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ABSTRACT

Recent advances in large language models (LLMs) have utilized reinforcement
learning with verifiable rewards (RLVR) to improve reasoning capabilities. How-
ever, scaling these methods typically requires massive data and extensive rollout
computations, leading to high training costs and low data efficiency. To mitigate
this issue, we propose DEPO, a Data-Efficient Policy Optimization approach that
combines optimized strategies for both offline and online data selection. In the
offline phase, we curate a high-quality subset of training data based on multiple ob-
jectives, including diversity, influence, and difficulty. During online RLVR training,
we propose a sample-level explorability metric to dynamically filter out samples
with low exploration potential, thereby reducing substantial rollout computational
costs. Additionally, we employ a replay mechanism for under-explored samples to
ensure sufficient training, which enhances the final convergence performance. Ex-
periments on five reasoning benchmarks show that DEPO consistently outperforms
existing methods in both offline and online data selection scenarios. Notably, using
only 20% of the training data, our approach achieves a 1.85 x speed-up on AIME24
and a 1.66 x speed-up on AIME25 compared to GRPO trained on the full dataset.
The code is available at https://anonymous. 4open.science/r/DEPO-4E30.
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Figure 1: Training Accuracy of GRPO and DEPO. DEPO uses only 20% of the training data and
reduces training time by at least 1.6 x while achieving comparable performance to GRPO.

1 INTRODUCTION

Recently, reinforcement learning with verifiable rewards (RLVR) (Ouyang et al.,|2022; |Shao et al.,
2024) has emerged as a prominent technique to unlock the reasoning capabilities of large language
models (LLMs) (Jaech et al) 2024} Team et al., 2025). In RLVR training, LLMs are required
to explore multiple reasoning trajectories (i.e., rollouts), and receive binary rewards based on the
correctness of the final answer. This process enables LL.Ms to iteratively refine their reasoning
strategies. A common way to enhance RLVR is to scale the amount of training data and the number
of rollouts, which allows LLMs to discover more diverse reasoning paths and improve performance.
Despite its effectiveness, this scaling strategy introduces significant drawbacks, that is, it substantially
increases training cost and results in low data efficiency.
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To mitigate this problem, prior work
has explored ways to improve data ef-
ficiency through both offline and on-
line data selection strategies. In of-

Table 1: Comparison of RLVR data selection methods.

Method | Offline | Offline Method | Online | Online Method
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trends (L1 et al., 2025b)), reward vari- ~griso |
ance (Wang et al., 2025b), and gra-  “pgpo ours) |
dient alignment (L1 et al., [2025a) to
select data, which fails to fully capture the complex characteristics of the training data. Furthermore,
these approaches often require prior training to compute the metrics, which incurs high computational
costs. On the other hand, online data selection methods aim to improve the rollout efficiency, which is
the major bottleneck in RLVR.|[Zheng et al.|(2025b) employs a probabilistic filter to exclude samples
with historical zero reward variance. Although this method reduces rollout costs, it treats all historical
non-zero variance samples equally and lacks a finer-grained metric to evaluate their exploration
potential. Additionally, all existing methods enhance data efficiency from either the offline or the
online perspective, resulting in suboptimal data efficiency.
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In this work, we are the first to introduce a Data-Efficient Policy Optimization approach that integrates
optimized strategies for both offline and online data selection for RLVR, namely DEPO. Table E]
presents a comparison of our method with others. During the offline phase, we apply a multi-objective
high-quality data selection strategy. Specifically, to overcome the redundancy of training data, we
propose a PageRank-weighted determinantal point process method to prune the dataset and preserve
diverse and influential samples. Besides, to better align the difficulty of the dataset with the model’s
current capabilities, we perform offline rollouts on this pruned subset and select samples whose
difficulty scores approximate a normal distribution. In the online RLVR training process, we tackle
the computational inefficiency of exploring low-potential samples by proposing a sample-level
explorability metric. This metric dynamically quantifies a sample’s exploration potential based on
its historical training dynamics, which allows us to strategically skip rollouts for low-explorability
samples and allocate computational resources to samples with higher exploration potential for rollouts
and policy updates. Moreover, to ensure all samples are adequately trained, we employ dynamic
replay for under-explored samples to further improve the final convergence performance.

To validate the effectiveness and efficiency of our approach, we conduct experiments on five reason-
ing benchmarks. Experimental results show that DEPO outperforms several competitive baselines
in both offline and online data selection settings. In particular, when using only 20% of the training
data, DEPO achieves a 1.85 times speed-up on AIME24 and a 1.66 times speed-up on AIME25
with DeepSeek-R1-Distill-Qwen-7B compared to GRPO trained on the full dataset. Our main con-
tributions are summarized as follows:

e To the best of our knowledge, we are the first to integrate both offline and online data selection
strategies to enhance data efficiency in RLVR training.

o In the offline phase, we employ a multi-dimensional data curation strategy based on diversity, influ-
ence, and difficulty. Then, during online training, we dynamically filter samples by their explorability
and replay under-explored samples to further improve training efficiency.

o Extensive experiments across five reasoning datasets and three LLMs demonstrate the effectiveness
and efficiency of our proposed method under both offline and online data selection scenarios.

2 RELATED WORK

Our work is related to Reinforcement Learning with Verifiable Reward (RLVR) and data efficiency.
More detailed related work is presented in Appendix [H]

Reinforcement Learning with Verifiable Reward. Reinforcement learning with verifiable reward
(RLVR) effectively improves reasoning in LLMs, particularly for mathematics and code generation.
It uses simple verification to provide binary rewards, eliminating the need for learned reward models.
DeepSeek-R1 (DeepSeek-Al et al.| 2025) first proposed the GRPO algorithm within this framework.
Building on GRPO, subsequent work have further advanced RLVR by refining various aspects,
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Figure 2: Overview of our approach DEPO. (a) Our approach improves the data efficiency in RLVR
training via an end-to-end offline and online data selection strategy. (b) In the offline phase, we first
construct a sample graph based on the representations, then apply PageRank-weighted Determinantal
Point Process to select a diverse and influential subset, and finally sample from this subset with
difficulty following a normal distribution. (c) In the online phase, we evaluate the explorability of
each sample based on its historical training dynamics and retain high-explorability ones for rollout,
and actively replay under-explored samples to ensure sufficient training of all samples.

including loss functions (Liu et al.,2025a; Yu et al., 2025; Zheng et al.,2025a; |Chen et al., [2025)),
token-level entropy (Wang et al.,[2025a; |Hao et al., 2025), advantage estimation (Cheng et al., [2025),
and hyperparameter (Liu et al.,2025b; |An et al., 2025} |Xi et al., [2025). In this work, we focus on
improving the data efficiency of RLVR to reduce computational costs while maintaining performance.

Data Efficiency for RLVR. Improving data efficiency in RLVR requires strategic selection of high-
quality samples, incorporating offline and online data selection methods. Offline data selection
methods focus on identifying a high-quality subset of data prior to training. Some studies select
samples based on model reward trends (Li et al.,[2025b)), reward variance (Wang et al., [2025b), and
gradient alignment (Li et al.,2025a). While effective, these methods require training the dataset for
several epochs for selection. On the other hand, online data selection methods dynamically filter
samples during the training process. GRESO (Zheng et al.l2025b)) excludes samples with historical
zero reward variance, but it lacks a finer-grained distinction among non-zero variance samples. In
this paper, we integrate optimized offline and online selection to improve data efficiency for RLVR.

3 METHODOLOGY

In this section, we present DEPQO, a method to enhance data efficiency in reinforcement learning
with verifiable reward (RLVR). We first define the problem formulation, then describe a two-stage
data selection process: (a) offline curation based on diversity, influence, and difficulty, and (b) online
rollout pruning guided by explorability. Finally, we discuss the effectiveness and efficiency of our
approach. The overall framework of DEPO is illustrated in Figure



Under review as a conference paper at ICLR 2026

3.1 PROBLEM FORMULATION

In this work, we focus on a large language model (LLM) parameterized by # € RY, which has
been pretrained on large-scale corpora and will be further trained on an RLVR dataset D = {z;} 12‘1
to enhance its reasoning abilities. A key challenge in this process is the high computational cost
associated with RLVR training, which typically requires extensive rollouts and policy updates over
large datasets. To accelerate reasoning improvement, our goal is to optimize data efficiency (i.e.,
achieve comparable performance with less training data and fewer rollouts) by leveraging D more
efficiently without modification or augmentation. To achieve this, we first reduce data redundancy by
selecting a high-quality subset offline. Then, to further speed up RLVR training, we select samples
with high exploration potential during training. The two stages are detailed below.

3.2 MULTI-DIMENSIONAL OFFLINE DATA CURATION

In this part, we present an offline data curation method to select a high-quality subset of RLVR
data based on three criteria: diversity, influence, and difficulty. First, we construct a sample graph
based on the representations. Next, we prune redundant samples by applying a PageRank-weighted
Determinantal Point Process to retain a diverse and influential subset. Finally, we further refine this
subset by selecting samples whose difficulty levels follow a normal distribution.

3.2.1 DIVERSITY AND INFLUENCE-AWARE DATA SELECTION

Representation-augmented Sample Graph Construction. The first step of our approach is to model
the relationships among samples using a graph. Previous studies (Hendel et al.| 2023} [Stolfo et al.,
2025) demonstrate that internal model representations can effectively capture sample characteristics.
Inspired by this, we follow [Liu et al.|(2024) and use the last token embedding from the final layer as
the sample representation, as it aggregates the entire model information and input semantics. Based
on these representations, we construct a sample graph G = (V, E, P), where each vertex v; € V
denotes a sample, an edge e(i, j) € E connects node v; and v;, and edge weight matrix P encodes the
pairwise similarities between their embeddings. This representation-augmented graph is subsequently
used for our offline data selection process.

Pagerank-weighted Determinantal Point Process Data Pruning. We prune redundant data from the
dataset by considering two properties: diversity and influence. Diversity ensures broad information
coverage, while influence reflects the importance of samples in the graph. To promote diversity,
we use Determinantal Point Process (DPP) (Kulesza & Taskar, [2012a)) to identify a subset that
maximizes the determinant of the corresponding similarity submatrix: maxy cp det(Y"), where Y is
the submatrix of the full similarity matrix P, and det(-) represents its determinant value. This refers
to selecting samples that form a larger volume in the feature space, with a larger volume indicating
greater diversity. To measure sample influence, we use PageRank (Brin & Pagel [1998) to assign
a weight w; € w to each sample, reflecting its representativeness. Our goal is to maximize the
influence of the selected samples: maxycp [ w;. To unify both objectives, we combine diversity
i€y
and influence into a single kernel matrix Ly and maximize its determinant:

. ) = ; /2y 5, 3 1/2
glgaf)((det(Y) I;I/wl) r}pga%(det diag(wy/”) - Y - diag(wy/7) |, 1)

Ly

where Ly denotes the kernel matrix that integrates both diversity and influence of the selected subset.
We provide detailed theoretical proof of this optimization objective in Appendix

Since the optimization problem is NP-hard, we follow Kulesza & Taskar| (2012b)) and employ a
greedy algorithm to approximate the result. The algorithm iteratively selects samples based on a
dynamically updated probability distribution and updates the probabilities of the remaining samples
via Gram-Schmidt orthogonalization. The pseudo-code of this algorithm is presented in Algorithm T}
This process effectively reduces redundancy while retaining influential and diverse samples.
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3.2.2 DIFFICULTY-AWARE NORMAL DISTRIBUTION DATA SAMPLING

After pruning data via PageRank-weighted DPP, we obtain a representative and diverse subset Y.
However, in RLVR training, samples that are too easy or too hard provide limited learning signals
and contribute little to policy optimization. To better align the difficulty of training data with the
current model’s capability, we propose a difficulty-aware sampling strategy that prioritizes samples
of moderate difficulty. Specifically, for each sample 7 in pruned subset Y, we generate G offline
trajectories using the current policy model 7y and compute its accuracy score Acc;:

Acc; =By, Y9 o V(oj,a;)]. (2)

Here, {o; }]G=1 ~ Ty are G responses generated by g for question ¢, and V(o;, a;) denotes a verifier
that evaluates whether model output o; matches the ground-truth answer a;.

Using accuracy score as a measure of difficulty, we sample from Y according to a normal distribution
N (1, 0?%), where p and o are the mean and standard deviation of the accuracies in the final selected
subset D"*. Thus, the sampling probability for each sample is proportional to the standard normal
density function, which assigns higher probabilities to samples near the mean difficulty:

o (Bemt)
BT (= o) = = @

The final RL training subset D**® is constructed by sampling from Y according to the probability
distribution P = {p; };cy, which is subsequently used for RLVR training.

Di

3.3 EXPLORABILITY-GUIDED ONLINE ROLLOUT PRUNING

In RLVR training, rollout generation is computationally expensive and becomes the main bottleneck
for training speed. To further improve data efficiency, we propose an explorability metric to quantify
the exploration potential of samples. Using this metric, we select high explorability samples for
rollout generation and policy gradient updates and selectively skip unnecessary rollouts. Additionally,
to avoid missing under-explored samples that may become valuable, we implement a dynamic replay
mechanism to reuse them in the training process. The pseudo-code is presented in Algorithm [2]

3.3.1 SAMPLE-LEVEL EXPLORABILITY MEASUREMENT

In RLVR training, high-entropy samples encourage exploration, and low-entropy samples may lead
to overfitting. Leveraging this effect, we define the explorability of a sample as the average entropy
of its rollouts over a sliding window of recent epochs to evaluate its exploration potential. However,
although high-entropy samples generally promote exploration, certain negative samples with exces-
sively high entropy (i.e., pathological trajectories) can introduce noise and destabilize training. To
mitigate this, we apply a threshold ) to exclude them. Specitically, we define the filtering function as:

I(g,a,0!) =1 [V(og,a) =1V (V(oﬁ,a) =0Ae(ol) < )\6(0274_))} , ()

where I denotes the indicator function, (g, a) is the question-answer pair, and 02 is the i-th rollout
in epoch ¢. The verification function V returns 1 if of matches the ground truth a, and 0 otherwise.

e(ol) is the average entropy across tokens, e(o}™) is the mean entropy of positive rollouts, and
serves as the threshold to filter high-entropy negative rollouts. We then compute the explorability of
a single rollout o! by weighting its entropy by the absolute advantage |fli| and the filtering indicator
I(q,a,0!):

E(Qvaaog) = |AZ| '6(071?) 'I(Q7aa 01;), S
r;—mean({r; }&_ )
std({r; }T.G=1
moderate difficulty, which tend to maximize the sum of absolute advantages Zfil |A;]. In contrast,
samples with all rollouts either entirely correct or entirely incorrect yield zero advantage. Therefore,
our explorability metric effectively captures both the exploration potential (entropy) and the diffi-
culty (absolute advantage) of each sample. Finally, to evaluate a sample’s exploration potential over

where A; = is the advantage. This explorability metric prioritizes samples of



Under review as a conference paper at ICLR 2026

time, we aggregate the explorability scores across the group over a sliding window of recent epochs
to obtain the sample-level explorability £.

(q7a {O }t e— s+1 Z ZE q7 (6)

tes+1

where {O*} = {0}, are the rollouts in epoch ¢, and s is the sliding window size of recent epochs.

3.3.2 DYNAMIC REPLAY OF UNDER-EXPLORED SAMPLES

During training, samples with consistently low explorability may be overlooked, even if they become
valuable in later stages. To mitigate this, we introduce a dynamic replay mechanism that proactively
reintroduces under-explored samples. Specifically, each pruned batch BP"d consists of two types
of samples: (1) the top a.% of samples from B ranked by their explorability £, and (2) the bottom
p% of samples from B ranked by their historical exploration frequency (i.e., those selected the least
number of times up to the current epoch e) Thus, the optimization objective for DEPO is:

G [oi]
jDEPO(9> = EBND””'R((].U,)NB,{O@ f1~weold(‘q)[ |:(] a, {O }t e— b+1}5 |07‘

=)
(min (m,t(e)Ai, clip (m,t(e), 1—e 1+ 5) Ai) . ﬁDKL(mM))] :

i=1

where

1 S(Q7 a, {Ot}fze—s—i-l) is top'ae%
H{q, a, {Ot}f:efsﬂ} =<1 [{O'}¢_,] is bottom-p%
0 else,

ri0(8) = 76(0it | ¢, 0i,<t) ’
004 (01t | 45 0i,<t)

To adaptively shift the training focus from broad exploration in the early stages to specialized
refinement in later phases, we dynamically reduce the proportion of high-explorability samples per
epoch using a linear decay rate d. Here, 3 is the samples in a training batch from the offline selected
subset D™, o denotes the initial sampling rate, d is the decay rate, and e is the current epoch. The
online rollout pruning strategy optimizes computational resource allocation by focusing on samples
with high exploration potential and strategically replaying under-explored samples to ensure all
samples are sufficiently trained, significantly improving training efficiency.

and a.=ag—d-e. ®)

3.4 DISCUSSION

Effectiveness of DEPO. DEPO enhances the data efficiency of RLVR via both offline and online data
selection methods. During the offline phase, DEPO selects high-quality subsets by jointly optimizing
three criteria: diversity, influence, and difficulty, which overcome the problem of prior methods
that rely on single metrics such as reward trends (Li et al., 2025b), reward variance (Wang et al.,
2025b), and gradient alignment (Li et al., [2025a)). Besides, these metrics rely only on early-stage
training dynamics, which limits their effectiveness in later training phases. In the online phase,
DEPO dynamically prioritizes samples based on their explorability, which is a fine-grained measure
of exploration potential. In contrast, GRESO (Zheng et al.|[2025b) probabilistically removes samples
with historical zero-variance rewards, which treats all historical non-zero variance samples equally
and underperforms when zero variance samples are scarce.

Efficiency of DEPO. DEPO improves data efficiency by jointly optimizing offline and on-
line data selection, thereby reducing both the amount of training data and the rollout num-
bers. In contrast, existing methods typically address data efficiency from only one per-
spective (i.e., either offline or online). In the offline phase, DEPO employs a two-
step strategy to minimize computational overhead, which first prunes the dataset using a
PageRank-weighted DPP, and then performs offline rollouts only on this reduced subset.

6
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Figure 3: The RLVR training dynamics of GRPO and DEPO.

This method is more efficient than performing rollouts Table 2: Computational time on 4 x RTX
over the full dataset (An et al.l 2025)), as the DPP-based 3090 GPUs.
filtering significantly reduces the dataset size, thereby low-

ering the cost of offline rollouts. As shown in Table , Component ‘ Time (h)
difficulty sampling accounts for a significantly larger por- ~ Graph Construction 0.75 (x 8.33)
tion of the total time compared to other components. Pagerank-weighted DPP 0.09 (x 1.00)

Moreover, unlike offline methods that require multiple ~_Pifficulty-aware Sampling | 44.33 (x 492.56)

epochs of training on the original or a warm-up dataset to

guide selection (Li et al.| [2025b; Wang et al., 2025b; |Li et al.l [2025a)), our approach avoids such
additional training costs. In the online phase, DEPO dynamically estimates sample explorability
based on historical training dynamics, which helps minimize rollout costs and improve training
efficiency. In contrast, some methods|Yu et al.|(2025)) rely on extensive rollouts before each update,
incurring significant computational costs.

4 EXPERIMENTS

In this section, we first describe the experimental setup, then present the main results and provide a
detailed analysis.

4.1 EXPERIMENTAL SETUP

We run experiments on DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Llama-8B (DeepSeek
Al et al., [2025), Qwen2.5-Math-7B (Yang et al., [2024)). We use DAPO-Math (Yu et al.,|2025) as the
training dataset and apply the GRPO algorithm to train the models. For evaluation benchmarks, we
use three mathematical reasoning benchmarks (i.e., AIME24, AIME25, Math500 (Hendrycks et al.|
2021))) and two other reasoning benchmarks (i.e., GPQA (Rein et al.,[2023) and LiveCodeBench (Jain
et al., [2025)). We follow Zheng et al.[(2025b) to evaluate models every 50 steps and report the
performance that achieves the best average performance across five benchmarks. We repeat the
test set 32 times for all benchmarks and report the average accuracy. More experimental details are
provided in Appendix[E] To enable a systematic comparison, we include several representative offline
and online data selection methods as baselines. For offline selection methods, we compare our method
with random selection, supervised fine-tuning (SFT)-based methods (i.e., PPL-Top (Laurencon et al.|
2022) and PPL-Middle (Ankner et al.,[2025)), and RLVR selection methods (i.e., LIMR (L1 et al.|
2025b)) and Learnalign (Li et al.| 2025a))). For online selection methods, we integrate them into our
offline selected subset and compare DEPQO with random online selection and GRESO (Zheng et al.,
2025b). Detailed descriptions of these baselines are provided in Appendix [G]

4.2 MAIN RESULTS

In this section, we present the main experimental results. Figure [3]illustrates the training dynamics of
DEPO and GRPO, and Table E]presents the main results.

DEPO selects high-quality subsets offline for RLVR training. As shown in Table 3| reinforcement
learning on mathematical data not only enhances mathematical reasoning but also improves the
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Table 3: Performance comparison of various data selection methods. “Offline” and “Online” refer to
the offline and online data selection methods, respectively. ‘“Ratio, “Time”, and “RN” denote the
ratio of selected data, total training time, and total rollout numbers, respectively. We highlight the
best performance across different data selection methods. Numbers marked with * indicate that the
improvement is statistically significant compared with baselines (t-test with p-value < 0.05).

Model | Method | Accuracy Efficiency

ode | etho |AIME 24 AIME 25 MATH500 GPQA LiveCodeBench Average | Ratio Time RN

R Base | 51.5+10  38.5+07 91.2+1.1 45.9+14 37.0+0.7 52.8+1.0 - - -
Full | 63.4+14  52.7x09 96.3+1.1 51.6+14 44.7+14 61.7+12 | 100% 100% 100%
Random | 56.8+09  43.0+07 94.6+12 47306 39.6+1.4 56.3x10 | 20% 98% 100%
PPL-Top | 57.5+06  45.3x07 95.0+02 48.2+02 40.4+07 57.3z05 | 20% 101% 100%
Deepseek-R1- | Offine PPL-Middle | 57.5t02  45.4+09 95.2+07  48.6+05 40.8+0.5 57.5x06 | 20% 97% 100%
Distill-Qwen-7B LIMR | 59.9z08  46.4x07 95.1x12  48.5x07 40.9+08 58209 | 20% 99% 100%
Learnalign | 60.1:09  46.8+09 95.5+04  49.0+04 41.9+02 58.7+06 | 20% 102% 100%
DEPO-Offline | 63.1%x12 51.7*x11  96.1%*x02 51.7*:11 44.5%+02 61.4*x08 | 20% 99% 100%
+Random | 58.7x08  45.3z0s 93.1x06  47.2+13 39.3+07 56.7x08 | 20% 58% 40%
Online +GRESO | 60.2z02  47.4x10 94307  48.1x04 40.6+0.9 58.1z06 | 20% 55% 40%
+DEPO | 62.8%x04 50.9%+10 95.9%i04 51.4%t0s 44.3%105 61.1%+06 | 20% 57% 40%

R Base | 41.1x10  30.4x05 88.5+13 37.3+06 44.3+10 48.3x09 - - -
Full | 56.9+08  45.1x09 94.8+07  44.4x04 49.6+06 58207 | 100% 100% 100%
Random | 47.6z04 38.7+09 90.6+1.0 39.6+0.5 44.5+06 52.2z07 | 20% 100% 100%
PPL-Top | 48.2:07  39.3x08 90.4+10  39.1x09 45.0+1.1 52409 | 20% 102% 100%
Deepseek-R1- | Offiine PPL-Middle | 49.9x03  39.2+1.1 91.1x09  39.4x09 45.7+07 53.1z08 | 20% 102% 100%
Distill-Llama-8B LIMR | 52.3+12  40.9+03 91.6+1.0 41.0+10 45.3+13 542+10 | 20% 97% 100%
Learnalign | 54.7+12  41.8+13 91.6+07  40.8x10 46.2+09 55.0z10 | 20% 98% 100%
DEPO-Offline | 57.6%+05 44.8% 111 94.2%+06 43.6%+1.1 49.3*+0.6 57.9%+08 | 20% 100% 100%
+ Random | 50.2+03 38.4+09 90.1+1.2 39.7+05 44.8+09 52.6x08 | 20% 55% 40%
Online +GRESO | 52.6z06  40.2+04 92.0+09  40.5+07 46.6+1.0 54407 | 20% 54% 40%
+DEPO | 56.8%+09 d44.4%+11  93.7%:r05 42.8%:05 48.8%+05 57.3%x07| 20% 56% 40%

R Base | 13.4+08 6.4+0.7 54.5+1.1 28.7+03 5.6+0.6 21.7+07 - - -
Full | 30.2x04  20.3x11 86.8+038 35.7+07 13.6+05 37.3z07 | 100% 100% 100%
Random | 22.5x07 13.3+11 72.5+05 30.3+03 8.2+06 29.4:06 | 20% 98% 100%
PPL-Top | 24.1x10 13.8+09 76.2+1.0 31.0+06 9.6+0.6 30.9z08 | 20% 102% 100%
Qwen2.5- Offline PPL-Middle | 24.8+07  14.3x11 76.0+08  30.6+07 9.9+08 31.1z08 | 20% 98% 100%
7B-Math LIMR | 26.5:03  15.8+08 78.0+06  32.2+11 10.6+0.7 32.6x07 | 20% 101% 100%
Learnalign | 27.1+10  17.2+11 80.5+0.5 33.6+1.1 10.9+0.7 33909 | 20% 98% 100%
DEPO-Offline | 30.0%x07 19.4%+03 85.8*:04 35.2%:03 13.2%+03 36.7%x04 | 20% 99% 100%
+ Random | 24.3x07 14.5+11 74.3+11 31.1+03 9.3+08 30.7x08 | 20% 57% 40%
Online + GRESO | 27.7+03 16.8+0.5 80.7+0.9 33.4x09 10.9+0.4 33.9z06 | 20% 57% 40%
+DEPO | 29.8%+03 19.2%:06 86.3*t06 34.8%+10 12.8*+07 36.6%+06 | 20% 55% 40%

performance on other reasoning tasks. Among offline data selection methods, although SFT-based
data selection methods (i.e., PPL-Top and PPL-Middle) incorporate additional information from
training data, their performance performs poorly. This may stem from the mismatch between SFT
and RL objectives. SFT maximizes the likelihood of target outputs, making perplexity a natural
indicator of sample difficulty. In contrast, RL aims to maximize rewards, requiring samples to match
the model’s current capability. Moreover, RLVR methods (i.e., LIMR and Learnalign), which perform
training before selection, lead to further improvements. However, these approaches tend to select
samples that match the initial model capabilities, resulting in improvements during early stages but
limiting performance in later phases. Additionally, they often overlook interdependencies among
problems. In contrast, DEPO achieves the best performance across all methods, nearly matching the
performance of training on the full dataset. One possible reason is that DEPO selects samples with
diversity, influence, and appropriate difficulty, ensuring rapid improvement during the early stage.
Besides, the diversity in data difficulty supports sustained improvement in later stages. As illustrated
in Figure 3] our method selects samples with higher initial entropy, lower initial rewards, and longer
response lengths. This ensures that our selected data matches the model’s current capability and
offers diverse exploration paths for effective RLVR training.

DEPO saves training computational costs and maintains comparable performance. As shown in
Table 3] randomly reducing rollouts severely degrades performance, which highlights the importance
of careful online sample selection. Moreover, GRESO improves model performance by filtering out
historical zero-variance samples that contribute little to training. However, it does not account for
the differences among historical non-zero-variance samples, which limits its overall performance.
In comparison, DEPO achieves performance comparable to full rollouts while using less than 60%
of the training time and 40% of the rollout budgets. This is because DEPO dynamically estimates
sample explorability based on historical training dynamics, prioritizing highly explorable samples for
rollouts and policy updates. Furthermore, we incorporate a replay strategy for under-explored samples
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Figure 6: Performance comparison across data of different difficulty levels.

to ensure sufficient training across all data, which leads to better final convergence performance. As
illustrated in Figure[3] our rollout pruning strategy consistently selects samples with higher entropy,

faster reward growth, and longer responses throughout the training process, demonstrating that DEPO
efficiently improves reasoning performance.

4.3 DETAILED ANALYSIS

In this part, we conduct a detailed analysis of our proposed method. Unless stated otherwise, we
report the average accuracy across five benchmarks using DeepSeek-R 1-Distill-Qwen-7B. We provide
additional detailed analysis in Appendix [

DEPO performs well using different RLVR training datasets. We conduct experiments on three
datasets of varying sizes (i.e., HARP (Yue et al., |2024) (5k samples), DAPO (Yu et al.| 2025) (17k
samples), and Open-R1 (Facel [2025) (30k samples)). As shown in Figure[d] we observe that training
on the DAPO dataset yields the best performance, indicating that higher data quality is more beneficial
than larger data quantity in the RLVR training process. Moreover, DEPO outperforms competitive
baselines in both offline and online settings across all datasets. These results confirm that DEPO is
capable of improving data efficiency with different volumes of data.

DEPO performs well under different offline data sampling ratios. Figure[Salcompares offline data
selection methods under varying sampling ratios. As we can see, DEPO consistently outperforms
Random and LearnAlign across all ratios. Notably, using only 20% of the data, DEPO matches the
performance of full-dataset training. This indicates that our approach identifies high-value samples,
allowing the model to efficiently improve its reasoning capabilities with limited data. Moreover, we
observe that the performance of our method initially improves with increased sampling ratios, and it
plateaus at around 20%. This also suggests that the dataset contains a substantial portion of redundant
and low-value samples, which contribute little to the model’s reasoning performance.

DEPO achieves the best performance across different rollout numbers. Figure[5b|presents the
performance of online data selection methods under different rollout ratios. As we can see, our
proposed method consistently outperforms other online data selection baselines under different rollout
budgets. This demonstrates that selectively performing rollouts on samples with high explorability
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significantly improves training efficiency without sacrificing performance. These results show the
effectiveness of using explorability as a metric to select samples in the RLVR process.

Normal distribution sampling aligns dataset difficulty with model capability. To evaluate
the impact of different sampling strategies, we compare our approach with random, stratified sam-
pling, and an easy-to-hard curriculum learning strategy. Random sampling preserves the original
U-shaped difficulty distribution, with many samples being entirely correct or incorrect. Stratified
sampling selects equal proportions from each difficulty level, and the easy-to-hard curriculum strategy
progressively increases the difficulty of training samples over time. As shown in Figure[6a} random
sampling performs worst, followed by the easy-to-hard curriculum and stratified sampling, and our
method achieves the best results. The easy-to-hard curriculum strategy leads to slow initial progress
because overly simple samples provide limited learning signals. Its performance improves noticeably
in the middle phase when moderately difficult samples are introduced, but the model fails to achieve
higher final accuracy, as overly difficult samples also contribute little to learning. These results
confirm that extremely easy or hard samples offer limited training signals, but DEPO prioritizes
moderately difficult samples that are more beneficial.

Medium-difficulty samples accelerate learning, while the inclusion of challenging samples
improves final convergence performance. To further analyze the effect of difficulty-aware normal
distribution sampling, we vary the mean and standard deviation of the sampling distribution in
Figure [6b] and Figure Results indicate that relatively easier samples (i.e., ¢ = 0.75) lead to
lower convergence performance, while harder ones (i.e., 4 = 0.25) improve final results but learn
slower. Additionally, a smaller standard deviation (i.e., o = 0.05) speeds up early learning but limits
the final performance, whereas a larger standard deviation (i.e., ¢ = 0.5) slows initial progress but
achieves higher convergence. These findings confirm that medium-difficulty samples facilitate rapid
improvement, and incorporating some challenging samples is essential for the final peak performance.

4.4 ABLATION STUDIES

To evaluate the effectiveness of each compo- Table 4: Ablation study on three math benchmarks.
nent in our method, we conduct ablation studies

on three math benchmarks using DeepSeek-R1-  Dataset | AIME24 AIME25 MATH500
Distill-Qwen-7B. As shown in Table[d] remov- DEPO | 6238 50.9 95.9
ing any component leads to performance degra- Ofline Data Selection
dation, demonstrating all components are essen-  wfo Pagerank-weighted DPP 62.1 50.0 95.6
. . . . . w/o Difficulty-aware Sampling 60.3 47.8 95.1
tial. In offline selection, removing Difficulty-
. . . Online Data Selection
aware Sampling leads to the most significant -
d hich indi h le difficulty i w/o Explorability Measurement 58.7 453 93.1
rop, which indicates that sample difficulty 1s a w/o Absolute advantage 61.9 49.5 95.5
crucial factor for selection. For online selection,  w/o Entropy 60.6 48.4 94.6
w/o Under-explored Sample Replay 62.3 48.4 95.2

replacing explorability-based filtering with ran-
dom filtering substantially reduces performance. This confirms that explorability is an important
indicator of a sample’s value in RLVR training. In addition, we observe that both entropy and
absolute advantage are essential components of the explorability metric. Furthermore, removing
Under-explored Sample Replay notably impairs performance on more challenging tasks such as AIME
25 (performance drops from 50.9 to 48.4), suggesting that replaying challenging and under-trained
samples is critical for enhancing the model’s ability to solve hard problems.

5 CONCLUSION

In this paper, we proposed DEPO, a data-efficient policy optimization pipeline that integrates offline
and online data selection strategies. By first constructing a high-quality subset of training data that
emphasizes diversity, influence, and appropriate difficulty, then dynamically filtering rollouts based
on sample-level explorability, our approach significantly reduced both data volume and computational
costs while maintaining strong performance. Extensive experiments across multiple reasoning
benchmarks and LLMs demonstrate that DEPO consistently outperformed competitive baselines in
both offline and online settings. We hope our work inspires future research toward developing more
data-efficient methods to accelerate RL for LLMs.
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Algorithm 1 Pagerank-weighted Sequential Data Pruning(S, w, n.k)

Inputs:
Similarity matrix S € R™*", Pagerank-weighted vector w € R"™, Total node n, Sample size k < n
Initialize:
Kernel Matrix L = diag(w'/?) - S - diag(w'/?),Y « 0,C « {1,2,...,n}, L = QAQ",
A diag(Ar, ..., ).V Q- diag( A2, .. A7)
fort =1to kdo
p < O ¢ > Initialize zero vector: p € RI€! p; = 0 Vi
fori = 1tondo
if ¢ € C then
pli] + Vi3
end if
end for
p < p/>; Pl
i+ < Sample(C, p)
Y « Y U {ir}
C <+ C\ {i+}
if t < k then
u <+ Vij > Select pivot vector
c—u'Ve
Ve < Ve —uc > Gram-Schmidt orthogonalization
end if
end for
return Y

Algorithm 2 Explorability-guided Rollout Pruning(B, s, A, p,d, e, G, {O!}¢_,)
Inputs:
Raw batch B = (g, ai)ﬁ ‘1, Window size s, Threshold for filtering poor negative rollouts A\, Replay ratio p,
Decay rate d, Current epoch number e, Rollout numbers per sample G, Rollout history {O*}¢_,
Initialize:
Pruned batch B « ()
for each sample (g;, a;) in B do

Ei + (i, a3, {0} e_i1) > Calculate sample-level explorability using Equation ??
end for
Qe =0ap—d-e > Calculate high explorability ratios for this epoch

Sort B in descending order by &;

BHEP o top [, x |B|] samples from sorted B

BRePy « sample [p x |B|] samples from B with the smallest [{O*}5_, |
BPruned — BHigh-Exp U BReplay

return BF

A THE USAGE OF LLMS

In this paper, Large Language Models are employed solely for the purpose of polishing the writing.

B REPRODUCIBILITY STATEMENT

Our code is provided in the anonymous link to facilitate reproducibility.

C ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. No ethical issues arise from this research.

D THEORETIC PROOF

In this part, we provide a theoretical derivation of the optimization objective aimed at maximizing the
determinant of a kernel matrix that incorporates both diversity and influence in Equation
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D.1 OPTIMIZATION OBJECTIVE REFORMULATION

We begin with the original weighted determinant maximization problem:

I};lé‘i])?( (det(Sy) . H wi> , 9)

€Y

where Sy € RIYI*IY| denotes the similarity matrix over the subset Y, and w; € w represents the
influential weight (i.e., the PageRank score) of each sample 7. This objective aims to select a subset Y’
that is both diverse (as captured by det(Sy )) and influential (as promoted by the product of weights
[L;cy w:). To combine these two factors more naturally, we express the product of weights in matrix
form. Note that:

H w; = det(diag(wy)), (10)
i€y

where diag(wy ) is the diagonal matrix formed by the weights w;. To incorporate the weights directly
into the kernel matrix, we consider the square root of the weights.

diag(wy/?) = diag(v/w;)icy . (11)
‘We then observe that:
_ - . 1/2y iy 1/2
max (det(Sy) I;I/wl> glga)P(det (dlag(wy ) - Sy - diag(wy/ )) (12)

This equality follows from the multiplicative property of the determinant and the fact that diag(wy 2)
is a diagonal matrix. Now, defining the weighted kernel matrix for the subset Y as:

Ly = diag(w%,/z) - Sy - diag(wi,ﬂ), (13)
we can rewrite the optimization problem as:

max det(Ly) (14)

This form corresponds to a standard determinantal point process (DPP) with kernel L, where the joint
effects of diversity and influence are captured by Ly-.

D.2 THE DETERMINANT AS A MEASURE OF SAMPLE DIVERSITY

Let {x1,X2,...,X,} be a set of m samples, where each x; € R4 represents a feature vector. Yhe
vectors are normalized such that ||x;|| = 1 for all ¢. The similarity matrix Y is defined as:
T
Yij = x; X;j = (X4, %;). (15)

Under the normalization assumption, Y;; = 1 for all 4, and Y;; = cos 0;;, where §;; is the angle
between x; and x;;.

The key insight connecting diversity to the determinant arises from the geometric interpretation
of the similarity matrix. The m-dimensional volume of the parallelotope spanned by the vectors

X1,...,Xpm IS given by:
Vol (X1, - -« s Xm) = y/det(Y). (16)

det(Y) = (Volpn (X1, ..., xm))> . (17)

Equivalently,

This can be derived by letting X be the d x m matrix whose columns are Xy, . . ., X;,,. The volume
is inherently /det(X T X).

We now state and prove the main theorem connecting the determinant to diversity. Let
Sk—1 = span(xy,...,X,_1) denote the subspace spanned by the first kK — 1 vectors, and let ¢
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be the angle between x;, and its orthogonal projection onto Si_1. The volume of the parallelotope
can be expressed recursively as:

m m m

Vol (x1, -, Xm) = [ Ikl - [ sinéx = [ sin s, (18)
k=1 k=2 k=2

where the second equality follows from the normalization ||x|| = 1. Each factor sin ¢y, € [0, 1]
quantifies the orthogonal component of xj, relative to the previous vectors:

* sin ¢ = 1 if and only if xy, is orthogonal to Si_; (maximal orthogonal component)

* sin ¢y = 0 if and only if x;, € Sk_1 (linear dependence, zero orthogonal component)
Since det(Y") = Vol* =[]}, sin® ¢y, we observe:

* det(Y') approaches its maximum value when all sin ¢, — 1 (i.e., when each vector is
orthogonal to the span of previous vectors, yielding pairwise orthogonality).

* det(Y") approaches zero when any sin ¢, — 0, indicating linear dependence and minimal
diversity.

Thus, det(Y") strictly increases as the vectors become more orthogonal.

Since Y is a real symmetric matrix and represents inner products of normalized vectors, it is positive
semidefinite. The diagonal entries are all 1. By the Hadamard inequality for positive semidetinite
matrices, the determinant is bounded by the product of the diagonal entries:

det(Y) < J[vii = 1. (19)
i=1

This establishes the upper bound. Now, we prove the equality condition. Hadamard’s inequality
holds with equality if and only if Y is a diagonal matrix. A diagonal Y with Y;; = 1 means:

Y =1,,, where I, is the identity matrix. (20)

This implies Y;; = 0 for all 4 # j. Since Y;; = (x;,X;), this means x; L x; for all ¢ # j. The
vectors are mutually orthogonal. From a geometric perspective, when the vectors are orthogonal, the
parallelotope they span forms an m-dimensional hyperrectangle and achieves its maximum volume.

E DETAILED EXPERIMENTAL SETUP

Models. We run our experiments on DeepSeek-R1-Distill-Qwen-7B (DeepSeek-Al et al., [2025)),
DeepSeek-R1-Distill-Llama-8B (DeepSeek-Al et al., 2025)), and Qwen2.5-Math-7B (Yang et al.,
2024). For DeepSeek-R1-Distill-Qwen-7B and Deepseek-R1-Distill-Llama-8B, we set the context
length to 16384. For Qwen2.5-Math-7B models, we set the context length to 4096, as it is the
maximum context length for this model.

Training. Our method is implemented based on the Verl (Sheng et al., [2025) pipeline and uses
vLLM (Kwon et al.| [2023) for rollout. We train DeepSeek-R1-Distill-Qwen-7B and DeepSeek-
R1-Distill-Llama-8B on 64xH200 GPUs, and Qwen2.5-Math-7B on 32xH200 GPUs. For training
datasets, we use the DAPO-Math [Yu et al.|(2025)) as the training dataset. During rollouts, we set the
temperature to 1 and sample 8 responses per prompt. The training batch size is set to 256. We apply
the on-policy GRPO algorithm to train the model. Similar to |Yue et al.[(2025), we remove both
the KL divergence loss and the entropy loss. We train all models for 1000 steps, and we optimize
the actor model using the AdamW (Loshchilov & Hutter, 2019) optimizer with a constant learning
rate of 2e-6 for DeepSeek-R1-Distill-Qwen-7B and Deepseek-R1-Distill-Llama-8B and le-6 for
Qwen-Math-7B. The actor module is optimized using Fully Sharded Data Parallel (FSDP) (Zhao
et al., [2023) for efficient distributed training. The chat template we use is “User: \n [question] \n
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Figure 8: Hyperparameter analysis

Please reason step by step, and put your final answer within \boxed{ }. \n \n Assistant:”. For offline
data selection, we first apply PageRank-weighted Determinantal Point Process (DPP) to reduce the
sample set to 50% of its original size. We then perform difficulty-aware sampling based on a normal
distribution to select the final subset, which constitutes 20% of the full dataset. The mean ; and
standard deviation o of the difficulty distribution for the final selected subset are set to 0.5 and 0.2,
respectively. In the online data selection phase, we set the window size for recent epochs s to 5, the
replay sample ratio p to 0.05, and the threshold ) for filtering out poor negative rollouts to 1.5. For
the linear decay of rollout pruning, we initialize the sampling rate g to 1 and apply a decay rate d of
0.05, gradually reducing the proportion of samples used for rollout and policy update until it reaches
20% of the batch size.

Evaluation. For evaluation benchmarks, we use three widely used complex mathematical reasoning
benchmarks (i.e., AIME24, AIME25, Math500 (Hendrycks et al., [2021)) and two other reasoning
benchmarks (i.e., GPQA [2023)) and LiveCodeBench (Jain et al., [2025)) to evaluate the
model performance. We follow [Zheng et al.| (2025b)) to evaluate models on those benchmarks every
50 steps and report the performance of the checkpoint that obtains the best average performance on
five benchmarks. All evaluations are conducted in a zero-shot setting. Following |DeepSeek-Al et al.|
(2025), we evaluate all models setting temperature to 0.6 and top-k to 0.95. We repeat the test set 32
times for evaluation stability for all benchmarks and report the average accuracy.

F ADDITIONAL EXPERIMENTS

F.1 THE EFFECT OF DIFFERENT SCALE MODELS

To evaluate the scaling ability of our proposed i e
method, we conduct experiments on Qwen3-8B, == Leamalign GRESO

Qwen3-14B, and Qwen3-32B using the DAPO = o
algorithm. The training was conducted with 3 <.

a batch size of 512 and a mini-batch size of ~ § g

32, resulting in 16 gradient steps per training  §* g

batch. We report average performance across P
three mathematical reasoning benchmarks (i.e.,
AIME24, AIME25, and Math500). As illus- e 148 328 8B 48 328
trated in Figure[7] we observe that our approach
demonstrates strong scalability across different
model scales. This improvement can be at- Figure 7: Different scales of LLMs.
tributed to the offline data selection strategy of

DEPO, which selects a high-quality subset based on diversity, influence, and difficulty, which is
beneficial for RLVR training. Furthermore, we select high explorability samples for rollouts and
policy updates, and incorporate under-explored samples for replay, which significantly improves
training efficiency without sacrificing performance.

(a) Offline Selection (b) Online Selection
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F.2 HYPERPARAMETER ANALYSIS

In this work, we adopt a linear decay strategy to gradually decrease the proportion of rollouts in
each batch over training epochs. As shown in Figure [8a] setting the decay rate d to 0.05 leads to a
slight performance drop while substantially reducing rollout numbers. If the decay rate is too high,
many samples may not be sufficiently trained, leading to suboptimal final performance. Conversely,
an excessively low decay rate increases the number of rollouts, thereby reducing training efficiency.
With respect to the replay ratio, setting it to 0.05 allows the model to achieve an optimal balance
between final performance and training efficiency, as illustrated in Figure An excessively high
replay ratio introduces unnecessary computational overhead due to redundant rollouts, while a ratio
that is too low may prevent challenging samples from being adequately trained, thereby limiting the
model’s reasoning capability.

We further analyze two hyperparameters: the threshold A for selecting high-quality negative rollouts
and the window size s. As shown in Figure [8c| performance initially improves and then declines
as the threshold increases. This indicates that when the threshold is set too low, potentially useful
samples that could help exploration may be excluded. Conversely, an excessively high threshold may
lead to the inclusion of noisy rollouts (e.g., nonsensical text rollouts), which can adversely affect
model performance. Regarding the window size s, Figure [8d|indicates that the model performs
best when s = 5. This suggests that the window size should be chosen within an appropriate range.
One possible explanation is that a very small window may not capture broader historical training
dynamics, while an overly large window may not focus on recent training trends.

F.3 THE EFFECT OF DYNAMIC OFFLINE DATA CURATION STRATEGY

To further investigate the effectiveness of dynamic offline
curation strategies, we conduct additional experiments be-
yond our static difficulty-based selection with approaches
that periodically update the training subset. Specifically, we
implement two dynamic strategies: (1) Dividing training
into two (i.e., 10% data per phase, resample every 1250
minutes) and four phases (i.e., 5% data per phase, resample
every 625 minutes). (2) First training on a static 20% subset

until convergence, then continuing with a newly resampled > 500 1000 1500 2000 2500
10% subset. Training Time

Figurel?lcompares the performance of these dynamic strate- Figure 9: Dynamic Offline Curation.
gies against our static baseline. As we can see, updating the

subset with only 5% data per phase results in performance degradation, as the model tends to over-
fit the current phase’s data distribution and forget previously learned data. Besides, the two-phase
approach strategy with 10% data per phase performs comparably to our static 20% baseline. This
reveals a critical trade-off in dynamic curation between maintaining alignment with a difficulty-
matched data distribution and preventing catastrophic forgetting.

A
aALES

o
2

o
L)

Resample 4 Times
Resample 2 Times
—e— No Resample (Ours)
—+- Resample 10% Data
Full

Accuracy (%)

Furthermore, when extending training with a new 10% subset after initial convergence on 20% data,
we observe only slight improvements, indicating that data freshness through resampling is effective.
Howeyver, the limited improvement suggests that the DAPO dataset is nearly saturated for this model’s
performance potential.

G DETAILED DESCRIPTION OF BASELINES

In this part, we provide detailed descriptions of all the baselines used in our experiments. For offline
data selection methods, we compare our method with random selection, conventional supervised fine-
tuning (SFT) data selection methods (i.e., PPL-Top (Laurencon et al., 2022) and PPL-Middle (Ankner
et al.,|2025)), RLVR selection method (i.e., LIMR (Li et al.,|2025b) and Learnalign (Li et al., 2025a)).

o Random: Randomly samples data from the training set.
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o PPL-Top (Laurencon et al.,|2022): Selects the data with the highest perplexity.
e PPL-Middle (Ankner et al.,2025): Selects the data with the middle perplexity.

o LIMR (Li et al.,|2025b): Selects the data whose learning patterns complement the model’s overall
reward trajectory.

e Learnalign (Li et al., [2025a): Selects the data based on representativeness (measured via gradients
during warmup training) and difficulty (determined by rollout accuracy).

For online data selection methods, we incorporate them into our offline selected subset and compare
against random online selection and GRESO (Zheng et al.| 2025b)).

e Random: Randomly filters 40% of the data at each batch prior to rollout during training.

e GRESO (Zheng et al.,[2025b): Probabilistically filter historical samples with zero variance at each
batch before rollout during training.

H RELATED WORK

H.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARD

Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a promising paradigm
for enhancing the complex reasoning capabilities of large language models (LLMs), particularly
in domains such as mathematics and code generation. The key advantage of this approach is its
reward design, which relies solely on simple verification functions to provide binary rewards without
requiring learned reward models. DeepSeek-R1 (DeepSeek-Al et al.l 2025) introduces the GRPO
algorithm under the RLVR framework and demonstrates its effectiveness in significantly scaling the
reasoning abilities of LLMs. Building on GRPO, subsequent work have further advanced RLVR
by refining various aspects, including loss functions (Liu et al.| |2025a; Yu et al., [2025; Zheng et al.,
2025a; (Chen et al., |2025), token-level entropy (Wang et al.| [2025a; [Hao et al.l [2025)), advantage
estimation (Cheng et al.l [2025), and hyperparameter (Liu et al., 2025b; |An et al., 2025} X1 et al.,
2025). In this work, we focus on improving the data efficiency of RLVR to reduce computational
costs while maintaining model performance.

H.2 DATA EFFICIENCY FOR RLVR

Data efficiency aims to enhance model performance by strategically selecting high-quality training
samples. Existing RLVR data selection approaches can be broadly categorized into offline and online
strategies. Offline data selection methods focus on identifying a high-quality subset of data prior
to training. Some studies select samples based on model reward trends (Li et al.| [2025b), reward
variance (Wang et al.| 2025b), and gradient alignment (Li et al., 2025a). While effective, these
methods require training the original or warmup dataset for several epochs for selection. Another
line of work (An et al., [2025)) uses offline rollouts to estimate sample difficulty relative to the
current model’s capabilities. However, this approach requires computationally expensive rollouts
across the entire dataset and fails to account for the diversity and influence of the training subsets.
On the other hand, online data selection methods aim to reduce training overhead by dynamically
filtering samples during the training process. These approaches target samples that contribute little to
improving reasoning capabilities yet require costly rollouts. GRESO (Zheng et al.| [2025b) employs a
probabilistic filtering strategy to exclude samples with historical zero variance. Although it improves
efficiency, this approach only focuses on historical zero-variance samples and does not distinguish
among other samples. In this work, we enhance the data efficiency of RLVR by integrating optimized
strategies for both offline and online data selection.

I CASE STUDY

In this section, we provide detailed case studies on five reasoning benchmarks.
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AIME

[Question:]

Every morning Aya goes for a $9$-kilometer—long walk and stops at a coffee shop afterwards. When she
walks at a constant speed of $s$ kilometers per hour, the walk takes her 4 hours, including $t$
minutes spent in the coffee shop. When she walks $s+2$ kilometers per hour, the walk takes her 2
hours and 24 minutes, including $t$ minutes spent in the coffee shop. Suppose Aya walks at $s+\\frac
{1}{2}$ kilometers per hour. Find the number of minutes the walk takes her, including the $t$ minutes
spent in the coffee shop.\nPlease reason step by step, and put your final answer within \\boxed{{}}.

[Answer:]

Okay, so I have this problem about Aya's morning walk and her coffee stops. Let me try to figure this
out step by step.\n\nFirst, let's parse the information given:\n\nl. Every morning, Aya goes for a
9-kilometer —long walk and then stops at a coffee shop.\n2. When she walks at a constant speed of 's'
kilometers per hour, the entire walk, including her coffee stop, takes her 4 hours. Wait, hold on,
the problem says it takes her 4 hours, but 4 hours is 240 minutes. But then it mentions including t
minutes spent in the coffee shop. Hmm, maybe I need to clarify .\n\nWait, maybe the total time
includes both walking and coffee time. So, when she walks at speed s km/h, her total time is 4 hours,
which includes t minutes in the coffee shop.\n\nSimilarly , when she walks at s + 2 km/h, the total
time is 2 hours and 24 minutes, which also includes t minutes coffee time.\n\nOur goal is to find the
time it takes her when she walks at s + 1/2 km/h, again including the t minutes coffee stop.

##Final Answer##\n\\boxed{204}\n</think >\n\nGiven that Aya goes for a 9-kilometer—long walk every
morning and stops at a coffee shop, we need to determine the total time she takes when she walks at a
speed of \\( s + \\frac{1}{2} \\) km/h, including the time spent in the coffee shop.\n\nFirst, we
set up the equations based on the given information:\n\nl. When walking at speed \\( s \\) km/h:\n

— Total time = 4 hours = 240 minutes.\n — Let \\( t \\) be the time spent in the coffee shop.\n -
Equation: \\( \\frac{540}{s} + t = 240 \\) .\n\n2. When walking at speed \\( s + 2 \\) km/h:\n -
Total time = 2 hours 24 minutes = 144 minutes.\n — Equation: \\( \\frac{540}{s + 2} + t = 144 \\) .\

n\nSubtracting the second equation from the first to eliminate \\( t \\):\n\\[ \\frac{540}{s} — \\
frac {540}{s + 2} = 96 \\J\n\\[ 540 \\left( \\frac{1}{s} — \\frac{1}{s + 2} \\right) = 96 \\]\n\\[ 540
Wleft( \\frac{2}{s(s + 2)} \\right) = 96 \\J\n\\[ \\frac{1080}{s(s + 2)} = 96 \\]\n\\[ \\frac
{1080}{96} = s(s + 2) \\J\n\\[ 11.25 = s722 + 2s \\]J\n\\[ s”2 + 2s - 11.25 = 0 \\]\n\nSolving the
quadratic equation:\n— Discriminant: \\( 4 + 45 = 49 \\)\n- Solutions: \\( s = \\frac{-2 \\pm 7}{2}
\\) \n- Positive solution: \\( s = 2.5 \\) km/h.\n\nUsing \\( s = 2.5 \\) to find \\( t \\):\n- From
\W( \\frac {540}{2.5} + t = 240 \\) :\n - \\( 216 + t = 240 \\)\n — \\( t = 24 \\) minutes.\n\nWhen
walking at \\( s + \\frac{1}{2} = 3 \\) km/h:\n- Time to walk 9 km: \\( \\frac{9}{3} = 3 \\) hours =
180 minutes .\n— Total time including coffee: \\( 180 + 24 = 204 \\) minutes .\n\nThus, the total time
taken is \\(\\boxed{204}\\) minutes.

AIME

[Question:]

Find the sum of all integer bases $b>9$% for which $17_b$ is a divisor of $97_b.$\nPlease reason step
by step, and put your final answer within \\boxed{{}}.

[Answer:]

Alright, let's see. I have this problem here: I need to find the sum of all integer bases \\( b > 9
\\) for which \\( 17_b \\) is a divisor of \\( 97_b \\). Hmm, okay. So, bases greater than 9, which
means we're looking at bases starting from 10 upwards, right? \n\nFirst, I remember that when numbers
are written in a certain base \\( b \\), their value in decimal (base 10) can be calculated. For
example, a number like \\( 17_b \\) is equal to \\( I \\times b + 7 \\times 1 = b + 7 \\) in base 10.
Similarly , \\( 97_b \\) would be \\( 9 \\times b + 7 \\times 1 = 9b + 7 \\) in base 10. \n\nSo, the
problem is asking for all bases \\( b > 9 \\) where \\( 17_b \\) divides \\( 97_b \\). That means
that when we convert both numbers to base 10, \\( 97_b \\) should be divisible by \\( 17_b \\) in
base 10 terms.

##Final Answer##\n\\boxed{70}\n</think >\n\nTo solve the problem, we need to find all integer bases
\W( b > 9 \\) for which \\( 17_b \\) is a divisor of \\( 97_b \\). \n\nFirst, we convert the numbers
from base \\( b \\) to base 10:\n— \\( 17_b =1 \\times b + 7 =b + 7 \\)\n- \\( 97_b = 9 \\times b +
7 =9b + 7 \\)\n\nWe need \\( b + 7 \\) to divide \\( 9b + 7 \\). This translates to the congruence
An\\[ 9b + 7 \\equiv 0 \\pmod{b + 7} \\]\n\nRewriting this, we let \\( n =b + 7 \\), so \\( b =n —
7 \\). Substituting back, we get:\n\\[ 9(n - 7) + 7 \\equiv 0 \\pmod{n} \\]J\n\\[ 9n - 63 + 7 \\equiv
0 \\pmod{n} \\J\n\\[ 9n - 56 \\equiv O \\pmod{n} \\]J\n\\[ =56 \\equiv O \\pmod{n} \\]J\nThis implies
\W( n \\) is a divisor of 56. Since \\( b >9 \\), \\( n=b + 7 > 16 \\). The divisors of 56 greater
than 16 are 28 and 56.\n\nThus, solving for \\( b \\):\n- If \\( n = 28 \\), then \\( b =28 -7 =
21 \\)\n- If \\( n = 56 \\), then \\( b =56 — 7 = 49 \\)\n\nBoth 21 and 49 are valid bases as they
satisfy the digit constraints in their respective numbers. Therefore, the sum of these bases is:\n\\[
21 + 49 = 70 \\]\n\n\\[\n\\boxed{70}\n\\]
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MATHS500

[Question:]

Define\n\\[p = \\sum_{k = 1}A\infty \\frac{1}{k”2} \\quad \\text{and} \\quad q = \\sum_{k = 1}"\
infty \\frac{l1}{k”*3}.\\]Find a way to write\n\\[\\sum_{j = 1} \infty \\sum_{k = 1} \infty \\frac
{1}{(j + k)~3}\\]in terms of $p$ and $q.S$\nPlease reason step by step, and put your final answer
within \\boxed{}.

[Answer:]

Okay, so I have this problem here where I need to express the double sum \\(\\sum_{j = 1}*\\infty \\
sum_{k = 1}A\infty \\frac{1}{(j + k)~3}\\) in terms of \\(p\\) and \\(q\\), where \\(p = \\sum_{k =
I}A\infty \\frac{l1}{k”2}\\) and \\(q = \\sum_{k = 1}A\\infty \\frac{1}{k”3}\\). Hoim, interesting. I
remember that \\(p\\) is related to the Basel problem and equals \\(\\frac {\\pi*2}{6}\\), and \\(q\\)
is Apery's constant, approximately 1.202... But maybe I don't need their exact values, just to
express the double sum in terms of \\(p\\) and \\(q\\) .\n\nSo, the double sum is over two indices ,
MW(j\\) and \\(k\\), both starting from 1 to infinity , of \\(1/(j + k)~3\\). I think I need to find a
clever way to rewrite this or maybe relate it to the known series \\(p\\) and \\(q\\). Let's think
about how to handle double sums. Often, double sums can sometimes be converted into single sums by
clever manipulation or using integral representations.\n\nLet me write down the double sum explicitly
An\n\\[\nS = Wsum_{j=1}"\\infty \\sum_{k=1}"\\infty \\frac{1}{(j + k)*3}\n\\]\n\nI recall that for
such sums, sometimes we can change variables to simplify the expression. Maybe set \\(n = j + k\\).

For each \\(n\\), \\(j\\) can range from 1 to \\(n - 1\\), so we rewrite the double sum as a single
sum:\n\n\\[\nS = \\sum_{j=1}"\\infty \\sum_{k=1}"\\infty \\frac{1}{(j + k)"3} = \\sum_{n=2}"\\infty
Wsum_{j=1}*{n - 1} \\frac{l}{n”3}\n\\]\n\nFor each \\(n\\), there are \\(n — I\\) pairs \\((j, k)\\)

so:\n\n\\[\nS = \\sum_{n=2}*\\infty (n - 1) \\cdot \\frac{1}{n”3}\n\\]\n\nWe split the fraction :\n\
n\\[\n\\ frac{n - 1}{n?3} = \\frac{1}{n?2} = \\frac{l}{n”A3}\n\\]\n\nThus ,\n\n\\[\nS = \\sum_{n=2}"\\
infty \\left( \\frac{1}{n”2} - \\frac{1}{n”3} \\right)\n\\]\n\nThis can be written as:\n\n\\[\nS = \\
left ( \\sum_{n=2}A\infty \\frac{1}{n?2} \\right) — \\left( \\sum_{n=2}A\\infty \\frac{1}{n”3} \\
right)\n\\]\n\nUsing the known series \\(p = \\sum_{n=1}"\infty \\frac{1}{n~2}\\) and \\(q = \\sum_{
n=1}AM\infty \\frac{1}{n”3}\\), we have:\n\n\\[\n\\sum_{n=2}A\infty \\frac{1}{n?2} = p — 1 \\quad \\
text{and} \\quad \\sum_{n=2}*\\infty \\frac{1}{n”3} = q — I\n\\]\n\nTherefore ,\n\n\\[\nS = (p - 1) -
(q - 1) =p - q\n\\]\n\nThe final answer is: \\boxed{p - q}
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GPQ

[Question:]

Answer the following multiple choice question. The last line of your response should be of the
following format: 'Answer: $LETTER' (without quotes) where LETTER is one of ABCD. Think step by step
before answering .\n\nTwo quantum states with energies El and E2 have a lifetime of 102-9 sec and
10~-8 sec, respectively. We want to clearly distinguish these two energy levels. Which one of the
following options could be their energy difference so that they can be clearly resolved ?\n\n\nA)
10~-9 eVinB) 107-11 eV\nC) 10~-8 eV\n\nD) 10"-4 eV

[Answer:]

Okay, so I have this quantum mechanics problem in front of me. Hmm, let's try to think it through.
The question is about distinguishing two quantum states with different lifetimes. Right, I remember
that in quantum mechanics, the uncertainty principle plays a role in determining the observable
differences between energy levels. Or wait, perhaps it's about the Heisenberg uncertainty principle?
Or maybe it's related to the line width due to the energy uncertainty affecting the transition
between states.\n\nSo the problem states that two quantum states have energies El and E2 with
lifetimes of le-9 seconds and le-8 seconds, respectively. The goal is to find which energy difference
would allow us to clearly distinguish these two energy levels. The options are A to D.\n\nl'm a bit
rusty on this, but I think the key here is the concept of the spectral line width. Oh wait, I
remember something about the width of spectral lines being related to the uncertainty in energy, or
perhaps the Heisenberg uncertainty principle. Because if the lifetimes are different, their energy
differences might lead to different spectral lines that can be resolved.\n\nHeisenberg's uncertainty
principle says that the product of the uncertainty in energy (\delta E) and the uncertainty in time
(\deltat) is approximately h/2.\n\nAlternatively , I remember that the natural linewidth of a spectral
line (due to the uncertainty principle) is related to the inverse of the lifetime. So the linewidth
\deltaE is approximately h / \tau, where \tau is the lifetime. Because the uncertainty in energy \
deltaE would be on the order of h/\tau.\n\nSo if we have two states with lifetimes \taul and \tau2,
their respective spectral linewidths would be \deltaEl = h / \taul and \deltaE2 = h / \tau2. So the
difference in their energy levels, \deltaE = E2 — El, needs to be larger than the sum of their
linewidths , I think, to distinguish the two lines so they don't overlap and can be resolved. Because
if the separation is less than the sum of their widths, they might merge into one broad peak, making
them indistinguishable .\n\nWait, but I might have this reversed. Maybe the difference in energies (
delta E) between the two levels should be greater than the sum of their individual energy
uncertainties (line widths) to resolve them as two separate peaks. Because if the separation is
larger than the sum of the two uncertainties , they can be distinguished. Otherwise, the two peaks
would overlap into one broad peak.\n\nLet's clarify: For two spectral lines, each with width about \
deltaEl and \deltaE2, the energy separation needs to be greater than \deltaEl + \deltaE2 for them to
be distinguishable. Because if their separation is less than the sum of their linewidths, their peaks
might overlap , making it impossible to tell them apart.\n\nSo, the energy difference \deltaE should
be greater than (\deltaEl + \deltaE2).\n\nBut wait, wait. Alternatively , perhaps the requirement is
that \deltaE > (\deltaEl + \deltaE2), but let me think about it. If two peaks are separated by more
than the sum of their widths, they can be resolved. Because each line has a width (say, the full
width at half maximum, FWHM), and for them to be distinct, the distance between them must be greater
than the sum of their FWHMs. Otherwise, the second line would start before the first has ended, and
they merge into one.

Alternatively , maybe the question is considering the inverse situation: the energy difference should
be more than each of the individual widths, but that doesn't make sense because the larger one is 6.5
e—7, and no option meets that except D. So likely , the correct answer is D.\n</think >\n\nTo determine
which energy difference allows the two quantum states to be clearly resolved, we analyze the
relationship between their lifetimes and energy widths using the uncertainty principle. The natural
linewidth of a spectral line is related to the lifetime of a state by the uncertainty principle: \n\n
\\[\n\\Gamma = \\ frac {\\hbar } {\\tau } ,\n\\]\n\nwhere \\( \\Gamma \\) is the linewidth and \\( \\tau
\\) is the lifetime. For the two states , the lifetimes are \\( \\tau_1 = 107{-9} \\, \\text{s} \\)
and \\( \\tau_2 = 10~{-8} \\, \\text{s} \\). Their respective linewidths are:\n\n\\[\n\\Gamma_1 = \\
frac {\\hbar } {\\tau_1}, \\quad \\Gamma_2 = \\frac {\\hbar } {\\tau_2 } .\n\\], we calculate :\n\n\\[\n\\
Gamma_l = \\frac {6.582 \\times 107{-16}}{107{-9}} = 6.582 \\times 107{-7} \\, \\text{eV},\n\\]J\n\\[\n
\\Gamma_2 = \\frac {6.582 \\times 107{-16}}{107"{-8}} = 6.582 \\times 107{-8} \\, \\text{eV}.\n\\]\n\
nThe sum of the linewidths is:\n\n\\[\n\\Gamma_l + \\Gamma_2 = 6.582 \\times 107{-7} + 6.582 \\times
107M{-8} = 1.316 \\times 107°{-7} \\, \\text{eV}.\n\\]\n\nFor the two states to be clearly resolved,
the energy difference \\( \\Delta E \\) between them must be greater than the sum of their linewidths
:\n\n\\[\n\\Delta E > \\Gamma_l + \\Gamma_2 \\approx 1.316 \\times 107{-7} \\, \\text{eV}.\n\\]\n\
nNow, we evaluate the given options:\n\n- #xOption A: \\( 107{-9} \\, \\text{eV} \\)=xx \n This is
much smaller than \\( 1.316 \\times 10°{-7} \\, \\text{eV} \\), so it does not satisfy the condition
An\n- #xOption B: \\( 107{-11} \\, \\text{eV} \\)=xx \n This is even smaller than \\( 107{-=9} \\,
\Wtext{eV} \\), so it does not satisfy the condition.\n\n- #%Option C: \\( 10~{-8} \\, \\text{eV} \\)
#%x \n This is \\( 1.0 \\times 107{-8} \\, \\text{eV} \\), which is smaller than \\( 1.316 \\times
107M{-7} \\, \\text{eV} \\), so it does not satisfy the condition.\n\n- #xOption D: \\( 10°{-4} \\, \\
text{eV} \\)=x \n This is \\( 1.0 \\times 10°{-4} \\, \\text{eV} \\), which is much larger than \\(
1.316 \\times 10°{-7} \\, \\text{eV} \\), so it satisfies the condition.\n\nThus, the only energy
difference that allows the two states to be clearly resolved is \\( 10°{-4} \\, \\text{eV} \\).\n\
nAnswer: D
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LiveCodeBer

[Question:]

### Question:\nYou are given an integer sequence A=(A_l,\\ldots ,A_N) of length N. Here, A_l, A_2, \\
Idots , AN are all distinct.\nWhich element in A is the second largest?\n\nInput\n\nThe input is
given from Standard Input in the following format:\nN \r\nA_1 A_2 \\ldots A_{N}\n\nOutput\n\nPrint
the integer X such that the X-th element in A is the second largest.\n\nConstraints\n\n\n- 2 \\leq N
\\leq 100\n- 1 \\leq A_i \\leq 1079\n- A_1, A_2, \\ldots, AN are all distinct.\n— All input values
are integers.\n\nSample Input I\n\n4\r\n8 2 5 I1\n\nSample Output 1\n\n3\r\n\nThe second largest
element in A is A_3, so print 3.\n\nSample Input 2\n\n8\r\nl 2 3 4 5 10 9 11\n\nSample Output 2\n\n6\
n\n### Format: Read the inputs from stdin solve the problem and write the answer to stdout (do not
directly test on the sample inputs). Enclose your code within delimiters as follows.\n" " python\n#
YOUR CODE HERE\n' * “\n\n### Answer: (use the provided format with backticks)\n\n

[Answer:]

Okay, I need to solve this problem where I have to find the second largest element in a given integer
sequence and then determine which position it occupies in the list, specifically the index in the 1-
based notation. Hmm, let 's think through how to approach this.\n\nWait, wait. The problem says that
each element is distinct, so I don't have to worry about duplicates. The task is to find the second
largest number and then output the index (but wait, the problem says the X—th element, which is the
position in the array, not zero—based). Oh right, the first sample input: 8 2 5 1. The largest is 8,
then 5, then 2, then 1. Wait no, wait the second sample input is 1 2 3 4 5 10 9 11. The largest is
11, then 10, and then 9. Wait, no, wait in sample input 2, the array is [1,2,3,4,5,10,9,11], the
largest is 11 at position 8, the second largest is 10 at position 6. So the output is 6. So the task
is to find the second largest element in the list, which is the element that is just smaller than the
maximum, but it could be more than just that because there might be elements that are after the
maximum which are smaller but larger than the rest.\n\nSo, the plan is:\n\nl. Read N and the list of
integers .\n2. Find the maximum value in the list.\n3. Then find all elements that are less than the
maximum. Among these , the second largest will be the maximum of that subset. But wait, wait, maybe
the second largest is not necessarily the max of the rest. For example, in the first sample, the max
is 8, the rest are 2,5,1. The max of those is 5, which is correct. In sample 2, the max is 11, the
rest are 1,2,3,4,5,10,9. The max of those is 10, which is correct.\n\nSo, the approach is:

The approach involves finding the maximum element, then determining the second largest element from
the remaining elements, and finally locating its position in the original list.\n\n### Approach\nl.
#xRead Inputssx: First, we read the input values, which include the length of the list and the list
elements .\n2. =*Find Maximum Valuess: Compute the maximum value in the list.\n3. sxFilter Candidates
#%: Create a sublist of all elements excluding the maximum value.\n4. #xFind Second Largest#s#: From
the filtered sublist, find the maximum value, which is the second largest element in the original
list .\n5. #xDetermine Position=##: Locate the index of this second largest element in the original
list and convert it to a l-based index for the output.\n\n### Solution Code\n" ' python\nn = int(input
())\na = list(map(int, input().split()))\nmax_val = max(a)\ncandidates = [x for x in a if x !=
max_val ]\ nsecond_val = max(candidates)\nindex = a.index(second_val) + I # Convert to l-based index\
nprint(index)\n" " “\n\n### Explanation\n- #xReading Input=x: We read the integer “n’ which is the
length of the list and then read the list of integers “a’.\n- #xFinding Maximums=#: Using Python's
built —in “max ()" function, we determine the largest value in the list.\n- #xFiltering Candidates =%:
We create a new list “candidates® that excludes the maximum value to focus on the remaining elements
An- #xFinding Second Largest=: The maximum of the °candidates” list is the second largest element
in the original list .\n- sxIndex Conversion=%: The index of this second largest element is found
using “index () °, which returns a O-based index, so we add 1 to convert it to l-based indexing before
printing the result.\n\nThis approach ensures that we efficiently find the second largest element and
correctly determine its position in the original list, adhering to the problem constraints and
requirements .

24



	Introduction
	Related Work
	Methodology
	Problem Formulation
	Multi-dimensional Offline Data Curation
	Diversity and Influence-aware Data Selection
	Difficulty-aware Normal Distribution Data Sampling

	Explorability-guided Online Rollout Pruning
	Sample-level Explorability Measurement
	Dynamic Replay of Under-explored Samples

	Discussion

	Experiments
	Experimental Setup
	Main Results
	Detailed Analysis
	Ablation Studies

	Conclusion
	The Usage of LLMs
	Reproducibility Statement
	Ethics Statement
	Theoretic Proof
	Optimization Objective Reformulation
	The Determinant as a Measure of Sample Diversity

	Detailed Experimental Setup
	Additional Experiments
	The Effect of Different Scale Models
	Hyperparameter Analysis
	The Effect of Dynamic Offline Data Curation Strategy

	Detailed Description of Baselines
	Related Work
	Reinforcement Learning with Verifiable Reward
	Data Efficiency for RLVR

	Case Study

