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ABSTRACT

Metamaterials are artificially engineered structures whose unique mechanical and
physical properties arise from geometry rather than composition, enabling appli-
cations in wave control, energy absorption, and soft robotics. To capture this
structural programmability in a unified form, voxel representation provides a nat-
ural choice: it can express diverse classes of metamaterials including truss, shell,
and porous metamaterials within a single cubic discretization. However, exist-
ing voxel-based generative models face severe limitations. The vast design space,
combined with sparse and costly datasets, leads to a generalization dilemma: mod-
els tend either to memorize known designs, sacrificing novelty, or to produce in-
valid, low-quality structures. To address this, we propose VOXPLORER, a gen-
erative framework that couples voxel representation with latent space regulation
and guided exploration. VOXPLORER introduces a repel-and-sink (RAS) mecha-
nism to smooth and densify the latent distribution of valid structures, and a short-
range repulsion (SRR) guidance during diffusion to promote exploration beyond
memorized regions while preserving validity. We further contribute a systematic
benchmark for voxel-based metamaterials and develop an evaluation module that
jointly assess quality, novelty, and diversity. Extensive experiments show that
VOXPLORER outperforms state-of-the-art baselines, achieving +8.9% in quality,
+46.4% in novelty, and +128.6% in diversity on average across two datasets, es-
tablishing a principled pathway toward systematic discovery of next-generation
metamaterials.

1 INTRODUCTION

Metamaterials are artificially engineered structures whose unusual behaviors arise from carefully
designed geometries rather than intrinsic chemical composition. This structural programmability
enables properties rarely observed in natural materials, such as negative Poisson’s ratio, ultrahigh
stiffness-to-weight ratio, and extreme energy absorption (Zhang et al., 2016; Mizzi & Spaggiari,
2020). These capabilities have driven breakthroughs across domains including biomedical scaf-
folds, vibration isolation, acoustic cloaking, soft robotics, and thermal management (Bertoldi et al.,
2017; Liu & Zhang, 2011). The ability to tailor functionality at the micro- and meso-scale positions
metamaterials as a critical frontier for next-generation engineering systems.

Given their extraordinary potential, metamaterials have become a rising focus in material science
over the past two decades (Kadic et al., 2019). Early design efforts relied heavily on human expertise
and manual construction, but the emergence of machine learning has enabled data-driven approaches
to accelerate discovery. Existing methods largely fall into two categories: modeling metamaterials
as 3D graphs (Zhan et al., 2025; Bastek et al., 2022; Maurizi et al., 2025), or designing 2D patterns
that are extruded uniformly along a third axis (Kollmann et al., 2020; Tian et al., 2022; Wilt et al.,
2020). Graph representations provide an abstract and interpretable view of metamaterials, yet they
lack the ability to express fine-grained geometric details, as edges are usually instantiated as simple
primitives like cylinders or cuboids. In contrast, 2D pattern-based designs construct a repeating pla-
nar motif and then extrude it uniformly along the third axis to form a 3D structure. Such designs
can achieve superior performance in the two in-plane directions defined by the patterned motif, but
along the extruded axis the properties remain largely unchanged from the base material, offering
little improvement. Recently, voxel representation (i.e., discretizing a cubic space into small cells
marked as void or solid) has become an arising research direction for metamaterial. There are only
a few attempts (Zheng et al., 2023b; 2025; Yang et al., 2024) following this direction by naively
adapting 3D generation models from computer vision domain to the metamaterial domain, without
specifically catering the need and nature of metamterial. Therefore, this research direction is still
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largely under-explored. Unlike other modalities that are tailored to specific classes of metamaterials
(e.g., graphs for trusses, images for 2D designs), voxel representation serves as a unified format
capable of expressing all kinds of metamaterials, including truss-based, shell-based, porous, 2D,
kirigami metamaterials, etc. This makes it a compelling modality for comprehensive design and
evaluation.

Despite its promise, voxel representation also introduces a major challenge: the generalization
dilemma. For example, at a resolution of 64 per axis, there are 264

3

possible configurations. How-
ever, against the high number of configurations, voxel datasets are costly to build and store and
therefore are limited in size (around 10,000). As a result, valid designs occupy only a tiny fraction
of the voxel space, preventing machine learning models from smoothly approximating the underly-
ing distribution. Consequently, generative models tend either to memorize training samples and lose
novelty, or to produce invalid outcomes such as pure voids or solids. Current voxel-based approaches
remain limited: some adapt diffusion models to the voxel domain (Zheng et al., 2025; Yang et al.,
2024), while others employ generative adversarial networks (Zheng et al., 2023b). These methods
attempt to approximate valid distributions directly, without explicitly addressing sparsity, and thus
remain vulnerable to the generalization dilemma.

Formally, we identify two key challenges for voxel-represented metamaterial design. (C1. Gen-
eralization Dilemma): the vast design space versus limited training data forces generative models
to either reproduce seen samples with high fidelity or produce unseen ones of poor quality (as ob-
served in our experiments). (C2. Lack of Benchmark): to the best of our knowledge, only Yang
et al. (2024) provides a public dataset of shell-type metamaterials, which is large enough to train
deep generative models. However, there are various metamaterials of other types, like truss-based
metamaterials. Besides, there is also a lack of comprehensive evaluation system. Therefore, a sys-
tematic benchmark is needed to support voxel-represented metamaterial design.

To address C1, we propose VOXPLORER, a generative framework that combines latent regulation
and exploration. VOXPLORER encodes voxel structures into a low-dimensional latent space via
an autoencoder, then applies a novel repel-and-sink (RAS) mechanism to smooth and densify the
distribution of valid samples, mitigating sparsity and enhancing validity. To further promote gen-
eralization, we introduce short-range repulsion (SRR) guidance into the diffusion process, which
discourages generation near memorized samples and drives exploration into less-populated regions
of the design space. To address C2, we construct so far as we know the first publicly available voxel
dataset of considerably large size for truss-based metamaterials and propose five metrics to jointly
evaluate quality, novelty, and diversity.

Through extensive experiments on our dataset and the dataset from Yang et al. (2024), we show that
VOXPLORER significantly outperforms state-of-the-art voxel-based baselines, improving quality by
8.9%, novelty by 46.4%, and diversity by 128.6% on average across both datasets. Additional anal-
yses and visualizations of the latent space and generated structures further verify the effectiveness
of RAS for latent regulation and SRR for exploratory generation.

2 PRELIMINARY
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Figure 1: Unit cell and lattice of meta-
materials.

This section introduces the concept of metamaterials,
their voxel representation, relevant generative models,
and the overall problem definition.

2.1 VOXEL-REPRESENTATION
FOR METAMATERIALS

Metamaterials are artificial micro-structures composed of
substrate material (e.g., plastics, metals, ceramics). Their
geometry can be naturally described by unit cell U and
lattice l = (lx, ly, lz) ∈ R3, where U defines the distri-
bution of substrate material within a cube or cuboid unit,
and l specifies repetition intervals along the x, y, and z
axes (Figure 1). A design can therefore be denoted as
M = (U, l). In this work, U is expressed in voxel form

2
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as a binary tensor U ∈ Bd3

where B = {0, 1} and d is the voxel resolution. We denote the dataset
of unit cell samples U as U .

2.2 RELATED MODELS FOR VOXEL GENERATION

Autoencoders (AEs). An AE maps voxel data to a latent space via an encoder E and reconstructs
it with a decoder D. Training minimizes reconstruction loss:

Lrecon =
1

N

N∑
i=1

||D ◦ E(Ui)−Ui||, (1)

where Ui is the ith voxel-represented sample, N the dataset size, and · ◦ · is the composition of
two functions. The latent variable is xi = E(Ui). To enable generation, the latent distribution x
must be specified or approximated. For instance, variational AEs (VAEs, Kingma & Welling (2013))
regularize x to a Gaussian, sampling x ∼ N (0, 1) for decoding.

Diffusion Models. Diffusion connects arbitrary data distributions with Gaussians via reverse de-
noising. Following DDPM (Ho et al., 2020), each denoising step can be expressed as:

xt−1 =
1√

1− βt

(
xt −

βt√
1− α2

t

ϕdiff(xt, t)

)
+ ρtϵ, (2)

where ϕdiff is the diffusion model, ϵ Gaussian noise, and αt, βt, ρt hyperparameters. Diffusion can
also model latent spaces, referred as latent diffusion models (Rombach et al., 2022).

2.3 PROBLEM DEFINITION

Given challenge of the generalization dilemma, the problem we are tackling is to generate samples
preserving both quality and novelty to the largest extent. Besides, since it is not ideal for the gen-
eration results to converge to only a few similar samples, we also need to consider the diversity of
generated samples. This can be expressed as a multi-objective problem where the quality, novelty
and diversity are regarded as design objectives. Quality evaluates the degree to which a sample
is valid, usually appearing as the periodicity, symmetry and connectivity of the structure. Novelty
evaluates how much a sample is different from known samples, so it is defined with respect to a
certain dataset. Diversity evaluates how different the samples are from each other, measured as the
fraction of design space covered by the generated samples. In summary, the problem is as follows:

Benchmarking Voxel-represented

Metamaterial Generation

Unified Data

Format:

U = {0,1}𝑑
3

Implemented 

with

Various Data Sources

MetaShell MetaTruss

? Meta…

Data Module

Symmetry

Score

Periodicity

Score

Connectivity

Score

Novelty

Score

Diversity

Score

Evaluation Module

Figure 2: Benchmark Development.

Problem Definition. Let f denote a genera-
tive model defined as U = f(x). The objective
is to identify an f that maximizes performance
across all the three aspects: quality, novelty,
and diversity.

3 BENCHMARK DEVELOPMENT

To the best of our knowledge, there is only one
publicly available voxel-represented metamate-
rial dataset from Yang et al. (2024). Besides,
the evaluation for generated metamaterial de-
signs are mostly conducted by visualization and
human assessment, so a comprehensive eval-
uation framework is still lacking. To enable
a systematical study of metamaterial design
in voxel-representation, we propose the first
systematical benchmark to provide data sup-
port and result evaluation for voxel-represented
metamaterial design.

3.1 DATASET DEVELOPMENT

We propose a unified voxel-based representation for metamaterial datasets. To the best of our knowl-
edge, the only existing voxel dataset is MetaShell (Yang et al., 2024), which contains shell-type
metamaterials where unit cells are defined by curved surfaces. While valuable, this dataset covers
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Figure 3: An overview of the proposed framework VOXPLORER. It encodes voxel structures into
latent space, applies RAS for latent regulation, and employs SRR-guided diffusion to explore and
decode novel yet valid metamaterials.

only one class of designs. Truss-based metamaterials represent another critical category for me-
chanical applications (Mizzi & Spaggiari, 2020; Song et al., 2025), yet existing truss datasets rely
on graph representations (Lumpe & Stankovic, 2021; Bastek et al., 2022), which are natural for de-
scribing connectivity but lack fine-grained geometric detail. Reformatting truss structures into voxel
space not only unifies them with shell-type metamaterials under a common representation, but also
enables richer structural details. To close this gap, we construct the first truss-based voxel dataset,
which we call MetaTruss. MetaTruss is derived from (Lumpe & Stankovic, 2021), where original
samples are provided in 3D graph form. Each unit cell is discretized into a 483 voxel grid: voxels
lying within a truss radius of any graph edge are marked as solid, while all others remain void. Fol-
lowing this procedure, we process the first 10,000 samples from (Lumpe & Stankovic, 2021) and
apply rotational augmentation to expand the dataset to 60,000 samples. Together with MetaShell
reformatted into voxel space, our benchmark establishes a unified data module that remains compat-
ible with future metamaterial datasets. More details are in Appendix C.

3.2 EVALUATION MECHANISM

To systematically evaluate the generated metamaterial structures, we propose five metrics from three
aspects. Quality Scores: we propose symmetry score Ssym to evaluate central symmetry degree of
a structure; periodicity score Sper to evaluate how similar each facet of the cube frame is to its
parallel counterpart; connectivity score Scon to evaluate how well the structure is connected, i.e.,
the fraction of the largest connected bulk in Usolid. Novelty Score: we propose Snov to evaluate the
IoU distance between a sample and its nearest neighbor in the training dataset. Diversity Score: we
propose Sdiv to evaluate how many different samples in the training dataset function as a nearest
neighbor of a generated sample, and divide this number by the number of generated samples. More
details regarding the dataset and metric development can be found in Appendix C.

4 METHODOLOGY

This section introduces our framework, VOXPLORER. We begin with a high-level overview, then
describe the autoencoder that maps voxel structures into a low-dimensional latent space. We next
present the RAS mechanism, which regularizes this space to separate valid and invalid regions,
followed by a latent diffusion process with SRR that promotes exploration for novel designs. An
optional refinement module further improves voxel-level quality. Each subsection details the pur-
pose and technical design of these components.

4.1 FRAMEWORK OVERVIEW.
The main challenge in voxel-based metamaterial generation is the generalization dilemma (C1):
models trained on a small fraction of the design space because of costly and limited data either overfit
to training samples, losing novelty, or produce invalid structures when exploring. VOXPLORER tack-
les this in two steps. First, an autoencoder maps voxels into a compact latent space regulated by the
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RAS mechanism, which separates valid from invalid regions, prevents mode collapse, and densifies
the feasible manifold. This alleviates the influence of small perturbations on decoding the latents,
improving robustness and generalization. Second, a latent diffusion model with SRR guidance dis-
courages samples too close to training data, pushing exploration toward less-populated yet feasible
regions. Together, RAS provides stability and SRR drives exploration, directly addressing C1 and
enabling VOXPLORER to balance quality, novelty, and diversity.

4.2 AUTOENCODING WITH RAS LATENT REGULATION

No 

Regulation

Add IeR

Add IaR

Add CS

Entire RAS 

(All Three 

Mechanisms)

Figure 4: Illustration of the effect of RAS and its
components.

To mitigate the high dimensionality of voxel
representation, we use an AE to compress voxel
data into a low-dimensional latent space. How-
ever, simply regularizing the latent distribution
(as in VAEs) often reduces generation qual-
ity, since metamaterials must satisfy strict con-
straints like periodicity, where even slight struc-
tural deviations (e.g., isolated “floating” clus-
ters) are invalid. Prior AE-based methods lack
tailored latent regulation, resulting in a latent
space where valid and invalid regions are en-
tangled. Such entanglement may lead to failed
designs. To address this issue, we propose the
RAS mechanism, which disentangles valid and
invalid regions in the latent space through three
component mechanisms: inter-class repulsion (IeR), intra-class repulsion (IaR), and central sink
(CS). We first synthesize negative voxel samples from ground-truth structures to train the separation.
Let Upos, Uneg, and U = Upos ∪ Uneg denote the positive, negative, and full datasets. Encoding U
with E yields latent datasets X , with Xpos and Xneg denoting the positive and negative subsets.

Inter-Class Repulsion.1 IeR mechanism aims to simplify the decision boundary between Xpos

and Xneg by adding inverse-square repulsion similar to Coulomb repulsion (Anisimov et al., 2009):

Finter(Xpos,Xneg) =

|Xpos|∑
i=1

|Xneg|∑
j=1

xpos,i − xneg,j

||xpos,i − xneg,j ||3
, (3)

where xpos,i and xneg,j are the ith positive latent sample and jth negative latent sample, respectively.
The simulated distribution of adding IeR alone can be found in Figure 4. In order to use IeR to
optimize the latent distribution, we can minimize the integral of Finter, i.e., the Coulomb potential:

Pinter(Xpos,Xneg) =

|Xpos|∑
i=1

|Xneg|∑
j=1

||xpos,i − xneg,j ||−1. (4)

Intra-Class Repulsion. As illustrated in Figure 4, using IeR alone can simply the decision bound-
ary, but it drives the two classes into two distant clusters. In this case, only a small portion of the
latent space is covered, so the decoder may not generalize to the majority of the latent space. There-
fore, when the latent generator touches the region out of the two clusters, the decoder will not be
able to decode the latent well. To solve this problem, unlike contrastive learning which tries to bring
positive latents to each other even more closely (Saunshi et al., 2019), we propose IaR mechanism
to avoid the converging tendency of each cluster. Similar to IeR, IaR and its potential are:

Fintra(Xpos/neg) =

|Xpos/neg|∑
i,j=1;i ̸=j

xpos/neg,i − xpos/neg,j

||xpos/neg,is− xpos/neg,j||3
. (5)

Pinter(Xpos/neg) =

|Xpos/neg|∑
i,j=1;i<j

||xpos/neg,i − xpos/neg,j||−1 (6)

1In this paper | · | means the sum of all elements if a tensor is inside (e.g., U), or the cardinality of a set
when a set is inside (e.g., U).
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Central Sink (CS). IeR and IaR will simplify the latent decision boundary and avoid intra-class
convergence, but they will also force the latents to be too far from each other, which will sparsify
the latent distribution. In order to alleviate this problem, we propose CS mechanism to attract all the
latents to the origin. Let xi be the ith latent variable, the force and potential of CS are:

Fsink(X ) =

|X|∑
i=1

xi, and Psink(X ) =

|X|∑
i=1

||xi||2. (7)

The effect of adding CS alone are also shown in Figure 4. When combining all three mechanisms
together, we use different coefficients to tune strength of them. Note that the IaR should be sig-
nificantly weaker than the IeR, or a latent sample will experience strong repulsion from both its
“peers” and “opponents”, which means the decision boundary will not be simplified. The strength
of CS, however, had a less strict constraint and has a large valid range. A stronger CS will make the
absolute value of the latents smaller, vice versa. The RAS loss can therefore be defined as:

LRAS = λinterPinter(Xpos,Xneg) + λintra(Pintra(Xpos) + Pintra(Xneg)) + λsinkPsink(X ), (8)

where λinter, λintra and λsink are hyperparameters. Then we can obtain the total loss function for
training the autoencoder:

Lauto = λreconLrecon + λRASLRAS, (9)

where Lrecon is defined in Equation 1, λrecon and λRAS are two hyperparameters.

Combining the three mechanisms into the entire RAS mechanism will regulate the latent space
derived by AE so that the valid and invalid region are disentangled and pushed away from each other,
making the valid samples in a dense distribution while still maintaining some distance between valid
samples to avoid latent space clapse with all the latents converging to a small region.

4.3 LATENT DIFFUSION WITH SRR GUIDANCE

The RAS mechanism regulates the latent distribution so that the latent decision boundary is sim-
plified, which means the decoder is more robust to variations of latents around the positive latent
sample cluster. In this case, we can use diffusion models to approximate the latent distribution and
connect it with a Gaussian distribution for sampling’s sake. However, the vanilla diffusion paradigm
like DDPM, without further guidance, can still fall into the generalization challenge because the
seen samples are usually in the region where the generation probability is high and hence will tend
to be reproduced by the diffusion model.

To address this issue, we introduce a repulsion force between the sample being generated and the
latents of known samples, guiding the diffusion process toward unexplored regions of the latent
space where novel designs may emerge. Crucially, this repulsion must be short-ranged: if it extends
too far, the generated sample could be pushed entirely out of the valid region, resulting in invalid
outputs. Building on this idea, we propose the SRR mechanism (Figure 3), which augments the
DDPM model with an additional SRR guidance term. Based on Equation 2, the denoising step of an
SRR-guided DDPM can be expressed as:

xt−1 =
1√

1− βt

(
xt −

βt√
1− α2

t

ϕdiff(xt, t)

)
+ ρtϵ

+ λSRR

Npos∑
i=1

xpos,i − xt

||xpos,i − xt||
lim

δ→0+
log−1 max(δ, 1− ||xt − xpos,i||/τ), (10)

where λSRR and τ are two hyperparameters controlling the SRR guidance strength. The SRR guid-
ance (last term in Equation 10) introduces an additional force that pushes the latent variable xt away
from the known latents. The logarithmic formulation ensures that this repulsion decays rapidly with
distance, aligning with the intuition that only nearby samples should have influence. In practice,
computing distances to all known latents is prohibitively expensive, so we cluster the known latents
before training the diffusion model. During denoising, clusters outside the neighborhood of the cur-
rent latent variable are ignored by the SRR mechanism, reducing computational cost. Importantly,
SRR guidance is applied only at inference for latent space exploration, while the training scheme
follows the standard DDPM paradigm.

To sum up, we introduce the RAS mechanism into the functioning flow of AE to obtained a latent
space where the valid latents are densely and smoothly distributed and away from invalid latents,

6
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Table 1: Performance Evaluation of Different Approaches

Approaches Quality Scores Novelty Score Diversity Score

Ssym ↑ Sper ↑ Scon ↑ Mean ↑ Snov ↑ Sdiv ↑
MetaTruss (ours)

DiT-3D (Mo et al. (2023)) 0.358 0.248 0.500 0.369 0.003 0.010
Y. Yang et al. (Yang et al. (2024)) 0.800 0.585 0.494 0.626 0.163 0.158
XCube (Ren et al. (2024)) 0.506 0.525 0.522 0.518 0.000 0.004
Trellis (Xiang et al. (2025)) 0.081 0.063 0.133 0.092 0.000 0.001
3D-CDM (Zheng et al. (2025)) 0.470 0.270 0.999 0.580 0.000 0.001
VOXPLORER (ours) 0.718 0.487 0.969 0.725 0.296 0.420

MetaShell (Yang et al., 2024)

DiT-3D (Mo et al. (2023)) 0.465 0.259 0.704 0.476 0.023 0.013
Y. Yang et al. (Yang et al. (2024)) 0.922 0.791 0.991 0.901 0.342 0.409
XCube (Ren et al. (2024)) 0.522 0.523 0.526 0.524 0.000 0.005
Trellis (Xiang et al. (2025)) 0.795 0.576 0.999 0.790 0.103 0.032
3D-CDM (Zheng et al. (2025)) 0.668 0.529 0.999 0.732 0.390 0.113
VOXPLORER (ours) 0.923 0.856 0.978 0.919 0.380 0.783

which facilitates the generation process. In such a latent space, we use latent diffusion with SRR
guidance to drive the latent variable away from being very close to known samples, so that the
chance of generating novel samples by latent space exploartion is increased.

5 EXPERIMENTS

In this section, we evaluate VOXPLORER for its ability to generate high-quality and novel metama-
terials. We compare against state-of-the-art baselines using quality, novelty, and diversity metrics,
and present ablation studies on the RAS regulation and SRR guidance. Finally, we analyze model
capacity sensitivity and visualize generated samples to show the achieved quality-novelty balance.

5.1 OVERALL COMPARISON

We evaluate VOXPLORER against five voxel-based generative baselines: DiT-3D (Mo et al., 2023),
Yang et al. (Yang et al., 2024), XCube (Ren et al., 2024), Trellis (Xiang et al., 2025), and 3D-
CDM (Zheng et al., 2025). The experiments are conducted on our proposed benchmark, which in-
cludes the MetaTruss and MetaShell datasets, and the task is unconditional voxel-based metamaterial
generation. Performance is assessed using five complementary metrics covering three dimensions:
structural quality (Ssym, Sper, Scon), novelty (Snov), and diversity (Sdiv). All models are trained
and evaluated on a single NVIDIA A100 GPU (except XCube whose large model size requires two
A100 GPUs). To compare the generation capability of VOXPLORER with other baseline models, we
train each model on each of the two datasets and compute the five metrics for the generation results.
Specific results are shown in Table 1.

Across both MetaTruss and MetaShell datasets, VOXPLORER achieves the best balance of quality,
novelty, and diversity. On MetaTruss, it delivers competitive quality while substantially outperform-
ing baselines in novelty and diversity, avoiding the memorization observed in prior methods. On
MetaShell, it matches or exceeds state-of-the-art quality and more than doubles diversity, show-
ing that RAS ensures validity and SRR promotes exploration. Together, these results confirm that
VOXPLORER resolves the quality–novelty trade-off better than existing voxel-based approaches.

5.2 ABLATION STUDY

The experiments in this section is done on MetaTruss, with more results on MetaShell available in
Appendix D.

Latent Space Regulations Comparison. To verify the effect of our proposed RAS mechanism,
we train the autoencoder and visualize the latent space (after compressed by principal component
analysis (PCA)), under three different cases: (1) autoencoder without latent regulation; (2) with
contrastive regulation (Saunshi et al., 2019); (3) with RAS regulation. The latent distribution in the
three cases are shown in Table 2. From the first column of Table 2, we can see that without any
regulations, the autoencoder will not distinguish between the positive and negative latents, so that
the distributions of these two classes will be mingled together, hence harming the generation quality.
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Table 2: Latent distribution visualization and generated samples with RAS regulation, or contrastive
regulation, or without regulation. Reg. denotes regulation, and Contra. denotes contrastive.

Latent Regulation PCA of Latent Distribution Generated Structures

RAS Reg.

Contra. Reg.

w/o Reg.

With contrastive regulation, latents within the same class are pulled tightly together, while samples
from different classes are pushed into two distant regions. Therefore, the two classes converge
towards two small regions of the entire latent space. With our proposed RAS, the positive and
negative latents are well separated, while the bulk of the latent space is smoothly distributed to
increase the robustness of decoding the latents. In case (1) and (2), the decoded voxel structures are
of poor quality. In contrast, RAS produces diverse and relatively well-formed geometries, showing
that robust latent separation improves quality and diversity of generation. Besides visualization,
results in the second row of Table 3 verify the effectiveness quantitatively.

Table 3: Ablation on RAS regulation and SRR diffusion.

Approaches Quality Scores Novelty Score Diversity Score

Ssym ↑ Sper ↑ Scon ↑ Mean ↑ Snov ↑ Sdiv ↑
Case 1 (RAS + vanilla DDPM) 0.753 0.632 0.885 0.757 0.208 0.336
Case 2 (w/o reg + SRR Diff.) 0.873 0.801 0.295 0.656 0.014 0.011
Case 3 (full framework) 0.718 0.487 0.969 0.725 0.296 0.420

SRR diffusion v.s. vanilla DDPM. Our high level aim is to explore the design space to generate
high quality and novel samples. To verify the exploration performance of SRR diffusion, we com-
pare two cases: (1) RAS + vanilla DDPM model; (2) RAS + SRR diffusion (our full framework).
We train the model under these two settings and the results are shown in Table 3. From Table 3 we
can see that SRR diffusion provides far higher novelty score and diversity score, while maintaining
the three quality scores close to vanilla DDPM. The deterioration of generation quality is reason-
able because vanilla DDPM tends to generate what the model has seen during training, therefore the
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quality can be higher. The results verified that SRR diffusion can indeed increase the novelty and
diversity of the generation process.

Model Capacity Sensitivity Analysis. We further study the effect of model capacity by increas-
ing or decreasing the number of layers in the autoencoder and diffusion backbone (Table 4). Results
show that changing the autoencoder depth only slightly alters quality, novelty, and diversity, indicat-
ing that encoding and decoding are relatively robust to capacity variations. In contrast, modifying
the diffusion backbone has a more pronounced impact: adding a layer improves novelty and diver-
sity, while removing a layer reduces both. This suggests that the diffusion model’s capacity is more
critical than that of the autoencoder, as it directly governs the ability to explore the latent space and
balance quality with novelty.

Table 4: Ablation on model capacity. Param. Num. denotes parameter number.

Approaches Quality Scores Novelty Score Diversity Score

Ssym ↑ Sper ↑ Scon ↑ Mean ↑ Snov ↑ Sdiv ↑
Increase AE Param. Num. 0.753 0.471 0.977 0.734 0.308 0.411
Decrease AE Param. Num. 0.688 0.479 0.953 0.707 0.280 0.413
Increase diff. Param. Num. 0.705 0.474 0.936 0.705 0.330 0.444
Decrease diff. Param. Num. 0.722 0.493 0.955 0.723 0.286 0.409
Original setting 0.718 0.487 0.969 0.725 0.296 0.420

6 RELATED WORK

3D Visual Content Generation. Generative modeling of 3D structures has advanced rapidly with
voxel-based autoencoders, implicit representations, and diffusion models. Early works such as voxel
GANs and VAEs (Wu et al., 2016; Brock et al., 2016) produced coarse but plausible shapes, while
point cloud and mesh models (Yang et al., 2019; Liu et al., 2023) improved geometric fidelity. Recent
diffusion-based approaches (Nichol & Dhariwal, 2021; Guan et al., 2023; Mo et al., 2023) achieve
state-of-the-art results in quality and diversity for generic 3D content. However, these methods
primarily target visual plausibility, whereas metamaterials impose stricter constraints: generated
designs must be mechanically valid and functionally novel. Thus, direct adoption of generic 3D
generation is insufficient, motivating domain-specific frameworks that explicitly regulate and guide
the design process.

Metamaterial Generation. AI-driven metamaterial discovery has explored multiple representa-
tions. Graph-based methods (Zhan et al., 2025; Xu et al., 2023; Zheng et al., 2023a) model unit cells
as nodes and edges, which is well-suited for truss-based designs and property prediction but strug-
gles with fine-grained geometry due to simplified primitives. 2D image–based approaches (Koll-
mann et al., 2020; Tian et al., 2022; Wilt et al., 2020) construct patterned planar motifs and extrude
them along one axis, enabling strong in-plane performance but limited improvement along the ex-
truded direction. Voxel-based approaches (Zheng et al., 2025; 2023b; Yang et al., 2024) offer a
unified representation that can express different metamaterials like truss, shell or porous within a
single discretization. Yet, current voxel generative models often face a quality–novelty trade-off:
bias toward training data yields high-fidelity but unoriginal structures, while exploration leads to
invalid designs.

7 CONCLUSION

In this paper, we introduced VOXPLORER, a framework for voxel-based metamaterial discovery
that integrates latent space regulation with diffusion-based exploration. With RAS, we disentangle
valid and invalid regions for robust decoding, and with SRR, we encourage exploration beyond mem-
orized designs while preserving feasibility. We also introduced the first publicly available large-scale
voxel dataset for truss-based metamaterials and a benchmark with metrics covering quality, novelty,
and diversity. Experiments on MetaTruss and MetaShell show consistent gains over state-of-the-art
baselines, confirming that VOXPLORER effectively balances quality, novelty, and diversity. This
work lays the foundation for systematic study of next-generation metamaterials.
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REPRODUCIBILITY STATEMENT

We provide material to ensure that our work is fully reproducible. In particular, we provide the
details on the model architecture, training scheme and benchmark in the Appendix. We will release
our code and benchmark upon paper acceptance.
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rnyakov, and SV Streltsov. Coulomb repulsion and correlation strength in lafeaso from density
functional anddynamical mean-field theories. Journal of Physics: Condensed Matter, 21(7):
075602, 2009.

Jan-Hendrik Bastek, Siddhant Kumar, Bastian Telgen, Raphaël N Glaesener, and Dennis M
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A MORE GENERATION RESULTS

A.1 GENERATION RESULTS FOR METATRUSS

Figure 5 show some generated samples from all baselines and our model, which are trained on
MetaTruss dataset.

(a) VOXPLORER (ours) (b) Dit-3D (c) Yang et al. (2024)

(d) XCube (e) Trellis (f) 3D-CDM

Figure 5: Generated samples on MetaTruss with different models.

(a) VOXPLORER (ours) (b) Dit-3D (c) Yang et al. (2024)

(d) XCube (e) Trellis (f) 3D-CDM

Figure 6: Generated samples on MetaShell with different models.
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Figure 7: Data creation for MetaTruss.

A.2 GENERATION RESULTS FOR METASHELL

Figure 6 show some generated samples from all baselines and our model, which are trained on
MetaShell dataset.

Remarks. The generation results of our VOXPLORER have both improved novelty and genuine
quality compared with other baselines. These results can serve as candidate novel designs for human
experts to evaluate or find inspiration from.

B DETAILS ON MODEL ARCHITECTURE AND TRAINING SCHEME

B.1 MODEL ARCHITECTURE

The encoder and decoder we use are two transformers of the same structure, which have 4 layers and
whose model dimension is by default 128. The latent space is also set to be 128-dimensional. The
voxel data are decomposed into patches with the size of 83, and flattened as the input to the encoder.
After the encoder E and before the decoder D, there is each an 2-layer multilayer-perceptron (MLP)
to resize the data to and from 128-dimensional.

The latent diffusion model we use has a backbone of MLP which has 16 layers and a model dimen-
sion of 512, with residual links connecting adjacent layers.

B.2 TRAIN SCHEME

The autoencoder is trained with RAS regulation. To enable this operation, we have to construct a
negative dataset and combine it with the initial positive dataset. The negative data are created by
noising each positive sample. We randomly select an eighth of the voxels and substitute them to
void or Gaussian noise or an eighth of another positive sample, or simply add Gaussian to the initial
values.

The diffusion model is trained following the DDPM paradigm, and the SRR mechanism only func-
tions in inference stage.

C DETAILS ON BENCHMARK

C.1 DATASET CREATION AND REPRESENTATION UNIFICATION

Our dataset is created based on the dataset from Lumpe & Stankovic (2021), which comprises over
17,000 samples in 3D graph representation (left side of Figure 7). We select the first 10,000 samples
from Lumpe & Stankovic (2021) and compute whether each voxel is close enough to any 3D edge
in the 3D graph. If the distance is less than a predefined radius (e.g., 0.06), then the voxel is decided
to be solid, or else the voxel is void. The distance δ between a voxel’s center c an edge whose
endpoints are p1 and p2 is:

δ =
||(p1 − c)× (p1 − p2)||

||p1 − p2||
, (11)

where × means outer product. Figure 7 gives an example of a structure before and after the above
operation.
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In the setting of our benchmark, the resolution of a voxel sample is determined to be 48. When
constructing MetaTruss dataset, we directly make the shape of data to be 483. The voxel
data in MetaShell is initially of shape 1283. To unify the data representation, we use “skim-
age.transform.resize” to resize the voxel data into the needed dimension with interpolation.

C.2 EVALUATION MODULE

The evaluation module of our benchmark systematically evaluates the voxel data from three aspects:
quality, novelty and diversity. For quality, we are inspired from Chen et al. (2025) where the symme-
try, periodicity and connectivity of the generated samples are calculated. However, the benchmark
in Chen et al. (2025) is designed for graph-representation. In this paper we generalize the idea to
voxel domain, and define the following three quality metrics:

Ssym(U
gen) = 1−

∑N
i,j,k=1 |u

gen
i,j,k − ugen

N+1−i,N+1−j,N+1−k|
2|Ugen|

}, (12)

Sper(U
gen) =

1

3

(
U|geni=1 ∩U|geni=N

U|geni=1 ∪U|geni=N

+
U|genj=1 ∩U|genj=N

U|genj=1 ∪U|genj=N

+
U|genk=1 ∩U|genk=N

U|genk=1 ∪U|genk=N

)
, (13)

Scon(U
gen) =

max
i

|Ci|

|Ugen|
, (14)

where Ssym measure the central symmetry degree, Sper measures the periodicity degree, and Scon

measures the connectivity degree; Ugen is a generated sample in voxel representation, Ci is the ith
cluster of connected voxels in Ugen, ugen

i,j,k is a voxel in Ugen whose indices are i, j, k, U|geni=1 is a
slice of voxels in Ugen whose the index along x axis is i = 1, and |Ugen| is the number of solid
voxels in Ugen.

For novelty we propose a distribution-based novelty score:

Snov(U
gen;Utrain) = 1− Ugen ∩Utrain

NN

Ugen ∪Utrain
NN

, (15)

where Utrain
NN is the nearest neighbor of Ugen in the training dataset U train.

For diversity we propose a distribution-based diversity score:

Sdiv(Ugen;U train) =
|L|

|Ugen|
, (16)

L =

{
li|li = arg max

l′∈{1,2,··· ,|Utrain|}

Ugen
i ∩Utrain

l′

Ugen
i ∪Utrain

l′
, i ∈ {1, 2, · · · , |Ugen|}

}
, (17)

where Ugen
i is the ith elements in the set of generated samples Ugen, Utrain

l′ is the l′th elements in
U train.

D MORE ABLATION RESULTS

In this section we provide some extra ablation results conducted on the MetaShell dataset.

Table 5: Ablation on RAS regulation and SRR diffusion.

Approaches Quality Scores Novelty Score Diversity Score

Ssym ↑ Sper ↑ Scon ↑ Mean ↑ Snov ↑ Sdiv ↑
Case 1 (RAS + vanilla DDPM) 0.935 0.884 0.930 0.916 0.305 0.625
Case 2 (w/o reg + SRR Diff.) 0.910 0.795 0.842 0.849 0.237 0.477
Case 3 (full framework) 0.923 0.856 0.978 0.919 0.380 0.783

E STATEMENT OF USE OF LARGE LANGUAGE MODELS (LLMS)
In this paper, we use LLMs only for polishing the words and checking for grammar errors. No
technical details concerns the contribution of LLMs.
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Table 6: Ablation on model capacity. Param. Num. denotes parameter number.

Approaches Quality Scores Novelty Score Diversity Score

Ssym ↑ Sper ↑ Scon ↑ Mean ↑ Snov ↑ Sdiv ↑
Increase AE Param. Num. 0.915 0.858 0.985 0.919 0.362 0.711
Decrease AE Param. Num. 0.894 0.823 0.963 0.893 0.363 0.742
Increase diff. Param. Num. 0.920 0.810 0.953 0.894 0.389 0.781
Decrease diff. Param. Num. 0.907 0.852 0.956 0.905 0.359 0.775
Original setting 0.923 0.856 0.978 0.919 0.380 0.783
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