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ABSTRACT

In the era of cloud-based deep learning (DL) services, data privacy has become a
critical concern, prompting some organizations to restrict the use of online AI ser-
vices. This work addresses this issue by introducing a privacy-preserving method
for DL model queries through domain shifting in the input space. We develop
an encoder that strategically transforms inputs into a different domain within the
same space, ensuring that the original inputs remain private by presenting only the
obfuscated versions to the DL model. A decoder then recovers the correct output
from the model’s predictions. Our method keeps the authentic input and output
data secure on the local system, preventing unauthorized access by third parties
who only encounter the obfuscated data. Comprehensive evaluations across var-
ious oracle models and datasets demonstrate that our approach preserves privacy
with minimal impact on classification performance.

1 INTRODUCTION

Cloud-based deep learning services offer powerful capabilities but also introduce significant privacy
risks related to user data. Uploading data for analysis or model training exposes sensitive infor-
mation to third-party cloud providers, increasing the risk of data breaches, unauthorized access, or
misuse of personal, proprietary, or confidential information. Additionally, service providers may
retain user data and potentially re-purpose it for activities beyond the original analysis (He et al.,
2022). These concerns are especially critical in fields such as healthcare, finance, and personal
communications, where data protection is paramount.

There are several approaches to address the privacy issues, each with its own advantages and limi-
tations. One common approach is to perturb the data before sharing it with model providers, using
Differential Privacy (Dwork et al., 2006) to control the level of perturbation. Differential privacy
has been effectively applied during the training process to ensure data privacy in deep learning(Wei
et al., 2020). However, this approach is less suitable for protecting privacy during the inference
stage, as the added noise significantly degrades model accuracy and reduces utility.

Another prominent method is Homomorphic Encryption (Rivest & Dertouzos, 1978; Gentry, 2009),
which allows inference operations to be performed directly on encrypted data. Only the final re-
sults are decrypted by users. Despite its potential, fully homomorphic encryption (FHE) poses
substantial performance challenges, with operations on encrypted data being thousands to millions
of times slower than operations on plaintext (Akram et al., 2024; Jiang & Ju, 2022). This makes
FHE impractical for many real-world applications. To mitigate these performance issues, multi-
party computation (MPC) has been combined with homomorphic encryption to reduce DL model
inference latency (Liu et al., 2017; Juvekar et al., 2018). These approaches, however, all require
the model providers or third parties to implement the privacy protection mechanisms, limiting user
control over the privacy of their data.

In this work, we propose a novel privacy-preserving strategy that users can implement independently,
without requiring any modification to the deep learning models provided by service providers. Our
approach centers on input domain shifting, where the user encodes their input by shifting it to another
part of the input domain. Only the obfuscated input is sent to the model, protecting the privacy of
the original data from the model service provider.
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We define the significant input domain as the subset of the input space containing all real-world
samples. The remainder of the input space, which includes inputs that are unlikely to occur naturally,
constitutes the non-significant input domain.

In-place domain shifting maps inputs within the significant input domain to other inputs also within
this domain and can be applied by encoders with only blackbox access to the deep learning (DL)
model. Out-of-place domain shifting, on the other hand, encodes inputs from the significant input
domain to inputs within the non-significant input domain. This approach is designed for users with
whitebox access to the DL model, providing highly obfuscated inputs tailored specifically to the
model. In both approaches, the DL model processes the obfuscated inputs and produces obfuscated
outputs, which the user then decodes to retrieve the useful inference results.

This paper encompasses the following aspects:
• An evaluation of the feasibility of applying domain shifting as an input obfuscation method,

and a demonstration of domain shifting theory on pre-trained DNN models.
• A proposal of two transform training: model-specific transform training by out-of-place

domain shifting, and model-agnostic transform training by in-place domain shifting.
• A comprehensive evaluation of both obfuscation methods, including comparisons across

state-of-the-art pre-trained models and datasets.
2 BACKGROUND

With the advancement of deep learning (DL), the associated risks can be categorized into three main
types: those related to the training dataset, the trained model (including its structure and parameters),
and the inputs/results of predictions (He et al., 2022). This paper focuses on privacy-preserving
inference in DL models, where the goal is to protect users’ input data and prediction results.

Various privacy-preserving DL inference methods have been proposed in the literature, based on
concepts such as Homomorphic Encryption (HE) (Gentry, 2009) and Multi-Party Computation
(MPC) (Yao, 1982). CryptoNets (Gilad-Bachrach et al., 2016) introduced the first fully HE-based
neural network capable of operating on encrypted data. However, this approach incurs significant
computational overhead, leading to substantial inference latency. To reduce this latency, MPC has
been combined with HE to create hybrid neural network designs that preserve privacy (Liu et al.,
2017; Juvekar et al., 2018).Delphi (Mishra et al., 2020) further reduces online latency by offloading
most of the heavy cryptographic computations to offline processing. Additional efforts to decrease
latency by combining DL techniques and MPC have been proposed in (Song et al., 2023; Nie et al.,
2024).

These cryptography-based private DL inference schemes require modifications to the DL model
implementation, which must be carried out by the service provider. The MPC/HE hybrid schemes
also involve frequent communication between the DL model and users during the inference process.
In contrast, this paper explores an alternative scenario where users do not depend on the service
provider to implement privacy-preserving measures. The DL model implementation remains un-
modified. Instead, users encode their data through a domain shift strategy that obfuscates private
information while preserving essential features, enabling the continued use of the DL classifier ser-
vice.

3 THREAT MODEL

In our work, we investigate a scenario where users employ deep learning services provided by a
service provider who acts as an honest-but-curious adversary, meaning they collect data uploaded
by the users and may use these data for other purposes. The users aim to maintain the confidentiality
of their data while still being able to perform inference using the service’s DNN classifier.

The users have no control over the DNN model and cannot modify it in any way. Their only inter-
action with the model is through querying it by sending inputs and receiving output classification
results.

To protect their privacy, users avoid directly submitting their real data to the DNN. Instead, they
send modified data to the DNN service and rely on the resulting classification outputs. We examine
two levels of model access for users within this context:

1. Whitebox Access: Users have access to the internal model parameters, including detailed
logit scores for each class, and can calculate gradients.
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2. Blackbox Access: Users have no access to the internal workings of the model and receive
only the output class label for the most likely class corresponding to the input data.

In the blackbox scenario, the DNN classifier takes an input xin and outputs to users only the most
likely class label yout for xin. The DNN classifier, provided by the commercial service, is assumed
to be highly accurate—referred to as an oracle model. This means that when xin represents real data
for the intended application, yout corresponds to the true class label y with a very high probability.

In the whitebox scenario, users also receive the classification scores sout, typically the logit values
for each class corresponding to xin. The predicted class label yout from the oracle model corre-
sponds to the class with the highest score. We denote yout = f(xin) and sout = f̄(xin), where and
f and f̄ are functions of the oracle model that output the classification label and the classification
scores, respectively. Here, f is a composite of the softmax function and f̄ . In the whitebox scenario,
the parameters of f̄ are also known to the users, enabling them to calculate gradients.

4 THE FRAMEWORK OF PRIVATE QUERIES

In our framework, users protect their sensitive information by not directly providing their data to
the DNN model. Instead, they first employ an input encoder EN to transform their real input
data x into an obfuscated form xob = EN(x). This obfuscated input xob is then uploaded to the
cloud service, ensuring that service providers only have access to the obfuscated data and cannot
discern the original information. The obfuscated input xob is processed by the service provider’s
DNN model (referred to as the oracle model), which generates an output as either yob = f̄(xob) or
yob = f(xob). Users then apply an output decoder DE to convert the obfuscated output yob back
into meaningful information DE(yob), allowing them to utilize advanced deep learning services
while maintaining control over their sensitive data throughout the process.

The input encoder and output decoder are a pair of data mapping models that handle the transfor-
mation of input and output data. These models are trained using easily accessible public datasets,
which may not be as high-quality as the datasets used to train the commercial service provider’s
DNN model. Although this may lead to a slight performance degradation when combined with the
commercial oracle model, the minor reduction in accuracy is a trade-off for the enhanced privacy
and accessibility that this method provides.

When building the encoder/decoder pair, we consider two levels of applicability. For one level, we
build the pair that is specifically aimed at the oracle model at hand. This encoder/decoder pair is
thus model-specific. For another level, we propose a model-agnostic method, constructing encoders
and decoders solely based on the dataset, independent of the oracle model.

To address these considerations, we introduce two fundamental approaches: Model-specific Trans-
form Training and Model-agnostic Transform Training by Domain Shifting.

4.1 DOMAIN SHIFTING

In a Deep Neural Network (DNN) model, the input space is the set of all possible inputs that the
model can accept. This could be the space of all possible pixel values for images of a specific size
and color depth. The input domain, on the other hand, narrows down this space to the specific subset
of inputs that are relevant and meaningful for the task at hand. It encompasses the range of values
and types of data that the model is designed to process and that are expected to occur in real-world
applications.

Basically, it contains two basic shifting methods:
• Out-of-place Domain Shifting: In this approach, inputs are transformed into an alternative

domain distinct from their original domain. This resulting domain may be unrecognizable
and not meaningful to human observers. This approach requires the whitebox access to the
oracle model to build the Model-specific Transform Training upon Out-of-place Domain
Shifting.

• In-place Domain Shifting: This method involves shifting inputs only within their original
domain. The shift can occur either within the same class or across different classes. We
build the Model-agnostic Transform Training based on In-place Domain Shifting which
only requires the blackbox access.
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4.2 MODEL-SPECIFIC TRANSFORM TRAINING WITH WHITEBOX ACCESS

For the model-specific transform training, we can conduct out-of-place domain shifting. That is,
the real input can be transformed into an obfuscated input that is no longer in the original domain.
Using the MNIST data set as an example, the original domain of samples from this data set is the
images of handwritten digits. Figure 1 illustrates examples of images inside and outside the original
domain. The upper example shows an image of handwritten digit ’2’ from MNIST, the original
domain. Well-trained models, Model #1 and Model #2, give them the same and correct predictions.
The lower example shows a random generated image that does not look like any handwritten digits
and is outside of the original domains. For such images outside the original domain, they do not
intrinsically belong to any of the specific classes, various highly accurate classifiers (oracle models)
may give them different class predictions. For example, the lower image is classified as ’2’ by Model
#1 and as ’5’ by Model #2 in experiment reported in Section 5, as shown in the Figure 1.

Model #1

Model #2

2

5

2

2

Figure 1: MNIST Out-of-place Shifting Example

When the encoder transform input x
to an obfuscated input xob outside the
original domain, the service provider
of the oracle model can not discern
the original input. The utility of
the oracle model is kept when obfus-
cated inputs xob from any class are
designed to have their correspond-
ing obfuscated outputs of the oracle
model yob = f̄(xob) concentrated on
certain specific area. The user then
use a decoder to transform the obfus-
cated outputs to yield class prediction
yDE = DE(yob).

For the encoder/decoder pair, we aim to keep the same functionality of the DNN classifier with
or without the encoding. That is, for any input x, we aim to for f(x) to be the same as yDE =
DE◦f̄ ◦EN(x). That is, the end-to-end classifier with privacy protection from the encoder/decoder,
DE ◦ f̄ ◦ EN , should keep fidelity with the original oracle model. On the other hand, for privacy
protection, the obfuscated input xob = EN(x) should be independent of the real input x. Thus
the training of the encoder/decoder pair can be formulated as an optimization problem with dual
objectives of fidelity and obfuscation.

The model fidelity is achieved through minimization of loss

Lfid = Ex∼pdata(x)L1[f(x), DE ◦ f̄ ◦ EN(x)],

where L1 is taken as standard classification loss, the cross-entropy. The obfuscation is measured
through the structural similarity index measure (SSIM) (Wang et al., 2004) between real input x
and obfuscated input xob = EN(x). We choose the encoder to minimize SSIM2 to achieve best
obfuscation. For our implementation, we use SSIM as the loss function to train the encoder (Wang
& Bovik, 2009). That is, we also want to minimize

Lob = Ex∼pdata(x)(SSIM2[f(x), EN(x)]) (1)

where

SSIM[f(x), EN(x)] =
(2µf(x)µEN(x) + C1)(2σf(x),EN(x) + C2)

(µ2
f(x) + µ2

EN(x) + C1)(σ2
f(x) + σ2

EN(x) + C2)
. (2)

In this formula, µf(x) and µEN(x) represent the mean intensity values of the original input f(x)
and the encoded input EN(x), respectively. These terms capture the luminance similarity between
the inputs. σ2

f(x) and σ2
EN(x) denote the variance of the two inputs, which reflects their contrast.

σf(x),EN(x) represents the covariance between f(x) and EN(x), measuring the structural similarity
between the two inputs. C1 = (K1L)

2 and C2 = (K2L)
2 are constants used to stabilize the formula,

where L is the dynamic range of input values, and K1 and K2 are small constants, typically set to
0.01 and 0.03, respectively.

The SSIM values range from -1 to 1, where 1 indicates perfect similarity, 0 indicates no similarity,
and -1 represents perfect anti-correlation. Our objective is to achieve minimal similarity between
the input and the obfuscated input, thus we minimize SSIM2 instead of SSIM itself.
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To jointly achieve the fidelity and obfuscation, we optimize the encoder/decoder pair through mini-
mization of the joint loss function Lfid + αLob where α is a tuning parameter. Through our experi-
ments, setting α = 0.01 generally produce good training for the encoder/decoder pair.

4.3 MODEL-AGNOSTIC TRANSFORM TRAINING UNDER BLACKBOX ACCESS

We now focus on developing an encoder/decoder pair that is model-agnostic, meaning it can be
utilized with any oracle model (a highly accurate commercial classification model) for privacy pro-
tection.

We observe that a model-agnostic approach necessitates the encoder to perform in-place domain
shifting. To understand why, consider the scenario where the obfuscated input xob = EN(xin)
falls outside the original domain. In this case, two different oracle models, f1 and f2, are unlikely
to produce consistent classification results on xob because it lacks intrinsic relevance to the classi-
fication task, as illustrated by the example in Figure 1. Consequently, we cannot rely on the same
model-agnostic decoder DE to accurately decode these varying results.

A model-agnostic decoder can only exist if different oracle models produce very similar obfuscated
outputs yob for the same obfuscated input xob. The key commonality across various oracle models
is that they all produce the same (real) class label with high probability for inputs within the original
domain. Therefore, the decoder should operate on the class label output yob = f(xob) rather than
on the logit output sob = f̄(xob).

We can summarize the above discussion into two necessary conditions for a model-agnostic ap-
proach: (1) the model-agnostic encoder should transform any input x from the original domain
into another data point xob = EN(xin) that also remains within the original domain; and (2) the
model-agnostic decoder should take as input the class label output yob = f(xob) from the oracle
model f . This implies that the model-agnostic encoder/decoder pair can be constructed with black-
box access to the oracle model, as additional internal information, such as logits available through
white-box access, does not provide any advantage. This is to be expected, since model internals
vary among different oracle models, and thus the model-agnostic encoder/decoder should not rely
on these internals.

For our implementation, we build our encoder on top of basic sub-encoders. Notice that the inputs
in the original input domain is transformed to other data points within the same domain. Assume
that there are total of M classes in the input domain, a basic sub-encoder transforms the data among
the M classes according to a permutation plan. Specifically, the basic sub-encoder ENi transforms
input in the j-th class to another data point in j′-th class with

j′ = j + i mod M. (3)

That is, for the basic sub-encoder EN0, all inputs in the original domain are transformed to another
data points within the same class. The basic sub-encoder ENi transforms inputs in the original
domain to data points of another class according to a permutation plan of shifting i. For example,
if there are 5 classes {0, 1, 2, 3, 4}, the permutation plan for EN1 is {0 → 1, 1 → 2, 2 → 3, 3 →
4, 4 → 0}, the permutation plan for EN2 is {0 → 2, 1 → 3, 2 → 4, 3 → 0, 4 → 1}, etc.

Our encoder first generates a random number i from the set 0, 1, . . . ,M − 1 with equal probability,
and then applies the i-th basic sub-encoder to produce the obfuscated output xob = ENi(x). As
a result, for any input x in the original domain, xob randomly belongs to any class with equal
probability. This ensures the privacy of x, as no class information about x can be inferred from xob

alone.

The obfuscated input xob is then passed to the oracle model f , and the resulting obfuscated output
yob = f(xob) is returned to the user. Since the user knows the random number i, they can decode
yob to obtain the original class label using the formula:

y′ = yob − i mod M. (4)

The remaining challenge in the model-agnostic approach is constructing the M basic sub-encoders:
EN0, . . . , ENM−1. To build these sub-encoders, we utilize generative tools such as Generative
Adversarial Networks (GANs) (Goodfellow et al., 2020) and Diffusion models (Ho et al., 2020). In
this paper, we focus on image classification applications as examples, so the sub-encoders will take
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images as inputs and produce images as outputs, with the classes of the input and output images, x
and ENi(x), corresponding according to the predetermined permutation plan.

4.3.1 GAN MULTI-CLASS TRANSFORMATION

A Generative Adversarial Network (GAN) is a tool used to generate data within a specific domain.
The generator G takes a random input z sampled from a probability distribution pz and produces
an output G(z). To ensure that G(z) follows the target data distribution pdata, the generator is set
up to compete with a discriminator D, whose goal is to distinguish real data x ∼ pdata from the
generator’s output. In this setup, the discriminator and the generator act as two players in a min-max
game, where the objective is to solve minG maxD V (G,D) with the following value function:

V (G,D) = Ex∼pdata
logD(x) + Ez∼pz

log[1−D(G(z))]. (5)

Both the discriminator and the generator improve through their competition, ultimately leading the
generator’s output G(z) to closely follow the target distribution pdata.

However, for our purposes, we require a data transformer rather than a data generator. GANs can be
adapted to transform data from a source distribution pdata to a target distribution pdata′ by modifying
the generator G to include an additional input argument x ∼ pdata and adjusting the discriminator
to distinguish between the generator’s outputs and data x′ ∼ pdata′ . In this setup, we train G(x, z)
in the min-max game using the following value function:

V (G,D) = Ex′∼pdata′ logD(x′) + Ex∼pdata,z∼pz log[1−D(G(x, z))]. (6)

Next, we consider how to implement the basic sub-encoders using GAN-based transformers. Each
basic sub-encoder corresponds to a specific permutation plan: for an input x in class y, the sub-
encoder outputs xob in class per(y). Specifically, for ENi, the permutation plan is defined as
per(y) = (y + i) mod M , as given in (3).

We assume that users have access to some training data x with corresponding class labels y to train
the basic sub-encoders. Given a class y, the data distribution is denoted as pdata|y .

For a single class y0, we define pdata = pdata|y0
as the distribution of data in class y0 and set

pdata′ = pdata|per(y0) as the distribution of data in class per(y0). A class-y0 to class-per(y0)
GAN can then be trained with the objective function (6). However, this class-specific GAN does
not yet constitute the desired basic sub-encoder ENi, as it only transforms data from class y0 to
class per(y0), whereas we need it to simultaneously transform data across all classes y to their
corresponding classes per(y).

To achieve this multi-class transformation, we condition the competing discriminator on the class
label y. This leads to the following objective function for the min-max game:

V (G,D) = Ex′∼pdata|per(y)
logD(x′|per(y))+

Ex∼pdata|y,z∼pz
log[1−D(G(x, z)|per(y))]. (7)

For training a multi-class transformation GAN, we condition on the class label y using the same
concept as in conditional GANs (cGANs) (Mirza & Osindero, 2014). However, our approach differs
from cGANs in a key aspect: while cGANs condition the generator also on the class label, our
method conditions only the discriminator on the class label. The class label is used solely during the
training of the GAN to create the basic sub-encoders.

Unlike cGANs, which generate data with an explicit class label, our encoder users do not have access
to the class label when encoding a data point x to feed to the oracle model. Instead, they rely on the
commercial oracle model to recover the class label from the encoded data.

4.3.2 GAN + DDPM-BASED GENERATIVE MODEL

The GAN-based encoder described above performed well on the MNIST handwritten digits dataset
in the later experimental section 5. However, for more complex image datasets, the quality of the
images generated by the encoder was low, which hindered accurate classification when these images
were fed to oracle models. To improve the quality of the generated images, we turn to Denoising
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Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) , a generative tool that has recently gained
popularity for producing high-quality images.

In DDPM training, the first step involves augmenting the training data from the target distribution
pdata by adding varying levels of noise. The diffusion models are then trained on this noisy data,
producing a generator with parameter settings corresponding to different noise levels. For denoising,
the noise level parameter is set to zero, resulting in the desired DDPM generator that produces data
from the distribution pdata without noise.

To create a multi-class transformation encoder that outputs high-quality images, we combine GANs
with DDPMs. We begin by building a conditional DDPM that generates images from class y when
provided with the corresponding class label y as input. The first layer of the conditional DDPM is
an embedding layer, where each class y is represented by a latent embedding vector emy . We then
train our multi-class transformation GAN as before, but with the goal of having the GAN output
emper(y) instead of an image in class per(y). Specifically, for an input image x, it first passes
through the trained GAN, which outputs an embedding emx. This embedding is then fed into the
trained DDPM, which generates an obfuscated image xob = ENi(x). For an image x in class y,
this GAN+DDPM implementation of the basic encoder ENi produces a high-quality image xob in
class per(y) with high probability.

It is important to note that the training of this model-agnostic encoder does not involve the oracle
model.

5 EVALUATION

We evaluate our procedure on several common benchmark image classification datasets. MNIST
dataset (Deng, 2012), Fashion-MNIST dataset (Xiao et al., 2017), CIFAR10 dataset (Krizhevsky
et al., 2009), Tiny-ImageNet dataset (Le & Yang) and ImageNet dataset (Deng et al., 2009).

For each dataset, we select oracle models that serve as classifiers with accuracy comparable to
state-of-the-art results reported in the literature. We then construct encoder-decoder pairs for each
dataset using both model-specific and model-agnostic approaches. The privacy of the original inputs
is protected through obfuscation performed by the encoder. The effectiveness of this obfuscation is
assessed by measuring the Structural Similarity Index (SSIM) between the real and encoded images.
The utility of the classifier under the proposed protection is evaluated by analyzing the classification
results produced by the Encoder-Oracle model-Decoder pipeline.

All experiments were conducted using PyTorch 2.3.0 on Ubuntu 18.04.6 LTS, on a machine
equipped with an Intel(R) Core(TM) i5-10600K @ 4.10GHz CPU and an NVIDIA TITAN X (Pas-
cal) GPU.

5.1 RESULTS OF MODEL-SPECIFIC TRANSFORM TRAINING

We begin by assessing the efficacy of Model-Specific Transform Training. The experimental setup
for Model-Specific Transform Training is outlined in Table 1, where each configuration is referenced
by its corresponding index. The results of these experiments are presented in Table 2.

For the MNIST dataset, we trained oracle models using three different architectures: MLP, CNN,
and Vision Transformer. All three oracle models achieved over 96% accuracy on the MNIST data,
shown in the second column of Table 2. For the CIFAR-10 dataset, we trained a CNN as the oracle
model with accuracy 88.91%. For the more challenging Tiny-Imagenet dataset, we fine-tune the pre-
trained ImageNet classifiers (Liu et al., 2021; 2022a;b) as the oracle models. The Swin Transformer
structure is Swin V2 (TorchVision, 2024b) and the ConvNeXt structure is ConvNeXt tiny (TorchVi-
sion, 2024a).

The encoder’s primary functions are to extract extensive features from the inputs and to obfuscate
these features. Its structure should be tailored to the type and complexity of the input dataset. To
achieve this, we can utilize the structure of the classifier designed for the input dataset. This approach
is justified because such a structure has already been proven capable of extracting sufficient features
and making accurate predictions.

The decoder’s role is to recover the original output from the obfuscated data, essentially performing
a class-to-class permutation. Given this task, the decoder can employ a simpler structure compared

7
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Index Dataset Encoder Structure Oracle Structure
➀

MNIST MLP
MLP

➁ CNN
➂ Vision Transformer (ViT B 16)
➃ CIFAR10 CNN CNN
➄

Tiny-Imagenet

ConvNeXt ConvNeXt
➅ Swin Transformer Swin Transformer
➆ ConvNeXt Swin Transformer
➇ Swin Transformer ConvNeXt

Table 1: Model-specific Transform Training: Experimental Configuration

Index Oracle Model Fidelity SSIM2 Oracle Encoder+Decoder
Accuracy Inference Time Inference Time

➀ 96.64% 96.26% 9.37× 10−5 0.156 ms 0.368 ms
➁ 98.73% 98.55% 2.52× 10−6 0.336 ms 0.372 ms
➂ 98.55% 98.21% 1.94× 10−8 6.47 ms 0.376 ms
➃ 88.91% 90.56% 6.83× 10−6 0.582 ms 0.687 ms
➄ 81.18% 86.86% 1.03× 10−5 4.28 ms 4.54 ms
➅ 78.81% 87.36% 2.48× 10−6 13.55 ms 12.92 ms
➆ 78.81% 77.22% 4.14× 10−6 13.41 ms 4.93 ms
➇ 81.18% 80.09% 8.61× 10−7 4.63 ms 13.03 ms

Table 2: Model-specific Transform Training and Validation Results: The Fidelity score, SSIM2 and
Inference Time. The inference time is timing under the circumstance of batch size = 1.

to the encoder. In our experiments, we implemented a decoder consisting of three fully connected
layers interspersed with dropout layers. The inclusion of dropout layers enhances the decoder’s
generalization capabilities, improving its performance on unseen data.

We used MLPs with 3 layers as the encoder and MLPs with 3 layers as the decoder for each of the
oracle models on the MNIST dataset. The fidelity score, which represents the percentage of clas-
sification agreement between the Encoder-Oracle Model-Decoder pipeline and the Oracle Model
alone, is reported in the third column of Table 2. With the encoder/decoder, the utility of the oracle
models is preserved, as users can recover the classification results with high fidelity. Some encoded
images from ➂ are shown in Figure 2.

MNIST CIFAR-10 Tiny-ImageNet

Figure 2: Out-of-place Shifting Transformation Example: Encoded Images of MNIST, CIFAR-10
and Tiny-ImageNet dataset. The encoded images are generated from ➂, ➃ and ➅, respectively.

To evaluate the effectiveness of obfuscation, we calculated the structural similarity between the
original image and the corresponding encoded image using SSIM (Wang et al., 2004). The SSIM
measures the association between two data clusters, with values ranging from -1 to 1, where 0
indicates no association. The average of the square of SSIM (SSIM2) scores over all images in the
MNIST dataset is reported in the fourth column of Table 2. The very low scores indicate that the
encoded images have little association with the original images, thus preserving privacy when only
the encoded images are provided.

For CIFAR-10 and Tiny-Imagenet, we utilized a few multi-head attention layers or convolution
layers of the oracle model to extract useful features and added a few fully connected layers as the
encoder structure. The fidelity scores and the average SSIM are reported in the third and fourth
columns of Table 2. The encoder/decoder pairs achieved effective obfuscation, with low SSIM
scores of all dataset are close to 0, and high fidelity, with 98% of MNIST, 90% of CIFAR10 and
87% of Tiny-Imagenet for the best cases.
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5.2 RESULTS OF MODEL-AGNOSTIC TRANSFORM TRAINING
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Figure 3: Pie chart of transformation
in Fashion-MNIST dataset: the inner
layer represents the source classes; the
intermediate layer represents the target
classes; the outer layer is the percentage
of the transformation between source
class to target class.

We evaluated model-agnostic transform training on four
data sets: MNIST, Fashion-MNIST, CIFAR-10 and a sub-
set of ImageNet consisting of 20 animal classes. No-
tably, the training of the encoder-decoder pair does not
require knowledge of the oracle models. We tested the
effectiveness of the trained encoder-decoder pairs on two
oracle models for each dataset. As described in Sec-
tion 4.3.2, we used a GAN-based encoder for the MNIST
and Fashion-MNIST datasets, while for the more com-
plex CIFAR-10 and ImageNet datasets, the encoder was
built by combining GAN and DDPM. The DDPM model
in used is Stable-Diffusion-v1-4 (Podell et al., 2023). Ta-
ble 3 shows the experiments’ configuration and its cor-
responding index and their results are presented in Ta-
ble 4. We developed custom classifiers as oracle models
for the MNIST, Fashion-MNIST, and CIFAR-10 datasets,
each with a structure tailored to its respective dataset.
For ImageNet, we utilized pre-trained models from prior
works Dosovitskiy et al. (2020); Liu et al. (2021). Specif-
ically, we employed the ViT H 14 architecture (Singh
et al., 2022) from the Vision Transformer family and the
Swin V2 B structure (Liu et al., 2022a) from the Swin
Transformer line.

To evaluate the obfuscation effectiveness of the encoder,
we calculated the SSIM between the true class of the input images and the oracle model’s classifica-
tion of the encoded images. The results are reported in the last column of Table 4. The low SSIM2

scores indicate no association between the class of the encoded image and the original class, demon-
strating a high level of obfuscation. This prevents an honest-but-curious oracle model provider from
deducing the original image from the encoded image presented to it.

To further illustrate this, we present pie charts showing the distribution of encoded image classes
for each original class of Fashion-MNIST dataset in Figure 3. The chart demonstrates that for each
original image class, the encoded images are evenly distributed among all classes. As a result, no
information about the original image class can be inferred from the encoded image.

Original image  

Fashion-
MNIST

 Encoded images from different runs of encoder

ImageNet

Figure 4: In-place Shifting Transformation Example: Encoded Images of Fashion-MNIST and Im-
ageNet dataset.

Our encoder shifts the input domain, and the encoded images are generated realistic looking im-
ages from a class specified by the randomly chosen permutation plan. Figure 4 shows some ex-
amples of the encoded image. The user, knowing which permutation plan is chosen, can use ora-
cle model classification of the encoded image to recover its classification on original image. The
second and third column of Table 4 present the accuracy of between the Oracle Model alone and
the Encoder-Oracle Model-Decoder pipeline. The evaluation of Encoder-Oracle Model-Decoder
pipeline achieve almost the same accuracy as the Oracle Model on MNIST and Fashion-MNIST
datasets. For more complicated dataset, such as CIFAR-10 and ImageNet, there are accuracy drops.
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Index Dataset Encoder Structure Oracle Structure
➊ MNIST GAN MLP
➋ Vision Transformer (ViT B 16)
➌ Fashion-MNIST GAN CNN #1
➍ CNN #2
➎ CIFAR-10 GAN + DDPM CNN #1
➏ CNN #2
➐ ImageNet GAN + DDPM Vision Transformer (ViT H 14)
➑ (20 classes of animals) Swin Transformer (Swin V2 B)

Table 3: Model-agnostic Transform Training: Experimental Configuration

Index Oracle Model Pipeline SSIM2 Oracle Encoder+Decoder
Accuracy Accuracy Inference Time Inference Time

➊ 98.12% 97.28% 0.0355 0.16 ms 0.35 ms
➋ 98.55% 97.49% 0.0359 6.47 ms 0.37 ms
➌ 90.97% 90.69% 0.0093 1.29 ms 0.38 ms
➍ 89.41% 88.12% 0.0094 1.35 ms 0.32 ms
➎ 88.91% 80.30% 0.0013 9.53 ms 4.13 s
➏ 89.13% 80.10% 0.0013 10.7 ms 4.12 s
➐ 88.55% 75.10% 0.0777 10.2 ms 4.14 s
➑ 84.12% 70.40% 0.0768 12.7 ms 4.14 s

Table 4: Model-agnostic Transform Training and Validation Results: The Accuracy, SSIM2 and
Inference Time. The inference time is timing under the circumstance of batch size = 1 .

5.3 EVALUATION ON OVERHEAD

The additional overhead arises from the inference execution times of both the encoder and decoder,
for both out-of-place and in-place domain shifting methods. In Table 2 and Table 4, we present two
key timing measurements. The Oracle Inference Time indicates the duration required to process a
single input query using the oracle model. The Encoder+Decoder Inference Time represents the
additional time incurred when implementing our domain shifting method.

In the out-of-place domain shifting scenario, our protection method achieves significantly faster in-
ference times on MNIST dataset, our method requires approximately 0.5 ms, which is substantially
lower than the 0.481s reported previously in (Juvekar et al., 2018) and 3.58s in (Liu et al., 2017).
Similarly, for the CIFAR-10 dataset, our method completes inference in just 1.2 ms, a marked im-
provement over the 472s reported in (Liu et al., 2017) and 9.74s in (Juvekar et al., 2018).

For in-place domain shifting, the GAN inference time is about 0.3 times the oracle inference time.
However, the DDPM generation process takes longer, with the generation of a single image requir-
ing around 4 seconds. Consequently, the extra time incurred after applying protection measures
is approximately 4.12 seconds. Despite this, it remains much quicker than the overhead seen in
previous works Liu et al. (2017); Juvekar et al. (2018). Unlike approaches that involve significant
communication overhead due to layer-by-layer processing in MPC, our in-place shifting technique
introduces only 4.12s of latency when querying the CIFAR-10 and ImageNet datasets, which is still
faster than the 5s inference time for CIFAR-10 reported in Nie et al. (2024).

6 CONCLUSION

This paper presents a novel privacy-preserving approach that can be implemented by users, without
requiring modifications to the deep learning (DL) models provided by service providers. The core
strategy involves the development of a domain-shifting encoder by the user. Depending on their
access level to the DL model, users can create either in-place shifting encoders (for model-agnostic
schemes) or out-of-place shifting encoders (for model-specific schemes). These approaches enable
users to perform classification tasks using DL model services while ensuring data privacy. Further-
more, the overhead on inference execution time is significantly lower compared to schemes based
on homomorphic encryption (HE), which require modifications by the service provider, unlike our
approach.
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