

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS NOVEL METAMATERIAL DISCOVERY VIA LATENT SPACE REGULATION AND EXPLORATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Metamaterials are artificially engineered structures whose unique mechanical and physical properties arise from geometry rather than composition, enabling applications in wave control, energy absorption, and soft robotics. To capture this structural programmability in a unified form, voxel representation provides a natural choice: it can express diverse classes of metamaterials including truss, shell, and porous metamaterials within a single cubic discretization. However, existing voxel-based generative models face severe limitations. The vast design space, combined with sparse and costly datasets, leads to a generalization dilemma: models tend either to memorize known designs, sacrificing novelty, or to produce invalid, low-quality structures. To address this, we propose **VOXPLORE**, a generative framework that couples voxel representation with latent space regulation and guided exploration. VOXPLORE introduces a repel-and-sink (RAS) mechanism to smooth and densify the latent distribution of valid structures, and a short-range repulsion (SRR) guidance during diffusion to promote exploration beyond memorized regions while preserving validity. We further contribute a systematic benchmark for voxel-based metamaterials and develop an evaluation module that jointly assess quality, novelty, and diversity. Extensive experiments show that VOXPLORE outperforms state-of-the-art baselines, achieving +8.9% in quality, +46.4% in novelty, and +128.6% in diversity on average across two datasets, establishing a principled pathway toward systematic discovery of next-generation metamaterials.

1 INTRODUCTION

Metamaterials are artificially engineered structures whose unusual behaviors arise from carefully designed geometries rather than intrinsic chemical composition. This structural programmability enables properties rarely observed in natural materials, such as negative Poisson’s ratio, ultrahigh stiffness-to-weight ratio, and extreme energy absorption (Zhang et al., 2016; Mizzi & Spaggiari, 2020). These capabilities have driven breakthroughs across domains including biomedical scaffolds, vibration isolation, acoustic cloaking, soft robotics, and thermal management (Bertoldi et al., 2017; Liu & Zhang, 2011). The ability to tailor functionality at the micro- and meso-scale positions metamaterials as a critical frontier for next-generation engineering systems.

Given their extraordinary potential, metamaterials have become a rising focus in material science over the past two decades (Kadic et al., 2019). Early design efforts relied heavily on human expertise and manual construction, but the emergence of machine learning has enabled data-driven approaches to accelerate discovery. Existing methods largely fall into two categories: modeling metamaterials as 3D graphs (Zhan et al., 2025; Basteck et al., 2022; Maurizi et al., 2025), or designing 2D patterns that are extruded uniformly along a third axis (Kollmann et al., 2020; Tian et al., 2022; Wilt et al., 2020). Graph representations provide an abstract and interpretable view of metamaterials, yet they lack the ability to express fine-grained geometric details, as edges are usually instantiated as simple primitives like cylinders or cuboids. In contrast, 2D pattern-based designs construct a repeating planar motif and then extrude it uniformly along the third axis to form a 3D structure. Such designs can achieve superior performance in the two in-plane directions defined by the patterned motif, but along the extruded axis the properties remain largely unchanged from the base material, offering little improvement. Recently, voxel representation (i.e., discretizing a cubic space into small cells marked as void or solid) has become an arising research direction for metamaterial. There are only a few attempts (Zheng et al., 2023b; 2025; Yang et al., 2024) following this direction by naively adapting 3D generation models from computer vision domain to the metamaterial domain, without specifically catering the need and nature of metamaterial. Therefore, this research direction is still

largely under-explored. Unlike other modalities that are tailored to specific classes of metamaterials (e.g., graphs for trusses, images for 2D designs), voxel representation serves as a unified format capable of expressing all kinds of metamaterials, including truss-based, shell-based, porous, 2D, kirigami metamaterials, etc. This makes it a compelling modality for comprehensive design and evaluation.

Despite its promise, voxel representation also introduces a major challenge: the generalization dilemma. For example, at a resolution of 64 per axis, there are 2^{64^3} possible configurations. However, against the high number of configurations, voxel datasets are costly to build and store and therefore are limited in size (around 10,000). As a result, valid designs occupy only a tiny fraction of the voxel space, preventing machine learning models from smoothly approximating the underlying distribution. Consequently, generative models tend either to memorize training samples and lose novelty, or to produce invalid outcomes such as pure voids or solids. Current voxel-based approaches remain limited: some adapt diffusion models to the voxel domain (Zheng et al., 2025; Yang et al., 2024), while others employ generative adversarial networks (Zheng et al., 2023b). These methods attempt to approximate valid distributions directly, without explicitly addressing sparsity, and thus remain vulnerable to the generalization dilemma.

Formally, we identify two key challenges for voxel-represented metamaterial design. **(C1. Generalization Dilemma):** the vast design space versus limited training data forces generative models to either reproduce seen samples with high fidelity or produce unseen ones of poor quality (as observed in our experiments). **(C2. Lack of Benchmark):** to the best of our knowledge, only Yang et al. (2024) provides a public dataset of shell-type metamaterials, which is large enough to train deep generative models. However, there are various metamaterials of other types, like truss-based metamaterials. Besides, there is also a lack of comprehensive evaluation system. Therefore, a systematic benchmark is needed to support voxel-represented metamaterial design.

To address **C1**, we propose **VOXPLORE**, a generative framework that combines latent regulation and exploration. VOXPLORE encodes voxel structures into a low-dimensional latent space via an autoencoder, then applies a novel repel-and-sink (RAS) mechanism to smooth and densify the distribution of valid samples, mitigating sparsity and enhancing validity. To further promote generalization, we introduce short-range repulsion (SRR) guidance into the diffusion process, which discourages generation near memorized samples and drives exploration into less-populated regions of the design space. To address **C2**, we construct so far as we know the first publicly available voxel dataset of considerably large size for truss-based metamaterials and propose five metrics to jointly evaluate quality, novelty, and diversity.

Through extensive experiments on our dataset and the dataset from Yang et al. (2024), we show that VOXPLORE significantly outperforms state-of-the-art voxel-based baselines, improving quality by 8.9%, novelty by 46.4%, and diversity by 128.6% on average across both datasets. Additional analyses and visualizations of the latent space and generated structures further verify the effectiveness of RAS for latent regulation and SRR for exploratory generation.

2 PRELIMINARY

This section introduces the concept of metamaterials, their voxel representation, relevant generative models, and the overall problem definition.

2.1 VOXEL-REPRESENTATION FOR METAMATERIALS

Metamaterials are artificial micro-structures composed of substrate material (e.g., plastics, metals, ceramics). Their geometry can be naturally described by unit cell \mathbf{U} and lattice $\mathbf{l} = (l_x, l_y, l_z) \in \mathbb{R}^3$, where \mathbf{U} defines the distribution of substrate material within a cube or cuboid unit, and \mathbf{l} specifies repetition intervals along the x , y , and z axes (Figure 1). A design can therefore be denoted as $\mathcal{M} = (\mathbf{U}, \mathbf{l})$. In this work, \mathbf{U} is expressed in voxel form

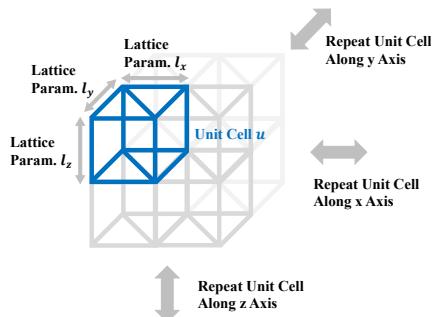


Figure 1: Unit cell and lattice of metamaterials.

108 as a binary tensor $\mathbf{U} \in \mathbb{B}^{d^3}$ where $\mathbb{B} = \{0, 1\}$ and d is the voxel resolution. We denote the dataset
 109 of unit cell samples \mathbf{U} as \mathcal{U} .
 110

111 2.2 RELATED MODELS FOR VOXEL GENERATION

112 **Autoencoders (AEs).** An AE maps voxel data to a latent space via an encoder \mathcal{E} and reconstructs
 113 it with a decoder \mathcal{D} . Training minimizes reconstruction loss:

$$115 \quad L_{\text{recon}} = \frac{1}{N} \sum_{i=1}^N \|\mathcal{D} \circ \mathcal{E}(\mathbf{U}_i) - \mathbf{U}_i\|, \quad (1)$$

118 where \mathbf{U}_i is the i th voxel-represented sample, N the dataset size, and $\cdot \circ \cdot$ is the composition of
 119 two functions. The latent variable is $\mathbf{x}_i = \mathcal{E}(\mathbf{U}_i)$. To enable generation, the latent distribution \mathbf{x}
 120 must be specified or approximated. For instance, variational AEs (VAEs, Kingma & Welling (2013))
 121 regularize \mathbf{x} to a Gaussian, sampling $\mathbf{x} \sim \mathcal{N}(0, 1)$ for decoding.

122 **Diffusion Models.** Diffusion connects arbitrary data distributions with Gaussians via reverse de-
 123 noising. Following DDPM (Ho et al., 2020), each denoising step can be expressed as:

$$125 \quad \mathbf{x}_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \alpha_t^2}} \phi_{\text{diff}}(\mathbf{x}_t, t) \right) + \rho_t \epsilon, \quad (2)$$

127 where ϕ_{diff} is the diffusion model, ϵ Gaussian noise, and $\alpha_t, \beta_t, \rho_t$ hyperparameters. Diffusion can
 128 also model latent spaces, referred as latent diffusion models (Rombach et al., 2022).
 129

130 2.3 PROBLEM DEFINITION

131 Given challenge of the generalization dilemma, the problem we are tackling is to generate samples
 132 preserving both quality and novelty to the largest extent. Besides, since it is not ideal for the gen-
 133 eration results to converge to only a few similar samples, we also need to consider the diversity of
 134 generated samples. This can be expressed as a multi-objective problem where the quality, novelty
 135 and diversity are regarded as design objectives. Quality evaluates the degree to which a sample
 136 is valid, usually appearing as the periodicity, symmetry and connectivity of the structure. Novelty
 137 evaluates how much a sample is different from known samples, so it is defined with respect to a
 138 certain dataset. Diversity evaluates how different the samples are from each other, measured as the
 139 fraction of design space covered by the generated samples. In summary, the problem is as follows:

140 **Problem Definition.** Let f denote a genera-
 141 tive model defined as $\mathbf{U} = f(\mathbf{x})$. The objective
 142 is to identify an f that maximizes performance
 143 across all the three aspects: quality, novelty,
 144 and diversity.

145 3 BENCHMARK DEVELOPMENT

147 To the best of our knowledge, there is only one
 148 publicly available voxel-represented metamate-
 149 rial dataset from Yang et al. (2024). Besides,
 150 the evaluation for generated metamaterial de-
 151 signs are mostly conducted by visualization and
 152 human assessment, so a comprehensive eval-
 153 uation framework is still lacking. To enable
 154 a systematical study of metamaterial design
 155 in voxel-representation, we propose the first
 156 systematical benchmark to provide data sup-
 157 port and result evaluation for voxel-represented
 158 metamaterial design.

159 3.1 DATASET DEVELOPMENT

160 We propose a unified voxel-based representation for metamaterial datasets. To the best of our knowl-
 161 edge, the only existing voxel dataset is **MetaShell** (Yang et al., 2024), which contains shell-type
 162 metamaterials where unit cells are defined by curved surfaces. While valuable, this dataset covers

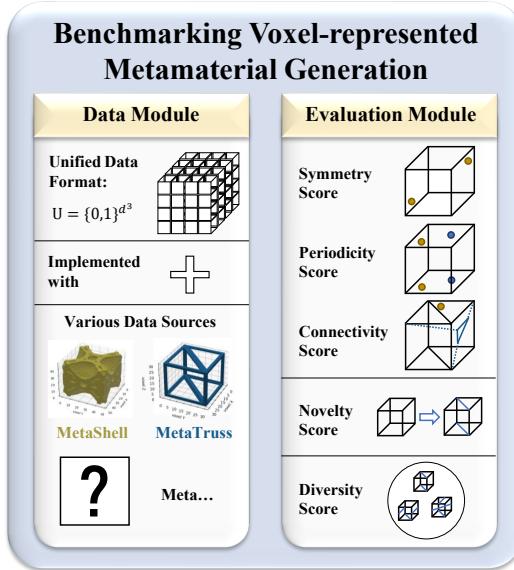


Figure 2: Benchmark Development.

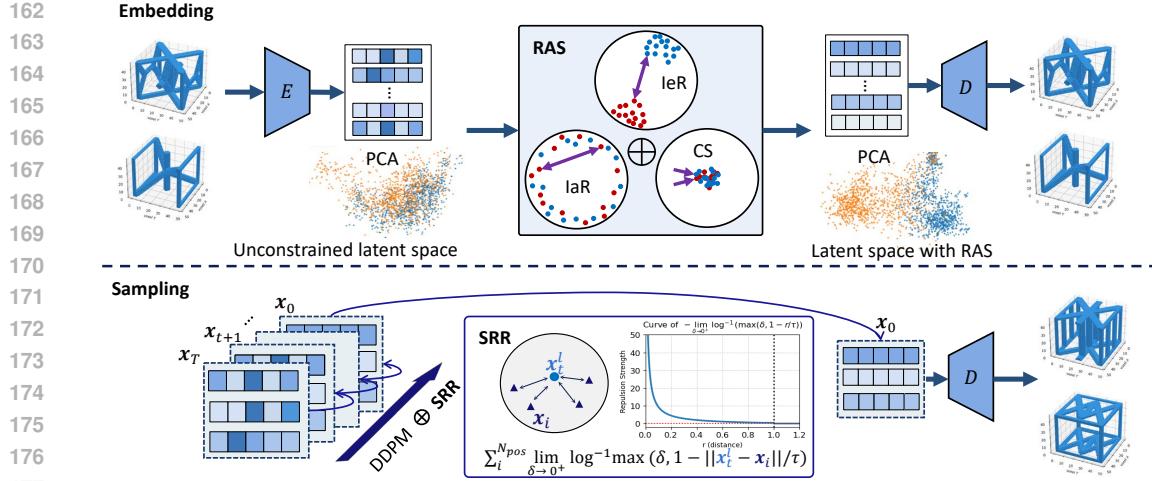


Figure 3: An overview of the proposed framework VOXPLOTER. It encodes voxel structures into latent space, applies RAS for latent regulation, and employs SRR-guided diffusion to explore and decode novel yet valid metamaterials.

only one class of designs. Truss-based metamaterials represent another critical category for mechanical applications (Mizzi & Spaggiari, 2020; Song et al., 2025), yet existing truss datasets rely on graph representations (Lumpe & Stankovic, 2021; Bastek et al., 2022), which are natural for describing connectivity but lack fine-grained geometric detail. Reformating truss structures into voxel space not only unifies them with shell-type metamaterials under a common representation, but also enables richer structural details. To close this gap, we construct the first truss-based voxel dataset, which we call **MetaTruss**. MetaTruss is derived from (Lumpe & Stankovic, 2021), where original samples are provided in 3D graph form. Each unit cell is discretized into a 48^3 voxel grid: voxels lying within a truss radius of any graph edge are marked as solid, while all others remain void. Following this procedure, we process the first 10,000 samples from (Lumpe & Stankovic, 2021) and apply rotational augmentation to expand the dataset to 60,000 samples. Together with MetaShell reformatted into voxel space, our benchmark establishes a unified data module that remains compatible with future metamaterial datasets. More details are in Appendix C.

3.2 EVALUATION MECHANISM

To systematically evaluate the generated metamaterial structures, we propose five metrics from three aspects. **Quality Scores:** we propose symmetry score S_{sym} to evaluate central symmetry degree of a structure; periodicity score S_{per} to evaluate how similar each facet of the cube frame is to its parallel counterpart; connectivity score S_{con} to evaluate how well the structure is connected, i.e., the fraction of the largest connected bulk in U_{solid} . **Novelty Score:** we propose S_{nov} to evaluate the IoU distance between a sample and its nearest neighbor in the training dataset. **Diversity Score:** we propose S_{div} to evaluate how many different samples in the training dataset function as a nearest neighbor of a generated sample, and divide this number by the number of generated samples. More details regarding the dataset and metric development can be found in Appendix C.

4 METHODOLOGY

This section introduces our framework, VOXPLOTER. We begin with a high-level overview, then describe the autoencoder that maps voxel structures into a low-dimensional latent space. We next present the RAS mechanism, which regularizes this space to separate valid and invalid regions, followed by a latent diffusion process with SRR that promotes exploration for novel designs. An optional refinement module further improves voxel-level quality. Each subsection details the purpose and technical design of these components.

4.1 FRAMEWORK OVERVIEW.

The main challenge in voxel-based metamaterial generation is the **generalization dilemma (C1)**: models trained on a small fraction of the design space because of costly and limited data either overfit to training samples, losing novelty, or produce invalid structures when exploring. VOXPLOTER tackles this in two steps. First, an autoencoder maps voxels into a compact latent space regulated by the

RAS mechanism, which separates valid from invalid regions, prevents mode collapse, and densifies the feasible manifold. This alleviates the influence of small perturbations on decoding the latents, improving robustness and generalization. Second, a latent diffusion model with SRR guidance discourages samples too close to training data, pushing exploration toward less-populated yet feasible regions. Together, RAS provides stability and SRR drives exploration, directly addressing C1 and enabling VOXPLORE to balance quality, novelty, and diversity.

4.2 AUTOENCODING WITH RAS LATENT REGULATION

To mitigate the high dimensionality of voxel representation, we use an AE to compress voxel data into a low-dimensional latent space. However, simply regularizing the latent distribution (as in VAEs) often reduces generation quality, since metamaterials must satisfy strict constraints like periodicity, where even slight structural deviations (e.g., isolated “floating” clusters) are invalid. Prior AE-based methods lack tailored latent regulation, resulting in a latent space where valid and invalid regions are entangled. Such entanglement may lead to failed designs. To address this issue, we propose the RAS mechanism, which disentangles valid and invalid regions in the latent space through three component mechanisms: **inter-class repulsion (IeR)**, **intra-class repulsion (IaR)**, and **central sink (CS)**. We first synthesize negative voxel samples from ground-truth structures to train the separation. Let \mathcal{U}_{pos} , \mathcal{U}_{neg} , and $\mathcal{U} = \mathcal{U}_{\text{pos}} \cup \mathcal{U}_{\text{neg}}$ denote the positive, negative, and full datasets. Encoding \mathcal{U} with \mathcal{E} yields latent datasets \mathcal{X} , with \mathcal{X}_{pos} and \mathcal{X}_{neg} denoting the positive and negative subsets.

Inter-Class Repulsion.¹ IeR mechanism aims to simplify the decision boundary between \mathcal{X}_{pos} and \mathcal{X}_{neg} by adding inverse-square repulsion similar to Coulomb repulsion (Anisimov et al., 2009):

$$F_{\text{inter}}(\mathcal{X}_{\text{pos}}, \mathcal{X}_{\text{neg}}) = \sum_{i=1}^{|\mathcal{X}_{\text{pos}}|} \sum_{j=1}^{|\mathcal{X}_{\text{neg}}|} \frac{\mathbf{x}_{\text{pos},i} - \mathbf{x}_{\text{neg},j}}{\|\mathbf{x}_{\text{pos},i} - \mathbf{x}_{\text{neg},j}\|^3}, \quad (3)$$

where $\mathbf{x}_{\text{pos},i}$ and $\mathbf{x}_{\text{neg},j}$ are the i th positive latent sample and j th negative latent sample, respectively. The simulated distribution of adding IeR alone can be found in Figure 4. In order to use IeR to optimize the latent distribution, we can minimize the integral of F_{inter} , i.e., the Coulomb potential:

$$P_{\text{inter}}(\mathcal{X}_{\text{pos}}, \mathcal{X}_{\text{neg}}) = \sum_{i=1}^{|\mathcal{X}_{\text{pos}}|} \sum_{j=1}^{|\mathcal{X}_{\text{neg}}|} \|\mathbf{x}_{\text{pos},i} - \mathbf{x}_{\text{neg},j}\|^{-1}. \quad (4)$$

Intra-Class Repulsion. As illustrated in Figure 4, using IeR alone can simply the decision boundary, but it drives the two classes into two distant clusters. In this case, only a small portion of the latent space is covered, so the decoder may not generalize to the majority of the latent space. Therefore, when the latent generator touches the region out of the two clusters, the decoder will not be able to decode the latent well. To solve this problem, unlike contrastive learning which tries to bring positive latents to each other even more closely (Saunshi et al., 2019), we propose IaR mechanism to avoid the converging tendency of each cluster. Similar to IeR, IaR and its potential are:

$$F_{\text{intra}}(\mathcal{X}_{\text{pos/neg}}) = \sum_{i,j=1; i \neq j}^{|\mathcal{X}_{\text{pos/neg}}|} \frac{\mathbf{x}_{\text{pos/neg},i} - \mathbf{x}_{\text{pos/neg},j}}{\|\mathbf{x}_{\text{pos/neg},i} - \mathbf{x}_{\text{pos/neg},j}\|^3}. \quad (5)$$

$$P_{\text{inter}}(\mathcal{X}_{\text{pos/neg}}) = \sum_{i,j=1; i < j}^{|\mathcal{X}_{\text{pos/neg}}|} \|\mathbf{x}_{\text{pos/neg},i} - \mathbf{x}_{\text{pos/neg},j}\|^{-1} \quad (6)$$

¹In this paper $|\cdot|$ means the sum of all elements if a tensor is inside (e.g., \mathbf{U}), or the cardinality of a set when a set is inside (e.g., \mathcal{U}).

270 **Central Sink (CS).** IeR and IaR will simplify the latent decision boundary and avoid intra-class
 271 convergence, but they will also force the latents to be too far from each other, which will sparsify
 272 the latent distribution. In order to alleviate this problem, we propose CS mechanism to attract all the
 273 latents to the origin. Let \mathbf{x}_i be the i th latent variable, the force and potential of CS are:

$$275 \quad F_{\text{sink}}(\mathcal{X}) = \sum_{i=1}^{|\mathcal{X}|} \mathbf{x}_i, \text{ and } P_{\text{sink}}(\mathcal{X}) = \sum_{i=1}^{|\mathcal{X}|} \|\mathbf{x}_i\|^2. \quad (7)$$

277 The effect of adding CS alone are also shown in Figure 4. When combining all three mechanisms
 278 together, we use different coefficients to tune strength of them. Note that the IaR should be sig-
 279 nificantly weaker than the IeR, or a latent sample will experience strong repulsion from both its
 280 “peers” and “opponents”, which means the decision boundary will not be simplified. The strength
 281 of CS, however, had a less strict constraint and has a large valid range. A stronger CS will make the
 282 absolute value of the latents smaller, vice versa. The RAS loss can therefore be defined as:

$$283 \quad L_{\text{RAS}} = \lambda_{\text{inter}} P_{\text{inter}}(\mathcal{X}_{\text{pos}}, \mathcal{X}_{\text{neg}}) + \lambda_{\text{intra}} (P_{\text{intra}}(\mathcal{X}_{\text{pos}}) + P_{\text{intra}}(\mathcal{X}_{\text{neg}})) + \lambda_{\text{sink}} P_{\text{sink}}(\mathcal{X}), \quad (8)$$

285 where λ_{inter} , λ_{intra} and λ_{sink} are hyperparameters. Then we can obtain the total loss function for
 286 training the autoencoder:

$$287 \quad L_{\text{auto}} = \lambda_{\text{recon}} L_{\text{recon}} + \lambda_{\text{RAS}} L_{\text{RAS}}, \quad (9)$$

288 where L_{recon} is defined in Equation 1, λ_{recon} and λ_{RAS} are two hyperparameters.

289 Combining the three mechanisms into the entire RAS mechanism will regulate the latent space
 290 derived by AE so that the valid and invalid region are disentangled and pushed away from each other,
 291 making the valid samples in a dense distribution while still maintaining some distance between valid
 292 samples to avoid latent space clapse with all the latents converging to a small region.

294 4.3 LATENT DIFFUSION WITH SRR GUIDANCE

295 The RAS mechanism regulates the latent distribution so that the latent decision boundary is sim-
 296 plified, which means the decoder is more robust to variations of latents around the positive latent
 297 sample cluster. In this case, we can use diffusion models to approximate the latent distribution and
 298 connect it with a Gaussian distribution for sampling’s sake. However, the vanilla diffusion paradigm
 299 like DDPM, without further guidance, can still fall into the generalization challenge because the
 300 seen samples are usually in the region where the generation probability is high and hence will tend
 301 to be reproduced by the diffusion model.

302 To address this issue, we introduce a repulsion force between the sample being generated and the
 303 latents of known samples, guiding the diffusion process toward unexplored regions of the latent
 304 space where novel designs may emerge. Crucially, this repulsion must be short-ranged: if it extends
 305 too far, the generated sample could be pushed entirely out of the valid region, resulting in invalid
 306 outputs. Building on this idea, we propose the SRR mechanism (Figure 3), which augments the
 307 DDPM model with an additional SRR guidance term. Based on Equation 2, the denoising step of an
 308 SRR-guided DDPM can be expressed as:

$$308 \quad \mathbf{x}_{t-1} = \frac{1}{\sqrt{1-\beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1-\alpha_t^2}} \phi_{\text{diff}}(\mathbf{x}_t, t) \right) + \rho_t \epsilon \\ 309 \quad + \lambda_{\text{SRR}} \sum_{i=1}^{N_{\text{pos}}} \frac{\mathbf{x}_{\text{pos},i} - \mathbf{x}_t}{\|\mathbf{x}_{\text{pos},i} - \mathbf{x}_t\|} \lim_{\delta \rightarrow 0^+} \log^{-1} \max(\delta, 1 - \|\mathbf{x}_t - \mathbf{x}_{\text{pos},i}\|/\tau), \quad (10)$$

314 where λ_{SRR} and τ are two hyperparameters controlling the SRR guidance strength. The SRR guid-
 315 ance (last term in Equation 10) introduces an additional force that pushes the latent variable \mathbf{x}_t away
 316 from the known latents. The logarithmic formulation ensures that this repulsion decays rapidly with
 317 distance, aligning with the intuition that only nearby samples should have influence. In practice,
 318 computing distances to all known latents is prohibitively expensive, so we cluster the known latents
 319 before training the diffusion model. During denoising, clusters outside the neighborhood of the cur-
 320 rent latent variable are ignored by the SRR mechanism, reducing computational cost. Importantly,
 321 SRR guidance is applied only at inference for latent space exploration, while the training scheme
 322 follows the standard DDPM paradigm.

323 To sum up, we introduce the RAS mechanism into the functioning flow of AE to obtained a latent
 324 space where the valid latents are densely and smoothly distributed and away from invalid latents,

Table 1: Performance Evaluation of Different Approaches

Approaches	Quality Scores				Novelty Score $S_{\text{nov}} \uparrow$	Diversity Score $S_{\text{div}} \uparrow$
	$S_{\text{sym}} \uparrow$	$S_{\text{per}} \uparrow$	$S_{\text{con}} \uparrow$	Mean \uparrow		
MetaTruss (ours)						
DiT-3D (Mo et al. (2023))	0.358	0.248	0.500	0.369	0.003	0.010
Y. Yang et al. (Yang et al. (2024))	0.800	0.585	0.494	0.626	0.163	0.158
XCube (Ren et al. (2024))	0.506	<u>0.525</u>	0.522	0.518	0.000	0.004
Trellis (Xiang et al. (2025))	0.081	0.063	0.133	0.092	0.000	0.001
3D-CDM (Zheng et al. (2025))	0.470	0.270	0.999	0.580	0.000	0.001
VOXPLOTER (ours)	0.718	0.487	0.969	0.725	0.296	0.420
MetaShell (Yang et al., 2024)						
DiT-3D (Mo et al. (2023))	0.465	0.259	0.704	0.476	0.023	0.013
Y. Yang et al. (Yang et al. (2024))	<u>0.922</u>	<u>0.791</u>	<u>0.991</u>	<u>0.901</u>	0.342	0.409
XCube (Ren et al. (2024))	0.522	0.523	0.526	0.524	0.000	0.005
Trellis (Xiang et al. (2025))	0.795	0.576	0.999	0.790	0.103	0.032
3D-CDM (Zheng et al. (2025))	0.668	0.529	0.999	0.732	0.390	0.113
VOXPLOTER (ours)	0.923	0.856	0.978	0.919	<u>0.380</u>	0.783

which facilitates the generation process. In such a latent space, we use latent diffusion with SRR guidance to drive the latent variable away from being very close to known samples, so that the chance of generating novel samples by latent space exploration is increased.

5 EXPERIMENTS

In this section, we evaluate VOXPLOTER for its ability to generate high-quality and novel metamaterials. We compare against state-of-the-art baselines using quality, novelty, and diversity metrics, and present ablation studies on the RAS regulation and SRR guidance. Finally, we analyze model capacity sensitivity and visualize generated samples to show the achieved quality–novelty balance.

5.1 OVERALL COMPARISON

We evaluate VOXPLOTER against five voxel-based generative baselines: DiT-3D (Mo et al., 2023), Yang et al. (Yang et al., 2024), XCube (Ren et al., 2024), Trellis (Xiang et al., 2025), and 3D-CDM (Zheng et al., 2025). The experiments are conducted on our proposed benchmark, which includes the MetaTruss and MetaShell datasets, and the task is unconditional voxel-based metamaterial generation. Performance is assessed using five complementary metrics covering three dimensions: structural quality (S_{sym} , S_{per} , S_{con}), novelty (S_{nov}), and diversity (S_{div}). All models are trained and evaluated on a single NVIDIA A100 GPU (except XCube whose large model size requires two A100 GPUs). To compare the generation capability of VOXPLOTER with other baseline models, we train each model on each of the two datasets and compute the five metrics for the generation results. Specific results are shown in Table 1.

Across both MetaTruss and MetaShell datasets, VOXPLOTER achieves the best balance of quality, novelty, and diversity. On MetaTruss, it delivers competitive quality while substantially outperforming baselines in novelty and diversity, avoiding the memorization observed in prior methods. On MetaShell, it matches or exceeds state-of-the-art quality and more than doubles diversity, showing that RAS ensures validity and SRR promotes exploration. Together, these results confirm that VOXPLOTER resolves the quality–novelty trade-off better than existing voxel-based approaches.

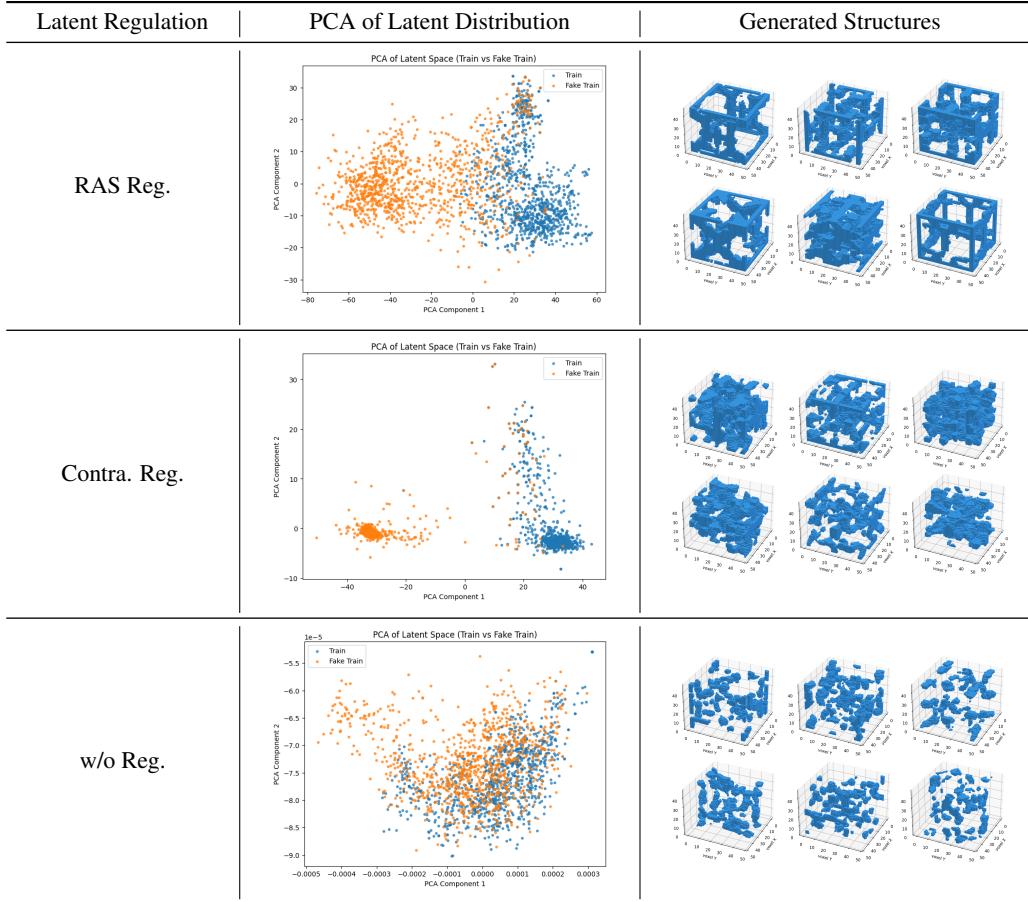
5.2 ABLATION STUDY

The experiments in this section is done on MetaTruss, with more results on MetaShell available in Appendix D.

Latent Space Regulations Comparison. To verify the effect of our proposed RAS mechanism, we train the autoencoder and visualize the latent space (after compressed by principal component analysis (PCA)), under three different cases: (1) autoencoder without latent regulation; (2) with contrastive regulation (Saunshi et al., 2019); (3) with RAS regulation. The latent distribution in the three cases are shown in Table 2. From the first column of Table 2, we can see that without any regulations, the autoencoder will not distinguish between the positive and negative latents, so that the distributions of these two classes will be mingled together, hence harming the generation quality.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Latent distribution visualization and generated samples with RAS regulation, or contrastive regulation, or without regulation. Reg. denotes regulation, and Contra. denotes contrastive.



With contrastive regulation, latents within the same class are pulled tightly together, while samples from different classes are pushed into two distant regions. Therefore, the two classes converge towards two small regions of the entire latent space. With our proposed RAS, the positive and negative latents are well separated, while the bulk of the latent space is smoothly distributed to increase the robustness of decoding the latents. In case (1) and (2), the decoded voxel structures are of poor quality. In contrast, RAS produces diverse and relatively well-formed geometries, showing that robust latent separation improves quality and diversity of generation. Besides visualization, results in the second row of Table 3 verify the effectiveness quantitatively.

Table 3: Ablation on RAS regulation and SRR diffusion.

Approaches	Quality Scores				Novelty Score	Diversity Score
	$S_{\text{sym}} \uparrow$	$S_{\text{per}} \uparrow$	$S_{\text{con}} \uparrow$	Mean \uparrow	$S_{\text{nov}} \uparrow$	$S_{\text{div}} \uparrow$
Case 1 (RAS + vanilla DDPM)	0.753	0.632	0.885	0.757	0.208	0.336
Case 2 (w/o reg + SRR Diff.)	0.873	0.801	0.295	0.656	0.014	0.011
Case 3 (full framework)	0.718	0.487	0.969	0.725	0.296	0.420

SRR diffusion v.s. vanilla DDPM. Our high level aim is to explore the design space to generate high quality and novel samples. To verify the exploration performance of SRR diffusion, we compare two cases: (1) RAS + vanilla DDPM model; (2) RAS + SRR diffusion (our full framework). We train the model under these two settings and the results are shown in Table 3. From Table 3 we can see that SRR diffusion provides far higher novelty score and diversity score, while maintaining the three quality scores close to vanilla DDPM. The deterioration of generation quality is reasonable because vanilla DDPM tends to generate what the model has seen during training, therefore the

432 quality can be higher. The results verified that SRR diffusion can indeed increase the novelty and
 433 diversity of the generation process.
 434

435 **Model Capacity Sensitivity Analysis.** We further study the effect of model capacity by increasing
 436 or decreasing the number of layers in the autoencoder and diffusion backbone (Table 4). Results
 437 show that changing the autoencoder depth only slightly alters quality, novelty, and diversity, indicating
 438 that encoding and decoding are relatively robust to capacity variations. In contrast, modifying
 439 the diffusion backbone has a more pronounced impact: adding a layer improves novelty and diver-
 440 sity, while removing a layer reduces both. This suggests that the diffusion model’s capacity is more
 441 critical than that of the autoencoder, as it directly governs the ability to explore the latent space and
 442 balance quality with novelty.
 443

444 Table 4: Ablation on model capacity. Param. Num. denotes parameter number.
 445

Approaches	Quality Scores				Novelty Score $S_{\text{nov}} \uparrow$	Diversity Score $S_{\text{div}} \uparrow$
	$S_{\text{sym}} \uparrow$	$S_{\text{per}} \uparrow$	$S_{\text{con}} \uparrow$	Mean \uparrow		
Increase AE Param. Num.	0.753	0.471	0.977	0.734	<u>0.308</u>	0.411
Decrease AE Param. Num.	0.688	0.479	0.953	0.707	0.280	0.413
Increase diff. Param. Num.	0.705	0.474	0.936	0.705	0.330	0.444
Decrease diff. Param. Num.	<u>0.722</u>	0.493	0.955	0.723	0.286	0.409
Original setting	0.718	<u>0.487</u>	<u>0.969</u>	<u>0.725</u>	0.296	0.420

453 6 RELATED WORK

454 **3D Visual Content Generation.** Generative modeling of 3D structures has advanced rapidly with
 455 voxel-based autoencoders, implicit representations, and diffusion models. Early works such as voxel
 456 GANs and VAEs (Wu et al., 2016; Brock et al., 2016) produced coarse but plausible shapes, while
 457 point cloud and mesh models (Yang et al., 2019; Liu et al., 2023) improved geometric fidelity. Recent
 458 diffusion-based approaches (Nichol & Dhariwal, 2021; Guan et al., 2023; Mo et al., 2023) achieve
 459 state-of-the-art results in quality and diversity for generic 3D content. However, these methods
 460 primarily target visual plausibility, whereas metamaterials impose stricter constraints: generated
 461 designs must be mechanically valid and functionally novel. Thus, direct adoption of generic 3D
 462 generation is insufficient, motivating domain-specific frameworks that explicitly regulate and guide
 463 the design process.
 464

465 **Metamaterial Generation.** AI-driven metamaterial discovery has explored multiple representations.
 466 Graph-based methods (Zhan et al., 2025; Xu et al., 2023; Zheng et al., 2023a) model unit cells
 467 as nodes and edges, which is well-suited for truss-based designs and property prediction but strug-
 468 gles with fine-grained geometry due to simplified primitives. 2D image-based approaches (Koll-
 469 mann et al., 2020; Tian et al., 2022; Wilt et al., 2020) construct patterned planar motifs and extrude
 470 them along one axis, enabling strong in-plane performance but limited improvement along the ex-
 471 truded direction. Voxel-based approaches (Zheng et al., 2025; 2023b; Yang et al., 2024) offer a
 472 unified representation that can express different metamaterials like truss, shell or porous within a
 473 single discretization. Yet, current voxel generative models often face a quality–novelty trade-off:
 474 bias toward training data yields high-fidelity but unoriginal structures, while exploration leads to
 475 invalid designs.
 476

477 7 CONCLUSION

478 In this paper, we introduced **VoxPLORE**, a framework for voxel-based metamaterial discovery
 479 that integrates latent space regulation with diffusion-based exploration. With RAS, we disentangle
 480 valid and invalid regions for robust decoding, and with SRR, we encourage exploration beyond mem-
 481 orized designs while preserving feasibility. We also introduced the first publicly available large-scale
 482 voxel dataset for truss-based metamaterials and a benchmark with metrics covering quality, novelty,
 483 and diversity. Experiments on MetaTruss and MetaShell show consistent gains over state-of-the-art
 484 baselines, confirming that **VoxPLORE** effectively balances quality, novelty, and diversity. This
 485 work lays the foundation for systematic study of next-generation metamaterials.
 486

486 REPRODUCIBILITY STATEMENT
487

488 We provide material to ensure that our work is fully reproducible. In particular, we provide the
489 details on the model architecture, training scheme and benchmark in the Appendix. We will release
490 our code and benchmark upon paper acceptance.

491 REFERENCES
492

493 VI Anisimov, Dm M Korotin, MA Korotin, AV Kozhevnikov, Jan Kuneš, AO Shorikov, SL Sko-
494 rnyakov, and SV Streltsov. Coulomb repulsion and correlation strength in lafeas from density
495 functional anddynamical mean-field theories. *Journal of Physics: Condensed Matter*, 21(7):
496 075602, 2009.

497 Jan-Hendrik Bastek, Siddhant Kumar, Bastian Telgen, Raphaël N Glaesener, and Dennis M
498 Kochmann. Inverting the structure–property map of truss metamaterials by deep learning. *Pro-
499 ceedings of the National Academy of Sciences*, 119(1):e2111505119, 2022.

500

501 Katia Bertoldi, Vincenzo Vitelli, Johan Christensen, and Martin Van Hecke. Flexible mechanical
502 metamaterials. *Nature Reviews Materials*, 2(11):1–11, 2017.

503

504 A Brock, T Lim, JM Ritchie, and N Weston. Generative and discriminative voxel modeling with
505 convolutional neural networks. arxiv 2016. *arXiv preprint arXiv:1608.04236*, 4232, 2016.

506

507 Jianpeng Chen, Wangzhi Zhan, Haohui Wang, Zian Jia, Jingru Gan, Junkai Zhang, Jingyuan Qi,
508 Tingwei Chen, Lifu Huang, Muhaao Chen, et al. Metamatbench: Integrating heterogeneous data,
509 computational tools, and visual interface for metamaterial discovery. In *Proceedings of the 31st
510 ACM SIGKDD Conference on Knowledge Discovery and Data Mining* V. 2, pp. 5334–5344, 2025.

511

512 Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3d equiv-
513 ariant diffusion for target-aware molecule generation and affinity prediction. *arXiv preprint
arXiv:2303.03543*, 2023.

514

515 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
516 neural information processing systems*, 33:6840–6851, 2020.

517

518 Muamer Kadic, Graeme W Milton, Martin van Hecke, and Martin Wegener. 3d metamaterials.
Nature reviews physics, 1(3):198–210, 2019.

519

520 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint
arXiv:1312.6114*, 2013.

521

522 Hunter T Kollmann, Diab W Abueidda, Seid Koric, Erman Guleryuz, and Nahil A Sobh. Deep
523 learning for topology optimization of 2d metamaterials. *Materials & Design*, 196:109098, 2020.

524

525 Yongmin Liu and Xiang Zhang. Metamaterials: a new frontier of science and technology. *Chemical
526 Society Reviews*, 40(5):2494–2507, 2011.

527

528 Zhen Liu, Yao Feng, Michael J Black, Derek Nowrouzezahrai, Liam Paull, and Weiyang Liu.
Meshdiffusion: Score-based generative 3d mesh modeling. *arXiv preprint arXiv:2303.08133*,
529 2023.

530

531 Thomas S Lumpe and Tino Stankovic. Exploring the property space of periodic cellular struc-
532 tures based on crystal networks. *Proceedings of the National Academy of Sciences*, 118(7):
533 e2003504118, 2021.

534

535 Marco Maurizi, Derek Xu, Yu-Tong Wang, Desheng Yao, David Hahn, Mourad Oudich, Anish Sat-
536 pati, Mathieu Bauchy, Wei Wang, Yizhou Sun, et al. Designing metamaterials with programmable
537 nonlinear responses and geometric constraints in graph space. *Nature Machine Intelligence*, pp.
538 1–14, 2025.

539

Luke Mizzi and Andrea Spaggiari. Lightweight mechanical metamaterials designed using hierar-
540 chical truss elements. *Smart Materials and Structures*, 29(10):105036, 2020.

540 Shentong Mo, Enze Xie, Ruihang Chu, Lanqing Hong, Matthias Niessner, and Zhenguo Li. Dit-3d:
 541 Exploring plain diffusion transformers for 3d shape generation. *Advances in neural information*
 542 *processing systems*, 36:67960–67971, 2023.

543

544 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 545 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.

546

547 Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and Francis Williams.
 548 Xcube: Large-scale 3d generative modeling using sparse voxel hierarchies. In *Proceedings of*
 549 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4209–4219, 2024.

550

551 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 552 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 553 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

554

555 Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khandeparkar.
 556 A theoretical analysis of contrastive unsupervised representation learning. In *International con-*
 557 *ference on machine learning*, pp. 5628–5637. PMLR, 2019.

558

559 Xuehao Song, Chengjun Zeng, Junqi Hu, Wei Zhao, Liwu Liu, Yanju Liu, and Jinsong Leng. Com-
 560 pressive behavior and energy absorption of novel body-centered cubic lattice metamaterials in-
 561 corporating simple cubic truss units. *Composite Structures*, pp. 119230, 2025.

562

563 Jie Tian, Keke Tang, Xianyan Chen, and Xianqiao Wang. Machine learning-based prediction and
 564 inverse design of 2d metamaterial structures with tunable deformation-dependent poisson’s ratio.
 565 *Nanoscale*, 14(35):12677–12691, 2022.

566

567 Jackson K Wilt, Charles Yang, and Grace X Gu. Accelerating auxetic metamaterial design with
 568 deep learning. *Advanced Engineering Materials*, 22(5):1901266, 2020.

569

570 Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning a proba-
 571 bility latent space of object shapes via 3d generative-adversarial modeling. *Advances in neural*
 572 *information processing systems*, 29, 2016.

573

574 Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen,
 575 Xin Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation.
 576 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 21469–21480,
 577 2025.

578

579 Minkai Xu, Alexander S Powers, Ron O. Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
 580 diffusion models for 3D molecule generation. In *Proceedings of the 40th ICML*, volume 202, pp.
 581 38592–38610, 23–29 Jul 2023.

582

583 Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
 584 Pointflow: 3d point cloud generation with continuous normalizing flows. In *Proceedings of the*
 585 *IEEE/CVF international conference on computer vision*, pp. 4541–4550, 2019.

586

587 Yanyan Yang, Lili Wang, Xiaoya Zhai, Kai Chen, Wenming Wu, Yunkai Zhao, Ligang Liu, and
 588 Xiao-Ming Fu. Guided diffusion for fast inverse design of density-based mechanical metama-
 589 *terials*. *arXiv preprint arXiv:2401.13570*, 2024.

590

591 Wangzhi Zhan, Jianpeng Chen, Dongqi Fu, and Dawei Zhou. Unimate: A unified model for me-
 592 chanical metamaterial generation, property prediction, and condition confirmation. In *ICML*,
 593 2025.

594

595 Qiangqiang Zhang, Xiang Xu, Dong Lin, Wenli Chen, Guoping Xiong, Yikang Yu, Timothy S
 596 Fisher, and Hui Li. Hyperbolically patterned 3d graphene metamaterial with negative poisson’s
 597 ratio and superelasticity. *Advanced materials*, 28(11):2229–2237, 2016.

598

599 Li Zheng, Konstantinos Karapiperis, Siddhant Kumar, and Dennis M Kochmann. Unifying the
 600 design space and optimizing linear and nonlinear truss metamaterials by generative modeling.
 601 *Nature Communications*, 14(1):7563, 2023a.

594 Xiaoyang Zheng, Ta-Te Chen, Xiaoyu Jiang, Masanobu Naito, and Ikumu Watanabe. Deep-learning-
595 based inverse design of three-dimensional architected cellular materials with the target porosity
596 and stiffness using voxelized voronoi lattices. *Science and Technology of Advanced Materials*, 24
597 (1):2157682, 2023b.

598 Xiaoyang Zheng, Junichiro Shiomi, and Takayuki Yamada. Optimizing metamaterial inverse design
599 with 3d conditional diffusion model and data augmentation. *Advanced Materials Technologies*,
600 pp. 2500293, 2025.
601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

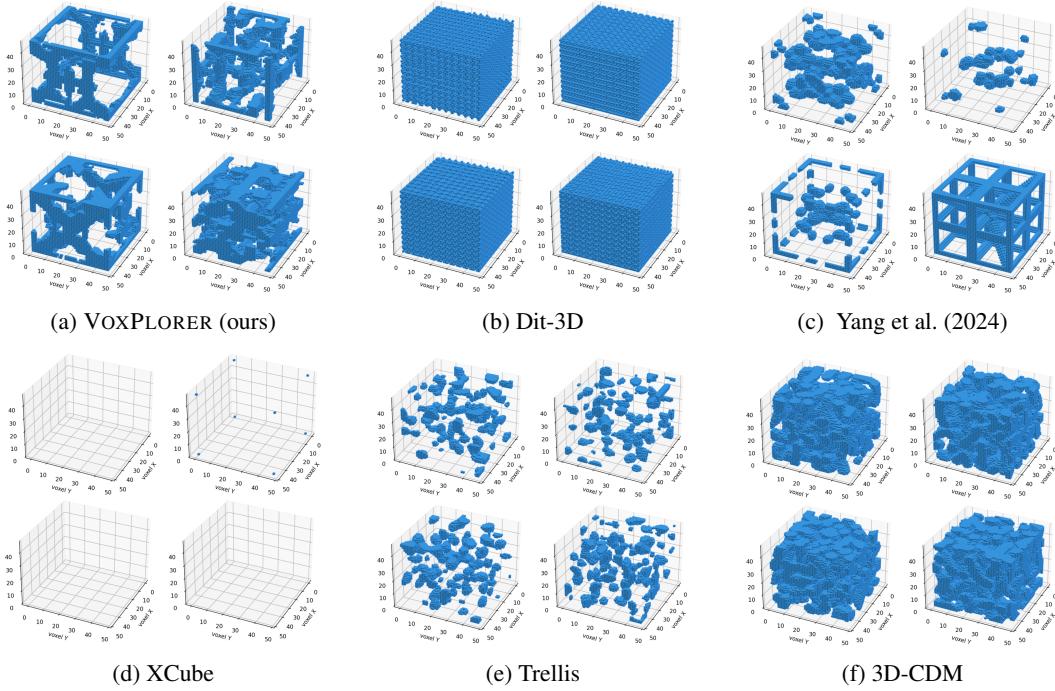
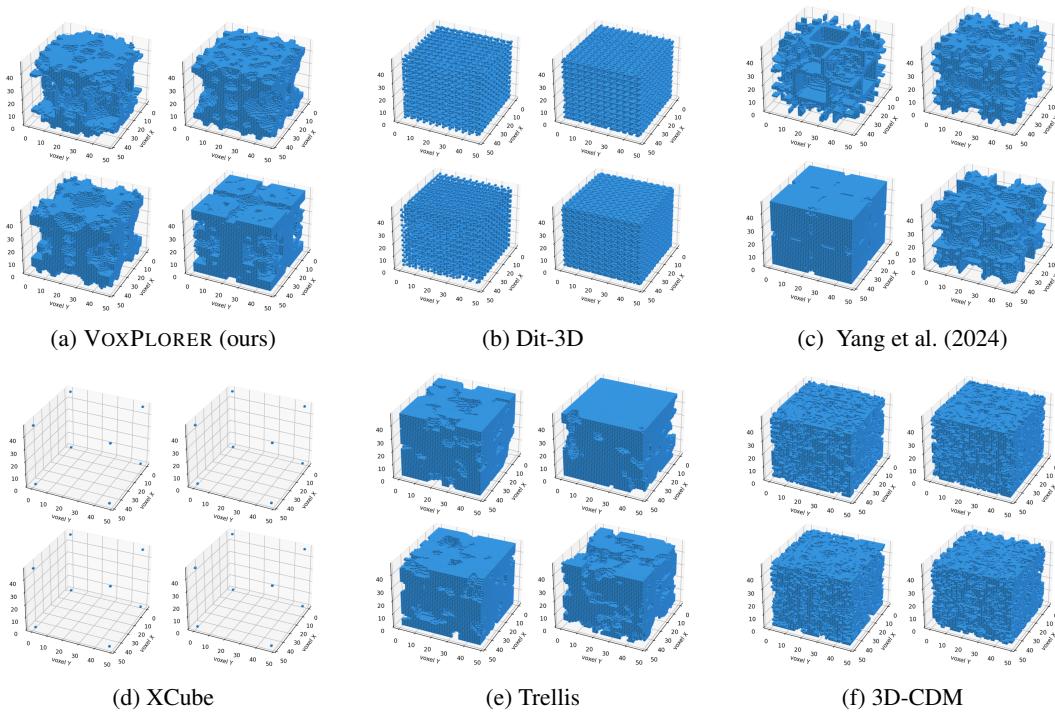
643

644

645

646

647

648
649
A MORE GENERATION RESULTS650
A.1 GENERATION RESULTS FOR METATRUSS651
Figure 5 show some generated samples from all baselines and our model, which are trained on
652
MetaTruss dataset.663
664
665
666
667
668
669
670
671
672
673
674
675
Figure 5: Generated samples on MetaTruss with different models.696
697
698
699
700
701
Figure 6: Generated samples on MetaShell with different models.

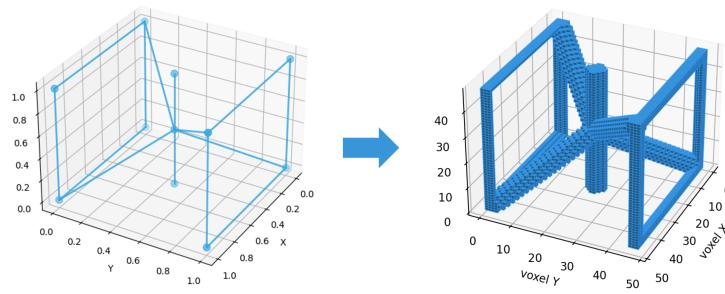


Figure 7: Data creation for MetaTruss.

A.2 GENERATION RESULTS FOR METASHELL

Figure 6 show some generated samples from all baselines and our model, which are trained on MetaShell dataset.

Remarks. The generation results of our VOXPLOTER have both improved novelty and genuine quality compared with other baselines. These results can serve as candidate novel designs for human experts to evaluate or find inspiration from.

B DETAILS ON MODEL ARCHITECTURE AND TRAINING SCHEME

B.1 MODEL ARCHITECTURE

The encoder and decoder we use are two transformers of the same structure, which have 4 layers and whose model dimension is by default 128. The latent space is also set to be 128-dimensional. The voxel data are decomposed into patches with the size of 8^3 , and flattened as the input to the encoder. After the encoder \mathcal{E} and before the decoder \mathcal{D} , there is each an 2-layer multilayer-perceptron (MLP) to resize the data to and from 128-dimensional.

The latent diffusion model we use has a backbone of MLP which has 16 layers and a model dimension of 512, with residual links connecting adjacent layers.

B.2 TRAIN SCHEME

The autoencoder is trained with RAS regulation. To enable this operation, we have to construct a negative dataset and combine it with the initial positive dataset. The negative data are created by noising each positive sample. We randomly select an eighth of the voxels and substitute them to void or Gaussian noise or an eighth of another positive sample, or simply add Gaussian to the initial values.

The diffusion model is trained following the DDPM paradigm, and the SRR mechanism only functions in inference stage.

C DETAILS ON BENCHMARK

C.1 DATASET CREATION AND REPRESENTATION UNIFICATION

Our dataset is created based on the dataset from Lumpe & Stankovic (2021), which comprises over 17,000 samples in 3D graph representation (left side of Figure 7). We select the first 10,000 samples from Lumpe & Stankovic (2021) and compute whether each voxel is close enough to any 3D edge in the 3D graph. If the distance is less than a predefined radius (e.g., 0.06), then the voxel is decided to be solid, or else the voxel is void. The distance δ between a voxel's center c an edge whose endpoints are p_1 and p_2 is:

$$\delta = \frac{\|(p_1 - c) \times (p_1 - p_2)\|}{\|p_1 - p_2\|}, \quad (11)$$

where \times means outer product. Figure 7 gives an example of a structure before and after the above operation.

In the setting of our benchmark, the resolution of a voxel sample is determined to be 48. When constructing MetaTruss dataset, we directly make the shape of data to be 48^3 . The voxel data in MetaShell is initially of shape 128^3 . To unify the data representation, we use “skimage.transform.resize” to resize the voxel data into the needed dimension with interpolation.

C.2 EVALUATION MODULE

The evaluation module of our benchmark systematically evaluates the voxel data from three aspects: quality, novelty and diversity. For quality, we are inspired from Chen et al. (2025) where the symmetry, periodicity and connectivity of the generated samples are calculated. However, the benchmark in Chen et al. (2025) is designed for graph-representation. In this paper we generalize the idea to voxel domain, and define the following three quality metrics:

$$S_{\text{sym}}(\mathbf{U}^{\text{gen}}) = 1 - \frac{\sum_{i,j,k=1}^N |u_{i,j,k}^{\text{gen}} - u_{N+1-i,N+1-j,N+1-k}^{\text{gen}}|}{2|\mathbf{U}^{\text{gen}}|}, \quad (12)$$

$$S_{\text{per}}(\mathbf{U}^{\text{gen}}) = \frac{1}{3} \left(\frac{\mathbf{U}_{i=1}^{\text{gen}} \cap \mathbf{U}_{i=N}^{\text{gen}}}{\mathbf{U}_{i=1}^{\text{gen}} \cup \mathbf{U}_{i=N}^{\text{gen}}} + \frac{\mathbf{U}_{j=1}^{\text{gen}} \cap \mathbf{U}_{j=N}^{\text{gen}}}{\mathbf{U}_{j=1}^{\text{gen}} \cup \mathbf{U}_{j=N}^{\text{gen}}} + \frac{\mathbf{U}_{k=1}^{\text{gen}} \cap \mathbf{U}_{k=N}^{\text{gen}}}{\mathbf{U}_{k=1}^{\text{gen}} \cup \mathbf{U}_{k=N}^{\text{gen}}} \right), \quad (13)$$

$$S_{\text{con}}(\mathbf{U}^{\text{gen}}) = \frac{\max_i |\mathbf{C}_i|}{|\mathbf{U}^{\text{gen}}|}, \quad (14)$$

where S_{sym} measure the central symmetry degree, S_{per} measures the periodicity degree, and S_{con} measures the connectivity degree; \mathbf{U}^{gen} is a generated sample in voxel representation, \mathbf{C}_i is the i th cluster of connected voxels in \mathbf{U}^{gen} , $u_{i,j,k}^{\text{gen}}$ is a voxel in \mathbf{U}^{gen} whose indices are i, j, k , $\mathbf{U}_{i=1}^{\text{gen}}$ is a slice of voxels in \mathbf{U}^{gen} whose the index along x axis is $i = 1$, and $|\mathbf{U}^{\text{gen}}|$ is the number of solid voxels in \mathbf{U}^{gen} .

For novelty we propose a distribution-based novelty score:

$$S_{\text{nov}}(\mathbf{U}^{\text{gen}}; \mathcal{U}_{\text{train}}) = 1 - \frac{\mathbf{U}^{\text{gen}} \cap \mathbf{U}_{\text{NN}}^{\text{train}}}{\mathbf{U}^{\text{gen}} \cup \mathbf{U}_{\text{NN}}^{\text{train}}}, \quad (15)$$

where $\mathbf{U}_{\text{NN}}^{\text{train}}$ is the nearest neighbor of \mathbf{U}^{gen} in the training dataset $\mathcal{U}^{\text{train}}$.

For diversity we propose a distribution-based diversity score:

$$S_{\text{div}}(\mathcal{U}^{\text{gen}}; \mathcal{U}^{\text{train}}) = \frac{|\mathcal{L}|}{|\mathcal{U}^{\text{gen}}|}, \quad (16)$$

$$\mathcal{L} = \left\{ l_i | l_i = \arg \max_{l' \in \{1, 2, \dots, |\mathcal{U}^{\text{train}}|\}} \frac{\mathbf{U}_i^{\text{gen}} \cap \mathbf{U}_{l'}^{\text{train}}}{\mathbf{U}_i^{\text{gen}} \cup \mathbf{U}_{l'}^{\text{train}}}, i \in \{1, 2, \dots, |\mathcal{U}^{\text{gen}}|\} \right\}, \quad (17)$$

where $\mathbf{U}_i^{\text{gen}}$ is the i th elements in the set of generated samples \mathcal{U}^{gen} , $\mathbf{U}_{l'}^{\text{train}}$ is the l' th elements in $\mathcal{U}^{\text{train}}$.

D MORE ABLATION RESULTS

In this section we provide some extra ablation results conducted on the MetaShell dataset.

Table 5: Ablation on RAS regulation and SRR diffusion.

Approaches	Quality Scores				$S_{\text{nov}} \uparrow$	$S_{\text{div}} \uparrow$
	$S_{\text{sym}} \uparrow$	$S_{\text{per}} \uparrow$	$S_{\text{con}} \uparrow$	Mean \uparrow		
Case 1 (RAS + vanilla DDPM)	0.935	0.884	0.930	0.916	0.305	0.625
Case 2 (w/o reg + SRR Diff.)	0.910	0.795	0.842	0.849	0.237	0.477
Case 3 (full framework)	0.923	0.856	0.978	0.919	0.380	0.783

E STATEMENT OF USE OF LARGE LANGUAGE MODELS (LLMs)

In this paper, we use LLMs only for polishing the words and checking for grammar errors. No technical details concerns the contribution of LLMs.

810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832

833 Table 6: Ablation on model capacity. Param. Num. denotes parameter number.

Approaches	Quality Scores				$S_{\text{nov}} \uparrow$	$S_{\text{div}} \uparrow$
	$S_{\text{sym}} \uparrow$	$S_{\text{per}} \uparrow$	$S_{\text{con}} \uparrow$	Mean \uparrow		
Increase AE Param. Num.	0.915	0.858	0.985	0.919	0.362	0.711
Decrease AE Param. Num.	0.894	0.823	0.963	0.893	0.363	0.742
Increase diff. Param. Num.	0.920	0.810	0.953	0.894	0.389	0.781
Decrease diff. Param. Num.	0.907	0.852	0.956	<u>0.905</u>	0.359	0.775
Original setting	0.923	<u>0.856</u>	<u>0.978</u>	0.919	<u>0.380</u>	0.783

841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863