al., 2025b; Li et al., 2025a), our approach avoids such additional training costs. In the online phase, **DEPO** dynamically estimates sample explorability based on historical training dynamics, which helps minimize rollout costs and improve training efficiency. In contrast, some methods Yu et al. (2025) rely on extensive rollouts before each update, incurring significant computational costs.

4 EXPERIMENTS

In this section, we first describe the experimental setup, then present the main results and provide a detailed analysis.

4.1 EXPERIMENTAL SETUP

We run experiments on DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI et al., 2025), Qwen2.5-Math-7B (Yang et al., 2024). We use DAPO-Math (Yu et al., 2025) as the training dataset and apply the GRPO algorithm to train the models. For evaluation benchmarks, we use three mathematical reasoning benchmarks (*i.e.*, AIME24, AIME25, Math500 (Hendrycks et al., 2021)) and two other reasoning benchmarks (*i.e.*, GPQA (Rein et al., 2023) and LiveCodeBench (Jain et al., 2025)). We follow Zheng et al. (2025b) to evaluate models every 50 steps and report the performance that achieves the best average performance across five benchmarks. We repeat the test set 32 times for all benchmarks and report the average accuracy. More experimental details are provided in Appendix E. To enable a systematic comparison, we include several representative offline and online data selection methods as baselines. For offline selection methods, we compare our method with random selection, supervised fine-tuning (SFT)-based methods (*i.e.*, PPL-Top (Laurençon et al., 2022) and PPL-Middle (Ankner et al., 2025)), and RLVR selection methods (*i.e.*, LIMR (Li et al., 2025b) and Learnalign (Li et al., 2025a)). For online selection methods, we integrate them into our offline selected subset and compare **DEPO** with random online selection and GRESO (Zheng et al., 2025b). Detailed descriptions of these baselines are provided in Appendix G.

4.2 MAIN RESULTS

In this section, we present the main experimental results. Figure 3 illustrates the training dynamics of **DEPO** and GRPO, and Table 3 presents the main results.

DEPO selects high-quality subsets offline for RLVR training. As shown in Table 3, reinforcement learning on mathematical data not only enhances mathematical reasoning but also improves the

Table 2: Computational time on 4×RTX 3090 GPUs.

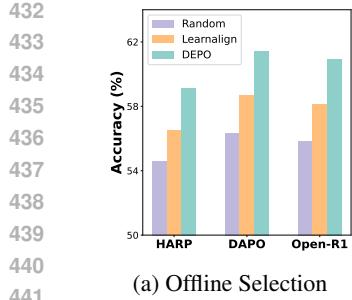
Component	Time (h)
Graph Construction	0.75 ($\times 8.33$)
Pagerank-weighted DPP	0.09 ($\times 1.00$)
Difficulty-aware Sampling	44.33 ($\times 492.56$)

378
 379 Table 3: Performance comparison of various data selection methods. “**Offline**” and “**Online**” refer to
 380 the offline and online data selection methods, respectively. “**Ratio**”, “**Time**”, and “**RN**” denote the
 381 ratio of selected data, total training time, and total rollout numbers, respectively. We highlight the
 382 best performance across different data selection methods. Numbers marked with * indicate that the
 383 improvement is statistically significant compared with baselines (t-test with p-value < 0.05).

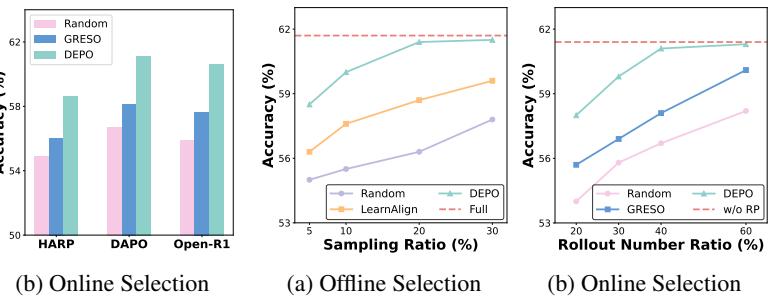
384 Model	385 Method	386 Accuracy						387 Efficiency		
		388 AIME 24	389 AIME 25	390 MATH500	391 GPQA	392 LiveCodeBench	393 Average	394 Ratio	395 Time	396 RN
397 Deepseek-R1-Distill-Qwen-7B	-	398 Base	399 51.5 \pm 1.0	400 38.5 \pm 0.7	401 91.2 \pm 1.1	402 45.9 \pm 1.4	403 37.0 \pm 0.7	404 52.8 \pm 1.0	405 -	406 -
	407 Full	408	409 63.4 \pm 1.4	410 52.7 \pm 0.9	411 96.3 \pm 1.1	412 51.6 \pm 1.4	413 44.7 \pm 1.4	414 61.7 \pm 1.2	415 100%	416 100%
	417 Offline	418 Random	419 56.8 \pm 0.9	420 43.0 \pm 0.7	421 94.6 \pm 1.2	422 47.3 \pm 0.6	423 39.6 \pm 1.4	424 56.3 \pm 1.0	425 20%	426 98%
	427 PPL-Top	428 57.5 \pm 0.6	429 45.3 \pm 0.7	430 95.0 \pm 0.2	431 48.2 \pm 0.2	432 40.4 \pm 0.7	433 57.3 \pm 0.5	434 20%	435 101%	436 100%
	437 PPL-Middle	438 57.5 \pm 0.2	439 45.4 \pm 0.9	440 95.2 \pm 0.7	441 48.6 \pm 0.5	442 40.8 \pm 0.5	443 57.5 \pm 0.6	444 20%	445 97%	446 100%
	447 LIMR	448 59.9 \pm 0.8	449 46.4 \pm 0.7	450 95.1 \pm 1.2	451 48.5 \pm 0.7	452 40.9 \pm 0.8	453 58.2 \pm 0.9	454 20%	455 99%	456 100%
	457 Learnalign	458 60.1 \pm 0.9	459 46.8 \pm 0.9	460 95.5 \pm 0.4	461 49.0 \pm 0.4	462 41.9 \pm 0.2	463 58.7 \pm 0.6	464 20%	465 102%	466 100%
467 Online	468 DEPO-Offline	469 63.1 \pm 1.2	470 51.7 \pm 1.1	471 96.1 \pm 0.2	472 51.7 \pm 1.1	473 44.5 \pm 0.2	474 61.4 \pm 0.8	475 20%	476 99%	477 100%
	478 + Random	479 58.7 \pm 0.8	480 45.3 \pm 0.5	481 93.1 \pm 0.6	482 47.2 \pm 1.3	483 39.3 \pm 0.7	484 56.7 \pm 0.8	485 20%	486 58%	487 40%
	488 + GRESO	489 60.2 \pm 0.2	490 47.4 \pm 1.0	491 94.3 \pm 0.7	492 48.1 \pm 0.4	493 40.6 \pm 0.9	494 58.1 \pm 0.6	495 20%	496 55%	497 40%
	498 + DEPO	499 62.8 \pm 0.4	500 50.9 \pm 1.0	501 95.9 \pm 0.4	502 51.4 \pm 0.5	503 44.3 \pm 0.5	504 61.1 \pm 0.6	505 20%	506 57%	507 40%
508 Deepseek-R1-Distill-Llama-8B	-	509 Base	510 41.1 \pm 1.0	511 30.4 \pm 0.5	512 88.5 \pm 1.3	513 37.3 \pm 0.6	514 44.3 \pm 1.0	515 48.3 \pm 0.9	516 -	517 -
	518 Full	519 56.9 \pm 0.8	520 45.1 \pm 0.9	521 94.8 \pm 0.7	522 44.4 \pm 0.4	523 49.6 \pm 0.6	524 58.2 \pm 0.7	525 100%	526 100%	527 100%
	528 Offline	529 Random	530 47.6 \pm 0.4	531 38.7 \pm 0.9	532 90.6 \pm 1.0	533 39.6 \pm 0.5	534 44.5 \pm 0.6	535 52.2 \pm 0.7	536 20%	537 100%
	538 PPL-Top	539 48.2 \pm 0.7	540 39.3 \pm 0.8	541 90.4 \pm 1.0	542 39.1 \pm 0.9	543 45.0 \pm 1.1	544 52.4 \pm 0.9	545 20%	546 102%	547 100%
	548 PPL-Middle	549 49.9 \pm 0.3	550 39.2 \pm 1.1	551 91.1 \pm 0.9	552 39.4 \pm 0.9	553 45.7 \pm 0.7	554 53.1 \pm 0.8	555 20%	556 102%	557 100%
	558 LIMR	559 52.3 \pm 1.2	560 40.9 \pm 0.3	561 91.6 \pm 1.0	562 41.0 \pm 1.0	563 45.3 \pm 1.3	564 54.2 \pm 1.0	565 20%	566 97%	567 100%
	568 Learnalign	569 54.7 \pm 1.2	570 41.8 \pm 1.3	571 91.6 \pm 0.7	572 40.8 \pm 1.0	573 46.2 \pm 0.9	574 55.0 \pm 1.0	575 20%	576 98%	577 100%
578 Online	579 DEPO-Offline	580 57.6 \pm 0.5	581 44.8 \pm 1.1	582 94.2 \pm 0.6	583 43.6 \pm 1.1	584 49.3 \pm 0.6	585 57.9 \pm 0.8	586 20%	587 100%	588 100%
	589 + Random	590 50.2 \pm 0.3	591 38.4 \pm 0.9	592 90.1 \pm 1.2	593 39.7 \pm 0.5	594 44.8 \pm 0.9	595 52.6 \pm 0.8	596 20%	597 55%	598 40%
	600 + GRESO	601 52.6 \pm 0.6	602 40.2 \pm 0.4	603 92.0 \pm 0.9	604 40.5 \pm 0.7	605 46.6 \pm 1.0	606 54.4 \pm 0.7	607 20%	608 54%	609 40%
	610 + DEPO	611 56.8 \pm 0.9	612 44.4 \pm 1.1	613 93.7 \pm 0.5	614 42.8 \pm 0.5	615 48.8 \pm 0.5	616 57.3 \pm 0.7	617 20%	618 56%	619 40%
620 Qwen2.5-7B-Math	-	621 Base	622 13.4 \pm 0.8	623 6.4 \pm 0.7	624 54.5 \pm 1.1	625 28.7 \pm 0.3	626 5.6 \pm 0.6	627 21.7 \pm 0.7	628 -	629 -
	630 Full	631 30.2 \pm 0.4	632 20.3 \pm 1.1	633 86.8 \pm 0.8	634 35.7 \pm 0.7	635 13.6 \pm 0.5	636 37.3 \pm 0.7	637 100%	638 100%	639 100%
	640 Offline	641 Random	642 22.5 \pm 0.7	643 13.3 \pm 1.1	644 72.5 \pm 0.5	645 30.3 \pm 0.3	646 8.2 \pm 0.6	647 29.4 \pm 0.6	648 20%	649 98%
	650 PPL-Top	651 24.1 \pm 1.0	652 13.8 \pm 0.9	653 76.2 \pm 1.0	654 31.0 \pm 0.6	655 9.6 \pm 0.6	656 30.9 \pm 0.8	657 20%	658 102%	659 100%
	660 PPL-Middle	661 24.8 \pm 0.7	662 14.3 \pm 1.1	663 76.0 \pm 0.8	664 30.6 \pm 0.7	665 9.9 \pm 0.8	666 31.1 \pm 0.8	667 20%	668 98%	669 100%
	670 LIMR	671 26.5 \pm 0.3	672 15.8 \pm 0.8	673 78.0 \pm 0.6	674 32.2 \pm 1.1	675 10.6 \pm 0.7	676 32.6 \pm 0.7	677 20%	678 101%	679 100%
	680 Learnalign	681 27.1 \pm 1.0	682 17.2 \pm 1.1	683 80.5 \pm 0.5	684 33.6 \pm 1.1	685 10.9 \pm 0.7	686 33.9 \pm 0.9	687 20%	688 98%	689 100%
690 Online	691 DEPO-Offline	692 30.0 \pm 0.7	693 19.4 \pm 0.3	694 85.8 \pm 0.4	695 35.2 \pm 0.3	696 13.2 \pm 0.3	697 36.7 \pm 0.4	698 20%	699 99%	700 100%
	701 + Random	702 24.3 \pm 0.7	703 14.5 \pm 1.1	704 74.3 \pm 1.1	705 31.1 \pm 0.3	706 9.3 \pm 0.8	707 30.7 \pm 0.8	708 20%	709 57%	710 40%
	711 + GRESO	712 27.7 \pm 0.3	713 16.8 \pm 0.5	714 80.7 \pm 0.9	715 33.4 \pm 0.9	716 10.9 \pm 0.4	717 33.9 \pm 0.6	718 20%	719 57%	720 40%
	721 + DEPO	722 29.8 \pm 0.3	723 19.2 \pm 0.6	724 86.3 \pm 0.6	725 34.8 \pm 1.0	726 12.8 \pm 0.7	727 36.6 \pm 0.6	728 20%	729 55%	730 40%

408 performance on other reasoning tasks. Among offline data selection methods, although SFT-based
 409 data selection methods (*i.e.*, PPL-Top and PPL-Middle) incorporate additional information from
 410 training data, their performance performs poorly. This may stem from the mismatch between SFT
 411 and RL objectives. SFT maximizes the likelihood of target outputs, making perplexity a natural
 412 indicator of sample difficulty. In contrast, RL aims to maximize rewards, requiring samples to match
 413 the model’s current capability. Moreover, RLVR methods (*i.e.*, LIMR and Learnalign), which perform
 414 training before selection, lead to further improvements. However, these approaches tend to select
 415 samples that match the initial model capabilities, resulting in improvements during early stages but
 416 limiting performance in later phases. Additionally, they often overlook interdependencies among
 417 problems. In contrast, **DEPO** achieves the best performance across all methods, nearly matching the
 418 performance of training on the full dataset. One possible reason is that **DEPO** selects samples with
 419 diversity, influence, and appropriate difficulty, ensuring rapid improvement during the early stage.
 420 Besides, the diversity in data difficulty supports sustained improvement in later stages. As illustrated
 421 in Figure 3, our method selects samples with higher initial entropy, lower initial rewards, and longer
 422 response lengths. This ensures that our selected data matches the model’s current capability and
 423 offers diverse exploration paths for effective RLVR training.

424 **DEPO saves training computational costs and maintains comparable performance.** As shown in
 425 Table 3, randomly reducing rollouts severely degrades performance, which highlights the importance
 426 of careful online sample selection. Moreover, GRESO improves model performance by filtering out
 427 historical zero-variance samples that contribute little to training. However, it does not account for
 428 the differences among historical non-zero-variance samples, which limits its overall performance.
 429 In comparison, **DEPO** achieves performance comparable to full rollouts while using less than 60%
 430 of the training time and 40% of the rollout budgets. This is because **DEPO** dynamically estimates
 431 sample explorability based on historical training dynamics, prioritizing highly exploratory samples for
 432 rollouts and policy updates. Furthermore, we incorporate a replay strategy for under-explored samples



(a) Offline Selection (b) Online Selection



(a) Offline Selection (b) Online Selection

Figure 4: Different RLVR datasets.

Figure 5: Different sampling and rollout ratios.

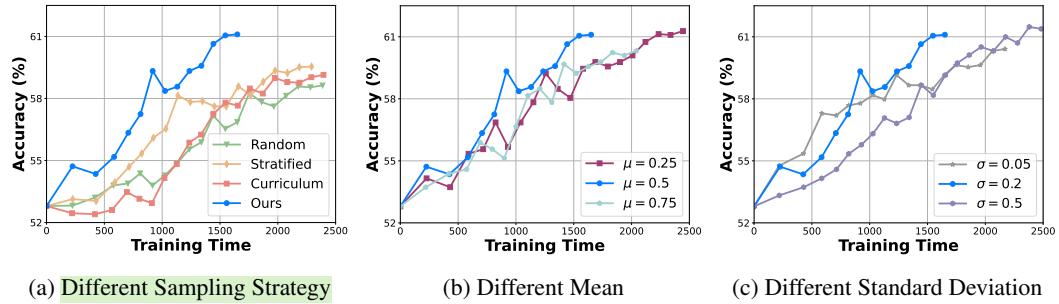


Figure 6: Performance comparison across data of different difficulty levels.

to ensure sufficient training across all data, which leads to better final convergence performance. As illustrated in Figure 3, our rollout pruning strategy consistently selects samples with higher entropy, faster reward growth, and longer responses throughout the training process, demonstrating that **DEPO** efficiently improves reasoning performance.

4.3 DETAILED ANALYSIS

In this part, we conduct a detailed analysis of our proposed method. Unless stated otherwise, we report the average accuracy across five benchmarks using DeepSeek-R1-Distill-Qwen-7B. We provide additional detailed analysis in Appendix F.

DEPO performs well using different RLVR training datasets. We conduct experiments on three datasets of varying sizes (*i.e.*, HARP (Yue et al., 2024) (5k samples), DAPO (Yu et al., 2025) (17k samples), and Open-R1 (Face, 2025) (30k samples)). As shown in Figure 4, we observe that training on the DAPO dataset yields the best performance, indicating that higher data quality is more beneficial than larger data quantity in the RLVR training process. Moreover, **DEPO** outperforms competitive baselines in both offline and online settings across all datasets. These results confirm that **DEPO** is capable of improving data efficiency with different volumes of data.

DEPO performs well under different offline data sampling ratios. Figure 5a compares offline data selection methods under varying sampling ratios. As we can see, **DEPO** consistently outperforms Random and LearnAlign across all ratios. Notably, using only 20% of the data, **DEPO** matches the performance of full-dataset training. This indicates that our approach identifies high-value samples, allowing the model to efficiently improve its reasoning capabilities with limited data. Moreover, we observe that the performance of our method initially improves with increased sampling ratios, and it plateaus at around 20%. This also suggests that the dataset contains a substantial portion of redundant and low-value samples, which contribute little to the model’s reasoning performance.

DEPO achieves the best performance across different rollout numbers. Figure 5b presents the performance of online data selection methods under different rollout ratios. As we can see, our proposed method consistently outperforms other online data selection baselines under different rollout budgets. This demonstrates that selectively performing rollouts on samples with high explorability

486 significantly improves training efficiency without sacrificing performance. These results show the
 487 effectiveness of using explorability as a metric to select samples in the RLVR process.
 488

489 **Normal distribution sampling aligns dataset difficulty with model capability.** To evaluate
 490 the impact of different sampling strategies, we compare our approach with random, stratified sam-
 491 pling, and an easy-to-hard curriculum learning strategy. Random sampling preserves the original
 492 U-shaped difficulty distribution, with many samples being entirely correct or incorrect. Stratified
 493 sampling selects equal proportions from each difficulty level, and the easy-to-hard curriculum strategy
 494 progressively increases the difficulty of training samples over time. As shown in Figure 6a, random
 495 sampling performs worst, followed by the easy-to-hard curriculum and stratified sampling, and our
 496 method achieves the best results. The easy-to-hard curriculum strategy leads to slow initial progress
 497 because overly simple samples provide limited learning signals. Its performance improves noticeably
 498 in the middle phase when moderately difficult samples are introduced, but the model fails to achieve
 499 higher final accuracy, as overly difficult samples also contribute little to learning. These results
 500 confirm that extremely easy or hard samples offer limited training signals, but **DEPO** prioritizes
 501 moderately difficult samples that are more beneficial.

502 **Medium-difficulty samples accelerate learning, while the inclusion of challenging samples**
 503 **improves final convergence performance.** To further analyze the effect of difficulty-aware normal
 504 distribution sampling, we vary the mean and standard deviation of the sampling distribution in
 505 Figure 6b and Figure 6c. Results indicate that relatively easier samples (*i.e.*, $\mu = 0.75$) lead to
 506 lower convergence performance, while harder ones (*i.e.*, $\mu = 0.25$) improve final results but learn
 507 slower. Additionally, a smaller standard deviation (*i.e.*, $\sigma = 0.05$) speeds up early learning but limits
 508 the final performance, whereas a larger standard deviation (*i.e.*, $\sigma = 0.5$) slows initial progress but
 509 achieves higher convergence. These findings confirm that medium-difficulty samples facilitate rapid
 510 improvement, and incorporating some challenging samples is essential for the final peak performance.
 511

512 4.4 ABLATION STUDIES

513 To evaluate the effectiveness of each compo-
 514 nent in our method, we conduct ablation studies
 515 on three math benchmarks using DeepSeek-R1-
 516 Distill-Qwen-7B. As shown in Table 4, remov-
 517 ing any component leads to performance degra-
 518 dation, demonstrating all components are essen-
 519 tial. In offline selection, removing Difficulty-
 520 aware Sampling leads to the most significant
 521 drop, which indicates that sample difficulty is a
 522 crucial factor for selection. For online selection,
 523 replacing explorability-based filtering with ran-
 524 dom filtering substantially reduces performance.
 525 This confirms that explorability is an important
 526 indicator of a sample’s value in RLVR training.
 527 In addition, we observe that both entropy and
 528 absolute advantage are essential components of the explorability metric. Furthermore, removing
 529 Under-explored Sample Replay notably impairs performance on more challenging tasks such as AIME
 530 25 (performance drops from 50.9 to 48.4), suggesting that replaying challenging and under-trained
 531 samples is critical for enhancing the model’s ability to solve hard problems.

532 5 CONCLUSION

533 In this paper, we proposed **DEPO**, a data-efficient policy optimization pipeline that integrates offline
 534 and online data selection strategies. By first constructing a high-quality subset of training data that
 535 emphasizes diversity, influence, and appropriate difficulty, then dynamically filtering rollouts based
 536 on sample-level explorability, our approach significantly reduced both data volume and computational
 537 costs while maintaining strong performance. Extensive experiments across multiple reasoning
 538 benchmarks and LLMs demonstrate that **DEPO** consistently outperformed competitive baselines in
 539 both offline and online settings. We hope our work inspires future research toward developing more
 data-efficient methods to accelerate RL for LLMs.

Table 4: Ablation study on three math benchmarks.

Dataset	AIME 24	AIME 25	MATH500
DEPO	62.8	50.9	95.9
<i>Offline Data Selection</i>			
w/o Pagerank-weighted DPP	62.1	50.0	95.6
w/o Difficulty-aware Sampling	60.3	47.8	95.1
<i>Online Data Selection</i>			
w/o Explorability Measurement	58.7	45.3	93.1
w/o Absolute advantage	61.9	49.5	95.5
w/o Entropy	60.6	48.4	94.6
w/o Under-explored Sample Replay	62.3	48.4	95.2

540 REFERENCES
541

542 Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing Xu,
543 Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for scaling
544 reinforcement learning on advanced reasoning models, 2025. URL <https://hkunlp.github.io/blog/2025/Polaris>.

545

546 Zachary Ankner, Cody Blakeney, Kartik Sreenivasan, Max Marion, Matthew L. Leavitt, and Mansheej
547 Paul. Perplexed by perplexity: Perplexity-based data pruning with small reference models. In
548 *ICLR*. OpenReview.net, 2025.

549

550 Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
551 *Comput. Networks*, 30(1-7):107–117, 1998.

552

553 Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing Yu,
554 Chao Wang, Cheng Zhu, Chengjun Xiao, Chengyu Du, Chi Zhang, Chu Qiao, Chunhao Zhang,
555 Chunhui Du, Congchao Guo, Da Chen, Deming Ding, Dianjun Sun, Dong Li, Enwei Jiao, Haigang
556 Zhou, Haimo Zhang, Han Ding, Haohai Sun, Haoyu Feng, Huaiqiang Cai, Haichao Zhu, Jian Sun,
557 Jiaqi Zhuang, Jiaren Cai, Jiayuan Song, Jin Zhu, Jingyang Li, Jinhao Tian, Jinli Liu, Junhao Xu,
558 Junjie Yan, Junteng Liu, Junxian He, Kaiyi Feng, Ke Yang, Kecheng Xiao, Le Han, Leyang Wang,
559 Lianfei Yu, Liheng Feng, Lin Li, Lin Zheng, Linge Du, Lingyu Yang, Lunbin Zeng, Minghui
560 Yu, Mingliang Tao, Mingyuan Chi, Mozhi Zhang, Mujie Lin, Nan Hu, Nongyu Di, Peng Gao,
561 Pengfei Li, Pengyu Zhao, Qibing Ren, Qidi Xu, Qile Li, Qin Wang, Rong Tian, Ruitao Leng,
562 Shaoxiang Chen, Shaoyu Chen, Shengmin Shi, Shitong Weng, Shuchang Guan, Shuqi Yu, Sichen
563 Li, Songquan Zhu, Tengfei Li, Tianchi Cai, Tianrun Liang, Weiyu Cheng, Weize Kong, Wenkai
564 Li, Xiancai Chen, Xiangjun Song, Xiao Luo, Xiao Su, Xiaoobo Li, Xiaodong Han, Xinzhu Hou,
565 Xuan Lu, Xun Zou, Xuyang Shen, Yan Gong, Yan Ma, Yang Wang, Yiqi Shi, Yiran Zhong, and
566 Yonghong Duan. Minimax-m1: Scaling test-time compute efficiently with lightning attention.
567 *CoRR*, abs/2506.13585, 2025.

568

569 Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and Furu
570 Wei. Reasoning with exploration: An entropy perspective. *CoRR*, abs/2506.14758, 2025.

571

572 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
573 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
574 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
575 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
576 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
577 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
578 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
579 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
580 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
581 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
582 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
583 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
584 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
585 Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning
586 capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025.

587

588 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.

589

590 Zhezheng Hao, Hong Wang, Haoyang Liu, Jian Luo, Jiarui Yu, Hande Dong, Qiang Lin, Can Wang,
591 and Jiawei Chen. Rethinking entropy interventions in rlrv: An entropy change perspective, 2025.
592 URL <https://arxiv.org/abs/2510.10150>.

593

594 Roe Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In *EMNLP*
595 (*Findings*), pp. 9318–9333. Association for Computational Linguistics, 2023.

596

597 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
598 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
599 *NeurIPS Datasets and Benchmarks*, 2021.

594 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
 595 yar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard Pas-
 596 soss, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett, Ananya Ku-
 597 mar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrey Mishchenko,
 598 Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben Rossen, Ben-
 599 jamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen Baker, Brandon
 600 Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaressi, Cary Bassin, Cary Hudson,
 601 Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang, Chris Koch, Chris
 602 Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kappler, Daniel
 603 Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson, Dimitris Tsipras,
 604 Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Elizabeth Proehl, Enoch
 605 Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang, Felipe Petroski Such,
 606 Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred von Lohmann, Freddie
 607 Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace Zhao, Greg Brockman,
 608 Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad,
 609 Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian O'Connell, Ian Osband,
 Ignasi Clavera Gilaberte, and Ilge Akkaya. Openai o1 system card. *CoRR*, abs/2412.16720, 2024.

610
 611 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 612 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 613 evaluation of large language models for code. In *ICLR*. OpenReview.net, 2025.

614 Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning. *CoRR*,
 615 abs/1207.6083, 2012a.

616
 617 Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning. *Found. Trends*
 618 *Mach. Learn.*, 5(2-3):123–286, 2012b.

619 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 620 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 621 serving with pagedattention. In *SOSP*, pp. 611–626. ACM, 2023.

622
 623 Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral,
 624 Teven Le Scao, Leandro von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu Nguyen,
 625 Jörg Frohberg, Mario Sasko, Quentin Lhoest, Angelina McMillan-Major, Gérard Dupont, Stella
 626 Biderman, Anna Rogers, Loubna Ben Allal, Francesco De Toni, Giada Pistilli, Olivier Nguyen,
 627 Somaieh Nikpoor, Maraim Masoud, Pierre Colombo, Javier de la Rosa, Paulo Villegas, Tristan
 628 Thrush, Shayne Longpre, Sebastian Nagel, Leon Weber, Manuel Muñoz, Jian Zhu, Daniel van
 629 Strien, Zaid Alyafeai, Khalid Almubarak, Minh Chien Vu, Itziar Gonzalez-Dios, Aitor Soroa, Kyle
 630 Lo, Manan Dey, Pedro Ortiz Suarez, Aaron Gokaslan, Shamik Bose, David Ifeoluwa Adelani,
 631 Long Phan, Hieu Tran, Ian Yu, Suhas Pai, Jenny Chim, Violette Lepercq, Suzana Ilic, Margaret
 632 Mitchell, Alexandra Sasha Luccioni, and Yacine Jernite. The bigscience ROOTS corpus: A 1.6tb
 633 composite multilingual dataset. In *NeurIPS*, 2022.

634
 635 Shikun Li, Shipeng Li, Zhiqin Yang, Xinghua Zhang, Gaode Chen, Xiaobo Xia, Hengyu Liu, and Zhe
 636 Peng. Learnalign: Reasoning data selection for reinforcement learning in large language models
 based on improved gradient alignment. *CoRR*, abs/2506.11480, 2025a.

637
 638 Xuefeng Li, Haoyang Zou, and Pengfei Liu. LIMR: less is more for RL scaling. *CoRR*,
 639 abs/2502.11886, 2025b.

640
 641 Sheng Liu, Haotian Ye, Lei Xing, and James Y. Zou. In-context vectors: Making in context learning
 more effective and controllable through latent space steering. In *ICML*. OpenReview.net, 2024.

642
 643 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 644 Lin. Understanding r1-zero-like training: A critical perspective. *CoRR*, abs/2503.20783, 2025a.

645
 646 Zihe Liu, Jiashun Liu, Yancheng He, Weixun Wang, Jiaheng Liu, Ling Pan, Xinyu Hu, Shaopan
 647 Xiong, Ju Huang, Jian Hu, Shengyi Huang, Siran Yang, Jiamang Wang, Wenbo Su, and Bo Zheng.
 Part i: Tricks or traps? a deep dive into rl for llm reasoning, 2025b. URL <https://arxiv.org/abs/2508.08221>.

648 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *ICLR (Poster)*.
 649 OpenReview.net, 2019.
 650

651 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 652 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
 653 Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and
 654 Ryan Lowe. Training language models to follow instructions with human feedback. In *NeurIPS*,
 655 2022.

656 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 657 Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a benchmark.
 658 *CoRR*, abs/2311.12022, 2023.
 659

660 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
 661 Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 662 language models. *CoRR*, abs/2402.03300, 2024.

663 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 664 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient RLHF framework. In *EuroSys*,
 665 pp. 1279–1297. ACM, 2025.
 666

667 Alessandro Stolfo, Vidhisha Balachandran, Safoora Yousefi, Eric Horvitz, and Besmira Nushi.
 668 Improving instruction-following in language models through activation steering. In *ICLR*. Open-
 669 Review.net, 2025.
 670

671 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 672 Xiao, Chenzhuang Du, Chonghua Liao, Chunling Tang, Congcong Wang, Dehao Zhang, Enming
 673 Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
 674 Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li,
 675 Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
 676 Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
 677 Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu,
 678 Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong,
 679 Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,
 680 Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang
 681 Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du,
 682 Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu
 683 Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
 reinforcement learning with llms. *CoRR*, abs/2501.12599, 2025.

684 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 685 Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
 686 Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
 687 effective reinforcement learning for LLM reasoning. *CoRR*, abs/2506.01939, 2025a.
 688

689 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
 690 He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
 691 Shen. Reinforcement learning for reasoning in large language models with one training example.
 692 *CoRR*, abs/2504.20571, 2025b.
 693

694 Zhiheng Xi, Xin Guo, Yang Nan, Enyu Zhou, Junrui Shen, Wenxiang Chen, Jiaqi Liu, Jixuan Huang,
 695 Zhihao Zhang, Honglin Guo, Xun Deng, Zhikai Lei, Miao Zheng, Guoteng Wang, Shuo Zhang,
 696 Peng Sun, Rui Zheng, Hang Yan, Tao Gui, Qi Zhang, and Xuanjing Huang. Bapo: Stabilizing
 697 off-policy reinforcement learning for llms via balanced policy optimization with adaptive clipping,
 698 2025. URL <https://arxiv.org/abs/2510.18927>.

699 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
 700 Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
 701 Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
 model via self-improvement. *CoRR*, abs/2409.12122, 2024.

702 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 703 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 704 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 705 Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
 706 Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an open-source
 707 LLM reinforcement learning system at scale. *CoRR*, abs/2503.14476, 2025.

708 Albert S. Yue, Lovish Madaan, Ted Moskovitz, DJ Strouse, and Aaditya K. Singh. HARP: A
 709 challenging human-annotated math reasoning benchmark. *CoRR*, abs/2412.08819, 2024.
 710

711 Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Cheng-Xiang
 712 Wang, Tiantian Fan, Zhengyin Du, Xiangpeng Wei, Xiangyu Yu, Gaohong Liu, Juncai Liu, Lingjun
 713 Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Ru Zhang,
 714 Xin Liu, Mingxuan Wang, Yonghui Wu, and Lin Yan. VAPO: efficient and reliable reinforcement
 715 learning for advanced reasoning tasks. *CoRR*, abs/2504.05118, 2025.

716 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
 717 Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard
 718 Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch FSDP: experiences on
 719 scaling fully sharded data parallel. *Proc. VLDB Endow.*, 16(12):3848–3860, 2023.

720 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang, Yuqiong
 721 Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy optimization.
 722 *CoRR*, abs/2507.18071, 2025a.

723 Haizhong Zheng, Yang Zhou, Brian R. Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and
 724 Beidi Chen. Act only when it pays: Efficient reinforcement learning for LLM reasoning via
 725 selective rollouts. *CoRR*, abs/2506.02177, 2025b.

726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756

Algorithm 1 Pagerank-weighted Sequential Data Pruning(S, \mathbf{w}, n, k)

757

Inputs:

758

Similarity matrix $S \in \mathbb{R}^{n \times n}$, Pagerank-weighted vector $\mathbf{w} \in \mathbb{R}^n$, Total node n , Sample size $k \leq n$

759

Initialize:

760

Kernel Matrix $L = \text{diag}(\mathbf{w}^{1/2}) \cdot S \cdot \text{diag}(\mathbf{w}^{1/2})$, $Y \leftarrow \emptyset$, $\mathcal{C} \leftarrow \{1, 2, \dots, n\}$, $L = Q \Lambda Q^\top$,

761

 $\Lambda \leftarrow \text{diag}(\lambda_1, \dots, \lambda_n)$, $V \leftarrow Q \cdot \text{diag}(\lambda_1^{-1/2}, \dots, \lambda_n^{-1/2})$

762

for $t = 1$ **to** k **do**

763

 $\mathbf{p} \leftarrow \mathbf{0}_{|\mathcal{C}|}$ ▷ Initialize zero vector: $\mathbf{p} \in \mathbb{R}^{|\mathcal{C}|}$, $p_i = 0 \forall i$

764

for $i = 1$ **to** n **do**

765

if $i \in \mathcal{C}$ **then**

766

 $\mathbf{p}[i] \leftarrow \|V_i\|_2^2$ **end if**

767

end for

768

 $\mathbf{p} \leftarrow \mathbf{p} / \sum_j \mathbf{p}[j]$

769

 $i_t \leftarrow \text{Sample}(\mathcal{C}, \mathbf{p})$

770

 $Y \leftarrow Y \cup \{i_t\}$

771

 $\mathcal{C} \leftarrow \mathcal{C} \setminus \{i_t\}$

772

if $t < k$ **then**

773

 $\mathbf{u} \leftarrow V_{i_t}^\top$

774

 $\mathbf{c} \leftarrow \mathbf{u}^\top V_C$

775

 $V_C \leftarrow V_C - \mathbf{u}\mathbf{c}$

776

end if

777

end for

778

return Y

779

Algorithm 2 Explorability-guided Rollout Pruning($\mathcal{B}, s, \lambda, \rho, d, e, G, \{O^t\}_{t=1}^e$)

780

Inputs:

781

Raw batch $\mathcal{B} = (q_i, a_i)_{i=1}^{|\mathcal{B}|}$, Window size s , Threshold for filtering poor negative rollouts λ , Replay ratio ρ ,

782

Decay rate d , Current epoch number e , Rollout numbers per sample G , Rollout history $\{O^t\}_{t=1}^e$

783

Initialize:

784

 Pruned batch $\mathcal{B}^{\text{Pruned}} \leftarrow \emptyset$

785

for each sample (q_i, a_i) in \mathcal{B} **do**

786

 $\mathcal{E}_i \leftarrow \mathcal{E}(q_i, a_i, \{O_i^t\}_{t=e-s+1}^e)$ ▷ Calculate sample-level explorability using Equation ??

787

end for

788

 $\alpha_e = \alpha_0 - d \cdot e$ ▷ Calculate high explorability ratios for this epoch

789

 Sort \mathcal{B} in descending order by \mathcal{E}_i

790

 $\mathcal{B}^{\text{High-Exp}} \leftarrow \text{top } \lceil \alpha_e \times |\mathcal{B}| \rceil \text{ samples from sorted } \mathcal{B}$

791

 $\mathcal{B}^{\text{Replay}} \leftarrow \text{sample } \lceil \rho \times |\mathcal{B}| \rceil \text{ samples from } \mathcal{B} \text{ with the smallest } |\{O^t\}_{t=1}^e|$ $\mathcal{B}^{\text{Pruned}} \leftarrow \mathcal{B}^{\text{High-Exp}} \cup \mathcal{B}^{\text{Replay}}$ **return** $\mathcal{B}^{\text{Pruned}}$

792

A THE USAGE OF LLMs

793

In this paper, Large Language Models are employed solely for the purpose of polishing the writing.

794

795

B REPRODUCIBILITY STATEMENT

796

797

Our code is provided in the anonymous link to facilitate reproducibility.

800

801

C ETHICS STATEMENT

802

803

This work adheres to the ICLR Code of Ethics. No ethical issues arise from this research.

804

805

D THEORETIC PROOF

806

807

808

809

In this part, we provide a theoretical derivation of the optimization objective aimed at maximizing the determinant of a kernel matrix that incorporates both diversity and influence in Equation 1.

810 D.1 OPTIMIZATION OBJECTIVE REFORMULATION
811812 We begin with the original weighted determinant maximization problem:
813

814
$$\max_{Y \subseteq \mathbf{P}} \left(\det(S_Y) \cdot \prod_{i \in Y} w_i \right), \quad (9)$$

815

816 where $S_Y \in \mathbb{R}^{|Y| \times |Y|}$ denotes the similarity matrix over the subset Y , and $w_i \in \mathbf{w}$ represents the
817 influential weight (*i.e.*, the PageRank score) of each sample i . This objective aims to select a subset Y
818 that is both diverse (as captured by $\det(S_Y)$) and influential (as promoted by the product of weights
819 $\prod_{i \in Y} w_i$). To combine these two factors more naturally, we express the product of weights in matrix
820 form. Note that:
821

822
$$\prod_{i \in Y} w_i = \det(\text{diag}(w_Y)), \quad (10)$$

823

824 where $\text{diag}(w_Y)$ is the diagonal matrix formed by the weights w_i . To incorporate the weights directly
825 into the kernel matrix, we consider the square root of the weights.
826

827
$$\text{diag}(w_Y^{1/2}) = \text{diag}(\sqrt{w_i})_{i \in Y}. \quad (11)$$

828

829 We then observe that:
830

831
$$\max_{Y \subseteq \mathbf{P}} \left(\det(S_Y) \cdot \prod_{i \in Y} w_i \right) = \max_{Y \subseteq \mathbf{P}} \det \left(\text{diag}(w_Y^{1/2}) \cdot S_Y \cdot \text{diag}(w_Y^{1/2}) \right). \quad (12)$$

832

833 This equality follows from the multiplicative property of the determinant and the fact that $\text{diag}(w_Y^{1/2})$
834 is a diagonal matrix. Now, defining the weighted kernel matrix for the subset Y as:
835

836
$$L_Y = \text{diag}(w_Y^{1/2}) \cdot S_Y \cdot \text{diag}(w_Y^{1/2}), \quad (13)$$

837

838 we can rewrite the optimization problem as:
839

840
$$\max_{Y \subseteq \mathbf{P}} \det(L_Y) \quad (14)$$

841

842 This form corresponds to a standard determinantal point process (DPP) with kernel L , where the joint
843 effects of diversity and influence are captured by L_Y .
844845 D.2 THE DETERMINANT AS A MEASURE OF SAMPLE DIVERSITY
846847 Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ be a set of m samples, where each $\mathbf{x}_i \in \mathbb{R}^d$ represents a feature vector. The
848 vectors are normalized such that $\|\mathbf{x}_i\| = 1$ for all i . The **similarity matrix** Y is defined as:
849

850
$$Y_{ij} = \mathbf{x}_i^\top \mathbf{x}_j = \langle \mathbf{x}_i, \mathbf{x}_j \rangle. \quad (15)$$

851

852 Under the normalization assumption, $Y_{ii} = 1$ for all i , and $Y_{ij} = \cos \theta_{ij}$, where θ_{ij} is the angle
853 between \mathbf{x}_i and \mathbf{x}_j .
854855 The key insight connecting diversity to the determinant arises from the geometric interpretation
856 of the similarity matrix. The m -dimensional volume of the parallelotope spanned by the vectors
857 $\mathbf{x}_1, \dots, \mathbf{x}_m$ is given by:
858

859
$$\text{Vol}_m(\mathbf{x}_1, \dots, \mathbf{x}_m) = \sqrt{\det(Y)}. \quad (16)$$

860 Equivalently,
861

862
$$\det(Y) = (\text{Vol}_m(\mathbf{x}_1, \dots, \mathbf{x}_m))^2. \quad (17)$$

863

864 This can be derived by letting X be the $d \times m$ matrix whose columns are $\mathbf{x}_1, \dots, \mathbf{x}_m$. The volume
865 is inherently $\sqrt{\det(X^\top X)}$.
866867 We now state and prove the main theorem connecting the determinant to diversity. Let
868 $S_{k-1} = \text{span}(\mathbf{x}_1, \dots, \mathbf{x}_{k-1})$ denote the subspace spanned by the first $k-1$ vectors, and let ϕ_k

864 be the angle between \mathbf{x}_k and its orthogonal projection onto S_{k-1} . The volume of the parallelotope
 865 can be expressed recursively as:
 866

$$867 \quad \text{Vol}_m(\mathbf{x}_1, \dots, \mathbf{x}_m) = \prod_{k=1}^m \|\mathbf{x}_k\| \cdot \prod_{k=2}^m \sin \phi_k = \prod_{k=2}^m \sin \phi_k, \quad (18)$$

870 where the second equality follows from the normalization $\|\mathbf{x}_k\| = 1$. Each factor $\sin \phi_k \in [0, 1]$
 871 quantifies the orthogonal component of \mathbf{x}_k relative to the previous vectors:
 872

- 873 • $\sin \phi_k = 1$ if and only if \mathbf{x}_k is orthogonal to S_{k-1} (maximal orthogonal component)
- 874 • $\sin \phi_k = 0$ if and only if $\mathbf{x}_k \in S_{k-1}$ (linear dependence, zero orthogonal component)

876 Since $\det(Y) = \text{Vol}^2 = \prod_{k=2}^m \sin^2 \phi_k$, we observe:
 877

- 878 • $\det(Y)$ approaches its maximum value when all $\sin \phi_k \rightarrow 1$ (i.e., when each vector is
 879 orthogonal to the span of previous vectors, yielding pairwise orthogonality).
- 880 • $\det(Y)$ approaches zero when any $\sin \phi_k \rightarrow 0$, indicating linear dependence and minimal
 881 diversity.

883 Thus, $\det(Y)$ strictly increases as the vectors become more orthogonal.
 884

885 Since Y is a real symmetric matrix and represents inner products of normalized vectors, it is positive
 886 semidefinite. The diagonal entries are all 1. By the **Hadamard inequality** for positive semidefinite
 887 matrices, the determinant is bounded by the product of the diagonal entries:
 888

$$889 \quad \det(Y) \leq \prod_{i=1}^m Y_{ii} = 1. \quad (19)$$

892 This establishes the upper bound. Now, we prove the equality condition. Hadamard's inequality
 893 holds with equality if and only if Y is a diagonal matrix. A diagonal Y with $Y_{ii} = 1$ means:
 894

$$895 \quad Y = I_m, \quad \text{where } I_m \text{ is the identity matrix.} \quad (20)$$

896 This implies $Y_{ij} = 0$ for all $i \neq j$. Since $Y_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$, this means $\mathbf{x}_i \perp \mathbf{x}_j$ for all $i \neq j$. The
 897 vectors are mutually orthogonal. From a geometric perspective, when the vectors are orthogonal, the
 898 parallelotope they span forms an m -dimensional hyperrectangle and achieves its maximum volume.
 899

900 E DETAILED EXPERIMENTAL SETUP

903 **Models.** We run our experiments on DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI et al., 2025),
 904 DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI et al., 2025), and Qwen2.5-Math-7B (Yang et al.,
 905 2024). For DeepSeek-R1-Distill-Qwen-7B and Deepseek-R1-Distill-Llama-8B, we set the context
 906 length to 16384. For Qwen2.5-Math-7B models, we set the context length to 4096, as it is the
 907 maximum context length for this model.

908 **Training.** Our method is implemented based on the Verl (Sheng et al., 2025) pipeline and uses
 909 vLLM (Kwon et al., 2023) for rollout. We train DeepSeek-R1-Distill-Qwen-7B and DeepSeek-
 910 R1-Distill-Llama-8B on 64xH200 GPUs, and Qwen2.5-Math-7B on 32xH200 GPUs. For training
 911 datasets, we use the DAPO-Math Yu et al. (2025) as the training dataset. During rollouts, we set the
 912 temperature to 1 and sample 8 responses per prompt. The training batch size is set to 256. We apply
 913 the on-policy GRPO algorithm to train the model. Similar to Yue et al. (2025), we remove both
 914 the KL divergence loss and the entropy loss. We train all models for 1000 steps, and we optimize
 915 the actor model using the AdamW (Loshchilov & Hutter, 2019) optimizer with a constant learning
 916 rate of 2e-6 for DeepSeek-R1-Distill-Qwen-7B and Deepseek-R1-Distill-Llama-8B and 1e-6 for
 917 Qwen-Math-7B. The actor module is optimized using Fully Sharded Data Parallel (FSDP) (Zhao
 918 et al., 2023) for efficient distributed training. The chat template we use is “User: \n [question] \n

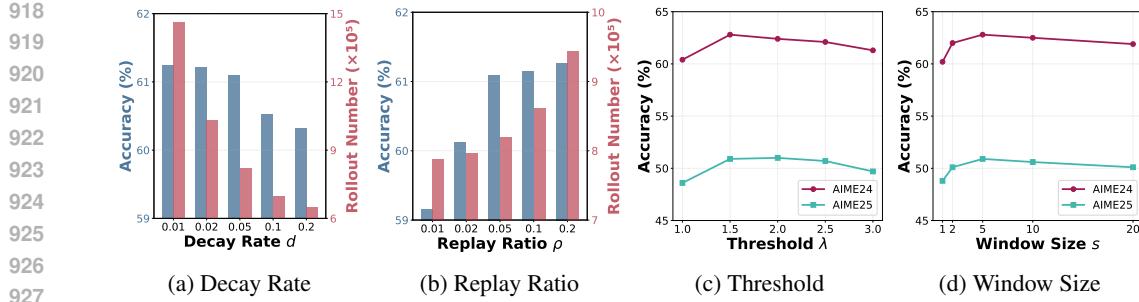


Figure 8: Hyperparameter analysis

Please reason step by step, and put your final answer within `\boxed{}`. \n \n Assistant.”. For offline data selection, we first apply PageRank-weighted Determinantal Point Process (DPP) to reduce the sample set to 50% of its original size. We then perform difficulty-aware sampling based on a normal distribution to select the final subset, which constitutes 20% of the full dataset. The mean μ and standard deviation σ of the difficulty distribution for the final selected subset are set to 0.5 and 0.2, respectively. In the online data selection phase, we set the window size for recent epochs s to 5, the replay sample ratio ρ to 0.05, and the threshold λ for filtering out poor negative rollouts to 1.5. For the linear decay of rollout pruning, we initialize the sampling rate α_0 to 1 and apply a decay rate d of 0.05, gradually reducing the proportion of samples used for rollout and policy update until it reaches 20% of the batch size.

Evaluation. For evaluation benchmarks, we use three widely used complex mathematical reasoning benchmarks (*i.e.*, AIME24, AIME25, Math500 (Hendrycks et al., 2021)) and two other reasoning benchmarks (*i.e.*, GPQA (Rein et al., 2023) and LiveCodeBench (Jain et al., 2025)) to evaluate the model performance. We follow Zheng et al. (2025b) to evaluate models on those benchmarks every 50 steps and report the performance of the checkpoint that obtains the best average performance on five benchmarks. All evaluations are conducted in a zero-shot setting. Following DeepSeek-AI et al. (2025), we evaluate all models setting temperature to 0.6 and top-k to 0.95. We repeat the test set 32 times for evaluation stability for all benchmarks and report the average accuracy.

F ADDITIONAL EXPERIMENTS

F.1 THE EFFECT OF DIFFERENT SCALE MODELS

To evaluate the scaling ability of our proposed method, we conduct experiments on Qwen3-8B, Qwen3-14B, and Qwen3-32B using the DAPO algorithm. The training was conducted with a batch size of 512 and a mini-batch size of 32, resulting in 16 gradient steps per training batch. We report average performance across three mathematical reasoning benchmarks (*i.e.*, AIME24, AIME25, and Math500). As illustrated in Figure 7, we observe that our approach demonstrates strong scalability across different model scales. This improvement can be attributed to the offline data selection strategy of **DEPO**, which selects a high-quality subset based on diversity, influence, and difficulty, which is beneficial for RLVR training. Furthermore, we select high explorability samples for rollouts and policy updates, and incorporate under-explored samples for replay, which significantly improves training efficiency without sacrificing performance.

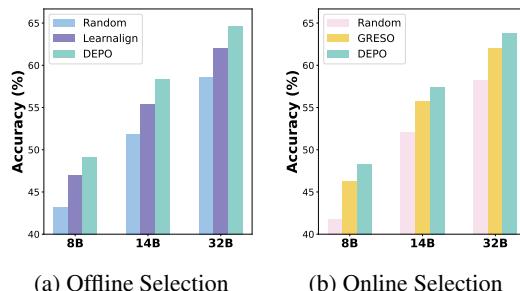


Figure 7: Different scales of LLMs.

972 F.2 HYPERPARAMETER ANALYSIS
973

974 In this work, we adopt a linear decay strategy to gradually decrease the proportion of rollouts in
975 each batch over training epochs. As shown in Figure 8a, setting the decay rate d to 0.05 leads to a
976 slight performance drop while substantially reducing rollout numbers. If the decay rate is too high,
977 many samples may not be sufficiently trained, leading to suboptimal final performance. Conversely,
978 an excessively low decay rate increases the number of rollouts, thereby reducing training efficiency.
979 With respect to the replay ratio, setting it to 0.05 allows the model to achieve an optimal balance
980 between final performance and training efficiency, as illustrated in Figure 8b. An excessively high
981 replay ratio introduces unnecessary computational overhead due to redundant rollouts, while a ratio
982 that is too low may prevent challenging samples from being adequately trained, thereby limiting the
983 model’s reasoning capability.
984

985 We further analyze two hyperparameters: the threshold λ for selecting high-quality negative rollouts
986 and the window size s . As shown in Figure 8c, performance initially improves and then declines
987 as the threshold increases. This indicates that when the threshold is set too low, potentially useful
988 samples that could help exploration may be excluded. Conversely, an excessively high threshold may
989 lead to the inclusion of noisy rollouts (e.g., nonsensical text rollouts), which can adversely affect
990 model performance. Regarding the window size s , Figure 8d indicates that the model performs
991 best when $s = 5$. This suggests that the window size should be chosen within an appropriate range.
992 One possible explanation is that a very small window may not capture broader historical training
993 dynamics, while an overly large window may not focus on recent training trends.
994

995 F.3 THE EFFECT OF DYNAMIC OFFLINE DATA CURATION STRATEGY
996

997 To further investigate the effectiveness of dynamic offline
998 curation strategies, we conduct additional experiments be-
999 yond our static difficulty-based selection with approaches
1000 that periodically update the training subset. Specifically, we
1001 implement two dynamic strategies: (1) Dividing training
1002 into two (i.e., 10% data per phase, resample every 1250
1003 minutes) and four phases (i.e., 5% data per phase, resample
1004 every 625 minutes). (2) First training on a static 20% subset
1005 until convergence, then continuing with a newly resampled
1006 10% subset.
1007

1008 Figure 9 compares the performance of these dynamic strate-
1009 gies against our static baseline. As we can see, updating the
1010 subset with only 5% data per phase results in performance degradations, as the model tends to over-
1011 fit the current phase’s data distribution and forget previously learned data. Besides, the two-phase
1012 approach strategy with 10% data per phase performs comparably to our static 20% baseline. This
1013 reveals a critical trade-off in dynamic curation between maintaining alignment with a difficulty-
1014 matched data distribution and preventing catastrophic forgetting.
1015

1016 Furthermore, when extending training with a new 10% subset after initial convergence on 20% data,
1017 we observe only slight improvements, indicating that data freshness through resampling is effective.
1018 However, the limited improvement suggests that the DAPO dataset is nearly saturated for this model’s
1019 performance potential.
1020

1021 G DETAILED DESCRIPTION OF BASELINES
1022

1023 In this part, we provide detailed descriptions of all the baselines used in our experiments. For offline
1024 data selection methods, we compare our method with random selection, conventional supervised fine-
1025 tuning (SFT) data selection methods (i.e., PPL-Top (Laurençon et al., 2022) and PPL-Middle (Ankner
1026 et al., 2025)), RLVR selection method (i.e., LIMR (Li et al., 2025b) and Learnalign (Li et al., 2025a)).
1027

- **Random:** Randomly samples data from the training set.

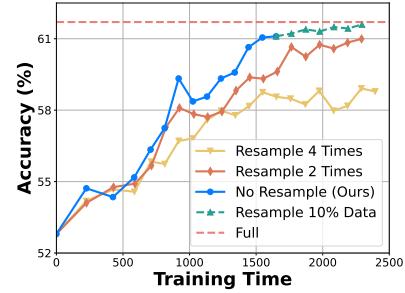


Figure 9: Dynamic Offline Curation.

- **PPL-Top** (Laurençon et al., 2022): Selects the data with the highest perplexity.
- **PPL-Middle** (Ankner et al., 2025): Selects the data with the middle perplexity.
- **LMIR** (Li et al., 2025b): Selects the data whose learning patterns complement the model’s overall reward trajectory.
- **Learnalign** (Li et al., 2025a): Selects the data based on representativeness (measured via gradients during warmup training) and difficulty (determined by rollout accuracy).

For online data selection methods, we incorporate them into our offline selected subset and compare against random online selection and GRESO (Zheng et al., 2025b).

- **Random**: Randomly filters 40% of the data at each batch prior to rollout during training.
- **GRESO** (Zheng et al., 2025b): Probabilistically filter historical samples with zero variance at each batch before rollout during training.

H RELATED WORK

H.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARD

Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a promising paradigm for enhancing the complex reasoning capabilities of large language models (LLMs), particularly in domains such as mathematics and code generation. The key advantage of this approach is its reward design, which relies solely on simple verification functions to provide binary rewards without requiring learned reward models. DeepSeek-R1 (DeepSeek-AI et al., 2025) introduces the GRPO algorithm under the RLVR framework and demonstrates its effectiveness in significantly scaling the reasoning abilities of LLMs. Building on GRPO, subsequent work have further advanced RLVR by refining various aspects, including loss functions (Liu et al., 2025a; Yu et al., 2025; Zheng et al., 2025a; Chen et al., 2025), token-level entropy (Wang et al., 2025a; Hao et al., 2025), advantage estimation (Cheng et al., 2025), and hyperparameter (Liu et al., 2025b; An et al., 2025; Xi et al., 2025). In this work, we focus on improving the data efficiency of RLVR to reduce computational costs while maintaining model performance.

H.2 DATA EFFICIENCY FOR RLVR

Data efficiency aims to enhance model performance by strategically selecting high-quality training samples. Existing RLVR data selection approaches can be broadly categorized into offline and online strategies. Offline data selection methods focus on identifying a high-quality subset of data prior to training. Some studies select samples based on model reward trends (Li et al., 2025b), reward variance (Wang et al., 2025b), and gradient alignment (Li et al., 2025a). While effective, these methods require training the original or warmup dataset for several epochs for selection. Another line of work (An et al., 2025) uses offline rollouts to estimate sample difficulty relative to the current model’s capabilities. However, this approach requires computationally expensive rollouts across the entire dataset and fails to account for the diversity and influence of the training subsets. On the other hand, online data selection methods aim to reduce training overhead by dynamically filtering samples during the training process. These approaches target samples that contribute little to improving reasoning capabilities yet require costly rollouts. GRESO (Zheng et al., 2025b) employs a probabilistic filtering strategy to exclude samples with historical zero variance. Although it improves efficiency, this approach only focuses on historical zero-variance samples and does not distinguish among other samples. In this work, we enhance the data efficiency of RLVR by integrating optimized strategies for both offline and online data selection.

I CASE STUDY

In this section, we provide detailed case studies on five reasoning benchmarks.

1080
1081

AIME24

1082

[Question:]

1083

Every morning Aya goes for a \$9\$-kilometer-long walk and stops at a coffee shop afterwards. When she walks at a constant speed of \$s\$ kilometers per hour, the walk takes her 4 hours, including \$t\$ minutes spent in the coffee shop. When she walks \$s+2\$ kilometers per hour, the walk takes her 2 hours and 24 minutes, including \$t\$ minutes spent in the coffee shop. Suppose Aya walks at \$s+\frac{1}{2}\$ kilometers per hour. Find the number of minutes the walk takes her, including the \$t\$ minutes spent in the coffee shop. Please reason step by step, and put your final answer within $\boxed{\text{}}$.

1084

[Answer:]

1085

Okay, so I have this problem about Aya's morning walk and her coffee stops. Let me try to figure this out step by step. First, let's parse the information given. Every morning, Aya goes for a 9-kilometer-long walk and then stops at a coffee shop. When she walks at a constant speed of \$s\$ kilometers per hour, the entire walk, including her coffee stop, takes her 4 hours. Wait, hold on, the problem says it takes her 4 hours, but 4 hours is 240 minutes. But then it mentions including \$t\$ minutes spent in the coffee shop. Hmm, maybe I need to clarify. Wait, maybe the total time includes both walking and coffee time. So, when she walks at speed \$s\$ km/h, her total time is 4 hours, which includes \$t\$ minutes in the coffee shop. Similarly, when she walks at \$s+2\$ km/h, the total time is 2 hours and 24 minutes, which also includes \$t\$ minutes coffee time. Our goal is to find the time it takes her when she walks at \$s + \frac{1}{2}\$ km/h, again including the \$t\$ minutes coffee stop.

1086

...

1087

Final Answer $\boxed{204}$

Given that Aya goes for a 9-kilometer-long walk every morning and stops at a coffee shop, we need to determine the total time she takes when she walks at a speed of $s + \frac{1}{2}$ km/h, including the time spent in the coffee shop.

First, we set up the equations based on the given information.

When walking at speed s km/h:

- Total time = 4 hours = 240 minutes.
- Let t be the time spent in the coffee shop.
- Equation: $s + t = 240$.

When walking at speed $s + 2$ km/h:

- Total time = 2 hours 24 minutes = 144 minutes.
- Equation: $(s + 2) + t = 144$.

Subtracting the second equation from the first to eliminate t :

$$(s + 2) - (s + 2) = 96$$

$$s + 2 - s - 2 = 96$$

$$2 = 96$$

$$s = 94$$

Solving the quadratic equation:

Discriminant: $(4 + 45) = 49$

Solutions: $s = \frac{-2 \pm \sqrt{49}}{2}$

Positive solution: $s = 2.5$ km/h.

Using $s = 2.5$ to find t :

$$2.5 + t = 144$$

$$t = 141.5$$
 minutes.

When walking at $s + \frac{1}{2}$ km/h:

Time to walk 9 km: $\frac{9}{s + \frac{1}{2}} = 3$ hours = 180 minutes.

Total time including coffee: $180 + 24 = 204$ minutes.

Thus, the total time taken is $\boxed{204}$ minutes.

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

AIME25

1115

[Question:]

1116

Find the sum of all integer bases $b > 9$ for which 17_b is a divisor of 97_b . Please reason step by step, and put your final answer within $\boxed{\text{}}$.

1117

[Answer:]

1118

Alright, let's see. I have this problem here: I need to find the sum of all integer bases $b > 9$ for which 17_b is a divisor of 97_b . Hmm, okay. So, bases greater than 9, which means we're looking at bases starting from 10 upwards, right? First, I remember that when numbers are written in a certain base b , their value in decimal (base 10) can be calculated. For example, a number like 17_b is equal to $1 \times b + 7$ in base 10. Similarly, 97_b would be $9 \times b + 7$ in base 10. So, the problem is asking for all bases $b > 9$ where 17_b divides 97_b . That means that when we convert both numbers to base 10, 97_b should be divisible by 17_b in base 10 terms.

1119

...

1120

Final Answer $\boxed{70}$

To solve the problem, we need to find all integer bases $b > 9$ for which 17_b is a divisor of 97_b . First, we convert the numbers from base b to base 10: $17_b = 1 \times b + 7$. We need 17_b to divide 97_b . This translates to the congruence $97 \equiv 0 \pmod{17}$. Rewriting this, we let $n = b + 7$, so $9n \equiv 0 \pmod{17}$. Substituting back, we get $9(b + 7) \equiv 0 \pmod{17}$. This implies $9b + 63 \equiv 0 \pmod{17}$. Simplifying, we get $9b \equiv -63 \pmod{17}$. Since $9 \times 2 = 18 \equiv 1 \pmod{17}$, we can multiply both sides by 2: $18b \equiv -126 \pmod{17}$. This implies $b \equiv 13 \pmod{17}$. The divisors of 56 greater than 16 are 28 and 56. Since $b > 9$, $b = 28$. The divisors of 56 greater than 16 are 28 and 56. Thus, solving for b : If $b = 28$, then $b = 28 - 7 = 21$. If $b = 56$, then $b = 56 - 7 = 49$. Both 21 and 49 are valid bases as they satisfy the digit constraints in their respective numbers. Therefore, the sum of these bases is $21 + 49 = 70$.

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

MATH500

1135

1136

[Question:]

1137

1138

1139

Define $p = \sum_{k=1}^{\infty} \frac{1}{k^2}$ and $q = \sum_{k=1}^{\infty} \frac{1}{(j+k)^3}$. Find a way to write $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{(j+k)^3}$ in terms of p and q . Please reason step by step, and put your final answer within $\boxed{\quad}$.

1140

[Answer:]

1141

1142

1143

1144

1145

1146

1147

1148

1149

Okay, so I have this problem here where I need to express the double sum $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{(j+k)^3}$ in terms of p and q , where $p = \sum_{k=1}^{\infty} \frac{1}{k^2}$ and $q = \sum_{k=1}^{\infty} \frac{1}{k^3}$. Hmm, interesting. I remember that p is related to the Basel problem and equals $\frac{\pi^2}{6}$, and q is Apery's constant, approximately 1.202... But maybe I don't need their exact values, just to express the double sum in terms of p and q . So, the double sum is over two indices, j and k , both starting from 1 to infinity, of $\frac{1}{(j+k)^3}$. I think I need to find a clever way to rewrite this or maybe relate it to the known series p and q . Let's think about how to handle double sums. Often, double sums can sometimes be converted into single sums by clever manipulation or using integral representations. Let me write down the double sum explicitly:

...

For each n , j can range from 1 to $n-1$, so we rewrite the double sum as a single sum:

$$\sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{(j+k)^3} = \sum_{n=2}^{\infty} \sum_{j=1}^{n-1} \sum_{k=1}^{\infty} \frac{1}{(j+k)^3} = \sum_{n=2}^{\infty} \sum_{j=1}^{n-1} \sum_{k=1}^{\infty} \frac{1}{(n-j+k)^3}$$

For each n , there are $n-1$ pairs (j, k) , so:

$$\sum_{n=2}^{\infty} \sum_{j=1}^{n-1} \sum_{k=1}^{\infty} \frac{1}{(n-j+k)^3} = \sum_{n=2}^{\infty} \sum_{j=1}^{n-1} \left(\frac{1}{n^3} - \frac{1}{(n-j)^3} \right)$$

We split the fraction:

$$\sum_{n=2}^{\infty} \sum_{j=1}^{n-1} \left(\frac{1}{n^3} - \frac{1}{(n-j)^3} \right) = \sum_{n=2}^{\infty} \left(\frac{1}{n^2} - \frac{1}{(n-1)^2} \right)$$

Thus, $\sum_{n=2}^{\infty} \sum_{j=1}^{n-1} \sum_{k=1}^{\infty} \frac{1}{(j+k)^3} = \sum_{n=2}^{\infty} \left(\frac{1}{n^2} - \frac{1}{(n-1)^2} \right)$

This can be written as:

$$\sum_{n=2}^{\infty} \left(\frac{1}{n^2} - \frac{1}{(n-1)^2} \right) = \frac{1}{2} - \frac{1}{n}$$

Using the known series $p = \sum_{n=1}^{\infty} \frac{1}{n^2}$ and $q = \sum_{n=1}^{\infty} \frac{1}{n^3}$, we have:

$$\sum_{n=2}^{\infty} \frac{1}{n^2} = p - 1$$

Therefore, $\sum_{n=2}^{\infty} \frac{1}{n^3} = q - 1$

The final answer is: $\boxed{p - q}$

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188
1189

GPQA

1190

[Question:]

1191

Answer the following multiple choice question. The last line of your response should be of the following format: 'Answer: \$LETTER' (without quotes) where LETTER is one of ABCD. Think step by step before answering.\n\nTwo quantum states with energies E1 and E2 have a lifetime of 10^{-9} sec and 10^{-8} sec, respectively. We want to clearly distinguish these two energy levels. Which one of the following options could be their energy difference so that they can be clearly resolved?\n\nA) 10^{-9} eV\nB) 10^{-11} eV\nC) 10^{-8} eV\nD) 10^{-4} eV

1195

[Answer:]

1196

Okay, so I have this quantum mechanics problem in front of me. Hmm, let's try to think it through. The question is about distinguishing two quantum states with different lifetimes. Right, I remember that in quantum mechanics, the uncertainty principle plays a role in determining the observable differences between energy levels. Or wait, perhaps it's about the Heisenberg uncertainty principle? Or maybe it's related to the line width due to the energy uncertainty affecting the transition between states.\n\nSo the problem states that two quantum states have energies E1 and E2 with lifetimes of 10^{-9} seconds and 10^{-8} seconds, respectively. The goal is to find which energy difference would allow us to clearly distinguish these two energy levels. The options are A to D.\n\nI'm a bit rusty on this, but I think the key here is the concept of the spectral line width. Oh wait, I remember something about the width of spectral lines being related to the uncertainty in energy, or perhaps the Heisenberg uncertainty principle. Because if the lifetimes are different, their energy differences might lead to different spectral lines that can be resolved.\n\nHeisenberg's uncertainty principle says that the product of the uncertainty in energy (ΔE) and the uncertainty in time (Δt) is approximately $h/2$. Alternatively, I remember that the natural linewidth of a spectral line (due to the uncertainty principle) is related to the inverse of the lifetime. So the linewidth ΔE is approximately h/τ , where τ is the lifetime. Because the uncertainty in energy ΔE would be on the order of h/τ . So if we have two states with lifetimes τ_1 and τ_2 , their respective spectral linewidths would be $\Delta E_1 = h/\tau_1$ and $\Delta E_2 = h/\tau_2$. So the difference in their energy levels, $\Delta E = E_2 - E_1$, needs to be larger than the sum of their linewidths, I think, to distinguish the two lines so they don't overlap and can be resolved. Because if the separation is less than the sum of their widths, they might merge into one broad peak, making them indistinguishable.\n\nWait, but I might have this reversed. Maybe the difference in energies (ΔE) between the two levels should be greater than the sum of their individual energy uncertainties (line widths) to resolve them as two separate peaks. Because if the separation is larger than the sum of the two uncertainties, they can be distinguished. Otherwise, the two peaks would overlap into one broad peak.\n\nLet's clarify: For two spectral lines, each with width about ΔE_1 and ΔE_2 , the energy separation needs to be greater than $\Delta E_1 + \Delta E_2$ for them to be distinguishable. Because if their separation is less than the sum of their linewidths, their peaks might overlap, making it impossible to tell them apart.\n\nSo, the energy difference ΔE should be greater than $(\Delta E_1 + \Delta E_2)$. Alternatively, perhaps the requirement is that $\Delta E > (\Delta E_1 + \Delta E_2)$, but let me think about it. If two peaks are separated by more than the sum of their widths, they can be resolved. Because each line has a width (say, the full width at half maximum, FWHM), and for them to be distinct, the distance between them must be greater than the sum of their FWHMs. Otherwise, the second line would start before the first has ended, and they merge into one.

1218

...

1219

Alternatively, maybe the question is considering the inverse situation: the energy difference should be more than each of the individual widths, but that doesn't make sense because the larger one is 6.5×10^{-7} eV, and no option meets that except D. So likely, the correct answer is D.\n\nTo determine which energy difference allows the two quantum states to be clearly resolved, we analyze the relationship between their lifetimes and energy widths using the uncertainty principle. The natural linewidth of a spectral line is related to the lifetime of a state by the uncertainty principle: $\Delta E = \frac{h}{\tau}$. The linewidth ΔE is the energy difference between the two states, the lifetimes are $\tau_1 = 10^{-9}$ s and $\tau_2 = 10^{-8}$ s. Their respective linewidths are $\Delta E_1 = \frac{h}{\tau_1}$ and $\Delta E_2 = \frac{h}{\tau_2}$. We calculate $\Delta E_1 = \frac{6.582 \times 10^{-16} \text{ eV} \times 10^{-9} \text{ s}}{10^{-34} \text{ J s}} = 6.582 \times 10^{-15} \text{ eV}$ and $\Delta E_2 = \frac{6.582 \times 10^{-16} \text{ eV} \times 10^{-8} \text{ s}}{10^{-34} \text{ J s}} = 6.582 \times 10^{-14} \text{ eV}$. The sum of the linewidths is $\Delta E_1 + \Delta E_2 = 6.582 \times 10^{-15} \text{ eV} + 6.582 \times 10^{-14} \text{ eV} = 1.316 \times 10^{-14} \text{ eV}$. For the two states to be clearly resolved, the energy difference ΔE between them must be greater than the sum of their linewidths: $\Delta E > \Delta E_1 + \Delta E_2 \approx 1.316 \times 10^{-14} \text{ eV}$. This is much smaller than 10^{-9} eV. Now, we evaluate the given options:\n\nOption A: 10^{-9} eV, which is smaller than 1.316×10^{-14} eV, so it does not satisfy the condition.\n\nOption B: 10^{-11} eV, which is even smaller than 10^{-9} eV, so it does not satisfy the condition.\n\nOption C: 10^{-8} eV, which is 1.0×10^{-8} eV, so it does not satisfy the condition.\n\nOption D: 10^{-4} eV, which is much larger than 1.316×10^{-14} eV, so it satisfies the condition.\n\nThus, the only energy difference that allows the two states to be clearly resolved is 10^{-4} eV.

Answer: D

1235

1236

1237

1238

1239

1240

1241

1242
1243

LiveCodeBench

1244

[Question:]

1245

```
### Question : You are given an integer sequence A=(A_1,\dots,A_N) of length N. Here, A_1, A_2, \dots, A_N are all distinct.\nWhich element in A is the second largest?\n\nInput\nThe input is given from Standard Input in the following format:\nN \r\nA_1 A_2 \dots A_{N}\nOutput\nPrint the integer X such that the X-th element in A is the second largest.\n\nConstraints\n- 2 \leq N \leq 100\n- 1 \leq A_i \leq 10^9\n- A_1, A_2, \dots, A_N are all distinct.\n- All input values are integers.\n\nSample Input\n4\n8 2 5\nSample Output\n3\nThe second largest element in A is A_3, so print 3.\n\nSample Input\n8\n1 2 3 4 5 10 9 11\nSample Output\n2\n\n### Format: Read the inputs from stdin solve the problem and write the answer to stdout (do not directly test on the sample inputs). Enclose your code within delimiters as follows.\n``python\n# YOUR CODE HERE\n``\n### Answer: (use the provided format with backticks)\n\n
```

1251

1252

[Answer:]

1253

Okay, I need to solve this problem where I have to find the second largest element in a given integer sequence and then determine which position it occupies in the list, specifically the index in the 1-based notation. Hmm, let's think through how to approach this.\n\nWait, wait. The problem says that each element is distinct, so I don't have to worry about duplicates. The task is to find the second largest number and then output the index (but wait, the problem says the X-th element, which is the position in the array, not zero-based). Oh right, the first sample input: 8 2 5 1. The largest is 8, then 5, then 2, then 1. Wait no, wait the second sample input is 1 2 3 4 5 10 9 11. The largest is 11, then 10, and then 9. Wait, no, wait in sample input 2, the array is [1,2,3,4,5,10,9,11], the largest is 11 at position 8, the second largest is 10 at position 6. So the output is 6. So the task is to find the second largest element in the list, which is the element that is just smaller than the maximum, but it could be more than just that because there might be elements that are after the maximum which are smaller but larger than the rest.\n\nSo, the plan is:\n1. Read N and the list of integers.\n2. Find the maximum value in the list.\n3. Then find all elements that are less than the maximum. Among these, the second largest will be the maximum of that subset. But wait, wait, maybe the second largest is not necessarily the max of the rest. For example, in the first sample, the max is 8, the rest are 2,5,1. The max of those is 5, which is correct. In sample 2, the max is 11, the rest are 1,2,3,4,5,10,9. The max of those is 10, which is correct.\n\nSo, the approach is:

...

1264

1265

The approach involves finding the maximum element, then determining the second largest element from the remaining elements, and finally locating its position in the original list.\n\nApproach:\n1. **Read Input**: First, we read the input values, which include the length of the list and the list elements.\n2. **Find Maximum Value**: Compute the maximum value in the list.\n3. **Filter Candidates**: Create a sublist of all elements excluding the maximum value.\n4. **Find Second Largest**: From the filtered sublist, find the maximum value, which is the second largest element in the original list.\n5. **Determine Position**: Locate the index of this second largest element in the original list and convert it to a 1-based index for the output.\n\nSolution Code:\n```python\nn = int(input())\na = list(map(int, input().split()))\nmax_val = max(a)\ncandidates = [x for x in a if x != max_val]\nsecond_val = max(candidates)\nindex = a.index(second_val) + 1 # Convert to 1-based index\nprint(index)\n```\nExplanation:\n- **Reading Input**: We read the integer `n` which is the length of the list and then read the list of integers `a`.\n- **Finding Maximum**: Using Python's built-in `max()` function, we determine the largest value in the list.\n- **Filtering Candidates**: We create a new list `candidates` that excludes the maximum value to focus on the remaining elements.\n- **Finding Second Largest**: The maximum of the `candidates` list is the second largest element in the original list.\n- **Index Conversion**: The index of this second largest element is found using `index()`, which returns a 0-based index, so we add 1 to convert it to 1-based indexing before printing the result.\n\nThis approach ensures that we efficiently find the second largest element and correctly determine its position in the original list, adhering to the problem constraints and requirements.

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295