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Abstract

Whole Slide Image (WSI) analysis is framed as
a Multiple Instance Learning (MIL) problem, but
existing methods struggle with non-stackable data
due to inconsistent instance lengths, which de-
grades performance and efficiency. We propose
a Distributed Parallel Gradient Stacking (DPGS)
framework with Deep Model-Gradient Compres-
sion (DMGC) to address the problem. DPGS en-
ables lossless MIL data stacking for the first time,
while DMGC accelerates distributed training via
joint gradient-model compression. Experiments
on Camelyon16 and TCGA-Lung datasets demon-
strate up to 31× faster training and a maximum
9.3% accuracy improvement compared to base-
line. To our knowledge, this is the first work to
solve non-stackable data in MIL while improving
both speed and accuracy.

1. Introduction
Multi-Instance Learning (MIL) has become essential in
Whole Slide Image (WSI) analysis for pathological diag-
nosis, as it can handle bags containing hundreds to thou-
sands of patch instances. WSIs, with ultra-high resolutions
(>100,000×100,000 pixels) and sizes up to several GBs,
offer rich histological information but introduce significant
computational challenges, especially in cancer subtype clas-
sification. MIL addresses this by dividing WSIs into patches,
selecting informative instances to form variable-length bags,
extracting instance-level features, aggregating them into
bag-level embeddings, and performing classification. MIL
frameworks such as CLAM Lu et al. (2021), which identifies
critical regions via interpretable heatmaps, and TransMIL
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Figure 1. A: Traditional MIL methods cannot stack data due to the
varying lengths of the data. B: The proposed framework paral-
lelizes the MIL models and stacks the gradients of these models,
thereby simulating data stacking and addressing this issue.

Shao et al. (2021), leveraging Transformers to model in-
stance correlations, exemplify high-accuracy solutions in
this domain. However, these methods are unable to ad-
dress the inherent non-stackability of MIL data. Due to the
variation in the number of instances per bag (ranging from
hundreds to thousands), conventional approaches are unable
to stack bags of different lengths into batches, necessitat-
ing sequential processing of individual bags, which brings
two critical bottlenecks: (1) Low training efficiency: The
inability to utilize GPU parallelism leads to prohibitively
long training times for large-scale WSI datasets Wen et al.
(2025)Bailly et al. (2022). (2) Unstable gradient estimation:
Sequential gradient updates rely on single-bag statistics,
introducing bias across non-identically and independently
distributed (non-IID) bags and hindering model convergence
Li et al. (2019). These two problems severely restrict the
performance and scalability of MIL models.

To tackle these challenges, we propose Distributed Parallel
Gradient Stacking (DPGS) and Deep Model-Gradient Com-
pression (DMGC). As shown in Figure 1, DPGS assigns
variable-length bags to submodels for parallel gradient com-
putation and aggregates gradients to emulate batch stacking
without changing the architecture. DMGC compresses gra-
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dients and parameters jointly, leveraging sparsity to update
only sparse parameters—reducing communication by 99.2%
at a 99.99% discard rate while maintaining convergence. On
Camelyon16 and TCGA-Lung, DPGS+DMGC improved
training speed by up to 31× and accuracy by up to 9.3%
over the unstacked MIL baseline.

The main contributions of this study are as follows:

• Distributed Parallel Gradient Stacking for MIL: The
first algorithm enabling efficient, lossless MIL data
stacking with multi-GPU(or single-GPU) / multi-node
training support.

• Deep Model-Gradient Compression: A novel compres-
sion strategy jointly optimizing gradient and model
parameter sparsity, achieving up to 99.2% communica-
tion reduction while maintaining convergence.

• Thoroughly validated on public WSI datasets (Came-
lyon16, TCGA-Lung) and distributed learning envi-
ronments, offering an efficient solution for large-scale
MIL training.

The paper’s organization is as follows: Section II reviews
MIL methods, distributed training, and gradient compres-
sion; Section III details DPGS and DMGC design with
mathematical proofs; Section IV evaluates the framework
on multiple WSI datasets across varied configurations; and
Section V concludes with future research directions.

2. Relate Work
2.1. Multi-Instance Learning

MIL provides a framework for analyzing complex data
structures containing multiple instances. Existing MIL
paradigms typically partition WSIs into localized instances
and perform bag-level predictions by aggregating instance-
level features. Attention-based MIL methods leverage at-
tention mechanisms for precise feature aggregation, demon-
strating strong performance in medical imaging applications
Shao et al. (2021); Zhu et al. (2024); Lu et al. (2021); Qu
et al. (2024); Tang et al. (2024); Wang et al. (2024b); Ilse
et al. (2018). Ilse et al. (2018) pioneered an attention-based
MIL architecture that improved both accuracy and inter-
pretability on biomedical datasets. Tang et al. (2024) in-
troduced pseudo-bag construction and dual-layer attention
mechanisms to mitigate data scarcity and overfitting, en-
hancing model generalizability. Graph-based approaches
Zheng et al. (2022); Li et al. (2024); Chan et al. (2023);
Hou et al. (2022); Zhao et al. (2023) further model instance
interactions using graph convolutional networks, achieving
state-of-the-art results in cancer subtyping and diagnosis.
However, these methods do not address a key MIL lim-
itation: variable bag lengths hinder efficient mini-batch

stacking, reducing computational efficiency, destabilizing
gradient estimation, and ultimately degrading convergence
speed and model accuracy.

2.2. Parallel Computing and Distributed Training

Distributed deep learning employs parallelization to address
efficiency and scalability challenges Anil et al. (2018); Dai
et al. (2019); Langer et al. (2020). Data parallelism remains
the mainstream strategy; Goyal et al. (2017) achieved 90%
scaling efficiency across 256 GPUs via linear learning rate
scaling. DistBelief Dean et al. (2012) confirmed feasibility
for large-scale applications. For models exceeding single-
device memory, model parallelism Rasley et al. (2020) par-
titions parameters across devices. Hybrid methods, such
as Megatron-LM Narayanan et al. (2021), combine tensor,
pipeline, and data parallelism (PTD-P) to sustain through-
put under memory constraints. Decentralized approaches
Lin et al. (2017) address privacy concerns via asynchronous
updates and the removal of parameter servers Recht et al.
(2011).

However, existing frameworks are ill-suited for MIL. Al-
though DistBelief Dean et al. (2012), Megatron-LM Shoeybi
et al. (2019), and DeepSpeed Wang et al. (2024a) excel in
LLMs and standard tasks, their Transformer-centric designs
and batch-based assumptions misalign with MIL. While
P-MIL Xu et al. (2017) and MIBP Li et al. (2012) offer tai-
lored solutions, they lack neural MIL compatibility or adapt-
ability to modern models. This incompatibility brings two
challenges: (1) architectural mismatch with MIL’s instance-
level interactions, and (2) inefficient use of resources due
to variable-length bag-instance structures that break batch
uniformity.

2.3. Gradient Compression

Gradient compression techniques reduce communication
overhead in distributed training through sparsification Abra-
hamyan et al. (2021); Chen et al. (2018); Dryden et al.
(2016); Wang et al. (2020), quantization, low-rank approxi-
mation, and error compensation. Top-k sparsification Aji &
Heafield (2017) and Deep Gradient Compression (DGC) Lin
et al. (2017) achieve high compression ratios by preserving
critical gradients. Quantization methods such as 1-bit SGD
Seide et al. (2014) and QSGD Alistarh et al. (2017) balance
communication cost with model fidelity. Low-rank approxi-
mation Vogels et al. (2019) reduces transmission dimensions
via matrix factorization, while error feedback mechanisms
Karimireddy et al. (2019) preserve convergence by accumu-
lating untransmitted gradients. Hybrid approaches like DGC
Lin et al. (2017) combine sparsification with momentum
correction to maintain accuracy under extreme compression.

Despite these advances, gradient compression remains
largely unexplored in MIL contexts. Current MIL method-
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Figure 2. The proposed DPGS framework begins by parallelizing models and feeding variable-length data packets for gradient computation.
Gradients from parallel models undergo DMGC compression prior to transmission to the master server. The master server aggregates
gradients, updates models, applies DMGC compression to weights, and returns them to training servers. Red-numbered annotations in
the figure depict the training loop process, with model replication occurring solely during initialization. Multi-threaded validation runs
concurrently with the master process.

ologies typically operate in non-distributed settings, over-
looking the optimization potential of gradient manipulation
in distributed environments.

3. Method
This study proposes a gradient-based approach to address
MIL sample stacking with inconsistent bag lengths. A dis-
tributed gradient aggregation architecture enables parallel
processing, improving stacking efficiency and accelerating
training. The proposed DMGC reduces bandwidth via dual
sparsity (gradients / weights) and improves convergence.
These innovations resolve non-stackable data issues and en-
hance WSI model performance. See Figure 2 and Algorithm
1 for details.

3.1. Preliminaries

In MIL, datasets typically consist of multiple bags, with
each bag containing several instances. A dataset D can be
represented as D = {(Xj , Lj)}Nj=1, where Xj = {xj,i}

Ij
i=1

represents the j-th bag, which contains Ij instances, and Lj

is the label of the bag. Here, xj,i denotes the i-th instance
of the j-th bag. The number of instances Ij may vary across
different bags X . This inconsistency in bag length makes
it challenging to stack the instances of multiple bags into a
unified tensor during the training process, thus affecting the

efficiency of parallel computation and model training. For
example, consider two bags:

X1 = {x1,1, x1,2, . . . , x1,I1} (1)
X2 = {x2,1, x2,2, . . . , x2,I2} (2)

where I1 ̸= I2. As a result, X1 and X2 cannot be directly
stacked into a batch tensor X , presenting challenges for par-
allel computation and accelerating training in MIL models.

3.2. Distributed Parallel Gradient Stacking

Given model parameters θ(t), a sample set X is distributed
across P sub-processes M for parallel computation. Each
sub-process processes a sub-sample XP , sub-label LP , com-
putes loss Lp and gradient ∇θLp, sends the gradient to the
master, and clears its local state without updating. The mas-
ter using a stacking function S(·), updates the parameters,
and broadcasts the updated θ(t+1). The overall training
process DPGS(θ(t), X, P, η,M) is described as:

θ(t+1) = θ(t) − η · 1
P

P∑
p=1

∇θLp(Mp(θ
(t), Xp), Lp) (3)

where the gradient stacking function S(·) is defined as:

S (∇θL1,∇θL2, . . . ,∇θLP ) =
1

P

P∑
p=1

∇θLp (4)
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3.2.1. EQUIVALENT DERIVATION OF DPGS AND
MINI-BATCH

In DPGS, each of the P subprocesses handles a bag Xp

and computes the loss Lp and its gradient ∇θLp. If the
loss function is an average, the main process averages all
subprocess gradients to obtain the global gradient:

∇θLstacked =
1

P

P∑
p=1

∇θLp (5)

In traditional mini-batch training using the mean-based loss
function, the P samples {X1, X2, . . . , XP } are stacked into
a single mini-batch B, and the total loss is computed as:

Lbatch =
1

P

P∑
p=1

Lp (6)

Then, the mini-batch gradient is calculated:

∇θLbatch = ∇θ

(
1

P

P∑
p=1

Lp

)
=

1

P

P∑
p=1

∇θLp (7)

By comparison, we find:

∇θLbatch = ∇θLstacked (8)

Thus, these two methods are equivalent in model training.
After obtaining the gradients, we update the model weights:

θ(t+1) = θ(t) − η ·

(
1

P

P∑
p=1

∇t
θLp

)
(9)

Here, we use SGD for the mathematical equivalence deriva-
tion, but in practice, any optimizer can be used to update the
model.

3.3. Deep Model-Gradient Compression

Distributed training incurs high bandwidth usage due to gra-
dient and weight transmission Dean et al. (2012). DGC Lin
et al. (2017) addresses this by sending only large-magnitude
gradients and accumulating residuals, achieving dual spar-
sity. We propose DMGC, an improved version of DGC that
transmits weight deltas instead of full weights (Algorithm
1), further reducing bandwidth without sacrificing training
stability.

Algorithm 1 DPGS Algorithm with DMGC
Input:
X : Input data samples
Y : Ground truth labels for the training data
P : Number of subprocesses for parallel computation
η : Learning rate
M : Model function used for training
k : Top-K ratio for gradient compression
thrclip : Gradient clipping threshold
Initialize parameters: θ(0), θComp, resp = 0
Training Service:
while not converged do
θDMGC ← Decompress(θComp)
θ(t) ← θ(t−1) + θDMGC

resp ← 0
for each p = 1 . . . P do
Xp ← Subset of X
Gp ← ∇θL(M(θ(t), Xp), Yp)
Gcomb

p ← Gp + resp
for each i ∈ len(Gcomb

p ) do
thrp ← k% of |Gcomb

p |
mask ← |Gcomb

p [i]| > thrp
Gmask

p ← Gcomb
p [i]×mask

resp[i]← Gcomb
p [i]−Gmask

p

end for
GDMGC

p ← Clip(Gmask
p , thrclip)

GComp ← Compress(GDMGC
p )

Send GComp to master
Gp ← 0

end for
Wait for synchronization with Master Service

end while
Master Service:
while not converged do

for each p = 1 . . . P do
Receive GComp from Training Service
GDMGC

p ← Decompress(GComp)
end for
Gglobal ← η · 1

P

∑P
p=1 G

DMGC
p

θ(t+1) ← θ(t) − η ·Gglobal

θDMGC ← θ(t+1) − θ(t)

θComp ← Compress(θDMGC)
Send θComp to all Training Service
Check convergence condition

end while

3.3.1. VIRTUAL BATCH IN DMGC

DMGC and related locally accumulated gradient compres-
sion methods (e.g., DGC) transmit only gradients exceeding
a preset threshold, while accumulating sub-threshold up-
dates locally until they surpass it, drastically reducing com-
munication bandwidth. Through multi-round accumulation,
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this process is mathematically equivalent to using larger
batch sizes. Within the DPGS framework, the learning rate
can still follow linear scaling rules despite gradient accu-
mulation. The following derivation clarifies this behavior
under DPGS.

Consider the update process for a specific component θ(i) of
the model parameters θ. Assume there are P subprocesses,
each processing a batch Xp and computing its correspond-
ing loss Lp and gradient∇θLp. After introducing DMGC
within the DPGS framework, only gradients that exceed the
threshold are transmitted, while other gradients are accu-
mulated locally in the subprocesses. After T local gradient
accumulations, a global update is performed, and the mathe-
matical expression for this is:

θ
(i)
t+T = θ

(i)
t − ηT · 1

PbT

P∑
p=1

(
T−1∑
τ=0

∇(i)L(t+τ)
p

)
(10)

Here, η represents the learning rate, P is the number of
subprocesses, b is the batch size each subprocess handles
(in MIL, b = 1), and T is the gradient accumulation inter-
val. This equation indicates that within a gradient update
interval of T , each subprocess accumulates gradients from
T iterations, which are then applied to a single global up-
date. Originally, the effective batch size per iteration is P · b,
but after T accumulations, it is equivalent to expanding
the batch size to P · b · T . Therefore, each global update
implicitly uses a larger virtual batch size of P · b · T .

In large-batch training, learning rate scaling is typically
required for stability. However, as shown above, the learning
rate η×T and the scaled batch size P ·b·T effectively cancel
out. Thus, methods based on local gradient accumulation
(e.g., DMGC) inherently follow the linear scaling rule Goyal
et al. (2017), requiring no significant adjustment to maintain
stability and convergence.

3.4. Time Complexity Analysis

We analyze the computational efficiency of the DPGS frame-
work by comparing time complexities with conventional se-
quential training, noting that reduced time complexity does
not directly imply faster end-to-end training since gradient
quality and optimizer dynamics also influence convergence
rates.

Let N be the number of bags, with Tforward, Tbackward, and
Tupdate denoting the per-bag times for forward, backward
propagation, and parameter updates. Communication over-
head is Tcomm ∝M · (1/Cratio), where M is the number of
parameters, and Cratio is the gradient compression ratio.

Sequential training’s total time is:

Tserial = N · (Tforward + Tbackward + Tupdate), (11)

due to the inefficiency of processing variable-length bags.

DPGS enhances efficiency via gradient stacking and dis-
tributed computation. Each epoch processes P bags in
⌈N/P ⌉ rounds. Each round includes: 1. Parallel forward-
backward passes synchronized by the slowest gradient com-
putation, costing max(Tforward + Tbackward). 2. Sparse gra-
dient aggregation, costing Tcomm · (1/Cratio) + Tupdate. 3.
Global parameter updates, fixed at Tupdate.

The parallel time complexity is:

Tparallel =
N

P
(max(Tfwd + Tbwd) + Tc/Cr + Tu) . (12)

The theoretical speedup ratio is approximately:

P

1 + α
, (13)

where

α =
Tcomm ·M · (1/Cratio) + Tupdate

max(Tforward, Tbackward)
, (14)

with near-linear scaling when α≪ 1.

This analysis solely addresses per-iteration time reduction.
Actual training duration depends on convergence speed.
While increasing effective batch size via gradient accumula-
tion (e.g., P · T in DPGS) may reduce noise and accelerate
convergence, excessive noise suppression risks suboptimal
training, causing empirical rates to deviate from linear scal-
ing. For experimental results, please refer to 4.2.2

4. Experiments
4.1. Data

Table 1. Original data distribution of the datasets employed. No-
tably, the Camelyon 16 test set utilizes an officially predefined split,
comprising 38.92% tumor class and 61.71% normal tissue class. In
contrast, the TCGA-Lung dataset was randomly partitioned with
an 8:2 training-to-test ratio. IFL:Instance Feature Length

CLASSIFICATION TYPE I TYPE II IFL

C16 MULTISCALE 160 40.11% 239 59.89% 512
C16 IMAGENET 160 40.11% 239 59.89% 256
TCGA-LUNG MULTISCALE 534 51.05% 512 48.95% 1024
TCGA-LUNG UIN2 534 51.05% 512 48.95% 1536

Experiments on two public WSI datasets, using varied fea-
ture extraction strategies, effectively yielded four datasets
for analysis: Camelyon16 (C16) with single-scale ResNet50
(ImageNet-pretrained) and multiscale features, and TCGA-
Lung with multiscale features obtained from DS-MIL Li
et al. (2021) and single-scale features extracted by UIN2.
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Table 2. Experiments compare MIL methods’ accuracy/convergence time with/without DPGS on C16-Multiscale, C16-ImageNet, and
TCGA-Lung Multiscale, demonstrating DPGS’s dual improvement in accuracy and convergence speed. Table annotations: ” — ” indicates
model non-convergence (accuracy equals original data distribution, no convergence time recorded)∗ , while ”B” specifies batch size at
achieved performance levels.

DATA C16 MULTISCALE TCGA-LUNG MULTISCALE C16 IMAGENET PRETRAIN

FRAMEWORK METHOD ACCURACY TIME (S) ACCURACY TIME (S) ACCURACY TIME (S)

CLASSIC

ABMILILSE ET AL. (2018) 91.47% ±0.84 405.5 (B=16)
±11.1 92.38% ±0.23 636.3 (B=32)

±12.7 75.05% ±1.82 1177.2 (B=16)
±33.5

MEANMIL 61.71%∗ - 92.23% ±0.49 883.1 (B=32)
±67.7 61.71%∗ -

TRANSMILSHAO ET AL. (2021) 93.80% ±0.32 304.2 (B=16)
±6.1 92.39% ±0.22 397.5 (B=32)

±17.9 80.48% ±2.7 1163.1 (B=16)
±46.6

CLAM-MBLU ET AL. (2021) 93.02% ±0.96 499.3 (B=16)
±19.9 92.60% ±0.39 503.2 (B=32)

±10.1 78.91% ±3.6 1152.1 (B=16)
±53.8

ACMIL ZHANG ET AL. (2024) 94.40% ±0.64 953.4 (B=16)
±88.7 93.13% ±0.84 711.2 (B=32)

±61.23 81.31% ±0.41 2735.3 (B=16)
±46.32

RRTMIL TANG ET AL. (2024) 94.57% ±0.85 2462.1 (B=16)
±15.5 93.26% ±0.42 1923.8 (B=32)

±41.4 82.53% ±0.31 3099.1 (B=16)
±21.5

PADDING

ABMIL 92.23% ±0.58 1512.8 (B=16)
±40.2 91.43% ±0.26 1465.0 (B=32)

±99.3 82.48% ±2.79 9040.5 (B=16)
±280.8

MEANMIL 61.71%∗ - 90.00% ±0.33 1722.1 (B=32)
±64.4 61.71%∗ -

TRANSMIL 94.04% ±0.34 2912.8 (B=16)
±108.3 93.82% ±0.60 1054.1 (B=32)

±91.1 84.38% ±2.22 9754.0 (B=16)
±295.1

CLAM-MB 93.80% ±0.42 2737.1 (B=16)
±64.7 92.00% ±0.37 1063.2 (B=32)

±21.3 83.28% ±1.30 9700.1 (B=16)
±194.0

ACMIL 92.63% ±0.61 798.6 (B=16)
±35.79 93.33% ±0.87 2077.8 (B=32)

±99.1 84.77% ±0.36 9552.4 (B=16)
±103.7

RRTMIL 93.02% ±0.96 1299.3 (B=16)
±19.9 93.62% ±0.72 2872.1 (B=32)

±85.2 84.90% ±0.21 10023.1 (B=16)
±192.1

SAMPLING

ABMIL 84.58% ±1.56 3811.9 (B=4)
±23.1 92.45% ±0.59 3564.7 (B=8)

±18.6 73.84% ±1.50 22054.2 (B=4)
±101.0

MEANMIL 61.71%∗ - 87.46% ±3.22 4016.4 (B=8)
±36.3 61.71%∗ -

TRANSMIL 89.93% ±5.13 3721.6 (B=4)
±84.3 92.33% ±3.79 4316.3 (B=8)

±97.2 79.89% ±4.23 30281.9 (B=4)
±293.8

CLAM-MB 86.24% ±3.92 3012.7 (B=4)
±21.1 92.24% ±3.22 4416.2 (B=8)

±89.1 75.15% ±4.15 28231.3 (B=4)
±221.1

ACMIL 91.86% ±3.28 1088.8 (B=4)
±81.3 93.34% ±3.92 6461.2 (B=8)

±98.1 84.62% ±3.91 20112.2 (B=4)
±231.5

RRTMIL 91.74% ±7.04 6050.6 (B=4)
±29.2 93.66% ±3.01 6901.2 (B=8)

±100.3 84.79% ±4.06 32211.2 (B=4)
±425.1

DPGS+DMGC

ABMIL 94.04% ±0.14 29.3 (B=16)
±2.6 93.90% ±0.13 20.0 (B=32)

±2.4 84.38% ±1.04 92.4 (B=8)
±11.2

MEANMIL 71.33% ±0.02 104.1 (B=16)
±9.1 92.23% ±0.32 14.1 (B=32)

±2.3 65.63% ±0.90 122.2 (B=16)
±19.1

TRANSMIL 95.23% ±0.22 115.2 (B=16)
±12.3 94.70% ±0.41 48.6 (B=32)

±6.9 85.97% ±1.49 158.1 (B=8)
±15.2

CLAM-MB 93.82% ±0.64 28.1 (B=16)
±2.5 93.23% ±0.19 40.1 (B=16)

±7.6 83.59% ±1.23 109.2 (B=8)
±9.2

ACMIL 95.87% ±0.41 49.9 (B=16)
±12.8 94.79% ±0.49 67.3 (B=32)

±11.2 87.71% ±0.52 61.2 (B=16)
±17.2

RRTMIL 95.97% ±0.79 615.7 (B=16)
±16.5 94.90% ±0.38 570.1 (B=32)

±22.1 87.99% ±0.26 710.2 (B=16)
±38.1

Multiscale features were derived from multiple magnifica-
tions (e.g., 20×, 5×) and concatenated into a feature pyra-
mid. This approach preserves tissue details across scales
while optimizing feature usage via local attention, enhanc-
ing both classification and lesion localization. TCGA-Lung
UIN2 refers to features extracted by the UIN2 feature ex-
tractor on the TCGA dataset Chen et al. (2024). As shown
in Table 1, the scale, distribution, and feature diversity of
these datasets provide a robust benchmark for evaluating
model robustness.

4.2. Results of DPGS

4.2.1. DPGS VS PADDING VS SAMPLING VS CLASSIC

This study evaluates the DPGS framework and DMGC
through controlled experiments using three datasets from
Section 4.1. Metrics include classification accuracy and con-
vergence time, defined per Jahani-Nasab & Bijarchi (2024)
as the point when total loss remains below the 95th per-
centile across trials. Our experiments compare three base-
lines: 1. Classic 2. Padding: Applies zero-padding to
shorter bags for uniform length. 3. Sampling: Randomly
selects a fixed number of instances per bag.

Experimental Setup: 4 nodes, 10% DMGC retention,
4×NVIDIA V100 GPUs (32GB), 1000 Mbps bandwidth
(non-parallel baselines use a single GPU).

As shown in Table 2, DPGS boosts ABMIL accuracy on
TCGA-LUNG from 92.38% to 93.90% and speeds up con-
vergence by 31.8× (636.3s to 20.0s). On Camelyon16-
Multiscale, MeanMIL improves by 9.62% (61.71% to
71.33%). All baselines show accuracy and convergence
gains, highlighting DPGS’s generalizability. Table 3 con-
firms further performance improvements with the modern
feature extractor UNI2 Chen et al. (2024).Further evidence
of the generalisability of our approach.

Table 3. Performance of TCGA-LUNG Features Extracted by
UNI2 on ABMIL

Dataset TCGA-UNI2

Framework ACC Time

Classic 95.30% ± 0.71% 895.96 (B=1)
± 25.76

Padding 96.10% ± 0.65% 2767.9 (B=32)
± 54.42

Sampling 95.12% ± 0.11% 233.75 (B=32)
± 17.25

DPGS+DMGC 96.90% ± 0.31% 32.10 (B=32)
± 4.31

Further analysis reveals Bag Padding’s limitations: while
achieving a 2.37%–7.43% accuracy boost on Camelyon16-
ImageNet-Pretrain, it suffers a 3.2–8.4× slower conver-
gence compared to other baselines. We attribute this to:
(1) excessive zero-padding lowering information density
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and complicating convergence, and (2) data dimensional ex-
pansion increasing computation and memory costs. Table 2
confirms DPGS’s dual advantage over Bag Padding in both
accuracy and convergence, validating its optimized training
dynamics and improved generalization.

For Sampling, although this approach accelerates conver-
gence, it reduces classification accuracy and increases vari-
ance (see supplementary table). This may compromise data
integrity—mathematically distinct from standard minibatch
sampling—as it violates positive bag completeness and risks
omitting critical instances, especially in larger batches Shap-
cott et al. (2019). In contrast, our method achieves a better
trade-off between efficiency and accuracy.

Notably, variations in bag length (57k/105k for C16 Multi-
scale/ImageNet) significantly impact processing speed, ex-
plaining the latency observed with Bag Pooling. Dataset
size also affects the optimal batch size (TCGA=32 vs.
C16=16), highlighting the importance of tuning hyperparam-
eters based on scale. Differences in method performance
become less pronounced with simpler features but more
evident as feature complexity increases.

4.2.2. THE NODE EXPANSION EFFICIENCY OF DPGS

This study provides a theoretical and empirical analysis of
scalability in distributed training. As shown in Figure 3,
with fixed batch size (B = 8), DMGC keep rates (10%, 1%,
0.1%), and 1000 Mbps bandwidth on the C16-Multiscale
dataset, ABMIL training time decreases nearly linearly as
node count increases (K = 1–8), but shows significant non-
linear reduction beyond K = 4 (at 1% keep rate). Aligned

Table 4. A comparison of ABMIL performance in single- vs. multi-
machine training shows that the method supports single-GPU op-
eration via multi-process parallelism (virtual nodes), maximizing
resource use without requiring multi-GPU setups. Intra-device
communication improves efficiency, leveraging memory band-
width that exceeds network limits.

Dataset C16-Multiscale

Configure 4 Nodes on 1 GPU 4 Nodes on 4 GPUs

Acc 93.71% ± 0.11% 93.83% ± 0.09%
Time 133.32 ± 17.47 142.95 ± 11.73

with Equation 12, we posit that this phenomenon originates
from fundamental scalability constraints of distributed sys-
tems: when the node scale surpasses K > 4 (keep rate =
1%), the proportion of cross-node gradient synchronization
time (Tcomm) in the total training duration progressively in-
creases. At this critical juncture, the diminishing returns
from reduced computation time per iteration are offset by
the rising communication overhead, pushing overall training
efficiency into a plateau phase.

Figure 3. Synchronous parallel algorithms face scalability plateaus
due to communication and synchronization overheads. While
expanding nodes reduces training costs, this gain is offset by in-
creased communication. Higher gradient compression shifts the
plateau inflection point to larger scales. In addition, as per Equa-
tion 12, larger datasets prolong computational benefits from node
scaling under fixed communication costs, delaying the plateau and
raising the bottleneck inflection point.

As demonstrated in Table 4, it is important to recognize that
the proposed methodology is not limited to multi-node dis-
tributed systems; it can also be implemented on single-node
computing devices. By using multi-process virtualization to
simulate nodes, DPGS can operate in a distributed manner
on a single device. Furthermore, the improved communica-
tion efficiency within a single machine’s memory can lead
to higher computational efficiency.

4.2.3. BATCH SIZE GAIN FOR DPGS

This study further investigates the regulatory mechanism
of batch size on MIL model performance. Under tradi-
tional non-parallel frameworks constrained by hardware
limitations that preclude batch stacking, we systematically
analyze the dynamic relationship between batch scale and
model efficacy within the DPGS framework by varying
gradient stacking magnitudes under identical experimental
configurations.

Figure 4 presents the results across the three datasets dis-
cussed in Section 4.1. In the TCGA-LUNG dataset, all com-
parative models exhibit monotonically increasing accuracy
as the stacking quantity increases from 8 to 32. However,
performance degrades when the batch size exceeds a critical
threshold (N = 32). Notably, model sensitivity to batch
size varies significantly. When the batch size increases from
4 to 32 in the Camelyon16-Multiscale dataset, accuracy
and convergence time trends diverge across models. More-
over, optimal batch sizes vary substantially between datasets.
Comparative analysis reveals a notable distinction between
TCGA-LUNG (simple-structured data) and Camelyon16-
ImageNet-Pretrain (complex, lower-quality data): models
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Figure 4. The dashed line signifies the baseline of accuracy and time when this framework is not employed. The incomplete line indicates
that the model did not converge on this dataset, consequently, a convergence time is not available. The corresponding accuracy is
represented by the high value in the test data distribution.

yield significantly greater accuracy gains (4.68%–9.33% vs.
0.4%–1.3%) with batch size scaling in the complex dataset.

This discrepancy is attributable to two factors: (1) Complex
datasets offer more room for accuracy improvement due to
lower baseline performance; (2) Stacking-driven error esti-
mation reduces gradient noise more effectively, improving
the consistency of parameter updates, especially in noise-
intensive gradients associated with complex data patterns.

4.3. Results of DMGC

4.3.1. ABLATION STUDY FOR DMGC

This study systematically validates the core advantages of
DMGC through controlled ablation experiments. Under
fixed network bandwidth (20 Mbps) and a computational
node scale of N = 4 on the C16-Multiscale dataset, five
independent experimental replicates were conducted, and
mean values along with standard deviations were calcu-
lated. As shown in Table 5, when using the combined
DPGS+DMGC strategy, the ABMIL and TransMIL mod-
els achieve 73.9% and 76.2% reductions in convergence
time, respectively, compared to the DPGS baseline methods,
while maintaining identical classification accuracy.

4.3.2. BANDWIDTH AFFECTS DMGC

To investigate algorithmic robustness under network band-
width constraints, we establish controlled network environ-
ments using switch-based rate limiting and conduct multi-
bandwidth experiments on ABMIL models with the C16-
Multiscale dataset. Figure 5 shows that under various low-

Table 5. An ablation analysis was conducted to evaluate the accu-
racy and convergence time of ABMIL and TransMIL integrated
with DPGS under a 20 Mbps network bandwidth. The experimen-
tal results demonstrate that the DPGS framework combined with
DMGC achieves the fastest convergence speed while maintaining
competitive accuracy performance.

Model Method Accuracy Time (s)

ABMIL
DPGS+None 93.84% ±0.08 544 ±37

DPGS+DGCLin et al. (2017) 93.83% ±0.12 249 ±15

DPGS+DMGC 93.83% ±0.09 142 ±11

TransMIL
DPGS+None 95.23% ±0.06 1311 ±90

DPGS+DGC 95.20% ±0.08 652 ±55

DPGS+DMGC 95.23% ±0.04 313 ±19

bandwidth conditions, DMGC achieves superior conver-
gence speed compared to both DGC and non-compression
methods, with average acceleration factors of 1.73× over
DGC and 3.08× over uncompressed approaches. These
results confirm that DMGC maintains stable model perfor-
mance under stringent bandwidth limitations while signif-
icantly improving communication efficiency compared to
DGC.

4.3.3. DISCARD RATE IMPACTS ON DMGC.

This study analyzes gradient discard rates in DMGC through
controlled experiments. As Table 6 showed Under 10Mbps
bandwidth constraints, DMGC maintains stable conver-
gence even at 99.99% discard rates, demonstrating excep-
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Figure 5. The convergence times of the ABMIL model with dif-
ferent compression methods on the C16-Multiscale dataset under
varying bandwidths. It should be noted that the accuracy in this
experiment remained nearly unchanged, with a variance of less
than 0.03%. It can be observed that as the bandwidth decreased,
the advantage of this method over DGC and the non-compression
approach became increasingly pronounced.

tional robustness. A non-monotonic convergence pattern
emerges: optimal speed at 99% discard rate vs. suboptimal
performance at 30%, stemming from the balance between 1.
Low discard rates preserve gradient tensor semantic integrity
but significantly increase network transmission latency; 2.
High discard rates reduce communication overhead at the
cost of increased gradient sparsification.

Further analysis demonstrates DMGC’s dual compression
(gradient sparsification + weight sparsification) significantly
improves communication efficiency. Experiments show
117.5-fold parameter compression ratio versus baseline.
However, diminishing marginal returns in compression effi-
ciency are observed in low discard rate regimes. This phe-
nomenon occurs due to heterogeneous sparse weights across
distributed nodes. Only parameters that exceed retention
thresholds are updated, which reduces weight compressibil-
ity and leads to a decline in marginal utility.

5. Conclusion
This study introduces DPGS, a distributed MIL framework
that integrates gradient stacking with dual compression
(DMGC), achieving the following:

• 1. Lossless batch processing of variable-length data
via distributed gradients.

• 2. A 99.2% bandwidth reduction through joint gradient-
weight compression, as shown in Table 6.

• 3. Up to 31× faster training and 9.3% accuracy im-
provements over baselines on the Camelyon16 and
TCGA-Lung datasets.

While DPGS optimizes the efficiency of synchronous dis-

Table 6. Impact of DMGC Dropout Rates on ABMIL
Performance(C16-Multiscale,10Mbps). Comm: Commu-
nication size(Byte). CR: Compression ratio(original size /
compressed size)

Keep Rate Time (s) Acc. (%) Comm. (×1e3) CR

0.01% 5256±226 93.8±0.2 8.3±0.4 117.5
0.1% 1380±181 93.8±0.1 10.7±0.2 91.6
1% 355±60 93.8±0.2 42.9±5.4 22.8

10% 409±35 94.0±0.1 90.4±6.5 10.8
20% 470±33 94.0±0.0 244.1±7.3 4.4
30% 531±34 94.0±0.0 384.5±7.9 2.5
40% 564±33 93.8±0.2 440.0±7.5 2.2
50% 621±30 93.8±0.0 697.2±9.0 1.4
60% 445±26 93.8±0.0 733.1±8.6 1.3
70% 390±26 94.0±0.0 884.9±9.6 1.1
80% 441±29 93.8±0.1 923.5±9.6 1.1
90% 724±37 93.8±0.2 937.6±10.8 1.0
100% 731±34 93.8±0.1 979.7±17.5 1.0

tributed training, the synchronization overhead still limits
GPU utilization. Future work will explore asynchronous
distributed computing to mitigate synchronization latency
and further accelerate large-scale MIL workflows. Com-
bining adaptive task scheduling with asynchronous updates
has the potential to improve the scalability of ultra-large
histopathology datasets, paving the way for distributed MIL
at petabyte scale.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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